Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-10T20:26:21.810Z Has data issue: false hasContentIssue false

Section III - Anatomical endocrine pathology

Published online by Cambridge University Press:  13 April 2017

Ozgur Mete
Affiliation:
University of Toronto
Sylvia L. Asa
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Endocrine Pathology , pp. 283 - 1043
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Kahle, W, Frotscher, M, eds. 2010 Color Atlas of Human Anatomy, Vol. 3: Nervous System and Sensory Organs, 6th edn. Berlin: Thieme.CrossRefGoogle Scholar
Mouri, T, Itoi, K, Takahashi, K, et al. 1993 Colocalization of corticotropin-releasing factor and vasopressin in the paraventricular nucleus of the human hypothalamus. Neuroendocrinology 57: 3439.CrossRefGoogle ScholarPubMed
Lincoln, DW, Paisley, AC. 1982 Neuroendocrine control of milk ejection. J Reprod Fertil 65: 571586.CrossRefGoogle ScholarPubMed
Bloch, B, Gaillard, RC, Brazeau, P, et al. 1984 Topographical and ontogenetic study of the neurons producing growth hormone-releasing factor in human hypothalamus. Regul Pept 8: 2131.CrossRefGoogle ScholarPubMed
Desy, L, Pelletier, G. 1977 Immunohistochemical localization of somatostatin in the human hypothalamus. Cell Tissue Res 184: 491497.CrossRefGoogle ScholarPubMed
King, JC, Anthony, EL. 1984 LHRH neurons and their projections in humans and other mammals: species comparisons. Peptides 5(suppl 1): 195207.CrossRefGoogle ScholarPubMed
Kawahito, Y, Sano, H, Kawata, M, et al. 1994 Local secretion of corticotropin-releasing hormone by enterochromaffin cells in human colon. Gastroenterology 106: 859865.CrossRefGoogle ScholarPubMed
Linton, EA, Woodman, JR, Asboth, G, et al. 2001 Corticotrophin releasing hormone: its potential for a role in human myometrium. Exp Physiol 86: 273281.CrossRefGoogle ScholarPubMed
Kiaris, H, Chatzistamou, I, Papavassiliou, AG, Schally, AV. 2011 Growth hormone-releasing hormone: not only a neurohormone. Trends Endocrinol Metab 22: 311317.CrossRefGoogle ScholarPubMed
Lamberts, SW, Macleod, RM. 1990 Regulation of prolactin secretion at the level of the lactotroph. Physiol Rev 70: 279318.CrossRefGoogle ScholarPubMed
Ben-Jonathan, N, Hnasko, R. 2001 Dopamine as a prolactin (PRL) inhibitor. Endocr Rev 22: 724763.CrossRefGoogle ScholarPubMed
Freeman, ME, Kanyicska, B, Lerant, A, Nagy, G. 2000 Prolactin: structure, function, and regulation of secretion. Physiol Rev 80: 15231631.CrossRefGoogle ScholarPubMed
Arey, BJ, Freeman, ME. 1989 Hypothalamic factors involved in the endogenous stimulatory rhythm regulating prolactin secretion. Endocrinology 124: 878883.CrossRefGoogle ScholarPubMed
Arey, BJ, Freeman, ME. 1992 Activity of oxytocinergic neurons in the paraventricular nucleus mirrors the periodicity of the endogenous stimulatory rhythm regulating prolactin secretion. Endocrinology 130: 126132.CrossRefGoogle ScholarPubMed
Gerhold, LM, Horvath, TL, Freeman, ME. 2001 Vasoactive intestinal peptide fibers innervate neuroendocrine dopaminergic neurons. Brain Res 919: 4856.CrossRefGoogle ScholarPubMed
Egli, M, Bertram, R, Sellix, MT, Freeman, ME. 2004 Rhythmic secretion of prolactin in rats: action of oxytocin coordinated by vasoactive intestinal polypeptide of suprachiasmatic nucleus origin. Endocrinology 145: 33863394.Google Scholar
Rogol, A, Blizzard, RM. 1994 Variations and disorders of pubertal development. In Kappy, MS, Blizzard, RM, Migeon, CJ, eds. Wilkins Diagnosis and Treatment of Endocrine Disorders in Childhood and Adolescence. Springfield, IL: Charles Thomas, pp. 857917.Google Scholar
Teilmann, G, Pedersen, CB, Jensen, TK, et al. 2005 Prevalence and incidence of precocious pubertal development in Denmark: an epidemiologic study based on national registries. Pediatrics 116: 13231328.Google Scholar
Pescovitz, OH, Comite, F, Hench, K, et al. 1986 The NIH experience with precocious puberty: diagnostic subgroups and response to short-term luteinizing hormone releasing hormone analogue therapy. J Pediatr 108: 4754.Google Scholar
Mittal, S, Mittal, M, Montes, JL, et al. 2013b Hypothalamic hamartomas. Part 1. Clinical, neuroimaging, and neurophysiological characteristics. Neurosurg Focus 34: E6.Google Scholar
Chan, YM, Fenoglio-Simeone, KA, Paraschos, S, et al. 2010 Central precocious puberty due to hypothalamic hamartomas correlates with anatomic features but not with expression of GnRH, TGFalpha, or KISS1. Horm Res Paediatr 73: 312319.Google Scholar
Judge, DM, Kulin, HE, Page, R, et al. 1977 Hypothalamic hamartoma: a source of luteinizing-hormone-releasing factor in precocious puberty. N Engl J Med 296: 710.Google Scholar
Hochman, HI, Judge, DM, Reichlin, S. 1981 Precocious puberty and hypothalamic hamartoma. Pediatrics 67: 236244.CrossRefGoogle ScholarPubMed
Giabicani, E, Allali, S, Durand, A, et al. 2013 Presentation of 493 consecutive girls with idiopathic central precocious puberty: a single-center study. PLOS ONE 8: e70931.CrossRefGoogle ScholarPubMed
Cisternino, M, Della Mina, E, Losa, L, et al. 2013. Idiopathic central precocious puberty associated with 11 mb de novo distal deletion of the chromosome 9 short arm. Case Rep Genet 2013: 978087.Google Scholar
Ellison, DH, Berl, T. 2007 The syndrome of inappropriate antidiuresis. N Engl J Med 356: 20642072.Google Scholar
Raftopoulos, H. 2007 Diagnosis and management of hyponatremia in cancer patients. Support Care Cancer 15: 13411347.CrossRefGoogle ScholarPubMed
Chan, TY. 1997 Drug-induced syndrome of inappropriate antidiuretic hormone secretion. Causes, diagnosis and management. Drugs Aging 11: 2744.Google Scholar
Cerdà-Esteve, M, Cuadrado-Godia, E, Chillaron, JJ, et al. 2008 Cerebral salt wasting syndrome: review. Eur J Intern Med 19: 249254.Google Scholar
Wright, WL. 2012 Sodium and fluid management in acute brain injury. Curr Neurol Neurosci Rep 12: 466473.CrossRefGoogle ScholarPubMed
Babey, M, Kopp, P, Robertson, GL. 2011 Familial forms of diabetes insipidus: clinical and molecular characteristics. Nat Rev Endocrinol 7: 701714.Google Scholar
Bichet, DG. 2012 Genetics and diagnosis of central diabetes insipidus. Ann Endocrinol (Paris) 73: 117127.CrossRefGoogle ScholarPubMed
Ozata, M, Tayfun, C, Kurtaran, K, et al. 1997 Magnetic resonance imaging of posterior pituitary for evaluation of the neurohypophyseal function in idiopathic and autosomal dominant neurohypophyseal diabetes insipidus. Eur Radiol 7: 10981102.Google Scholar
Alter, CA, Bilaniuk, LT. 2002 Utility of magnetic resonance imaging in the evaluation of the child with central diabetes insipidus. J Pediatr Endocrinol Metab 15(suppl 2): 681687.Google Scholar
Taylor, M, Couto-Silva, AC, Adan, L, et al. 2012 Hypothalamic–pituitary lesions in pediatric patients: endocrine symptoms often precede neuro-ophthalmic presenting symptoms. J Pediatr 161: 855863.CrossRefGoogle ScholarPubMed
Melmed, S, Kleinberg, D. 2011 Pituitary masses and tumors. In Melmed, S, Polonsky, KS, Larsen, PR, Kronenberg, HM, eds. Williams Textbook of Endocrinology, 12th edn. Philadelphia PA: Elsevier, pp. 229290.CrossRefGoogle Scholar
Dodé, C, Hardelin, JP. Kallmann syndrome. 2009 Kallmann syndrome. Eur J Hum Genet 17: 139146.CrossRefGoogle ScholarPubMed
Zaghouani, H, Slim, I, Zina, NB, et al. 2013 Kallmann syndrome: MRI findings. Indian J Endocrinol Metab 17(suppl 1): S142S145.Google Scholar
Silveira, LF, Trarbach, EB, Latronico, AC. 2010 Genetics basis for GnRH-dependent pubertal disorders in humans. Mol Cell Endocrinol 324: 3038.CrossRefGoogle ScholarPubMed
Beate, K, Joseph, N, Nicolas de, R, Wolfram, K. 2012 Genetics of isolated hypogonadotropic hypogonadism: role of GnRH receptor and other genes. Int J Endocrinol 2012: 147893.CrossRefGoogle ScholarPubMed
Webb, EA, Dattani, MT. 2010 Septo-optic dysplasia. Eur J Hum Genet 18: 393397.Google Scholar
McNay, DE, Turton, JP, Kelberman, D, et al. 2007 HESX1 mutations are an uncommon cause of septooptic dysplasia and hypopituitarism. J Clin Endocrinol Metab 92: 691697.CrossRefGoogle ScholarPubMed
McCabe, MJ, Alatzoglou, KS, Dattani, MT. 2011 Septo-optic dysplasia and other midline defects: the role of transcription factors: HESX1 and beyond. Best Pract Res Clin Endocrinol Metab 25: 115124.Google Scholar
Mehta, A, Dattani, MT. 2008 Developmental disorders of the hypothalamus and pituitary gland associated with congenital hypopituitarism. Best Pract Res Clin Endocrinol Metab 22: 191206.Google Scholar
Chopra, R, Chander, A, Jacob, JJ. 2012 The eye as a window to rare endocrine disorders. Indian J Endocrinol Metab 16: 331338.Google Scholar
Johnston, JJ, Olivos-Glander, I, Killoran, C, et al. 2005 Molecular and clinical analyses of Greig cephalopolysyndactyly and Pallister–Hall syndromes: robust phenotype prediction from the type and position of GLI3 mutations. Am J Hum Genet 76: 609622.Google Scholar
Johnston, JJ, Sapp, JC, Turner, JT, et al. 2010 Molecular analysis expands the spectrum of phenotypes associated with GLI3 mutations. Hum Mutat 31: 11421154.CrossRefGoogle ScholarPubMed
Craig, DW, Itty, A, Panganiban, C, et al. 2008 Identification of somatic chromosomal abnormalities in hypothalamic hamartoma tissue at the GLI3 locus. Am J Hum Genet 82: 366374.CrossRefGoogle ScholarPubMed
Jung, H, Neumaier Probst, E, Hauffa, BP, et al. 2003 Association of morphological characteristics with precocious puberty and/or gelastic seizures in hypothalamic hamartoma. J Clin Endocrinol Metab 88: 45904595.Google Scholar
Coons, SW, Rekate, HL, Prenger, EC, et al. 2007 The histopathology of hypothalamic hamartomas: study of 57 cases. J Neuropathol Exp Neurol 66: 131141.Google Scholar
Beggs, J, Nakada, S, Fenoglio, K, et al. 2008 Hypothalamic hamartomas associated with epilepsy: ultrastructural features. J Neuropathol Exp Neurol 67: 657668.CrossRefGoogle ScholarPubMed
Wu, J, Xu, L, Kim, DY, Rho, JM, et al. 2005 Electrophysiological properties of human hypothalamic hamartomas. Ann Neurol 58: 371382.Google Scholar
Wu, J, DeChon, J, Xue, F, et al. 2008 GABA(A) receptor-mediated excitation in dissociated neurons from human hypothalamic hamartomas. Exp Neurol 213: 397404.Google Scholar
Mittal, S, Mittal, M, Montes, JL, et al. 2013 Hypothalamic hamartomas. Part 2. Surgical considerations and outcome. Neurosurg Focus 2013 34: E7.Google Scholar
Striano, S, Striano, P, Coppola, A, Romanelli, P. 2009 The syndrome gelastic seizures–hypothalamic hamartoma: severe, potentially reversible encephalopathy. Epilepsia 50(suppl 5): 6265.Google Scholar
Dhanwal, DK, Vyas, A, Sharma, A, Saxena, A. 2010 Hypothalamic pituitary abnormalities in tubercular meningitis at the time of diagnosis. Pituitary 13: 304310.Google Scholar
Hoitsma, E, Faber, CG, Drent, M, Sharma, OP. 2004 Neurosarcoidosis: a clinical dilemma. Lancet Neurol 3: 397407.CrossRefGoogle ScholarPubMed
Bihan, H, Christozova, V, Dumas, JL, et al. 2007 Sarcoidosis: clinical, hormonal, and magnetic resonance imaging (MRI) manifestations of hypothalamic–pituitary disease in 9 patients and review of the literature. Medicine (Baltimore) 86: 259268.CrossRefGoogle ScholarPubMed
Carpinteri, R, Patelli, I, Casanueva, FF, Giustina, A. 2009 Pituitary tumours: inflammatory and granulomatous expansive lesions of the pituitary. Best Pract Res Clin Endocrinol Metab 23: 639650.CrossRefGoogle ScholarPubMed
Grossman, RI, Yousem, DM. 2010 Neuroradiology: The Requisites, 3rd edn: Ch. 6 Infectious and noninfectious inflammatory disease of the brain. Edinburgh: Mosby-Elsevier, pp. 192226.Google Scholar
Molina, A, Mañá, J, Villabona, C, et al. 2002 Hypothalamic–pituitary sarcoidosis with hypopituitarism. Long-term remission with methylprednisolone pulse therapy. Pituitary 5: 3336.CrossRefGoogle ScholarPubMed
Dolecek, TA, Propp, JM, Stroup, NE, Kruchko, C. 2012 CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol 14(suppl 5): v1–v49; erratum 2013;15: 646647.Google Scholar
Lopes, MBS, Scheithauer, BW, Saeger, W 2004 Mesenchymal tumours of the pituitary region. In DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. WHO Classification of Tumours: Pathology and Genetic of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, pp. 4143.Google Scholar
Simmons, NE, Laws, ER Jr. 1998 Glioma occurrence after sellar irradiation: case report and review. Neurosurgery 42: 172178.Google Scholar
Horbinski, C, Hamilton, RL, Lovell, C, et al. 2010 Impact of morphology, MIB-1, p53 and MGMT on outcome in pilocytic astrocytomas. Brain Pathol 20: 581588.CrossRefGoogle ScholarPubMed
Horbinski, C, Hamilton, RL, Nikiforov, Y, Pollack, IF. 2010 Association of molecular alterations, including BRAF, with biology and outcome in pilocytic astrocytomas. Acta Neuropathol 119: 641649.Google Scholar
Tihan, T, Fisher, PG, Kepner, JL, et al. 1999 Pediatric astrocytomas with monomorphous pilomyxoid features and a less favorable outcome. J Neuropathol Exp Neurol 58: 10611068.Google Scholar
Johnson, MW, Eberhart, CG, Perry, A, et al. 2010 Spectrum of pilomyxoid astrocytomas: intermediate pilomyxoid tumors. Am J Surg Pathol 34: 17831791.Google Scholar
Li, J, Perry, A, James, CD, et al. 2001 Cancer-related gene expression profiles in NF1-associated pilocytic astrocytomas. Neurology 56: 885890.CrossRefGoogle ScholarPubMed
Komotar, RJ, Burger, PC, Carson, BS, et al. 2004 Pilocytic and pilomyxoid hypothalamic/chiasmatic astrocytomas. Neurosurgery 54: 7279.Google Scholar
Chandra, RV, King, JAJ 2012 Advanced imaging of brain tumors. In Kaye, AH, Laws, ER, eds. Brain Tumors: An Encyclopedic Approach, 3rd edn. Philadelphia, PA: Elsevier, pp. 188213.CrossRefGoogle Scholar
Otero, JJ, Rowitch, D, Vandenberg, S. 2011. OLIG2 is differentially expressed in pediatric astrocytic and in ependymal neoplasms. J Neurooncol 104: 423438.Google Scholar
Yan, H, Parsons, DW, Jin, G, et al. 2009. IDH1 and IDH2 mutations in gliomas. N Engl J Med 360: 765773.Google Scholar
Korshunov, A, Meyer, J, Capper, D, et al. 2009 Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol 118: 401405.Google Scholar
Giannini, C, Scheithauer, BW, Burger, PC, et al. 1999 Cellular proliferation in pilocytic and diffuse astrocytomas. J Neuropathol Exp Neurol 58: 4653.CrossRefGoogle ScholarPubMed
Tibbetts, KM, Emnett, RJ, Gao, F, et al. 2009 Histopathologic predictors of pilocytic astrocytoma event-free survival. Acta Neuropathol 117: 657665.CrossRefGoogle ScholarPubMed
Scheithauer, BW, Hawkins, C, Tihan, T, et al. Pilocytic astrocytoma. In Louis, DN, Ohgaki, H, Weistler, OD, Cavenee, WK, eds. WHO Classification of Tumours of the Central Nervous System. Lyon: International Agency for Research on Cancer, 2007:1421.Google Scholar
Rodriguez, FJ, Scheithauer, BW, Burger, PC, et al. 2010 Anaplasia in pilocytic astrocytoma predicts aggressive behavior. Am J Surg Pathol 34: 147160.CrossRefGoogle ScholarPubMed
Colin, C, Padovani, L, Chappé, C, et al. 2013 Outcome analysis of childhood pilocytic astrocytomas: a retrospective study of 148 cases at a single institution. Neuropathol Appl Neurobiol 39: 693705.Google Scholar
Cin, H, Meyer, C, Herr, R, et al. 2011. Oncogenic FAM131BBRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathol 121: 763774.CrossRefGoogle ScholarPubMed
Tatevossian, RG, Lawson, AR, Forshew, T, et al. 2010 MAPK pathway activation and the origins of pediatric low-grade astrocytomas. J Cell Physiol 222: 509514.Google Scholar
Lawson, AR, Tatevossian, RG, Phipps, KP, et al. 2010 RAF gene fusions are specific to pilocytic astrocytoma in a broad paediatric brain tumour cohort. Acta Neuropathol 120: 271273.CrossRefGoogle Scholar
Schindler, G, Capper, D, Meyer, J, et al. 2011 Analysis of BRAFV600E mutation in 1320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121: 397405.CrossRefGoogle Scholar
Horbinski, C. 2013 To BRAF or not to BRAF: is that even a question anymore? J Neuropathol Exp Neurol 72: 27.Google Scholar
Rushing, EJ, Giangaspero, F, Paulus, W, et al. 2007 Craniopharyngioma. In Louis, DN, Ohgaki, H, Wiestler, OD, Cavenee, WK eds. WHO Classification of Tumours of the Central Nervous System. Lyon: International Agency for Research on Cancer, pp. 238240.Google Scholar
Zada, G, Lin, N, Ojerholm, E, et al. 2010 Craniopharyngioma and other cystic epithelial lesions of the sellar region: a review of clinical, imaging, and histopathological relationships. Neurosurg Focus 28: E4.CrossRefGoogle ScholarPubMed
Laws, ER Jr., Thapar, K. 1994 The diagnosis and management of craniopharyngioma. Growth Genet Horm 10: 611.Google Scholar
Raghavan, R, Dickey, WT Jr., Margraf, LR, et al. 2000 Proliferative activity in craniopharyngiomas: clinicopathological correlations in adults and children. Surg Neurol 54: 241247.Google Scholar
Duo, D, Gasverde, S, Benech, F, et al. 2003 MIB-1 immunoreactivity in craniopharyngiomas: a clinico-pathological analysis. Clin Neuropathol 22: 229234.Google ScholarPubMed
Winkfield, KM, Tsai, HK, Yao, X, et al. 2011 Long-term clinical outcomes following treatment of childhood craniopharyngioma. Pediatr Blood Cancer 56: 11201126.Google Scholar
Duff, JM, Meyer, FB, Ilstrup, DM, et al. 2000 Long-term outcomes for surgically resected craniopharyngiomas. Neurosurgery 46: 291305.Google Scholar
Villano, JL, Propp, JM, Porter, KR, et al. 2008 Malignant pineal germ-cell tumors: an analysis of cases from three tumor registries. Neuro Oncol 10: 121130.Google Scholar
Villano, JL, Virk, IY, Ramirez, V, et al. 2010 Descriptive epidemiology of central nervous system germ cell tumors: nonpineal analysis. Neuro Oncol 12: 257264.CrossRefGoogle ScholarPubMed
Goodwin, TL, Sainani, K, Fisher, PG. 2009 Incidence patterns of central nervous system germ cell tumors: a SEER Study. J Pediatr Hematol Oncol 31: 541544.CrossRefGoogle ScholarPubMed
Thakkar, JP, Chew, L, Villano, JL. 2013 Primary CNS germ cell tumors: current epidemiology and update on treatment. Med Oncol 30: 496.Google Scholar
Aizer, AA, Sethi, RV, Hedley-Whyte, ET, et al. 2013 Bifocal intracranial tumors of nongerminomatous germ cell etiology: diagnostic and therapeutic implications. Neuro Oncol 15: 955960.Google Scholar
Rosenblum, MK, Nakazato, Y, Matsutani, M 2007 CNS germ cell tumours. In Louis, DN, Ohgaki, H, Wiestler, OD, Cavenee, WK eds. WHO Classification of Tumours of the Central Nervous System. Lyon: International Agency for Research on Cancer, pp. 198204.Google Scholar
Huang, X, Zhang, R, Mao, Y, Zhou, LF. 2010 Modified grading system for clinical outcome of intracranial non-germinomatous malignant germ cell tumors. Oncol Lett 1: 627631.CrossRefGoogle ScholarPubMed
Echevarría, ME, Fangusaro, J, Goldman, S. 2008 Pediatric central nervous system germ cell tumors: a review. Oncologist 13: 690699.Google Scholar
Jaffe, R, Weiss, LM, Facchett, F. 2008 Tumours derived from Langerhans cells. In Swerdlow, SH, Campo, E, Harris, NL, et al. eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: International Agency for Research on Cancer, pp. 358360.Google Scholar
Donadieu, J, Rolon, MA, Pion, I, et al. 2004 Incidence of growth hormone deficiency in pediatric-onset Langerhans cell histiocytosis: efficacy and safety of growth hormone treatment. J Clin Endocrinol Metab 2004;89: 604609.Google Scholar
Marchand, I, Barkaoui, MA, Garel, C, et al. 2011 Central diabetes insipidus as the inaugural manifestation of Langerhans cell histiocytosis: natural history and medical evaluation of 26 children and adolescents. J Clin Endocrinol Metab 96: E13521360.Google Scholar
Sadler, TW, ed. 1990 Langman's Medical Embryology, 6th edn. Baltimore, MD: Williams & Wilkins, pp. 370373.Google Scholar
Erlich, SS, Apuzzo, MLJ. 1985 The pineal gland: anatomy, physiology, and clinical significance. J Neurosurg 63: 321341.Google Scholar
Vollrath, L. 1984 Functional anatomy of the human pineal gland. In Reiter, RJ, ed. The Pineal Gland, New York: Raven Press, pp. 285322.Google Scholar
Benarroch, EE. 2008 Suprachiasmatic nucleus and melatonin: reciprocal interactions and clinical correlations. Neurology 71: 594598.Google Scholar
Cardinali, DP. 1984 Neural-hormonal integrative mechanisms in the pineal gland and superior cervical ganglia. In Reiter, RJ, ed. The Pineal Gland, New York: Raven Press, pp. 83107.Google Scholar
Russell, DS, Rubinstein, LJ, eds. 1989 Pathology of Tumors of the Nervous System, 5th edn. London: Edward Arnold, pp. 380394.Google Scholar
Duvernoy, HM, Risold, PY. 2007 The circumventricular organs: an atlas of comparative anatomy and vascularization. Brain Res Rev 56: 119147.Google Scholar
Korf, H-W. 1994 The pineal organ as a component of the biological clock: philogenetic and ontogenetic considerations. Ann N Y Acad Sci 719: 1342.Google Scholar
Maronde, E, Stehle, JH. 2007 The mammalian pineal gland: known facts, unknown facts. Trends Endocrinol Metab 18: 142149.Google Scholar
Perentes, E, Rubinstein, LJ, Herman, MM, Donoso, LA. 1986 S-antigen immunoreactivity in human pineal glands and pineal parenchymal tumors. A monoclonal antibody study. Acta Neuropathol 71: 224227.Google Scholar
Vollrath, L. 2001 Biology of the pineal gland and melatonin in humans. In Bartsch, C, Bartsch, H, Cardinali, DP, Hrushesky, WJM, Mecke, D, eds. The Pineal Gland and Cancer: Neuroimmunoendocrine Mechanisms in Malignancy. Berlin: Springer, pp. 549.Google Scholar
Reiter, RJ. 1996 Functional diversity of the pineal hormone melatonin: its role as an antioxidant. Exp Clin Endocrinol 104: 1016.Google Scholar
Borjigin, J, Li, X, Snyder, SH. 1999 The pineal gland and melatonin: molecular and pharmacologic regulation. Annu Rev Pharmacol Toxicol 39: 5365.Google Scholar
Boutin, JA, Audinot, V, Ferry, G, et al. 2005 Molecular tools to study melatonin pathways and actions. Trends Pharmacol Sci 26: 412419.Google Scholar
Vaughan, MK. 1984 Pineal peptides: an overview. In Reiter, RJ, ed. The Pineal Gland. New York: Raven Press, pp. 3981.Google Scholar
Markus, RP, Ferreira, ZS, Fernandes, PA, Cecon, E. 2007 The immune-pineal axis: a shuttle between endocrine and practice melatonin sources. Neuroimmunomodulation 14: 126133.Google Scholar
Bartsch, C, Bartsch, H, Mecke, D. 2001 Analysis of melatonin in patients with cancer of the reproductive system. In Bartsch, C, Bartsch, H, Cardinali, DP, Hrushesky, WJM, Mecke, D, eds. The Pineal Gland and Cancer: Neuroimmunoendocrine Mechanisms in Malignancy. Berlin: Springer, pp. 153176.Google Scholar
Kvetnaia, TV, Kvetnoy, IM, Bartsch, H, et al. 2001 Melatonin in patients with cancer of extra-reproductive location. In Bartsch, C, Bartsch, H, Cardinali, DP, Hrushesky, WJM, Mecke, D, eds. The Pineal Gland and Cancer: Neuroimmunoendocrine Mechanisms in Malignancy. Berlin: Springer, pp. 177196.Google Scholar
Lum, GB, Williams, JP, Machen, BC, Akkaraju, V. 1987 Benign cystic pineal lesions by magnetic resonance imaging. J Comput Tomogr 11: 228235.CrossRefGoogle ScholarPubMed
Jinkins, JR, Xiong, L, Reiter, RJ. 1995 The midline pineal “eye”: MR and CT characteristics of the pineal gland with and without benign cyst formation. J Pineal Res 19: 6471.Google Scholar
Hasegawa, A, Ohtsubo, K, Mori, W. 1987 Pineal gland in old age; quantitative and qualitative morphological study of 168 autopsy cases. Brain Res 409: 343349.Google Scholar
Wisoff, JH, Epstein, F. 1992 Surgical management of symptomatic pineal cysts. J Neurosurg 77: 896900.Google Scholar
Patel, AJ, Fuller, GN, Wildrick, DM, Sawaya, R. 2005 Pineal cyst apoplexy: case report and review of the literature. Neurosurgery 57: E1066.Google Scholar
Costa, F, Fornari, M, Valla, P, Servello, D. 2008 Symptomatic pineal cyst: case report and review of the literature. Minim Invas Neurosurg 51: 231233.CrossRefGoogle ScholarPubMed
Nakazato, Y, Jouvet, A, Scheithauer, BW 2007 Pineocytoma; pineal parenchymal tumour of intermediate differentiation; pineoblastoma. In Louis, DN, Ohgaki, H, Wiestler, OD, Cavenee, WK eds. WHO Classification of Tumours of the Central Nervous System. Lyon: International Agency for Research on Cancer, pp. 122127.Google Scholar
Raimondi, AJ, Tomita, T. 1981 Brain tumors in children: advantages and disadvantages of individual treatment modalities. In Marlin, AE, ed. Concepts in Pediatric Neurosurgery I. Basel: Karger, pp. 128.Google Scholar
Bruce, DA, Schut, L, Sutton, LN. 1989 Pineal region tumors. In McLaurin, RL, Schut, L, Venes, JL, Epstein, F, eds. Pediatric Neurosurgery: Surgery of the Developing Nervous System. Philadelphia PA: WB Saunders, pp. 409416.Google Scholar
Araki, C, Matsumoto, S. 1969 Statistical reevaluation of pinealoma and related tumors in Japan. J Neurosurg 30: 146149.CrossRefGoogle ScholarPubMed
McCarthy, BJ, Shibui, S, Kayama, T, et al. 2012 Primary CNS germ cell tumors in Japan and the United States: an analysis of 4 tumor registries. Neuro Oncol 14: 11941200.CrossRefGoogle ScholarPubMed
Jouvet, A, Fauchon, F, Liberski, P, et al. 2003 Papillary tumor of the pineal region. Am J Surg Pathol 27: 505512.Google Scholar
Bruce, JN, Stein, BM. 1990 Pineal tumors. Neurosurg Clin North Am 1: 123138.Google Scholar
Bjornsson, J, Scheithauer, BW, Okazaki, H, Leech, RW. 1985 Intracranial germ cell tumors: pathobiological and Immunohistochemical aspects of 70 cases. J Neuropath Exp Neurol 44: 3246.CrossRefGoogle ScholarPubMed
D'Andrea, AD, Packer, RJ, Rorke, LB, et al. 1987 Pineocytomas of childhood: a reappraisal of natural history and response to therapy. Cancer 59: 13531537.Google Scholar
Edwards, MSB, Hudgins, RJ, Wilson, CB, et al. 1988 Pineal region tumors in children. J Neurosurg 68: 689697.Google Scholar
Schild, SE, Scheithauer, BW, Schomberg, PJ, et al. 1993 Pineal parenchymal tumors: clinical, pathological, and therapeutic aspects. Cancer 72: 870880.Google Scholar
Jouvet, A, Saint-Pierre, G, Fauchon, F, et al. 2000 Pineal parenchymal tumors: a correlation of histological features with prognosis in 66 cases. Brain Pathol 10: 4960.Google Scholar
Fèvre-Montange, M, Vasiljevic, A, Champier, J, Jouvet, A 2010 Histopathology of tumors of the pineal region. Future Oncol 6: 791809.Google Scholar
Fèvre-Montange, M, Szathmari, A, Champier, J, et al. 2008 Pineocytoma and pineal parenchymal tumors of intermediate differentiation presenting cytologic pleomorphism: a multicenter study. Brain Pathol 18: 354359.Google Scholar
Korf, HW, Klein, DC, Zigler, JS, et al. 1986 S-antigen-like immunoreactivity in a human pineocytoma. Acta Neuropathol 69: 165167.CrossRefGoogle Scholar
Lopes, MBS, Gonzalez-Fernandez, F, Scheithauer, BW, VandenBerg, SR 1993 Differential expression of retinal proteins in a pineal parenchymal tumor. J Neuropathol Exp Neurol 52: 516524.Google Scholar
Hoffman, HJ, Yoshida, M, Becker, LE, et al. 1994 Pineal region tumors in childhood. Pediatr Neurosurg 21: 91104.Google Scholar
Nakamura, H, Takeshima, H, Makino, K, Kuratsu, J 2005 C-KIT expression in germinoma: an immunohistochemistry-based study. J Neurooncol 75: 163167.Google Scholar
Santagata, S, Maire, CL, Idbaih, A, et al. 2009 CRX is a diagnostic marker of retinal and pineal lineage tumors. PLOS ONE 4: e7932.Google Scholar
Brown, AE, Leibundgut, K, Niggli, FK, Betts, DR 2006 Cytogenetics of pineoblastoma: four new cases and a literature review. Cancer Genet Cytogenet 170: 175179.Google Scholar
Fèvre-Montange, M, Champier, J, Szathmari, A, et al. 2006 Microarray analysis reveals differential gene expression patterns in tumors of the pineal region. J Neuropathol Exp Neurol 65: 675684.Google Scholar
Jouvet, A, Nakazato, Y, Scheithauer, BW, Paulus, W 2007 Papillary tumour of the pineal region. In Louis, DN, Ohgaki, H, Weistler, OD, Cavenee, WK eds. WHO Classification of Tumours of the Central Nervous System. Lyon: International Agency for Research on Cancer, pp. 128129.Google Scholar
Fauchon, F, Hasselblatt, M, Jouvet, A, et al. 2013 Role of surgery, radiotherapy and chemotherapy in papillary tumors of the pineal region: a multicenter study. J Neurooncol 112: 223231.Google Scholar
Kawahara, I, Tokunaga, Y, Yagi, N, et al. 2007 Papillary tumor of the pineal region: case report. Neurol Med Chir (Tokyo) 47: 568571.CrossRefGoogle Scholar
Shibahara, J, Todo, T, Morita, A, et al. 2004 Papillary neuroepithelial tumor of the pineal region. A case report. Acta Neuropathol 108: 337440.Google Scholar
Hasselblatt, M, Blumcke, I, Jeibmann, A, et al. 2006 Immunohistochemical profile and chromosomal imbalances in papillary tumours of the pineal region. Neuropathol Appl Neurobiol 32: 278283.Google Scholar
Fèvre Montange, M, Vasiljevic, A, Bergemer Fouquet, AM, et al. 2012 Histopathologic and ultrastructural features and claudin expression in papillary tumors of the pineal region: a multicenter analysis. Am J Surg Pathol 36: 916928.Google Scholar
Dagnew, E, Langford, L, Lang, F, DeMonte, F. 2007 Papillary tumors of the pineal region: case report. Neurosurgery 60: E953E955.Google Scholar
Fèvre-Montange, M, Hasselblatt, M, Figarella-Branger, D, et al. 2006 Prognosis and histopathologic features in papillary tumors of the pineal region: a retrospective multicenter study of 31 cases. J Neuropathol Exp Neurol 65: 10041011.CrossRefGoogle ScholarPubMed
Gonzalez-Crussi, F. 1982 Atlas of Tumor Pathology, 2nd Series, Fascicle 18: Extragonadal Teratomas. Washington DC: Armed Forces Institute of Pathology.Google Scholar
Jennings, MT, Gelman, R, Hochberg, F 1985 Intracranial germ-cell tumors: natural history and pathogenesis. J Neurosurg 63: 155167.Google Scholar
Glenn, OA, Barkovich, AJ 1996 Intracranial germ cell tumors: a comprehensive review of proposed embryologic derivation. Pediatr Neurosurg 24: 242251.Google Scholar
Cuccia, V, Alderete, D. 2010 Suprasellar/pineal bifocal germ cell tumors. Childs Nerv Syst 26: 10431049.Google Scholar
Wei, Y-Q, Hang, Z-B, Liu, K-F 1992 In situ observation of inflammatory cell-tumor cell interaction in human seminomas (germinomas): light, electron microscopic, and immunohistochemical study. Hum Pathol 23: 421428.Google Scholar
Ho, DM, Liu, H-C 1992 Primary intracranial germ cell tumor. Pathologic study of 51 patients. Cancer 70: 15771584.Google Scholar
Hattab, EM, Tu, PH, Wilson, JD, Cheng, L 2005 OCT4 immunohistochemistry is superior to placental alkaline phosphatase (PLAP) in the diagnosis of central nervous system germinoma. Am J Surg Pathol 29: 368371.Google Scholar
Sawamura, Y, Ikeda, J, Shirato, H, et al. 1998 Germ cell tumours of the central nervous system: treatment consideration based on 111 cases and their long-term clinical outcomes. Eur J Cancer 34: 104110.Google Scholar
Kirkove, CS, Brown, AP, Symon, L 1991 Successful treatment of a pineal endodermal sinus tumor. J Neurosurg 74: 832836.Google Scholar
Niehans, GA, Manivel, C, Copland, GT, et al. 1998 Immunohistochemistry of germ cell and trophoblastic neoplasms. Cancer 62: 11131123.Google Scholar
Sano, K, Matsutani, M, Seto, T. 1989 So-called intracranial germ cell tumours: personal experiences and a theory of their pathogenesis. Neurol Res11: 118126.Google Scholar
Shaffrey, ME, Lanzino, G, Lopes, MBS, et al. 1996 Maturation of intracranial immature teratomas: report of two cases. J Neurosurg 85: 672676.Google Scholar
Dayan, AD, Marshall, AHE, Miller, AA, et al. 1996 Atypical teratomas of the pineal and hypothalamus. J Pathol Bacteriol 92: 128.Google Scholar

References

Ferrand, R, Pearse, AGE, Polak, JM, Le Douarin, NM. Immunohistochemical studies on the development of avian embryo pituitary corticotrophs under normal and experimental conditions. Histochemistry 1974;38:133141.Google Scholar
Takor Takor, T, Pearse, AGE. Neuroectodermal origin of avian hypothalamohypophysial complex: the role of the ventral neural ridge. J Embryol Exp Morphol 1975;34:311325.Google Scholar
Asa, SL, Kovacs, K. Functional morphology of the human fetal pituitary. Pathology Annual 1984;19:275315.Google Scholar
Boyd, JD. Observations of the human pharyngeal hypophysis. J Endocrinol 1956;14:6677.Google Scholar
Melchionna, RH, Moore, RA. The pharyngeal pituitary gland. Am J Pathol 1938;14:763771.Google Scholar
Hori, A. Suprasellar peri-infundibular ectopic adenohypophysis in fetal and adult brains. J Neurosurg 1985;62:113115.Google Scholar
Lloyd, RV, Chandler, WF, Kovacs, K, Ryan, N. Ectopic pituitary adenomas with normal anterior pituitary glands. Am J Surg Pathol 1986;108:546552.Google Scholar
Coire, CI, Horvath, E, Kovacs, K, Smyth, HS, Ezzat, S. Cushing’s syndrome from an ectopic pituitary adenoma with peliosis: A histological, immunohistochemical and ultrastructural study and review of the literature. Endocr Pathol 1997;8:6574.CrossRefGoogle ScholarPubMed
Colohan, ART, Grady, MS, Bonnin, JM, Thorner, MO, Kovacs, K, Jane, JA. Ectopic pituitary gland simulating a suprasellar tumor. Neurosurgery 1987;20:4348.Google Scholar
Schochet, SS Jr., McCormick, WF, Halmi, NS. Salivary gland rests in the human pituitary. Light and electron microscopical study. Arch Pathol 1974;98:193200.Google Scholar
Kato, T, Aida, T, Abe, H, et al. Ectopic salivary gland within the pituitary gland. Case report. Neurol Med Chir 1988;28:930933.Google Scholar
Asa, SL, Ezzat, S. The cytogenesis and pathogenesis of pituitary adenomas. Endocr Rev 1998;19:798827.Google Scholar
Asa, SL, Ezzat, S. Molecular determinants of pituitary cytodifferentiation. Pituitary 1999;1:159168.Google Scholar
Scully, KM, Rosenfeld, MG. Pituitary development: regulatory codes in mammalian organogenesis. Science 2002;295:22312235.Google Scholar
Sheng, HZ, Moriyama, K, Yamashita, T, et al. Multistep control of pituitary organogenesis. Science 1997;278:18091812.Google Scholar
Sornson, MW, Wu, W, Dasen, JS, et al. Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature 1996;384:327333.Google Scholar
Ehrlich, RM. Ectopic and hypoplastic pituitary with adrenal hypoplasia. J Pediatr 1957;51:377384.Google Scholar
Moncrieff, MW, Hill, DS, Archer, J, Arthur, LJH. Congenital absence of pituitary gland and adrenal hypoplasia. Arch Dis Child 1972;47:136137.Google Scholar
Kauschansky, A, Genel, M, Walker Smith, GJ. Congenital hypopituitarism in female infants. Its association with hypoglycemia and hypothyroidism. Am J Dis Child 1979;133:165169.Google Scholar
Kosaki, K, Matsuo, N, Tamai, S, Miyama, S, Momoshima, S. Isolated aplasia of the anterior pituitary as a cause of congenital panhypopituitarism. Horm Res 1991;35:226228.Google Scholar
Pholsena, M, Young, J, Couzinet, B, Schaison, G. Primary adrenal and thyroid insufficiencies associated with hypopituitarism: A diagnostic challenge. Clin Endocrinol (Oxf) 1994;40:693695.Google Scholar
Dorsett, D, Krantz, ID. On the molecular etiology of Cornelia de Lange syndrome. Ann N Y Acad Sci 2009;1151:2237.Google Scholar
Fujita, K, Matsuo, N, Mori, O, et al. The association of hypopituitarism with small pituitary, invisible stalk, type 1 Arnold–Chiari malformation, and syringomyelia in several patients born in breech position: a further proof of birth injury theory on the pathogenesis of “idiopathic hypopituitarism.” Eur J Pediatr 1992;151:266270.Google Scholar
Dattani, MT, Martinez-Barbera, JP, Thomas, PQ, et al. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat Genet 1998;19:125133.Google Scholar
Kelberman, D, Rizzoti, K, Avilion, A, et al. Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo–pituitary–gonadal axis in mice and humans. J Clin Invest 2006;116:24422455.Google Scholar
Priesel, A. Uber die dystopie der neurohyophyse. Virchows Arch Pathol Anat Physiol Klin Med 1927;266:407415.Google Scholar
Roessmann, U. Duplication of the pituitary gland and spinal cord. Arch Pathol Lab Med 1985;109:518520.Google Scholar
Netchine, I, Sobrier, ML, Krude, H, et al. Mutations in LHX3 result in a new syndrome revealed by combined pituitary hormone deficiency. Nat Genet 2000;25:182186.Google Scholar
Dattani, MT. The candidate gene approach to the diagnosis of monogenic disorders. Horm Res 2009;71(suppl 2):1421.Google Scholar
Machinis, K, Pantel, J, Netchine, I, et al. Syndromic short stature in patients with a germline mutation in the LIM homeobox LHX4. Am J Hum Genet 2001;69:961968.Google Scholar
Pfäffle, RW, Hunter, CS, Savage, JJ, et al. Three novel missense mutations within the LHX4 gene are associated with variable pituitary hormone deficiencies. J Clin Endocrinol Metab 2008;93:10621071.Google Scholar
Wu, W, Cogan, JD, Pfäffle, RW, et al. Mutations in PROP1 cause familial combined pituitary hormone deficiency. Nat Genet 1998;18:147149.Google Scholar
Fofanova, O, Takmura, N, Kinoshita, E, et al. Compound heterozygous deletion of the PROP-1 gene in children with combined pituitary hormone deficiency. J Clin Endocrinol Metab 1998;83:26012604.Google Scholar
Tatsumi, K, Miyai, K, Notomi, T, et al. Cretinism with combined hormone deficiency caused by a mutation in the Pit-1 gene. Nat Genet 1992;1:5658.Google Scholar
Pfäffle, RW, DiMattia, GE, Parks, JS, et al. Mutation of the POU-specific domain of Pit-1 and hypopituitarism without pituitary hypoplasia. Science 1992;257:11181121.CrossRefGoogle ScholarPubMed
Radovick, S, Nations, M, Du, Y, Berg, LA, Weintraub, BD, Wondisford, FE. A mutation in the POU-homeodomain of Pit-1 responsible for combined pituitary hormone deficiency. Science 1992;257:11151118.Google Scholar
Li, S, Crenshaw, EB, III, Rawson, EJ, Simmons, DM, Swanson, LW, Rosenfeld, MG. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene Pit-1. Nature 1990;347:528533.Google Scholar
Celli, G, LaRochelle, WJ, Mackem, S, Sharp, R, Merlino, G. Soluble dominant-negative receptor uncovers essential roles for fibroblast growth factors in multi-organ induction and patterning. EMBO J 1998;17:16421655.Google Scholar
Roh, M, Paterson, AJ, Asa, SL, Chin, E, Kudlow, JE. Stage-sensitive blockade of pituitary somatomammotrope development by targeted expression of a dominant negative epidermal growth factor receptor in transgenic mice. Mol Endocrinol 2001;15:600613.CrossRefGoogle ScholarPubMed
Raetzman, LT, Cai, JX, Camper, SA. Hes1 is required for pituitary growth and melanotrope specification. Dev Biol 2007;304:455466.Google Scholar
Ezzat, S, Mader, R, Yu, S, Ning, T, Poussier, P, Asa, SL. Ikaros integrates endocrine and immune system development. J Clin Invest 2005;115:10211029.Google Scholar
Ezzat, S, Mader, R, Fischer, S, Yu, S, Ackerley, C, Asa, SL. An essential role for the hematopoietic transcription factor Ikaros in hypothalamic–pituitary–mediated somatic growth. Proc Natl Acad Sci USA 2006;103:22142219.Google Scholar
Pilavdzic, D, Kovacs, K, Asa, SL. Pituitary morphology in anencephalic human fetuses. Neuroendocrinology 1997;65:164172.Google Scholar
Elster, AD. Modern imaging of the pituitary. Radiology 1993;187:114.Google Scholar
Lurie, SN, Doraiswamy, PM, Husain, MM, et al. In vivo assessment of pituitary gland volume with magnetic resonance imaging: the effect of age. J Clin Endocrinol Metab 1990;71:505508.Google Scholar
Bergland, RM, Ray, BS, Torack, RM. Anatomical variations in the pituitary gland and adjacent structures in 225 human autopsy cases. J Neurosurg 1968;28:9399.CrossRefGoogle ScholarPubMed
Elster, AD, Sanders, TG, Vines, FS. Size and shape of the pituitary gland during pregnancy and post partum: measurement with MR imaging. Radiology 1991;181:531535.Google Scholar
Asa, SL, Penz, G, Kovacs, K, Ezrin, C. Prolactin cells in the human pituitary. A quantitative immunocytochemical analysis. Arch Pathol Lab Med 1982;106:360363.Google Scholar
Jordan, RM, Kendall, JW, Kerber, CW. The primary empty sella syndrome. Analysis of the clinical characteristics, radiographic features, pituitary function and cerebrospinal fluid adenohypophysial hormone concentrations. Am J Med 1977;62:569580.CrossRefGoogle ScholarPubMed
Bergeron, C, Kovacs, K, Bilbao, JM. Primary empty sella. A histologic and immunocytologic study. Arch Intern Med 1979;139:248249.Google Scholar
Gharib, H, Frey, HM, Laws, ER Jr., Randall, RV, Scheithauer, BW. Coexistent primary empty sella syndrome and hyperprolactinemia. Report of 11 cases. Arch Intern Med 1983;143:13831386.CrossRefGoogle ScholarPubMed
Asa, SL, Kovacs, K, Bilbao, JM. The pars tuberalis of the human pituitary. A histologic, immunohistochemical, ultrastructural and immunoelectron microscopic analysis. Virchows Arch A Pathol Anat Histopathol 1983;399:4959.Google Scholar
Wislocki, GB. The vascular supply of the hypophysis cerebri of the rhesus monkey and man. Res Publ Assoc Nerv Ment Dis 1938;17:4868.Google Scholar
Stanfield, JP. The blood supply of the human pituitary gland. J Anat 1960;94:257273.Google Scholar
Sheehan, HL, Davis, JC. Pituitary necrosis. Br Med Bull 1968;24:5970.Google Scholar
Daniel, PM, Prichard, MML. Observations on the vascular anatomy of the pituitary gland and its importance in pituitary function. Am Heart J 1966;72:147152.Google Scholar
Bergland, RM, Page, RB. Can the pituitary secrete directly to the brain? Affirmative anatomical evidence. Endocrinology 1978;102:13251338.Google Scholar
Bergland, RM, Page, RB. Pituitary–brain vascular relations: a new paradigm. Science 1979;204:1824.Google Scholar
Gorczyca, W, Hardy, J. Arterial supply of the human anterior pituitary gland. Neurosurgery 1987;20:368369.Google Scholar
Rosenfeld, MG. POU-domain transcription factors: pou-er-ful developmental regulators. Genes Dev 1991;5:897907.Google Scholar
Steinfelder, HJ, Radovick, S, Wondisford, FE. Hormonal regulation of the thyrotropin b-subunit gene by phosphorylation of the pituitary–specific transcription factor Pit-1. Proc Natl Acad Sci USA 1992;89:59425945.Google Scholar
Asa, SL, Puy, LA, Lew, AM, Sundmark, VC, Elsholtz, HP. Cell type-specific expression of the pituitary transcription activator Pit-1 in the human pituitary and pituitary adenomas. J Clin Endocrinol Metab 1993;77:12751280.Google Scholar
Friend, KE, Chiou, Y-K, Laws, ER Jr., Lopes, MBS, Shupnik, MA. Pit-1 messenger ribonucleic acid is differentially expressed in human pituitary adenomas. J Clin Endocrinol Metab 1993;77:12811286.Google Scholar
Pellegrini, I, Barlier, A, Gunz, G, et al. Pit-1 gene expression in the human pituitary and pituitary adenomas. J Clin Endocrinol Metab 1994;79:189196.Google Scholar
Zafar, M, Ezzat, S, Ramyar, L, Pan, N, Smyth, HS, Asa, SL. Cell-specific expression of estrogen receptor in the human pituitary and its adenomas. J Clin Endocrinol Metab 1995;80:36213627.Google Scholar
Friend, KE, Chiou, YK, Lopes, MBS, Laws, ER Jr., Hughes, KM, Shupnik, MA. Estrogen receptor expression in human pituitary: correlation with immunohistochemistry in normal tissue, and immunohistochemistry and morphology in macroadenomas. J Clin Endocrinol Metab 1994;78:14971504.Google Scholar
Chaidarun, SS, Klibanski, A, Alexander, JM. Tumor-specific expression of alternatively spliced estrogen receptor messenger ribonucleic acid variants in human pituitary adenomas. J Clin Endocrinol Metab 1997;82:10581065.Google Scholar
Day, RN, Koike, S, Sakai, M, Muramatsu, M, Maurer, RA. Both Pit-1 and the estrogen receptor are required for estrogen responsiveness of the rat prolactin gene. Mol Endocrinol 1990;4:19641971.Google Scholar
Drolet, DW, Scully, KM, Simmons, DM, et al. TEF, a transcription factor expressed specifically in the anterior pituitary during embryogenesis defines a new class of leucine zipper proteins. Genes Dev 1991;5:17391753.Google Scholar
Dasen, JS, O’Connell, SM, Flynn, SE, et al. Reciprocal interactions of Pit1 and GATA2 mediate signaling gradient-induced determination of pituitary cell types. Cell 1999;97:587598.Google Scholar
Stefaneanu, L, Kovacs, K, Lloyd, RV, et al. Pituitary lactotrophs and somatotrophs in pregnancy: a correlative in situ hybridization and immunocytochemical study. Virchows Arch B Cell Pathol Incl Mol Pathol 1992;62:291296.Google Scholar
Horvath, E, Lloyd, RV, Kovacs, K. Propylthiouracyl-induced hypothyroidism results in reversible transdifferentiation of somatotrophs into thyroidectomy cells. A morphologic study of the rat pituitary including immunoelectron microscopy. Lab Invest 1990;63:511520.Google Scholar
Lamolet, B, Pulichino, AM, Lamonerie, T, et al. A pituitary cell-restricted T box factor, Tpit, activates POMC transcription in cooperation with Pitx homeoproteins. Cell 2001;104:849859.Google Scholar
Pulichino, AM, Vallette-Kasic, S, Couture, C, et al. Human and mouse TPIT gene mutations cause early onset pituitary ACTH deficiency. Genes Dev 2003;17:711716.Google Scholar
Lamonerie, T, Tremblay, JJ, Lanctot, C, Therrien, M, Gauthier, Y, Drouin, J. Ptx1, a bicoid-related homeo box transcription factor involved in transcription of the pro-opiomelanocortin gene. Genes Dev 1996;10:12841295.Google Scholar
Therrien, M, Drouin, J. Cell-specific helix-loop-helix factor required for pituitary expression of the pro-opiomelanocortin gene. Mol Cell Biol 1993;13:23422353.Google Scholar
Poulin, G, Turgeon, B, Drouin, J. NeuroD1/beta2 contributes to cell-specific transcription of the proopiomelanocortin gene. Mol Cell Biol 1997;17:66736682.Google Scholar
Lala, DS, Rice, DA, Parker, KL. Steroidogenic factor I, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I. Mol Endocrinol 1992;6:12491258.Google Scholar
Honda, S-I, Morohashi, K-I, Nomura, M, Takeya, H, Kitajima, M, Omura, T. Ad4BP regulating steroidogenic P-450 gene is a member of steroid hormone receptor superfamily. J Biol Chem 1993;268:74947502.Google Scholar
Luo, X, Ikeda, Y, Parker, KL. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 1994;77:481490.Google Scholar
Asa, SL, Bamberger, A-M, Cao, B, Wong, M, Parker, KL, Ezzat, S. The transcription activator steroidogenic factor-1 is preferentially expressed in the human pituitary gonadotroph. J Clin Endocrinol Metab 1996;81:21652170.Google Scholar
Asa, SL, Ryan, N, Kovacs, K, Singer, W, Marangos, PJ. Immunohistochemical localization of neuron-specific enolase in the human hypophysis and pituitary adenomas. Arch Pathol Lab Med 1984;108:4043.Google Scholar
Stefaneanu, L, Ryan, N, Kovacs, K. Immunocytochemical localization of synaptophysin in human hypophyses and pituitary adenomas. Arch Pathol Lab Med 1988;112:801804.Google Scholar
Lloyd, RV, Cano, M, Rosa, P, Hille, A, Huttner, WB. Distribution of chromogranin A and secretogranin I (chromogranin B) in neuroendocrine cells and tumors. Am J Pathol 1988;130:296304.Google Scholar
Trouillas, J, Guigard, MP, Fonlupt, P, Souchier, C, Girod, C. Mapping of corticotropic cells in the normal human pituitary. J Histochem Cytochem 1996;44:473479.Google Scholar
Smith, AI, Funder, JW. Proopiomelanocortin processing in the pituitary, central nervous system, and peripheral tissues. Endocr Rev 1988;9:159179.Google Scholar
Girod, C, Trouillas, J. Hypophyse: Embryologie, Anatomie et Histologie. Paris: Editions Scientifiques et Médicales, 1993.Google Scholar
Marcinkiewicz, M, Day, R, Seidah, NG, Chretien, M. Ontogeny of the prohormone convertases PC1 and PC2 in the mouse hypophysis and their colocalization with corticotropin and alpha-melanotropin. Proc Natl Acad Sci USA 1993;90:49224926.Google Scholar
Takumi, I, Steiner, DF, Sanno, N, Teramoto, A, Osamura, RY. Localization of prohormone convertases 1/3 and 2 in the human pituitary gland and pituitary adenomas: analysis by immunohistochemistry, immunoelectron microscopy, and laser scanning microscopy. Mod Pathol 1998;11:232238.Google Scholar
Neumann, PE, Horoupian, DS, Goldman, JE, Hess, MA. Cytoplasmic filaments of Crooke’s hyaline change belong to the cytokeratin class. An immunocytochemical and ultrastructural study. Am J Pathol 1984;116:214222.Google Scholar
Coons, SW, Estrada, SI, Gamez, R, White, WL. Cytokeratin CK7 and CK20 expression in pituitary adenomas. Endocr Pathol 2005;16:201210.Google Scholar
Eschbacher, JM, Coons, SW. Cytokeratin CK20 is a sensitive marker for Crooke’s cells and the early cytoskeletal changes associated with hypercortisolism within pituitary corticotrophs. Endocr Pathol 2006;17:365376.Google Scholar
Horvath, E, Ilse, G, Kovacs, K. Enigmatic bodies in human corticotroph cells. Acta Anat (Basel) 1977;98:427433.Google Scholar
Kovacs, K, Horvath, E, Ryan, N. Immunocytology of the human pituitary. In DeLellis, RA, ed. Diagnostic Immunohistochemistry. New York: Masson, 1981: 1735.Google Scholar
Asa, SL, Kovacs, K, Laszlo, FA, Domokos, I, Ezrin, C. Human fetal adenohypophysis. Histologic and immunocytochemical analysis. Neuroendocrinology 1986;43:308316.Google Scholar
Asa, SL, Kovacs, K, Horvath, E, et al. Human fetal adenohypophysis. Electron microscopic and ultrastructural immunocytochemical analysis. Neuroendocrinology 1988;48:423431.Google Scholar
Carey, RM, Varma, SK, Drake, CR Jr., et al. Ectopic secretion of corticotropin-releasing factor as a cause of Cushing’s syndrome. A clinical, morphologic, and biochemical study. N Engl J Med 1984;311:1320.Google Scholar
Asa, SL, Kovacs, K, Hammer, GD, Liu, B, Roos, BA, Low, MJ. Pituitary corticotroph hyperplasia in rats implanted with a medullary thyroid carcinoma cell line transfected with a corticotropin-releasing hormone complementary deoxyribonucleic acid expression vector. Endocrinology 1992;131:715720.Google Scholar
Siperstein, ER, Allison, VF. Fine structure of the cells responsible for secretion of adrenocorticotrophin in the adrenalectomized rat. Endocrinology 1965;76:7079.Google Scholar
Scheithauer, BW, Kovacs, K, Randall, RV. The pituitary gland in untreated Addison’s disease. A histologic and immunocytologic study of 18 adenohypophyses. Arch Pathol Lab Med 1983;107:484487.Google Scholar
Crooke, AC. A change in the basophil cells of the pituitary gland common to conditions which exhibit the syndrome attributed to basophil adenoma. J Pathol Bacteriol 1935;41:339349.Google Scholar
Horvath, E, Kovacs, K. Fine structural cytology of the adenohypophysis in rat and man. J Electron Microsc Tech 1988;8:401432.Google Scholar
Baker, BL, Dermody, WC, Reell, JR. Localization of luteinizing hormone-releasing hormone in the mammalian hypothalamus. Am J Anat 1974;139:129134.Google Scholar
Yang, H-J, Ozawa, H, Kurosumi, K. Ultrastructural changes in growth hormone cells in the rat anterior pituitary after thyroidectomy as studied by immunoelectron microscopy and enzyme histochemistry. J Clin Electr Microsc 1989;22:269283.Google Scholar
Scheithauer, BW, Sano, T, Kovacs, KT, Young, WF Jr., Ryan, N, Randall, RV. The pituitary gland in pregnancy: a clinicopathologic and immunohistochemical study of 69 cases. Mayo Clin Proc 1990;65:461474.Google Scholar
Serri, O, Chik, CL, Ur, E, Ezzat, S. Diagnosis and management of hyperprolactinemia. CMAJ 2003;169:575581.Google Scholar
Scheithauer, BW, Kovacs, K, Randall, RV, Ryan, N. Effects of estrogen on the human pituitary: a clinicopathologic study. Mayo Clin Proc 1989;64:10771084.Google Scholar
Frawley, LS, Boockfor, FR. Mammosomatotropes: presence and functions in normal and neoplastic pituitary tissue. Endocr Rev 1991;12:337355.Google Scholar
Losinski, NE, Horvath, E, Kovacs, K, Asa, SL. Immunoelectron microscopic evidence of mammosomatotrophs in human adult and fetal adenohypophyses, rat adenohypophyses and human and rat pituitary adenomas. Anat Anz 1991;172:1116.Google Scholar
Lloyd, RV, Anagnostou, D, Cano, M, Barkan, AL, Chandler, WF. Analysis of mammosomatotropic cells in normal and neoplastic human pituitary tissues by the reverse hemolytic plaque assay and immunocytochemistry. J Clin Endocrinol Metab 1988;66:11031110.Google Scholar
Scheithauer, BW, Kovacs, K, Randall, RV, Ryan, N. Pituitary gland in hypothyroidism. Histologic and immunocytologic study. Arch Pathol Lab Med 1985;109:499504.Google Scholar
Horvath, E, Kovacs, K. The adenohypophysis. In Kovacs, K, Asa, SL, eds. Functional Endocrine Pathology. Boston, MA: Blackwell Scientific, 1991:245281.Google Scholar
Kovacs, K, Sheehan, HL. Pituitary changes in Kallman’s syndrome: a histologic, immunocytologic, ultrastructural, and immunoelectronmicroscopic study. Fertil Steril 1982;37:8389.Google Scholar
Horvath, E, Kovacs, K, Penz, G, Ezrin, C. Origin, possible function and fate of “follicular cells” in the anterior lobe of the human pituitary. Am J Pathol 1974;77:199212.Google Scholar
Yamashita, M, Qian, ZR, Sano, T, Horvath, E, Kovacs, K. Immunohistochemical study on so-called follicular cells and folliculostellate cells in the human adenohypophysis. Pathol Int 2005;55:244247.Google Scholar
Höfler, H, Walter, GF, Denk, H. Immunohistochemistry of folliculo-stellate cells in normal human adenophypophyses and in pituitary adenomas. Acta Neuropathol (Berl) 1984;65:3540.Google Scholar
Girod, C, Trouillas, J, Dubois, MP. Immunocytochemical localization of S100 protein in stellate cells (folliculo-stellate cells) of the anterior lobe of the normal human pituitary. Cell Tissue Res 1985;241:505511.Google Scholar
Coates, PJ, Doniach, I. Development of folliculo-stellate cells in the human pituitary. Acta Endocrinol (Copenh) 1988;119:1620.Google Scholar
Lee, EB, Tihan, T, Scheithauer, BW, Zhang, PJ, Gonatas, NK. Thyroid transcription factor 1 expression in sellar tumors: a histogenetic marker? J Neuropathol Exp Neurol 2009;68:482488.Google Scholar
Vankelecom, H, Carmeliet, P, van Damme, J, Billiau, A, Denef, C. Production of interleukin-6 by folliculo-stellate cells of the anterior pituitary gland in a histiotypic cell aggregate culture system. Neuroendocrinology 1989;49:102106.Google Scholar
Ferrara, N, Schweigerer, L, Neufeld, G, Mitchell, R, Gospodarowicz, D. Pituitary follicular cells produce basic fibroblast growth factor. Proc Natl Acad Sci USA 1987;84:57735777.Google Scholar
Baes, M, Allaerts, W, Denef, C. Evidence for functional communication between folliculo-stellate cells and hormone-secreting cells in perifused anterior pituitary aggregates. Endocrinology 1987;120:685691.Google Scholar
Nishioka, H, Llena, JF, Hirano, A. Immunohistochemical study of folliculostellate cells in pituitary lesions. Endocr Pathol 1991;2:155160.Google Scholar
Lauriola, L, Cocchia, D, Sentinelli, S, Maggiano, N, Maira, G, Michetti, F. Immunohistochemical detection of folliculo-stellate cells in the human pituitary. Virchows Arch B Cell Pathol Incl Mol Pathol 1984;47:189197.Google Scholar
Marin, F, Kovacs, K, Stefaneanu, L, Horvath, E, Cheng, Z. S-100 protein immunopositivity in human nontumorous hypophyses and pituitary adenomas. Endocr Pathol 1992;3:2838.Google Scholar
Vankelecom, H, Chen, J. Pituitary stem cells: where do we stand? Mol Cell Endocrinol 2014;385:217.Google Scholar
Kovacs, K, Horvath, E, Bilbao, JM. Oncocytes in the anterior lobe of the human pituitary gland. A light and electron microscopic study. Acta Neuropathol (Berl) 1974;27:4354.Google Scholar
Mete, O, Lopes, MB, Asa, SL. Spindle cell oncocytomas and granular cell tumors of the pituitary are variants of pituicytoma. Am J Surg Pathol 2013;37:16941699.Google Scholar
Kimura, S, Hara, Y, Pineau, T, et al. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 1996;10:6069.Google Scholar
Takuma, N, Sheng, HZ, Furuta, Y, et al. Formation of Rathke’s pouch requires dual induction from the diencephalon. Develop 1998;125:48354840.Google Scholar
Takei, Y, Seyama, S, Pearl, GS, Tindall, GT. Ultrastructural study of the human neurohypophysis. II. Cellular elements of neural parenchyma, the pituicytes. Cell Tissue Res 1980;205:273287.Google Scholar
Costello, RT. Subclinical adenoma of the pituitary gland. Am J Pathol 1936;12:205215.Google Scholar
Kovacs, K, Ryan, N, Horvath, E, Singer, W, Ezrin, C. Pituitary adenomas in old age. J Gerontol 1980;35:1622.Google Scholar
Burrow, GN, Wortzman, G, Rewcastle, NB, Holgate, RC, Kovacs, K. Microadenomas of the pituitary and abnormal sellar tomograms in an unselected autopsy series. N Engl J Med 1981;304:156158.Google Scholar
Parent, AD, Brown, B, Smith, EE. Incidental pituitary adenomas: a retrospective study. Surgery 1982;92:880883.Google Scholar
McComb, DJ, Ryan, N, Horvath, E, Kovacs, K. Subclinical adenomas of the human pituitary. New light on old problems. Arch Pathol Lab Med 1983;107:488491.Google Scholar
Adelman, LS, Post, KD. Intra-operative frozen section technique for pituitary adenomas. Am J Surg Pathol 1979;3:173175.Google Scholar
Velasco, ME, Sindely, SO, Roessmann, U. Reticulum stain for frozen-section diagnosis of pituitary adenomas. J Neurosurg 1977;46:548550.Google Scholar
McKeever, PE, Laverson, S, Oldfield, EH, Smith, BH, Gadille, D, Chandler, WF. Stromal and nuclear markers for rapid identification of pituitary adenomas at biopsy. Arch Pathol Lab Med 1985;109:509514.Google Scholar
Lang, H-D, Saeger, W, Lüdecke, DK, Muller, D. Rapid frozen section diagnosis of pituitary tumors. Endocr Pathol 1990;1:116122.Google Scholar
Lloyd, RV. Frozen sections in the diagnosis of pituitary lesions. In Lloyd, RV, ed. Surgical Pathology of the Pituitary Gland. Philadelphia, PA: WB Saunders, 1993:2224.Google Scholar
Adams, H, Graham, DI, Doyle, D. Brain Biopsy. The Smear Technique for Neurosurgical Biopsies. Philadelphia PA: Lippincott, 1981.Google Scholar
Marshall, LF, Adams, H, Doyle, D, Graham, DI. The histological accuracy of the smear technique for neurosurgical biopsies. J Neurosurg 1973;39:8288.Google Scholar
Martinez, A-J, Moossy, J. Cytological diagnosis of pituitary adenomas. J Neuropathol Exp Neurol 1983;412:307311.Google Scholar
Lüdecke, DK. Intraoperative measurement of adrenocorticotropic hormone in peripituitary blood in Cushing’s disease. Neurosurgery 1989;24:201205.Google Scholar
Stefaneanu, L, Kovacs, K. Light microscopic special stains and immunohistochemistry in the diagnosis of pituitary adenomas. In Lloyd, RV, ed. Surgical Pathology of the Pituitary Gland. Philadelphia, PA: WB Saunders, 1993: 3451.Google Scholar
Thorner, MO, Perryman, RL, Cronin, MJ, et al. Somatotroph hyperplasia: successful treatment of acromegaly by removal of a pancreatic islet tumor secreting a growth hormone-releasing factor. J Clin Invest 1982;70:965977.Google Scholar
Jarzembowski, J, Lloyd, R, McKeever, P. Type IV collagen immunostaining is a simple, reliable diagnostic tool for distinguishing between adenomatous and normal pituitary glands. Arch Pathol Lab Med 2007;131:931935.Google Scholar
Bilbao, JM, Horvath, E, Hudson, AR, Kovacs, K. Pituitary adenoma producing amyloid-like substance. Arch Pathol Lab Med 1975;99:411415.Google Scholar
Landolt, AM, Kleihues, P, Heitz, PU. Amyloid deposits in pituitary adenomas. Differentiation of two types. Arch Pathol Lab Med 1987;111:453458.Google Scholar
Bilbao, JM, Kovacs, K, Horvath, E, et al. Pituitary melanocorticotrophinoma with amyloid deposition. J Can Sci Neurol 1975;2:199202.Google Scholar
Mori, H, Mori, S, Saitoh, Y, Moriwaki, K, Iida, S, Matsumoto, K. Growth hormone-producing pituitary adenoma with crystal-like amyloid immunohistochemically positive for growth hormone. Cancer 1985;55:96102.Google Scholar
Voigt, C, Saeger, W, Gerigk, Ch, Lüdecke, DK. Amyloid in pituitary adenomas. Pathol Res Pract 1988;183:555557.Google Scholar
Giannattasio, G, Bassetti, M. Human pituitary adenomas. Recent advances in morphological studies. J Endocrinol Invest 1990;13:435454.Google Scholar
Labat-Moleur, F, Trouillas, J, Seret-Begue, D, Kujas, M, Delisle, M-B, Ronin, C. Evaluation of 29 monoclonal and polyclonal antibodies used in the diagnosis of pituitary adenomas. A collaborative study from pathologists of the Club Français de l’Hypophyse. Pathol Res Pract 1991;187:534538.Google Scholar
Al Shraim, M, Asa, SL. The 2004 World Health Organization classification of pituitary tumors: what is new? Acta Neuropathol 2006;111:17.Google Scholar
Mete, O, Asa, SL. Clinicopathological correlations in pituitary adenomas. Brain Pathol 2012;22:443453.Google Scholar
Nosé, V, Ezzat, S, Horvath, E, et al. Protocol for the examination of specimens from patients with primary pituitary tumors. Arch Pathol Lab Med 2011;135:640646.Google Scholar
Ciocca, DR, Puy, LA, Stati, AO. Identification of seven hormone-producing cell types in the human pharyngeal hypophysis. J Clin Endocrinol Metab 1985;60:212216.Google Scholar
Björklöf, K, Brundelet, PJ. Typus degenerativus amstelodamensis (Cornelia de Lange first syndrome). Congenital hypopituitarism due to a cyst of Rathke’s cleft? Acta Pediatr Scand 1965;54:275287.Google Scholar
Kelberman, D, Rizzoti, K, Lovell-Badge, R, Robinson, IC, Dattani, MT. Genetic regulation of pituitary gland development in human and mouse. Endocr Rev 2009;30:790829.Google Scholar
Alatzoglou, KS, Webb, EA, Le Tissier, P, Dattani, MT. Isolated growth hormone deficiency (GHD) in childhood and adolescence: recent advances. Endocr Rev 2014;35:376432.Google Scholar
Dode, C, Hardelin, JP. Clinical genetics of Kallmann syndrome. Ann Endocrinol (Paris) 2010;71:149157.Google Scholar
Fraietta, R, Zylberstejn, DS, Esteves, SC. Hypogonadotropic hypogonadism revisited. Clinics (Sao Paulo) 2013;68(suppl 1):8188.CrossRefGoogle ScholarPubMed
Tubridy, N, Saunders, D, Thom, M, et al. Infundibulohypophysitis in a man presenting with diabetes insipidus and cavernous sinus involvement. J Neurol Neurosurg Psychiatry 2001;71:798801.Google Scholar
Cheung, CC, Ezzat, S, Smyth, HS, Asa, SL. The spectrum and significance of primary hypophysitis. J Clin Endocrinol Metab 2001;86:10481053.Google Scholar
Glauber, HS, Brown, BM. Pituitary macroadenoma associated with intrasellar abscess: a case report and review. Endocrinologist 1992;2:169172.Google Scholar
Berger, SA, Edberg, SC, David, G. Infectious disease in the sella turcica. Rev Infect Dis 1986;5:747755.Google Scholar
Sano, T, Kovacs, K, Scheithauer, BW, Rosenblum, MK, Petito, CK, Greco, CM. Pituitary pathology in acquired immunodeficiency syndrome. Arch Pathol Lab Med 1989;113:10661070.Google Scholar
Veseley, DL, Maldonodo, A, Levey, GS. Partial hypopituitarism and possible hypothalamic involvement in sarcoidosis. Report of a case and review of the literature. Am J Med 1977;62:425431.Google Scholar
Toth, M, Szabo, P, Racz, K, et al. Granulomatous hypophysitis associated with Takayasu’s disease. Clin Endocrinol 1996;45:499503.Google Scholar
Lohr, KM, Ryan, L.M., Toohill, RJ, Anderson, T. Anterior pituitary involvement in Wegener’s granulomatosis. J Rheumatol 1988;15:855861.Google Scholar
De Bruin, WI, van’t Verlaat, JW, Graamans, K, De Bruin, TWA. Sellar granulomatous mass in a pregnant woman with active Crohn’s disease. Neth J Med 1991;39:136141.Google Scholar
Albini, CH, MacGillvray, MHFJE, Woorhess, ML, Klein, DM. Triad of hypopituitarism, granulomatous hypophysitis, and ruptured Rathke’s cleft cyst. Neurosurg 1988;22:133136.Google Scholar
Cannavò, S, Romaon, C, Calbucci, F, Faglia, G. Granulomatous sarcoidotic lesion of hypothalamic–pituitary region associated with Rathke’s cleft cyst. J Enocrinol Invest 1997;20:7781.Google Scholar
Yoshioka, M, Yamakawa, N, Sarro, H, et al. Granulomatous hypophysitis with meningitis and hypopituitarism. Intern Med 1992;31:11471150.Google Scholar
Carpenter, KJ, Murtagh, RD, Lilienfeld, H, Weber, J, Murtagh, FR. Ipilimumab-induced hypophysitis: MR imaging findings. AJNR Am J Neuroradiol 2009;30:17511753.Google Scholar
Barnard, ZR, Walcott, BP, Kahle, KT, Nahed, BV, Coumans, JV. Hyponatremia associated with Ipilimumab-induced hypophysitis. Med Oncol 2012;29:374377.Google Scholar
Goudie, RB, Pinkerton, PH. Anterior hypophysitis and Hashimoto’s disease in a young woman. J Pathol Bacteriol 1962;83:584585.Google Scholar
Asa, SL, Bilbao, JM, Kovacs, K, Josse, RG, Kreines, K. Lymphocytic hypophysitis of pregnancy resulting in hypopituitarism: a distinct clinicopathologic entity. Ann Intern Med 1981;95:166171.Google Scholar
McCutcheon, IE, Oldfield, EH. Lymphocytic adenohypophysitis presenting as infertility. J Neurosurg 1991;74:821826.Google Scholar
Portocarrero, CJ, Robinson, AG, Taylor, AL, Klein, I. Lymphoid hypophysitis. An unusual cause of hyperprolactinemia and enlarged sella turcica. J Am Med Assoc 1981;246:18111812.Google Scholar
Hughes, JM, Ellsworth, CA, Harris, BS. Clinical case seminar: a 33-year-old woman with a pituitary mass and panhypopituitarism. J Clin Endocrinol Metab 1995;80:15211525.Google Scholar
Masana, Y, Ikeda, H, Fujimoto, Y, et al. Lymphocytic adenohypohysitis: case report. Neurol Med Chir 1990;30:853857.Google Scholar
Burke, CW, Moore, RA, Rees, LH, Bottazzo, GF, Mashiter, K, Bitensky, L. Isolated ACTH deficiency and TSH deficiency in the adult. J Royal Soc Med 1979;72:328335.Google Scholar
Richtsmeier, AJ, Henry, RA, Bloodworth, JMB Jr., Ehrlich, EN. Lymphoid hypophysitis with selective adrenocorticotropic hormone deficiency. Arch Intern Med 1980;140:12431245.Google Scholar
Roosens, B, Maes, E, van Steirteghem, A, Vanhaelst, L. Primary hypothyroidism associated with secondary adrenocortical insufficiency. J Endocrinol Invest 1982;5:251254.Google Scholar
Vandeput, Y, Orth, DN, Crabbe, J. Combined primary and secondary adrenocortical failure. Ann Endocrinol (Paris) 1982;43:277279.Google Scholar
Barkan, AL, Kelch, RP, Marshall, JC. Isolated gonadotrope failure in the polyglandular autoimmune syndrome. N Engl J Med 1985;312:15351540.Google Scholar
Jensen, MD, Handwerger, BS, Scheithauer, BW, Carpenter, PC, Mirakian, R, Banks, PM. Lymphocytic hypophysitis with isolated corticotropin deficiency. Ann Intern Med 1986;105:200203.Google Scholar
Sauter, NP, Toni, R, McLaughlin, CD, Dyess, EM, Kritzmanm, J, Lechan, RM. Isolated adrenocorticotropin deficiency associated with an autoantibody to corticotroph antigen that is not adrenocorticotropin or other proopiomelanocortin-derived peptides. J Clin Endocrinol Metab 1990;70:13911397.Google Scholar
Escobar-Morreale, H, Serrano-Gotarredona, J, Varela, C. Isolated adrenocorticotropic hormone deficiency due to probable lymphocytic hypophysitis in a man. J Endocrinol Invest 1994;17:127131.Google Scholar
Thodou, E, Asa, SL, Kontogeorgos, G, Kovacs, K, Horvath, E, Ezzat, S. Lymphocytic hypophysitis: clinicopathological findings. J Clin Endocrinol Metab 1995;80:23022311.Google Scholar
Imura, H, Nakao, K, Shimatsu, A, et al. Lymphocytic infundibuloneurohypophysitis as a cause of central diabetes insipidus. N Engl J Med 1993;329:683689.Google Scholar
Abe, T, Matsumoto, K, Sanno, N, Osamura, Y. Lymphocytic hypophysitis: case report. Neurosurgery 1995;36:10161019.Google Scholar
Ludwig, H, Schernthaner, G. Multiorganspezifische Autoimmunität bei idiopathischer Nebennierenrindeninsuffizienz. Wein Klin Wochenschr 1978;90:736741.Google Scholar
Mayfield, RK, Levine, JH, Gordon, L, Powers, J, Galbraith, RM, Rawe, SE. Lymphoid adenohypophysitis presenting as a pituitary tumor. Am J Med 1980;69:619623.Google Scholar
Wild, RA, Kepley, M. Lymphocytic hypophysitis in a patient with amenorrhea and hyperprolactinemia. J Repro Med 1986;31:211216.Google Scholar
Ozawa, Y, Shishiba, Y. Recovery from lymphocytic hypophysitis associated with painless thyroiditis: clinical implications of circulating antipituitary antibodies. Acta Endocrinol (Copenh) 1993;128:493498.Google Scholar
Crock, PA. Cytosolic autoantigens in lymphocytic hypophysitis. J Clin Endocrinol Metab 1998;83:609618.Google Scholar
Crock, P, Salvi, M, Miller, A, Wall, J, Guyda, H. Detection of anti-pituitary autoantibodies by immunoblotting. J Immunol Methods 1993;162:3140.Google Scholar
Manetti, L, Lupi, I, Morselli, LL, et al. Prevalence and functional significance of antipituitary antibodies in patients with autoimmune and non-autoimmune thyroid diseases. J Clin Endocrinol Metab 2007;92:21762181.Google Scholar
Komatsu, M, Kondo, T, Yamauchi, K, et al. Antipituitary antibodies in patients with the primary empty sella syndrome. J Clin Endocrinol Metab 1988;67:633638.Google Scholar
Bottazzo, GF, McIntosh, C, Stanford, W, Preece, M. Growth hormone cell antibodies and partial growth hormone deficiency in a girl with Turner’s syndrome. Clin Endocrinol (Oxf) 1980;12:19.Google Scholar
Bensing, S, Kasperlik-Zaluska, AA, Czarnocka, B, Crock, PA, Hulting, A. Autoantibodies against pituitary proteins in patients with adrenocorticotropin-deficiency. Eur J Clin Invest 2005;35:126132.Google Scholar
Scherbaum, WA, Schrell, U, Glück, M, Fahlbusch, R, Pfeiffer, EF. Autoantibodies to pituitary corticotropin-producing cells: Possible marker for unfavourable outcome after pituitary microsurgery for Cushing’s disease. Lancet 1987;i:13941398.Google Scholar
Bottazzo, GF, Pouplard, A, Florin-Christensen, A, Doniach, D. Autoantibodies to prolactin-secreting cells of human pituitary. Lancet 1975;ii:97101.Google Scholar
O’Dwyer, DT, Smith, AI, Matthew, ML, et al. Identification of the 49-kDa autoantigen associated with lymphocytic hypophysitis as alpha-enolase. J Clin Endocrinol Metab 2002;87:752757.Google Scholar
O’Dwyer, DT, Clifton, V, Hall, A, Smith, R, Robinson, PJ, Crock, PA. Pituitary autoantibodies in lymphocytic hypophysitis target both gamma- and alpha-enolase: a link with pregnancy? Arch Physiol Biochem 2002;110:9498.Google Scholar
Guay, AT, Agnello, V, Tronic, BC, Gresham, DG, Freidberg, SR. Lymphocytic hypophysitis in a man. J Clin Endocrinol Metab 1987;64:631634.Google Scholar
Pestell, RG, Best, JD, Alford, FP. Lymphocytic hypophysitis. the clinical spectrum of the disorder and evidence for an autoimmune pathogenesis. Clin Endocrinol (Oxf) 1990;33:457466.Google Scholar
Supler, ML, Mickle, JP. Lymphocytic hypophysitis: report of a case in a man with cavernous sinus involvement. Surg Neurol 1992;37:472476.Google Scholar
Feigenbaum, SL, Martin, MC, Wilson, CB, Jaffe, RB. Lymphocytic adenohypophysitis: a pituitary mass lesion occurring in pregnancy. Proposal for medical treatment. Am J Obstet Gynecol 1991;164:15491555.Google Scholar
Meichner, RH, Riggio, S, Manz, HJ, Earll, JM. Lymphocytic adenohypophysitis causing pituitary mass. Neurology 1987;37:158161.Google Scholar
Miyamoto, M, Sugawa, H, Mori, T, Hashimoto, N, Imura, H. A case of hypopituitarism due to granulomatous and lymphocytic adenohypophysitis with minimal pituitary enlargement: a possible variant of lymphocytic adenohypophysitis. Endocrinol Jpn 1988;35:607616.Google Scholar
Peterson, P, Peltonen, L. Autoimmune polyendocrinopathy syndrome type 1 (APS1) and AIRE gene: new views on molecular basis of autoimmunity. J Autoimmun 2005;25(suppl:4955.Google Scholar
Bensing, S, Fetissov, SO, Mulder, J, et al. Pituitary autoantibodies in autoimmune polyendocrine syndrome type 1. Proc Natl Acad Sci USA 2007;104:949954.Google Scholar
Hasimoto, K, Takao, T, Makino, S. Lymphocytic andenohypophysitis and lymphocytic infundibuloneurohypophysitis. Endocr J 1997;44:110.Google Scholar
Kamel, N, Dagci Illgin, S, Corapicioglu, D, Deda, H, Gullu, S. Lymphocytic infundibuloneurohypophysitis presenting as diabetes insipidus in a man. J Endocrinol Invest 1998;21:537540.Google Scholar
Reusch, JE-B, Kleinschmidt-De Masters, BK, Lillehei, KO, Rappe, D, Gutierrez-Hartmann, A. Preoperative diagnosis of lymphocytic hypophysitis (adenohypophysitis) unresponsive to short course dexamethasone: case report. Neurosurgery 1992;30:268272.Google Scholar
Nishioka, H, Ito, H, Miki, T, Akada, K. A case of lymphocytic hypophysitis with massive fibrosis and the role of surgical intervention. Surg Neurol 1994;42:7478.Google Scholar
Mikami, T, Uozumi, T. Lymphocytic adenohypophysitis: MRI findings of a suspected cases. No Shinkei Geka 1989;176:871876.Google Scholar
Ikeda, H, Okudaira, Y. Spontaneous regression of pituitary mass in temporal association with pregnancy. Neuroradiology 1987;29:488492.Google Scholar
McGrail, KM, Beyerl, BD, Black, PM, Klibanski, A, Zervas, NT. Lymphocytic adenohypophysitis of pregnancy with complete recovery. Neurosurgery 1987;20:791793.Google Scholar
Ober, KP, Elster, A. Spontaneously resolving lymphocytic hypophysitis as a cause of postpartum diabetes insipidus. The Endocrinologist 1994;4:107111.Google Scholar
Bevan, JS, Othman, S, Lazarus, JH, Parkes, AB, Hall, R. Reversible adrenocorticotropin deficiency due to probable autoimmune hypophysitis in a woman with postpartum thyroiditis. J Clin Endocrinol Metab 1992;74:548552.Google Scholar
Ishihara, T, Nakatsu, S, Hino, M, et al. A case of pregnancy-induced lymphocytic adenophypophysitis complicated by postpartum painless thyroiditis. Nippon Naibunpi Gakkai Zasshi 1991;67:222229.Google Scholar
Bitton, RN, Slavin, M, Decker, RE, Zito, J, Schneider, BS. The course of lymphocytic hypophysitis. Surg Neurol 1991;36:4043.Google Scholar
Nussbaum, CE, Okawara, S-H, Jacobs, LS. Lymphocytic hypophysitis with involvement of the cavernous sinus and hypothalamus. Neurosurgery 1991;28:440444.Google Scholar
Stelmach, M, O’Day, J. Rapid change in visual fields associated with suprasellar lymphocytic hypophysitis. J Clin Neurol Ophthalmol 1991;11:1924.Google Scholar
Prasad, A, Madan, VS, Sethi, PK, Prasad, ML, Buxi, TBS, Kanwar, CK. Lymphocytic hypophysitis: can open exploration of the sella be avoided? Br J Neurosurg 1991;5:639642.Google Scholar
Quencer, RM. Lymphocytic adenohypophysitis: autoimmune disorder of the pituitary gland. AJNR Am J Neuroradiol 1980;1:343345.Google Scholar
Levine, SN, Benzel, EC, Fowler, MR, Shroyer, JVI, Mirfakhraee, M. Lymphocytic hypophysitis: clinical, radiological and magnetic resonance imaging characterization. Neurosurgery 1988;22:937941.Google Scholar
Mazzone, T, Kelly, W, Ensinck, J. Lymphocytic hypophysitis associated with antiparietal cell antibodies and vitamin B12 deficiency. Arch Intern Med 1983;143:17941795.Google Scholar
McConnon, JK, Smyth, HS, Horvath, E. A case of sparsely granulated growth hormone cell adenoma associated with lymphocytic hypophysitis. J Endocrinol Invest 1991;14:691696.Google Scholar
Miura, M, Ushio, Y, Kuratsu, J, Ikeda, J, Kai, Y, Yamashiro, S. Lymphocytic adenohypophysitis: report of two cases. Surg Neurol 1989;32:463470.Google Scholar
Rickards, AG, Harvey, PW. “Giant cell granuloma” and the other pituitary granulomata. Quarterly J Med 1954;23:425440.Google Scholar
Taylon, C, Duff, TA. Giant cell granuloma involving the pituitary gland. Case report. J Neurosurg 1980;52:584587.Google Scholar
Del Pozo, JM, Roda, JE, Montoya, JG, Iglesias, JR, Hurtado, A. Intrasellar granuloma. Case report. J Neurosurg 1980;53:717719.Google Scholar
Hassoun, P, Anayssi, E, Salti, I. A case of granulomatous hypophysitis with hypopituitarism and minimal pituitary enlargement. J Neurol Neurosurg Psychiatry 1985;48:949951.Google Scholar
Higuchi, M, Arita, N, Mori, S, Satoh, B, Mori, H, Hayakawa, T. Pituitary granuloma and chronic inflammation of hypophysis: clinical and immunohistochemical studies. Acta Neurochir (Wien) 1993;121:152158.Google Scholar
Scanarini, M, d’Ercole, AJ, Rotilio, A, Kitromilis, N, Mingrino, S. Giant-cell granulomatous hypophysitis: a distinct clinicopathological entity. J Neurosurg 1989;71:681686.Google Scholar
Oeckler, RCT, Bise, K. Non-specific granulomas of the pituitary: report of six cases treated surgically. Neurosurg Rev 1991;14:185190.Google Scholar
Holck, S, Laursen, H. Prolactinoma coexistent with granulomatous hypophysitis. Acta Neuropathol (Berl) 1983;61:253257.Google Scholar
Saeger, W, Hofmann, BM, Buslei, R, Buchfelder, M. Silent, ACTH cell adenoma in coincidence with granulomatous hypophysitis: a case report. Pathol Res Pract 2007;203:221225.Google Scholar
Murakami, M, Nishioka, H, Izawa, H, Ikeda, Y, Haraoka, J. Granulomatous hypophysitis associated with rathke’s cleft cyst: a case report. Minim Invasive Neurosurg 2008;51:169172.Google Scholar
Inoue, T, Kaneko, Y, Mannoji, H, Fukui, M. Giant cell granulomatous hypophysitis manifesting as an intrasellar mass with unilateral ophthalmoplegia. Neurol Med Chir (Tokyo) 1997;37:766770.Google Scholar
Vasile, M, Marsot-Dupuch, K, Kujas, M, et al. Idiopathic granulomatous hypophysitis: clinical and imaging features. Neuroradiology 1997;39:711.Google Scholar
Jastania, R, Nageeti, T, Kovacs, K, Ezzat, S, Asa, SL. Granulomatous hypophysitis with psammoma bodies: a diagnostic dilemma. Endocr Pathol 2004;15:359363.Google Scholar
Rossi, GP, Pavan, E, Chiesura-Corona, M, Rea, F, Poletti, A, Pessina, AC. Bronchocentric granulomatosis and central diabetes insipidus successfully treated with corticosteroids. Eur Resp J 1994;7:18931898.Google Scholar
Folkerth, RD, Price, DL, Schwartz, M, Black, PM, De Girolami, U. Xanthomatous hypophysitis. Am J Surg Pathol 1998;22:736741.Google Scholar
Deodhare, SS, Bilbao, JM, Kovacs, K, et al. Xanthomatous Hypophysitis: a novel entity of obscure etiology. Endocr Pathol 1999;10:237241.Google Scholar
Burt, MG, Morey, AL, Turner, JJ, Pell, M, Sheehy, JP, Ho, KK. Xanthomatous pituitary lesions: a report of two cases and review of the literature. Pituitary 2003;6:161168.Google Scholar
Tashiro, T, Sano, T, Xu, B, et al. Spectrum of different types of hypophysitis: a clinicopathologic study of hypophysitis in 31 cases. Endocr Pathol 2002;13:183195.Google Scholar
Gartman, JJ Jr., Powers, SK, Fortune, M. Pseudotumor of the sellar and parasellar areas. Neurosurgery 1989;24:896901.Google Scholar
Al Shraim, M, Syro, LV, Kovacs, K, Estrada, H, Uribe, H, Al Gahtany, M. Inflammatory pseudotumor of the pituitary: case report. Surg Neurol 2004;62:264267.Google Scholar
Wong, S, Lam, WY, Wong, WK, Lee, KC. Hypophysitis presented as inflammatory pseudotumor in immunoglobulin G4-related systemic disease. Hum Pathol 2007;38:17201723.Google Scholar
Livadas, DP, Sofroniadou, K, Souvatzoglou, A, Boulanger, V, Siafaka, L, Koutras, DA. Pituitary and thyroid insufficiency in thalassaemic haemosiderosis. Clin Endocrinol 1979;20:435443.Google Scholar
Kletzky, OA, Costin, G, Marrs, RP, Bernstein, G, March, CM, Mishell, DR Jr. Gonadotropin insufficiency in patients with thalassemia major. J Clin Endocrinol Metab 1979;48:901905.Google Scholar
Yoshino, A, Katayama, Y, Watanabe, T, et al. Apoplexy accompanying pituitary adenoma as a complication of preoperative anterior pituitary function tests. Acta Neurochir (Wien) 2007;149:557565.Google Scholar
Nawar, RN, AbdelMannan, D, Selman, WR, Arafah, BM. Pituitary tumor apoplexy: a review. J Intens Care Med 2008;23:7590.Google Scholar
Keyaki, A, Hirano, A, Llena, JF. Asymptomatic and symptomatic Rathke’s cleft cysts. Neurol Med Chir 1989;29:8893.Google Scholar
Shin, JL, Asa, SL, Woodhouse, LJ, Smyth, HS, Ezzat, S. Cystic lesions of the pituitary: clinicopathological features distinguishing craniopharyngioma, Rathke’s cleft cyst, and arachnoid cyst. J Clin Endocrinol Metab 1999;84:39723982.Google Scholar
Steinberg, GK, Koenig, GH, Golden, JB. Symptomatic Rathke’s cleft cysts. Report of two cases. J Neurosurg 1982;56:290295.Google Scholar
Voelker, JL, Campbell, RL, Muller, J. Clinical, radiographic, and pathological features of symptomatic Rathke’s cleft cysts. J Neurosurg 1991;74:535544.Google Scholar
Le, BH, Towfighi, J, Kapadia, SB, Lopes, MB. Comparative immunohistochemical assessment of craniopharyngioma and related lesions. Endocr Pathol 2007;18:2330.Google Scholar
Barrow, DL, Spector, RH, Takei, Y, Tindall, GT. Symptomatic Rathke’s cleft cysts located entirely in the suprasellar region: review of diagnosis, management and pathogenesis. Neurosurgery 1985;16:766772.Google Scholar
Kepes, JJ. Transitional cell tumor of the pituitary gland developing from a Rathke’s cleft cyst. Cancer 1978;41:337343.Google Scholar
Nishio, S, Mizuno, J, Barrow, DL, Takei, Y, Tindall, GT. Pituitary tumors composed of adenohypophysial adenoma and Rathke’s cleft cyst elements: a clinicopathological study. Neurosurgery 1987;21:371377.Google Scholar
Nakasu, S, Nakasu, Y, Kyoshima, K, Watanabe, K, Handa, J, Okabe, H. Pituitary adenoma with multiple ciliated cysts: transitional cell tumor? Surg Neurol 1989;31:4148.Google Scholar
Obenchain, TG, Becker, DP. Abscess formation in a Rathke’s cleft cyst. Case report. J Neurosurg 1972;36:359362.Google Scholar
Meyer, FB, Carpenter, SM, Laws, ER Jr. Intrasellar arachnoid cysts. Surg Neurol 1987;28:105110.Google Scholar
Spaziante, R. Intrasellar arachnoid cysts. Surg Neurol 1988;30:412413.Google Scholar
Jones, RFC, Warnock, TH, Nayanar, V, Gupta, JM. Suprasellar arachnoid cysts: management by cyst wall resection. Neurosurgery 1989;25:554561.Google Scholar
Yamakawa, K, Shitara, N, Genka, S, Manaka, S, Takakura, K. Clinical course and surgical prognosis of 33 cases of intracranial epidermoid tumors. Neurosurgery 1989;24:568573.Google Scholar
Chhang, WH, Sharma, BS, Singh, K, Suri, S, Marwaha, RK, Kak, VK. A middle fossa arachnoid cyst in association with a suprasellar dermoid cyst. Indian J Pediatr 1989;26:833835.Google Scholar
Abramson, RC, Morawetz, RB, Schlitt, M. Multiple complications from an intracranial epidermoid cyst: case report and literature review. Neurosurgery 1989;24:574578.Google Scholar
Lewis, AJ, Cooper, PW, Kassel, EE, Schwartz, ML. Squamous cell carcinoma arising in a suprasellar epidermoid cyst. Case report. J Neurosurg 1983;59:538541.Google Scholar
Dussault, J, Plamondon, C, Volpe, R. Aneurysms of the internal carotid artery simulating pituitary tumours. CMAJ 1969;101:5156.Google Scholar
Seda, JL, Cukiert, A, Nogueira, KC, Huayllas, MK, Liberman, B. Intrasellar internal carotid aneurysm coexisting with GH-secreting pituitary adenoma in an acromegalic patient. Arq Neuropsiquiatr 2008;66:99100.Google Scholar
Soni, A, De Silva, SR, Allen, K, Byrne, JV, Cudlip, S, Wass, JA. A case of macroprolactinoma encasing an internal carotid artery aneurysm, presenting as pituitary apoplexy. Pituitary 2008;11:307311.Google Scholar
Torres, A, Dammers, R, Krisht, AF. Bilateral internal carotid artery aneurysm simulating pituitary apoplexy: case report. Neurosurgery 2009;65:E1202.Google Scholar
Durham, LH, Mackenzie, IJ, Miles, JB. Transphenoidal meningohydroencephalocoele. Br J Neurosurg 1988;2:407410.Google Scholar
Oka, H, Kameya, T, Sasano, H, et al. Pituitary choristoma composed of corticotrophs and adrenocortical cells in the sella turcica. Virchows Arch A Pathol Anat Histopathol 1996;427:613617.Google Scholar
Hampton, TA, Scheithauer, BW, Rojiani, AM, Kovacs, K, Horvath, E, Vogt, P. Salivary gland-like tumors of the sellar region. Am J Surg Pathol 1997;21:424434.Google Scholar
Gilcrease, MZ, Delgado, R, Albores-Saavedra, J. Intrasellar adenoid cystic carcinoma and papillary mucinous adenocarcinoma: two previously undescribed primary neoplasms at this site. Ann Diagn Pathol 1999;3:141147.Google Scholar
van Furth, W, Smyth, HS, Horvath, E, Kovacs, K, Salehi, F, Cusimano, MD. Salivary gland-like tumor of the sella. Can J Neurol Sci 2007;34:478482.Google Scholar
Mete, O, Ng, T, Christie-David, D, McMaster, J, Asa, SL. Silent corticotroph adenoma with adrenal cortical choristoma: a rare but distinct morphological entity. Endocr Pathol 2013;24:162166.Google Scholar
Shenker, Y, Lloyd, RV, Weatherbee, L, Port, FK, Grekin, RJ, Barkan, AL. Ectopic prolactinoma in a patient with hyperparathyroidism and abnormal sellar radiography. J Clin Endocrinol Metab 1986;62:10651069.Google Scholar
Weinstein, LS, Shenker, A, Gejman, PV, Merino, MJ, Friedman, E, Spiegel, AM. Activating mutations of the stimulatory G protein in the McCune–Albright syndrome. N Engl J Med 1991;325:16881695.Google Scholar
Kovacs, K, Horvath, E, Thorner, MO, Rogol, AD. Mammosomatotroph hyperplasia associated with acromegaly and hyperprolactinemia in a patient with the McCune–Albright syndrome. Virchows Arch A Pathol Anat Histopathol 1984;403:7786.Google Scholar
Ezzat, S, Asa, SL, Stefaneanu, L, et al. Somatotroph hyperplasia without pituitary adenoma associated with a long standing growth hormone-releasing hormone-producing bronchial carcinoid. J Clin Endocrinol Metab 1994;78:555560.Google Scholar
Barkan, AL, Shenker, Y, Grekin, RJ, Vale, WW, Lloyd, RV, Beals, TF. Acromegaly due to ectopic growth hormone (GH)-releasing hormone (GHRH) production: dynamic studies of GH and ectopic GHRH secretion. J Clin Endocrinol Metab 1986;63:10571064.Google Scholar
Khalil, A, Kovacs, K, Sima, AAF, Burrow, GN, Horvath, E. Pituitary thyrotroph hyperplasia mimicking prolactin-secreting adenoma. J Endocrinol Invest 1984;7:399404.Google Scholar
Chan, AW, MacFarlane, IA, Foy, PM, Miles, JB. Pituitary enlargement and hyperprolactinaemia due to primary hypothyroidism: errors and delays in diagnosis. Br J Neurosurg 1990;4:107112.Google Scholar
Saeger, W, Lüdecke, DK. Pituitary hyperplasia. Definition, light and electron microscopical structures and significance in surgical specimens. Virchows Arch A Pathol Anat Histopathol 1983;399:277287.Google Scholar
Thorner, MO, Frohman, LA, Leong, DA, et al. Extrahypothalamic growth hormone-releasing factor (GRF) secretion is a rare cause of acromegaly: plasma GRF levels in 177 acromegalic patients. J Clin Endocrinol Metab 1984;59:846849.Google Scholar
Moran, A, Asa, SL, Kovacs, K, et al. Gigantism due to pituitary mammosomatotroph hyperplasia. N Engl J Med 1990;323:322327.Google Scholar
McKeever, PE, Koppelman, MCS, Metcalf, D, et al. Refractory Cushing’s disease caused by multinodular ACTH-cell hyperplasia. J Neuropathol Exp Neurol 1982;41:490499.Google Scholar
McNicol, AM. Patterns of corticotropic cells in the adult human pituitary in Cushing’s disease. Diagn Histopathol 1981;4:335341.Google Scholar
Fjellestad-Paulsen, A, Abrahamsson, P-A, Bjartell, A, et al. Carcinoma of the prostate with Cushing’s syndrome. A case report with immunohistochemical and chemical demonstration of immunoreactive corticotropin-releasing hormone in plasma and tumor tissue. Acta Endocrinol (Copenh) 1988;119:506516.Google Scholar
Jessop, DS, Cunnah, D, Millar, JGB, et al. A phaeochromocytoma presenting with Cushing’s syndrome associated with increased concentrations of circulating corticotrophin-releasing factor. J Endocrinol 1987;113:133138.Google Scholar
Schteingart, DE, Lloyd, RV, Akil, H, et al. Cushing’s syndrome secondary to ectopic corticotropin-releasing hormone-adrenocorticotropin secretion. J Clin Endocrinol Metab 1986;63:770775.Google Scholar
Zárate, A, Kovacs, K, Flores, M, Morán, C, Félix, I. ACTH and CRF-producing bronchial carcinoid associated with Cushing’s syndrome. Clin Endocrinol (Oxf) 1986;24:523529.Google Scholar
Asa, SL, Kovacs, K, Vale, W, Petrusz, P, Vecsei, P. Immunohistologic localization of corticotrophin-releasing hormone in human tumors. Am J Clin Pathol 1987;87:327333.Google Scholar
Birkenhäger, JC, Upton, GV, Seldenrath, HJ, Kreiger, DT, Tashjian, AH Jr. Medullary thyroid carcinoma: ectopic production of peptides with ACTH-like, corticotrophin releasing factor-like and prolactin production-stimulating activities. Acta Endocrinol (Copenh) 1976;83:280292.Google Scholar
Asa, SL, Kovacs, K, Tindall, GT, Barrow, DL, Horvath, E, Vecsei, P. Cushing’s disease associated with an intrasellar gangliocytoma producing corticotrophin-releasing factor. Ann Intern Med 1984;101:789793.Google Scholar
Puchner, MJA, Lüdecke, DK, Valdueza, JM, et al. Cushing’s disease in a child caused by a corticotropin-releasing hormone-secreting intrasellar gangliocytoma associated with an adrenocorticotropic hormone-secreting pituitary adenoma. Neurosurgery 1993;33:920925.Google Scholar
Kubota, T, Hayashi, M, Kabuto, M, et al. Corticotroph cell hyperplasia in a patient with Addison disease: case report. Surg Neurol 1992;37:441447.Google Scholar
Zhou, J, Ruan, L, Li, H, Wang, Q, Zheng, F, Wu, F. Addison’s disease with pituitary hyperplasia: a case report and review of the literature. Endocrine 2009;35:285289.Google Scholar
Simpson, DJ, McNicol, AM, Murray, DC, et al. Molecular pathology shows p16 methylation in nonadenomatous pituitaries from patients with Cushing’s disease. Clin Cancer Res 2004;10:17801788.Google Scholar
Sano, T, Asa, SL, Kovacs, K. Growth hormone-releasing hormone-producing tumors: clinical, biochemical, and morphological manifestations. Endocr Rev 1988;9:357373.Google Scholar
Faglia, G, Arosio, M, Bazzoni, N. Ectopic acromegaly. Endocrinol Metab Clin North Am 1992;21:575595.Google Scholar
Othman, NH, Ezzat, S, Kovacs, K, et al. Growth hormone-releasing hormone (GHRH) and GHRH receptor (GHRH-R) isoform expression in ectopic acromegaly. Clin Endocrinol (Oxf) 2001;55:135140.Google Scholar
Doga, M, Bonadonna, S, Burattin, A, Giustina, A. Ectopic secretion of growth hormone-releasing hormone (GHRH) in neuroendocrine tumors: relevant clinical aspects. Ann Oncol 2001;12(suppl 2):S89S94.Google Scholar
Asa, SL, Scheithauer, BW, Bilbao, JM, et al. A case for hypothalamic acromegaly: a clinicopathological study of six patients with hypothalamic gangliocytomas producing growth hormone-releasing factor. J Clin Endocrinol Metab 1984;58:796803.Google Scholar
Billestrup, N, Swanson, LW, Vale, W. Growth hormone-releasing factor stimulates proliferation of somatotrophs in vitro. Proc Natl Acad Sci USA 1986;83:68546857.Google Scholar
Stefaneanu, L, Kovacs, K, Horvath, E, et al. Adenohypophysial changes in mice transgenic for human growth hormone-releasing factor: a histological, immunocytochemical, and electron microscopic investigation. Endocrinology 1989;125:27102718.Google Scholar
Mayo, KE, Hammer, RE, Swanson, LW, Brinster, RL, Rosenfeld, MG, Evans, RM. Dramatic pituitary hyperplasia in transgenic mice expressing a human growth hormone-releasing factor gene. Mol Endocrinol 1988;2:606612.Google Scholar
Nasr, C, Mason, A, Mayberg, M, Staugaitis, SM, Asa, SL. Acromegaly and somatotroph hyperplasia with adenomatous transformation due to pituitary metastasis of a growth hormone-releasing hormone-secreting pulmonary endocrine carcinoma. J Clin Endocrinol Metab 2006;91:47764780.Google Scholar
Asa, SL, Kovacs, K, Stefaneanu, L, et al. Pituitary adenomas in mice transgenic for growth hormone-releasing hormone. Endocrinology 1992;131:20832089.Google Scholar
Asa, SL, Kovacs, K, Stefaneanu, L, et al. Pituitary mammosomatotroph adenomas develop in old mice transgenic for growth hormone-releasing hormone. Proc Soc Exp Biol Med 1990;193:232235.Google Scholar
Zimmerman, D, Young, WF Jr., Ebersold, MJ, et al. Congenital gigantism due to growth hormone-releasing hormone excess and pituitary hyperplasia with adenomatous transformation. J Clin Endocrinol Metab 1993;76:216222.Google Scholar
Lloyd, RV. Estrogen-induced hyperplasia and neoplasia in the rat anterior pituitary gland. An immunohistochemical study. Am J Pathol 1983;113:198206.Google Scholar
Jay, V, Kovacs, K, Horvath, E, Lloyd, RV, Smyth, HS. Idiopathic prolactin cell hyperplasia of the pituitary mimicking prolactin cell adenoma: a morphological study including immunocytochemistry, electron microscopy, and in situ hybridization. Acta Neuropathol (Berl) 1991;82:147151.Google Scholar
Peillon, F, Dupuy, M, Li, JY, et al. Pituitary enlargement with suprasellar extension in functional hyperprolactinemia due to lactotroph hyperplasia: a pseudotumoral disease. J Clin Endocrinol Metab 1991;73:10081015.Google Scholar
Kelly, MA, Rubinstein, M, Asa, SL, et al. Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice. Neuron 1997;19:103113.Google Scholar
Schuff, KG, Hentges, ST, Kelly, MA, et al. Lack of prolactin receptor signaling in mice results in lactotroph proliferation and prolactinomas by dopamine-dependent and-independent mechanisms. J Clin Invest 2002;110:973981.Google Scholar
Newey, PJ, Gorvin, CM, Cleland, SJ, et al. Mutant prolactin receptor and familial hyperprolactinemia. N Engl J Med 2013;369:20122020.Google Scholar
Grubb, MR, Chakeres, D, Malarkey, WB. Patients with primary hypothyroidism presenting as prolactinomas. Am J Med 1987;83:765769.Google Scholar
Atchison, JA, Lee, PA, Albright, AL. Reversible suprasellar pituitary mass secondary to hypothyroidism. J Am Med Assoc 1989;262:31753177.Google Scholar
Nicolis, G, Shimshi, M, Allen, C, Halmi, NS, Kourides, IA. Gonadotropin-producing pituitary adenoma in a man with long-standing primary hypogonadism. J Clin Endocrinol Metab 1988;66:237241.Google Scholar
Kovacs, K, Horvath, E, Rewcastle, NB, Ezrin, C. Gonadotroph cell adenoma of the pituitary in a woman with long-standing hypogonadism. Arch Gynecol 1980;229:5765.Google Scholar
Ezzat, S, Asa, SL, Couldwell, WT, et al. The prevalence of pituitary adenomas: a systematic review. Cancer 2004;101:613619.Google Scholar
Gold, EB. Epidemiology of pituitary adenomas. Epid Rev 1981;3:163183.Google Scholar
Scheithauer, BW. Surgical pathology of the pituitary: the adenomas. Part I. Pathol Annu 1984;19:317374.Google Scholar
Daly, AF, Rixhon, M, Adam, C, Dempegioti, A, Tichomirowa, MA, Beckers, A. High prevalence of pituitary adenomas: a cross-sectional study in the province of Liege, Belgium. J Clin Endocrinol Metab 2006;91:47694775.Google Scholar
Fernandez, A, Karavitaki, N, Wass, JA. Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin Endocrinol (Oxf) 2009.Google Scholar
Wilson, CB, Dempsey, LC. Transsphenoidal microsurgical removal of 250 pituitary adenomas. J Neurosurg 1978;48:1322.Google Scholar
Terada, T, Kovacs, K, Stefaneanu, L, Horvath, E. Incidence, pathology, and recurrence of pituitary adenomas: study of 647 unselected surgical cases. Endocr Pathol 1995;6:301310.Google Scholar
Klibanski, A, Zervas, NT. Diagnosis and management of hormone-secreting pituitary adenomas. N Engl J Med 1991;324:822831.Google Scholar
Kovacs, K, Horvath, E. Atlas of Tumor Pathology, 2nd Series, Fascicle 21: Tumors of the pituitary gland. Washington, DC: Armed Forces Institute of Pathology, 1986.Google Scholar
Feldkamp, J, Santen, R, Harms, E, Aulich, A, Modder, U, Scherbaum, WA. Incidentally discovered pituitary lesions: high frequency of macroadenomas and hormone-secreting adenomas: results of a prospective study. Clin Endocrinol (Oxf) 1999;51:109113.Google Scholar
Mindermann, T, Wilson, CB. Age-related and gender-related occurrence of pituitary adenomas. Clin Endocrinol (Oxf) 1994;41:359364.Google Scholar
Kane, LA, Leinung, MC, Scheithauer, BW, et al. Pituitary adenomas in childhood and adolescence. J Clin Endocrinol Metab 1994;79:11351140.Google Scholar
Mukai, K, Seljeskog, EL, Dehner, LP. Pituitary adenomas in patients under 20 years old. A clinicopathological study of 12 cases. J Neurooncol 1986;4:7989.Google Scholar
Jagannathan, J, Dumont, AS, Jane, JA Jr., Laws, ER Jr. Pediatric sellar tumors: diagnostic procedures and management. Neurosurg Focus 2005;18:E6.Google Scholar
Huang, C, Ezzat, S, Asa, SL, Hamilton, J. Dopaminergic resistant prolactinomas in the peripubertal population. J Pediatr Endocrinol Metab 2006;19:951953.Google Scholar
Kontogeorgos, G, Kovacs, K, Horvath, E, Scheithauer, BW. Multiple adenomas of the human pituitary. A retrospective autopsy study with clinical implications. J Neurosurg 1991;74:243247.Google Scholar
Kontogeorgos, G, Scheithauer, BW, Horvath, E, et al. Double adenomas of the pituitary: a clinicopathological study of 11 tumors. Neurosurgery 1992;31:840849.Google Scholar
Apel, RL, Wilson, RJ, Asa, SL. A composite somatotroph-corticotroph pituitary adenoma. Endocr Pathol 1994;5:240246.Google Scholar
Kim, K, Yamada, S, Usui, M, Sano, T. Preoperative identification of clearly separated double pituitary adenomas. Clin Endocrinol (Oxf) 2004;61:2630.Google Scholar
Jastania, RA, Alsaad, KO, Al Shraim, M, Kovacs, K, Asa, SL. Double adenomas of the pituitary: transcription factors Pit-1, T-pit, and SF-1 identify cytogenesis and differentiation. Endocr Pathol 2005;16:187194.Google Scholar
Thodou, E, Kontogeorgos, G, Horvath, E, Kovacs, K, Smyth, HS, Ezzat, S. Asynchronous pituitary adenomas with differing morphology. Arch Pathol Lab Med 1995;119:748750.Google Scholar
Booth, GL, Redelmeier, DA, Grosman, H, Kovacs, K, Smyth, HS, Ezzat, S. Improved diagnostic accuracy of inferior petrosal sinus sampling over imaging for localizing pituitary pathology in patients with Cushing’s disease. J Clin Endocrinol Metab 1998;83:22912295.Google Scholar
Rasmussen, P, Lindholm, J. Ectopic pituitary adenomas. Clin Endocrinol (Oxf) 1979;11:6974.Google Scholar
Slonim, SM, Haykal, HA, Cushing, GW, Freidberg, SR, Lee, AK. MRI appearances of an ectopic pituitary adenoma: case report and review of the literature. Neuroradiology 1993;35:546548.Google Scholar
Kikuchi, K, Kowada, M, Sasaki, J, Sageshima, M. Large pituitary adenoma of the sphenoid sinus and the nasopharynx: report of a case with ultrastructural evaluations. Surg Neurol 1994;42:330334.Google Scholar
Dyer, EH, Civit, T, Abecassis, J-P, Derome, PJ. Functioning ectopic supradiaphragmatic pituitary adenomas. Neurosurgery 1994;43:529532.Google Scholar
Anand, NK, Osborne, CM, Harkey, HLI. Infiltrative clival pituitary adenoma of ectopic origin. Head Neck Surg 1993;108:178183.Google Scholar
Lindboe, CF, Unsgard, G, Myhr, G, Scott, H. ACTH and TSH producing ectopic suprasellar pituitary adenoma of the hypothalamic region: case report. Clin Neuropathol 1993;12:138141.Google Scholar
Matsumura, A, Meguro, K, Doi, M, Tsurushima, H, Tomono, Y. Suprasellar ectopic pituitary adenoma: case report and review of the literature. Neurosurgery 1990;26:681685.Google Scholar
Kleinschmidt-De Masters, BK, Winston, KR, Rubinstein, D, Samuels, MH. Ectopic pituitary adenomas of the third ventricle. Case report. J Neurosurg 1990;72:139142.Google Scholar
Asa, SL. Atlas of Tumor Pathology, 4th Series, Fascicle 15: Tumors of the Pituitary Gland. Bethesda, MD: ARP Press, 2011.Google Scholar
Kovacs, K, Horvath, E, Ryan, N, Ezrin, C. Null cell adenoma of the human pituitary. Virchows Arch A Pathol Anat Histopathol 1980;387:165174.Google Scholar
DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours, Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004.Google Scholar
Amar, AP, Hinton, DR, Krieger, MD, Weiss, MH. Invasive pituitary adenomas: significance of proliferation parameters. Pituitary 1999;2:117122.Google Scholar
Hardy, J. Transsphenoidal surgery of hypersecreting pituitary tumors. In Kohler, PO, Ross, GT, eds. Diagnosis and Treatment of Pituitary Tumors. (Int. Congress Series No. 303). Amsterdam: Exerpta Medica, 1973:179198.Google Scholar
Scheithauer, BW, Kovacs, KT, Laws, ER Jr., Randall, RV. Pathology of invasive pituitary tumors with special reference to functional classification. J Neurosurg 1986;65:733744.Google Scholar
Selman, WR, Laws, ER Jr., Scheithauer, BW, Carpenter, SM. The occurrence of dural invasion in pituitary adenomas. J Neurosurg 1986;64:402407.Google Scholar
Mete, O, Ezzat, S, Asa, SL. Biomarkers of aggressive pituitary adenomas. J Mol Endocrinol 2012;49:6978.Google Scholar
van der Mey, AG, van Seters, AP, van Krieken, JH, Vielvoye, J, Van Dulken, H, Hulshof, JH. Large pituitary adenomas with extension into the nasopharynx. Report of three cases with a review of the literature. Ann Otol Rhinol Laryngol 1989;98:618624.Google Scholar
Wong, K, Raisanen, J, Taylor, SL, McDermott, MW, Wilson, CB, Gutin, PH. Pituitary adenoma as an unsuspected clival tumor. Am J Surg Pathol 1995;19:900903.Google Scholar
Horvath, E, Kovacs, K, Smyth, HS, et al. A novel type of pituitary adenoma: morphological feature and clinical correlations. J Clin Endocrinol Metab 1988;66:11111118.Google Scholar
Mete, O, Gomes‐Hernandez, K, Kucharczyk, W, et al. Silent subtype 3 pituitary adenomas are not always silent and represent poorly differentiated monomorphous, plurihormonal Pit‐1 lineage adenomas. Mod Pathol 2016; in press.Google Scholar
Fitzgibbons, PL, Appley, AJ, Turner, RR, et al. Flow cytometric analysis of pituitary tumors. Correlation of nuclear antigen p105 and DNA content with clinical behavior. Cancer 1988;62:15561560.Google Scholar
Landolt, AM, Shibata, T, Kleihues, P. Growth rate of human pituitary adenomas. J Neurosurg 1987;67:803806.Google Scholar
Knosp, E, Kitz, K, Perneczky, A. Proliferation activity in pituitary adenomas: measurement by monoclonal antibody Ki-67. Neurosurgery 1989;25:927930.Google Scholar
Thapar, K, Kovacs, K, Scheithauer, BW, et al. Proliferative activity and invasiveness among pituitary adenomas and carcinomas: an analysis using the MIB-1 antibody. Neurosurgery 1996;38:99107.Google Scholar
Hsu, DW, Hakim, F, Biller, BMK, et al. Significance of proliferating cell nuclear antigen index in predicting pituitary adenoma recurrence. J Neurosurg 1993;78:753761.Google Scholar
Gandour-Edwards, R, Kapadia, SB, Janecka, IP, Martinez, AJ, Barnes, L. Biologic markers of invasive pituitary adenomas involving the sphenoid sinus. Mod Pathol 1995;8:160164.Google Scholar
Takino, H, Herman, V, Weiss, M, Melmed, S. Purine-binding factor (NM23) gene expression in pituitary tumors: marker of adenoma invasiveness. J Clin Endocrinol Metab 1995;80:17331738.Google Scholar
Vidal, S, Kovacs, K, Horvath, E, et al. Topoisomerase IIalpha expression in pituitary adenomas and carcinomas: relationship to tumor behavior. Mod Pathol 2002;15:12051212.Google Scholar
Cushing, H. The basophil adenomas of the pituitary body and their clinical manifestations (pituitary basophilism). Bull Johns Hopkins Hosp 1932;50:137195.Google Scholar
Nelson, DH, Meakin, JW, Thorn, GW. ACTH-producing pituitary tumors following adrenalectomy for Cushing’s syndrome. Ann Intern Med 1960;52:560569.Google Scholar
Lindsay, JR, Nieman, LK. Differential diagnosis and imaging in Cushing’s syndrome. Endocrinol Metab Clin North Am 2005;34:403–21, x.Google Scholar
Findling, JW, Raff, H. Screening and diagnosis of Cushing’s syndrome. Endocrinol Metab Clin North Am 2005;34:385–38, x.Google Scholar
Bertagna, X, Guignat, L, Groussin, L, Bertherat, J. Cushing’s disease. Best Pract Res Clin Endocrinol Metab 2009;23:607623.Google Scholar
Newell-Price, J, Trainer, P, Besser, M, Grossman, A. The diagnosis and differential diagnosis of Cushing’s syndrome and pseudo-Cushing’s states. Endocr Rev 1998;19:647672.Google Scholar
Krieger, DT, Luria, M. Plasma ACTH and cortisol responses to TRF, vasopressin or hypoglycemia in Cushing’s disease and Nelson’s syndrome. J Clin Endocrinol Metab 1977;44:361368.Google Scholar
Yamaji, T, Ishibashi, M, Teramoto, A, Fukushima, T. Hyperprolactinemia in Cushing’s disease and Nelson’s syndrome. J Clin Endocrinol Metab 1984;58:790795.Google Scholar
Lamberts, SWJ, de Quijada, M, Visser, TJ. Regulation of prolactin secretion in patients with Cushing’s disease. A comparative study on the effects of dexamethasone, lysine vasopressin and ACTH on prolactin secretion by the rat pituitary gland in vitro. Neuroendocrinology 1981;32:150154.Google Scholar
Findling, JW, Aron, DC, Tyrrell, JB, et al. Selective venous sampling for ACTH in Cushing’s syndrome. Differentiation between Cushing’s disease and the ectopic ACTH syndrome. Ann Intern Med 1981;94:647652.Google Scholar
Oldfield, EH, Chrousos, GP, Schulte, HM, et al. Preoperative lateralization of ACTH-secreting pituitary microadenomas by bilateral and simultaneous inferior petrosal venous sinus sampling. N Engl J Med 1985;312:100103.Google Scholar
Oldfield, EH, Doppman, JL, Nieman, LK, et al. Petrosal sinus sampling with and without corticotropin-releasing hormone for the differential diagnosis of Cushing’s syndrome. N Engl J Med 1991;325:897905.Google Scholar
Jin, L, Riss, D, Ruebel, K, et al. Galectin-3 expression in functioning and silent ACTH-producing adenomas. Endocr Pathol 2005;16:107114.Google Scholar
Felix, IA, Horvath, E, Kovacs, K. Massive Crooke’s hyalinization in corticotroph cell adenomas of the human pituitary. A histological, immunocytological and electron microscopic study of three cases. Acta Neurochir 1981;58:235243.Google Scholar
Horvath, E, Kovacs, K, Josse, R. Pituitary corticotroph cell adenoma with marked abundance of microfilaments. Ultrastruct Pathol 1983;5:249255.Google Scholar
Franscella, S, Favod-Coune, C-A, Pizzolato, G, et al. Pituitary corticotroph adenoma with Crooke’s hyalinization. Endocr Pathol 1991;2:111116.Google Scholar
George, DH, Scheithauer, BW, Kovacs, K, et al. Crooke’s cell adenoma of the pituitary: an aggressive variant of corticotroph adenoma. Am J Surg Pathol 2003;27:13301336.Google Scholar
Hammer, GD, Tyrrell, JB, Lamborn, KR, et al. Transsphenoidal microsurgery for Cushing’s disease: initial outcome and long-term results. J Clin Endocrinol Metab 2004;89:63486357.Google Scholar
Kelly, DF. Transsphenoidal surgery for Cushing’s disease: a review of success rates, remission predictors, management of failed surgery, and Nelson’s syndrome. Neurosurg Focus 2007;23:E5.Google Scholar
Patil, CG, Prevedello, DM, Lad, SP, et al. Late recurrences of Cushing’s disease after initial successful transsphenoidal surgery. J Clin Endocrinol Metab 2008;93:358362.Google Scholar
Jane, JA Jr., Vance, ML, Woodburn, CJ, Laws, ER Jr. Stereotactic radiosurgery for hypersecreting pituitary tumors: part of a multimodality approach. Neurosurg Focus 2003;14:e12.Google Scholar
Oyesiku, NM. Stereotactic radiosurgery for Cushing disease: a review. Neurosurg Focus 2007;23:E14.Google Scholar
Pivonello, R, Petersenn, S, Newell-Price, J, et al. Pasireotide treatment significantly improves clinical signs and symptoms in patients with Cushing’s disease: results from a Phase III study. Clin Endocrinol (Oxf) 2014;81:408417.Google Scholar
Mohammed, S, Kovacs, K, Mason, W, Smyth, H, Cusimano, MD. Use of temozolomide in aggressive pituitary tumors: case report. Neurosurgery 2009;64:E773E774.Google Scholar
McCormack, AI, McDonald, KL, Gill, AJ, et al. Low O6-methylguanine-DNA methyltransferase (MGMT) expression and response to temozolomide in aggressive pituitary tumours. Clin Endocrinol (Oxf) 2009;71:226233.Google Scholar
Raverot, G, Sturm, N, de Fraipont, F, et al. Temozolomide treatment in aggressive pituitary tumors and pituitary carcinomas: a French multicenter experience. J Clin Endocrinol Metab 2010;95:45924599.Google Scholar
Asimakopoulou, A, Tzanela, M, Koletti, A, Kontogeorgos, G, Tsagarakis, S. Long-term remission in an aggressive Crooke cell adenoma of the pituitary, 18 months after discontinuation of treatment with temozolomide. Clin Case Rep 2014;2:13.Google Scholar
Marie, P. Sur deux cas d’acromégalie. Hypertrophie singulière non congénitale des extremités supérieures, inférieures et céphaliques. Rev Méd 1886;6:297333.Google Scholar
Minkowski, O. Ueber einen Fall von Akromegalie. Berl Klin Wochenschr 1887;24:371374.Google Scholar
Evans, HM, Long, JA. The effect of the anterior lobe administered intraperitoneally upon growth, maturity, and oestrous cycles of the rat. Anat Rec 1921;21:6263.Google Scholar
Cook, DM, Ezzat, S, Katznelson, L, et al. AACE medical guidelines for clinical practice for the diagnosis and treatment of acromegaly. Endocr Pract 2004;10:213225.Google Scholar
Ezzat, S, Serri, O, Chik, CL, et al. Canadian consensus guidelines for the diagnosis and management of acromegaly. Clin Invest Med 2006;29:2939.Google Scholar
Beck-Peccoz, P, Bassetti, M, Spada, A, et al. Glycoprotein hormone a-subunit response to growth hormone (GH)-releasing hormone in patients with active acromegaly. Evidence for a-subunit and GH coexistence in the same tumoral cell. J Clin Endocrinol Metab 1985;61:541546.Google Scholar
Osamura, RY. Immunoelectron microscopic studies of GH and a subunit in GH secreting pituitary adenomas. Pathol Res Pract 1988;183:569571.Google Scholar
Oppenheim, DS, Kana, AR, Sangha, JS, Klibanski, A. Prevalence of α-subunit hypersecretion in patients with pituitary tumors: clinically nonfunctioning and somatotroph adenomas. J Clin Endocrinol Metab 1990;70:859864.Google Scholar
Kontogeorgos, G, Asa, SL, Kovacs, K, Smyth, HS, Singer, W. Production of alpha-subunit of glycoprotein hormones by pituitary somatotroph adenomas in vitro. Acta Endocrinol (Copenh) 1993;129:565572.Google Scholar
Hagiwara, A, Inoue, Y, Wakasa, K, Haba, T, Tashiro, T, Miyamoto, T. Comparison of growth hormone-producing and non-growth hormone-producing pituitary adenomas: imaging characteristics and pathologic correlation. Radiology 2003;228:533538.Google Scholar
Osamura, RY, Watanabe, K. Immunohistochemical colocalization of growth hormone (GH) and alpha subunit in human GH secreting pituitary adenomas. Virchows Arch A Pathol Anat Histopathol 1987;411:323330.Google Scholar
Sano, T, Ohshima, T, Yamada, S. Expression of glycoprotein hormones and intracytoplasmic distribution of cytokeratin in growth hormone-producing pituitary adenomas. Pathol Res Pract 1991;187:530533.Google Scholar
Kontogeorgos, G, Kovacs, K, Scheithauer, BW, Rologis, D, Orphanidis, G. α-Subunit immunoreactivity in plurihormonal pituitary adenomas of patients with acromegaly. Mod Pathol 1991;4:191195.Google Scholar
Trouillas, J, Loras, B, Guigard, MP, Girod, C. α-Subunit secretion by normal and tumoral growth hormone cells in humans. Endocr Pathol 1992;3, S53.Google Scholar
Horvath, E, Kovacs, K. Pathology of acromegaly. Neuroendocrinology 2006;83:161165.Google Scholar
Obari, A, Sano, T, Ohyama, K, et al. Clinicopathological features of growth hormone-producing pituitary adenomas: difference among various types defined by cytokeratin distribution pattern including a transitional form. Endocr Pathol 2008;19:8291.Google Scholar
Trouillas, J, Girod, C, Lhéritier, M, Claustrat, B, Dubois, MP. Morphological and biochemical relationships in 31 human pituitary adenomas with acromegaly. Virchows Arch A Pathol Anat Histopathol 1980;389:127142.Google Scholar
Trouillas, J, Sassolas, G, Guigard, MP, Fonlupt, P, Ansaneli-Naves, L, Perrin, G. Relationships between pathological diagnosis and clinical parameters in acromegaly. Metabolism 1996;45(suppl 1):5356.Google Scholar
Sano, T, Rong, QZ, Kagawa, N, Yamada, S. Down-regulation of E-cadherin and catenins in human pituitary growth hormone-producing adenomas. Front Horm Res 2004;32:127132.Google Scholar
Asa, SL, Kovacs, K, Horvath, E, Singer, W, Smyth, HS. Hormone secretion in vitro by plurihormonal pituitary adenomas of the acidophil cell line. J Clin Endocrinol Metab 1992;75:6875.Google Scholar
Li, J, Stefaneanu, L, Kovacs, K, Horvath, E, Smyth, HS. Growth hormone (GH) and prolactin (PRL) gene expression and immunoreactivity in GH- and PRL-producing human pituitary adenomas. Virchows Arch A Pathol Anat Histopathol 1993;422:193201.Google Scholar
Frohman, LA. Therapeutic options in acromegaly. J Clin Endocrinol Metab 1991;72:11751181.Google Scholar
Fraser, LA, Lee, D, Cooper, P, Van Uum, S. Remission of acromegaly following pituitary apoplexy: case report and review of the literature. Endocr Pract 2009;119.Google Scholar
Ezzat, S, Kontogeorgos, G, Redelmeier, DA, Horvath, E, Harris, AG, Kovacs, K. In vivo responsiveness of morphological variants of growth hormone-producing pituitary adenomas to octreotide. Eur J Endocrinol 1995;133:686690.Google Scholar
Barkan, AL, Kelch, RP, Hopwood, NJ, Beitins, IZ. Treatment of acromegaly with the long-acting somatostatin analog SMS 201–995. J Clin Endocrinol Metab 1988;66:1623.Google Scholar
Ezzat, S, Horvath, E, Harris, AG, Kovacs, K. Morphological effects of octreotide on growth hormone-producing pituitary adenomas. J Clin Endocrinol Metab 1994;79:113118.Google Scholar
George, SR, Kovacs, K, Asa, SL, Horvath, E, Cross, EG, Burrow, GN. Effect of SMS 201-995, a long-acting somatostatin analogue, on the secretion and morphology of a pituitary growth hormone cell adenoma. Clin Endocrinol (Oxf) 1987;26:395405.Google Scholar
Asa, SL, Felix, I, Kovacs, K, Ramyar, L. Effects of somatostatin on somatotroph adenomas of the human pituitary: an in vitro functional and morphological study. Endocr Pathol 1990;1:228235.Google Scholar
Kontogeorgos, G, Sambaziotis, D, Piaditis, G, Karameris, A. Apoptosis in human pituitary adenomas: a morphologic and in situ end-labeling study. Mod Pathol 1997;10:921926.Google Scholar
Kulig, E, Jin, L, Qian, X, et al. Apoptosis in nontumorous and neoplastic human pituitaries: expression of the BCL-2 family of proteins. Am J Pathol 1999;154:767774.Google Scholar
Drake, WM, Berney, DM, Kovacs, K, Monson, JP. Markers of cell proliferation in a GH-producing adenoma of a patient treated with pegvisomant. Eur J Endocrinol 2005;153:203205.Google Scholar
Asa, SL, DiGiovanni, R, Jiang, J, et al. A growth hormone receptor mutation impairs growth hormone autofeedback signaling in pituitary tumors. Cancer Res 2007;67:75057511.Google Scholar
Buchfelder, M, Schlaffer, S. Surgical treatment of pituitary tumours. Best Pract Res Clin Endocrinol Metab 2009;23:677692.Google Scholar
Barnard, LB, Grantham, WG, Lamberton, P, O’Dorisio, TM, Jackson, IMD. Treatment of resistant acromegaly with a long-acting somatostatin analogue (SMS 201-995). Ann Intern Med 1986;105:856861.Google Scholar
Ezzat, S, Snyder, PJ, Young, WF, et al. Octreotide treatment of acromegaly. a randomized, multicenter study. Ann Intern Med 1992;117:711718.Google Scholar
Ezzat, S, Redeimeier, DA, Gnehm, M, Harris, AG. A prospective multicenter octreotide dose response study in the treatment of acromegaly. J Endocrinol Invest 1995;18:364369.Google Scholar
Spada, A, Arosio, M, Bochicchio, D, et al. Clinical, biochemical and morphological correlates in patients bearing growth hormone-secreting pituitary tumors with or without constitutively active adenylyl cyclase. J Clin Endocrinol Metab 1990;71:14211426.Google Scholar
Bhayana, S, Booth, GL, Asa, SL, Kovacs, K, Ezzat, S. The implication of somatotroph adenoma phenotype to somatostatin analog responsiveness in acromegaly. J Clin Endocrinol Metab 2005;90:62906295.Google Scholar
Kopchick, JJ, Parkinson, C, Stevens, EC, Trainer, PJ. Growth hormone receptor antagonists: discovery, development, and use in patients with acromegaly. Endocr Rev 2002;23:623646.Google Scholar
Jagannathan, J, Sheehan, JP, Pouratian, N, Laws, ER Jr., Steiner, L, Vance, ML. Gamma knife radiosurgery for acromegaly: outcomes after failed transsphenoidal surgery. Neurosurgery 2008;62:12621269.Google Scholar
Batisse, M, Raverot, G, Maqdasy, S, et al. Aggressive silent GH pituitary tumor resistant to multiple treatments, including temozolomide. Cancer Invest 2013;31:190196.Google Scholar
Grasso, LF, Pivonello, R, Colao, A. Investigational therapies for acromegaly. Exp Opin Invest Drugs 2013;22:955963.Google Scholar
Jenkins, PJ, Mukherjee, A, Shalet, SM. Does growth hormone cause cancer? Clin Endocrinol (Oxf) 2006;64:115121.Google Scholar
Loeper, S, Ezzat, S. Acromegaly: re-thinking the cancer risk. Rev Endocr Metab Disord 2008;9:4158.Google Scholar
Blackwell, RE. Diagnosis and management of prolactinomas. Fertil Steril 1985;43:516.Google Scholar
Frommel, R. Ueber puerperale Atrophie des Uterus. Z Geburtshilfe Gynakol 1882;7:305313.Google Scholar
Argonz, J, Del Castillo, EB. A syndrome characterized by estrogenic insufficiency, galactorrhea and decreased urinary gonadotropin. J Clin Endocrinol Metab 1953;13:7987.Google Scholar
Forbes, AP, Henneman, PH, Griswold, GC, Albright, F. Syndrome characterized by galactorrhea, amenorrhea and low urinary FSH: comparison with acromegaly and normal lactation. J Clin Endocrinol Metab 1954;14:265271.Google Scholar
Lewis, UJ, Singh, RNP, Sinha, YN, VanderLaan, WP. Electrophoretic evidence for human prolactin. J Clin Endocrinol Metab 1971;23:153156.Google Scholar
Guyda, H, Hwang, P, Friesen, H. Immunologic evidence for monkey and human prolactin (MPr and HPr). J Clin Endocrinol Metab 1971;32:120123.Google Scholar
Grossman, A, Besser, GM. Prolactinomas. Br Med J 1985;290:182184.Google Scholar
Melmed, S, Braunstein, GD, Chang, RJ, Becker, DP. Pituitary tumors secreting growth hormone and prolactin. Ann Intern Med 1986;105:238253.Google Scholar
Vance, ML, Thorner, MO. Prolactinomas. Endocrinol Metab Clin North Am 1987;16:731753.Google Scholar
Nabarro, JDN. Pituitary prolactinomas. Clin Endocrinol (Oxf) 1982;17:129155.Google Scholar
Grisoli, F, Vincentelli, F, Jaquet, P, Guibout, M, Hassoun, J, Farnarier, P. Prolactin secreting adenoma in 22 men. Surg Neurol 1980;13:241247.Google Scholar
Delgrange, E, Trouillas, J, Maiter, D, Donckier, J, Tourniaire, J. Sex-related difference in the growth of prolactinomas: a clinical and proliferation marker study. J Clin Endocrinol Metab 1997;82:21022107.Google Scholar
Ho, KY, Evans, WS, Thorner, MO. Disorders of prolactin and growth hormone secretion. Clin Endocrinol Metab 1985;14:132.Google Scholar
Fields, K, Kulig, E, Lloyd, RV. Detection of prolactin messenger RNA in mammary and other normal and neoplastic tissues by polymerase chain reaction. Lab Invest 1993;68:354360.Google Scholar
Gellerson, B, Kempf, R, Telgmann, R, DiMattia, GE. Nonpituitary human prolactin gene transcription is independent of Pit-1 and differentially controlled in lymphocytes and in endometrial stroma. Mol Endocrinol 1994;8:356373.Google Scholar
Soares, MJ, Faria, TN, Roby, KF, Deb, S. Pregnancy and the prolactin family of hormones: coordination of anterior pituitary, uterine, and placental expression. Endocr Rev 1991;12:402423.Google Scholar
Hoffman, WH, Galan, RR, Kovacs, K, Subramanian, MG. Ectopic prolactin secretion from a gonadoblastoma. Cancer 1987;60:26902695.Google Scholar
Singer, W. Does pituitary stalk compression cause hyperprolactinemia? Endocr Pathol 1990;1:6567.Google Scholar
Horvath, E, Kovacs, K, Singer, W, Ezrin, C, Kerenyi, NA. Acidophil stem cell adenoma of the human pituitary. Arch Pathol Lab Med 1977;101:594599.Google Scholar
Horvath, E, Kovacs, K, Singer, W, et al. Acidophil stem cell adenoma of the human pituitary: clinicopathologic analysis of 15 cases. Cancer 1981;47:761771.Google Scholar
Lipper, S, Isenberg, HD, Kahn, LB. Calcospherites in pituitary prolactinomas. A hypothesis for their formation. Arch Pathol Lab Med 1984;108:3134.Google Scholar
Heitz, PhU, Landolt, AM, Zenklusen, H-R, et al. Immunocytochemistry of pituitary tumors. J Histochem Cytochem 1987;35:10051011.Google Scholar
Kovacs, K, Stefaneanu, L, Horvath, E, et al. Effect of dopamine agonist medication on prolactin producing pituitary adenomas. A morphological study including immunocytochemistry, electron microscopy and in situ hybridization. Virchows Arch A Pathol Anat Histopathol 1991;418:439446.Google Scholar
Asa, SL, Ezzat, S. Medical management of pituitary adenomas: structural and ultrastructural changes. Pituitary 2002;5:133139.Google Scholar
Tindall, GT, Kovacs, K, Horvath, E, Thorner, MO. Human prolactin-producing adenomas and bromocriptine: a histological, immunocytochemica, ultrastructural and morphometric study. J Clin Endocrinol Metab 1982;55:11781183.Google Scholar
Klibanski, A. Osteoporosis and hyperprolactinemia. Semin Reprod Endocrinol 1984;2:9398.Google Scholar
Koppelman, MCS, Kurtz, DW, Morrish, KA, et al. Vertebral body bone mineral content in hyperprolactinemic women. J Clin Endocrinol Metab 1984;59:10501053.Google Scholar
Gillam, MP, Molitch, ME, Lombardi, G, Colao, A. Advances in the treatment of prolactinomas. Endocr Rev 2006;27:485534.Google Scholar
Ciric, I, Mikhael, M, Stafford, T, Lawson, L, Garces, R. Transsphenoidal microsurgery of pituitary macroadenomas with long-term follow-up results. J Neurosurg 1983;59:395401.Google Scholar
Domingue, JN, Richmond, IL, Wilson, CB. Results of surgery in 114 patients with prolactin-secreting pituitary adenomas. Am J Obstet Gynecol 1980;137:102108.Google Scholar
Serri, O, Rasio, E, Beauregard, H, Hardy, J, Somma, M. Recurrence of hyperprolactinemia after selective transsphenoidal adenomectomy in women with prolactinoma. N Engl J Med 1983;309:280283.Google Scholar
Laws, ER Jr., Fode, NC, Redmond, MJ. Transsphenoidal surgery following unsuccessful prior therapy: An assessment of benefits and risks in 158 patients. J Neurosurg 1985;63:823829.Google Scholar
Mehta, AE, Reyes, FI, Faiman, C. Primary radiotherapy of prolactinomas. Eight- to 15-year follow-up. Am J Med 1987;83:4958.Google Scholar
Moraes, AB, Silva, CM, Vieira, NL, Gadelha, MR. Giant prolactinomas: the therapeutic approach. Clin Endocrinol (Oxf) 2013;79:447456.Google Scholar
Beck-Peccoz, P, Brucker-Davis, F, Persani, L, Smallridge, RC, Weintraub, BD. Thyrotropin-secreting pituitary tumors. Endocr Rev 1996;17:610638.Google Scholar
Hershman, JM, Higgins, HP. Hydatidiform mole: a cause of clinical hyperthyroidism. Report of two cases with evidence that the molar tissue secreted a thyroid stimulator. N Engl J Med 1971;284:573577.Google Scholar
Gershengorn, MC, Weintraub, BD. Thyrotropin-induced hyperthyroidism caused by selective pituitary resistance to thyroid hormone. A new syndrome of “inappropriate secretion of TSH.” J Clin Invest 1975;56:633642.Google Scholar
Kourides, IA, Ridgway, EC, Weintraub, BD, Bigos, ST, Gershengorn, MC, Maloof, F. Thyrotropin-induced hyperthyroidism: use of alpha and beta subunit levels to identify patients with pituitary tumors. J Clin Endocrinol Metab 1977;45:534543.Google Scholar
Smallridge, RC. Thyrotropin-secreting pituitary tumors. Endocrinol Metab Clin North Am 1987;16:765792.Google Scholar
Webster, J, Peters, JR, John, R, et al. Pituitary stone: two cases of densely calcified thyrotrophin-secreting pituitary adenomas. Clin Endocrinol (Oxf) 1994;40:137143.Google Scholar
Horvath, E, Kovacs, K, Smyth, HS, Cusimano, M, Singer, W. Silent adenoma subtype 3 of the pituitary–immunohistochemical and ultrastructural classification: a review of 29 cases. Ultrastruct Pathol 2005;29:511524.Google Scholar
Erickson, D, Scheithauer, B, Atkinson, J, et al. Silent subtype 3 pituitary adenoma: a clinicopathologic analysis of the Mayo Clinic experience. Clin Endocrinol (Oxf) 2009;71:9299.Google Scholar
Smallridge, RC, Smith, CE. Hyperthyroidism due to thyrotropin-secreting pituitary tumors. Diagnostic and therapeutic considerations. Arch Intern Med 1983;143:503507.Google Scholar
Hill, SA, Falko, JM, Wilson, CB, Hunt, WE. Thyrotrophin-producing pituitary adenomas. J Neurosurg 1982;57:515519.Google Scholar
Takamatsu, J, Mozai, T, Kuma, K. Bromocriptine therapy for hyperthyroidism due to increased thyrotropin secretion. J Clin Endocrinol Metab 1984;58:934936.Google Scholar
Bevan, JS, Burke, CW, Esiri, MM, et al. Studies of two thyrotrophin-secreting pituitary adenomas: evidence for dopamine receptor deficiency. Clin Endocrinol (Oxf) 1989;31:5970.Google Scholar
Comi, RJ, Gesundheit, N, Murray, L, Gorden, P, Weintraub, BD. Response of thyrotropin-secreting pituitary adenomas to a long-acting somatostatin analogue. N Engl J Med 1987;317:1217.Google Scholar
Lamberts, SWJ. The role of somatostatin in the regulation of anterior pituitary hormone secretion and the use of its analogs in the treatment of human pituitary tumors. Endocr Rev 1988;9:417436.Google Scholar
Orme, SM, Lamb, JT, Nelson, M, Belchetz, PE. Shrinkage of thyrotrophin secreting pituitary adenoma treated with octreotide. Postgrad Med J 1991;67:466468.Google Scholar
Snyder, PJ. Gonadotroph cell adenomas of the pituitary. Endocr Rev 1985;6:552563.Google Scholar
Snyder, PJ. Gonadotroph cell pituitary adenomas. Endocrinol Metab Clin North Am 1987;16:755764.Google Scholar
Jaffe, CA. Clinically non-functioning pituitary adenoma. Pituitary 2006;9:317321.Google Scholar
Klibanski, A, Deutsch, PJ, Jameson, JL, et al. Luteinizing hormone-secreting pituitary tumor: biosynthetic characterization and clinical studies. J Clin Endocrinol Metab 1987;64:536542.Google Scholar
Snyder, PJ, Bashey, HM, Kim, SU, Chappel, SC. Secretion of uncombined subunits of luteinizing hormone by gonadotroph cell adenomas. J Clin Endocrinol Metab 1984;59:11691175.Google Scholar
Djerassi, A, Coutifaris, C, West, VA, Asa, SL, Kapoor, SC, Snyder, PJ. Gonadotroph adenoma in a premenopausal woman secreting FSH and causing ovarian hyperstimulation. J Clin Endocrinol Metab 1995;80:591594.Google Scholar
Cook, DM, Watkins, S, Snyder, PJ. Gonadotrophin-secreting pituitary adenomas masquerading as primary ovarian failure. Clin Endocrinol (Oxf) 1986;25:729738.Google Scholar
Lamberts, SWJ, Verleun, T, Oosterom, R, et al. The effects of bromocriptine, thyrotropin-releasing hormone, and gonadotropin-releasing hormone on hormone secretion by gonadotropin-secreting pituitary adenomas in vivo and in vitro. J Clin Endocrinol Metab 1987;64:524530.Google Scholar
Asa, SL, Gerrie, BM, Kovacs, K, et al. Structure-function correlations of human pituitary gonadotroph adenomas in vitro. Lab Invest 1988;58:403410.Google Scholar
Kwekkeboom, DJ, de Jong, FH, Lamberts, SWJ. Gonadotropin release by clinically nonfunctioning and gonadotroph pituitary adenomas in vivo and in vitro: relation to sex and effects of thyrotropin-releasing hormone, gonadotropin-releasing hormone, and bromocriptine. J Clin Endocrinol Metab 1989;68:11281135.Google Scholar
Koga, M, Nakao, H, Arao, M, et al. Demonstration of specific dopamine receptors on human pituitary adenomas. Acta Endocrinol (Copenh) 1987;114:595602.Google Scholar
Lloyd, RV, Anagnostou, D, Chandler, WF. Dopamine receptors in immunohistochemically characterized null cell adenomas and normal human pituitaries. Mod Pathol 1988;1:5156.Google Scholar
Kwekkeboom, DJ, Hofland, LJ, van Koetsveld, PM, Singh, R, van den Berge, JH, Lamberts, SWJ. Bromocriptine increasingly suppresses the in vitro gonadotropin and a-subunit release from pituitary adenomas during long term culture. J Clin Endocrinol Metab 1990;71:718724.Google Scholar
Vance, ML, Ridgway, EC, Thorner, MO. Follicle-stimulating hormone- and α-subunit-secreting pituitary tumor treated with bromocriptine. J Clin Endocrinol Metab 1985;61:580584.Google Scholar
Klibanski, A, Shupnik, MA, Bikkal, HA, Black, PM, Kliman, B, Zervas, NT. Dopaminergic regulation of a-subunit secretion and messenger ribonucleic acid levels in a-secreting pituitary tumors. J Clin Endocrinol Metab 1988;66:96102.Google Scholar
Bevan, JS, Webster, J, Burke, CW, Scanlon, MF. Dopamine agonists and pituitary tumor shrinkage. Endocr Rev 1992;13:220240.Google Scholar
Chanson, P, Brochier, S. Non-functioning pituitary adenomas. J Endocrinol Invest 2005;28(suppl int):9399.Google Scholar
Vos, P, Croughs, RJM, Thijssen, JHH, van’t Verlaat, JW, van Ginkel, LA. Response of luteinizing hormone secreting pituitary adenoma to a long-acting somatostatin analogue. Acta Endocrinol (Copenh) 1988;118:587590.Google Scholar
Klibanski, A. Nonsecreting pituitary tumors. Endocrinol Metab Clin North Am 1987;16:793804.Google Scholar
Horvath, E, Kovacs, K, Killinger, DW, Smyth, HS, Platts, ME, Singer, W. Silent corticotropic adenomas of the human pituitary gland. A histologic, immunocytologic, and ultrastructural study. Am J Pathol 1980;98:617638.Google Scholar
Scheithauer, BW, Jaap, AJ, Horvath, E, et al. Clinically silent corticotroph tumors of the pituitary gland. Neurosurgery 2000;47:723729.Google Scholar
Lopez, JA, Kleinschmidt-Demasters, BB, Sze, CI, Woodmansee, WW, Lillehei, KO. Silent corticotroph adenomas: further clinical and pathological observations. Hum Pathol 2004;35:11371147.Google Scholar
Roncaroli, F, Faustini-Fustini, M, Mauri, F, Asioli, S, Frank, G. Crooke’s hyalinization in silent corticotroph adenoma: report of two cases. Endocr Pathol 2002;13:245249.Google Scholar
Sakurai, T, Seo, H, Yamamoto, N, et al. Detection of mRNA of prolactin and ACTH in clinically nonfunctioning pituitary adenomas. J Neurosurg 1988;69:653659.Google Scholar
Lloyd, RV, Fields, K, Jin, L, Horvath, E, Kovacs, K. Analysis of endocrine active and clinically silent corticotropic adenomas by in situ hybridization. Am J Pathol 1990;137:479488.Google Scholar
Trouillas, J, Girod, C, Sassolas, G, et al. A human β-endorphin pituitary adenoma. J Clin Endocrinol Metab 1984;58:242249.Google Scholar
Asa, SL. Tissue culture in the diagnosis and study of pituitary adenomas. In Lloyd, RV, ed. Surgical Pathology of the Pituitary Gland. Philadelphia, PA: WBSaunders, 1993:94115.Google Scholar
Chabre, O, Martinie, M, Vivier, J, Eimin-Richard, E, Bertagna, X, Bachelot, I. A clinically silent corticotrophic pituitary adenoma (CSCPA) secreting a biologically inactive but immunoreactive assayable ACTH. J Endocrinol Invest (Milan) 1991;14(suppl 1): 87.Google Scholar
Horvath, E, Kovacs, K. Gonadotroph adenomas of the human pituitary: sex-related fine-structural dichotomy. A histologic, immunocytochemical, and electron-microscopic study of 30 tumors. Am J Pathol 1984;117:429440.Google Scholar
Sano, T, Kovacs, K, Asa, SL, et al. Pituitary adenoma with “honeycomb Golgi” appearance showing a phenotypic change at recurrence from clinically nonfunctioning to typical Cushing disease. Endocr Pathol 2002;13:125130.Google Scholar
Sano, T, Mader, R, Asa, SL, Qian, ZR, Hino, A, Yamada, S. “Honeycomb Golgi” in pituitary adenomas: not a marker of gonadotroph adenomas. Endocr Pathol 2003;14:363368.Google Scholar
Kim, K, Yamada, S, Usui, M, Sano, T. Co-localization of honeycomb golgi and ACTH granules in a giant ACTH-producing pituitary adenoma. Endocr Pathol 2005;16:239244.Google Scholar
Kovacs, K, Lloyd, R, Horvath, E, et al. Silent somatotroph adenomas of the human pituitary. A morphologic study of three cases including immunocytochemistry, electron microscopy, in vitro examination, and in situ hybridization. Am J Pathol 1989;134:345353.Google Scholar
Tourniaire, J, Trouillas, J, Chalendar, D, Bonneton-Emptoz, A, Goutelle, A, Girod, C. Somatotropic adenoma manifested by galactorrhea without acromegaly. J Clin Endocrinol Metab 1985;61:451453.Google Scholar
Pagesy, P, Li, JY, Kujas, M, et al. Apparently silent somatotroph adenomas. Pathol Res Pract 1991;187:950956.Google Scholar
Trouillas, J, Sassolas, G, Loras, B, et al. Somatotropic adenomas without acromegaly. Pathol Res Pract 1991;187:943949.Google Scholar
Yamada, S, Sano, T, Stefaneanu, L, et al. Endocrine and morphological study of a clinically silent somatotroph adenoma of the human pituitary. J Clin Endocrinol Metab 1993;76:352356.Google Scholar
Klibanski, A, Zervas, NT, Kovacs, K, Ridgway, EC. Clinically silent hypersecretion of growth hormone in patients with pituitary tumors. J Neurosurg 1987;66:806811.Google Scholar
Kalavalapalli, S, Reid, H, Kane, J, Buckler, H, Trainer, P, Heald, AH. Silent growth hormone secreting pituitary adenomas: IGF-1 is not sufficient to exclude growth hormone excess. Ann Clin Biochem 2007;44:8993.Google Scholar
Sidhaye, A, Burger, P, Rigamonti, D, Salvatori, R. Giant somatotrophinoma without acromegalic features: more “quiet” than “silent”: case report. Neurosurgery 2005;56:E1154.Google Scholar
Black, PM, Hsu, DW, Klibanski, A, et al. Hormone production in clinically nonfunctioning pituitary adenomas. J Neurosurg 1987;66:244250.Google Scholar
Trouillas, J, Girod, C, Sassolas, G, Claustrat, B. The human gonadotropic adenoma: pathologic diagnosis and hormonal correlations in 26 tumors. Semin Diagn Pathol 1986;3:4257.Google Scholar
Daneshdoost, L, Gennarelli, TA, Bashey, HM, et al. Recognition of gonadotroph adenomas in women. N Engl J Med 1991;324:589594.Google Scholar
Asa, SL, Gerrie, BM, Singer, W, Horvath, E, Kovacs, K, Smyth, HS. Gonadotropin secretion in vitro by human pituitary null cell adenomas and oncocytomas. J Clin Endocrinol Metab 1986;62:10111019.Google Scholar
Jameson, JL, Klibanski, A, Black, PM, et al. Glycoprotein hormone genes are expressed in clinically nonfunctioning pituitary adenomas. J Clin Invest 1987;80:14721478.Google Scholar
Yamada, S, Asa, SL, Kovacs, K. Oncocytomas and null cell adenomas of the human pituitary: morphometric and in vitro functional comparison. Virchows Arch A Pathol Anat Histopathol 1988;413:333339.Google Scholar
Nishioka, H, Mete, O, Asa, SL, et al. The crucial role of pituitary transcription factors in the accurate classification of hormone-negative nonfunctioning pituitary adenomas. In Annual Meeting of the Endocrine Society, 2014.Google Scholar
Komor, J, Reubi, JC, Christ, ER. Peptide receptor radionuclide therapy in a patient with disabling non-functioning pituitary adenoma. Pituitary 2014;17:227231.Google Scholar
Horn, K, Erhardt, F, Fahlbusch, R, Pickardt, CR, von Werder, K, Scriba, PC. Recurrent goiter, hyperthyroidism, galactorrhea and amenorrhea due to a thyrotropin and prolactin-producing pituitary tumor. J Clin Endocrinol Metab 1976;43:137143.Google Scholar
Duello, TM, Halmi, NS. Pituitary adenoma producing thyrotropin and prolactin. An immunocytochemical and electron microscopic study. Virchows Arch A Pathol Anat Histopathol 1977;376:255265.Google Scholar
Benoit, R, Pearson-Murphy, BE, Robert, F, et al. Hyperthyroidism due to a pituitary TSH secreting tumour with amenorrhoea-galactorrhoea. Clin Endocrinol (Oxf) 1980;12:1119.Google Scholar
Kovacs, K, Horvath, E, Ezrin, C, Weiss, MH. Adenoma of the human pituitary producing growth hormone and thyrotropin. A histologic, immunocytologic and fine-structural study. Virchows Arch A Pathol Anat Histopathol 1982;395:5968.Google Scholar
Saeger, W, Lüdecke, DK. Pituitary adenomas with hyperfunction of TSH. Frequency, histologic classification, immunocytochemistry and ultrastructure. Virchows Arch A Pathol Anat Histopathol 1982;394:255267.Google Scholar
Jaquet, P, Hassoun, J, Delori, P, Gunz, G, Grisoli, F, Weintraub, BD. A human pituitary adenoma secreting thyrotropin and prolactin: immunohistochemical, biochemical, and cell culture studies. J Clin Endocrinol Metab 1984;59:817824.Google Scholar
Beck-Peccoz, P, Piscitelli, G, Amr, S, et al. Endocrine, biochemical, and morphological studies of a pituitary adenoma secreting growth hormone, thyrotropin (TSH), and a-subunit: evidence for secretion of TSH with increased bioactivity. J Clin Endocrinol Metab 1986;62:704711.Google Scholar
Trouillas, J, Girod, C, Loras, B, et al. The TSH secretion in the human pituitary adenomas. Pathol Res Pract 1988;183:596600.Google Scholar
Simard, M, Mirell, CJ, Pekary, AE, Drexler, J, Kovacs, K, Hershman, JM. Hormonal control of thyrotropin and growth hormone secretion in a human thyrotrope pituitary adenoma studied in vitro. Acta Endocrinol (Copenh) 1988;119:283290.Google Scholar
Malarkey, WB, Kovacs, K, O’Dorisio, TM. Response of a GH- and TSH-secreting pituitary adenoma to a somatostatin analogue (SMS 201-995): evidence that GH and TSH coexist in the same cell and secretory granules. Neuroendocrinology 1989;49:267274.Google Scholar
Kuzuya, N, Inoue, K, Ishibashi, M, et al. Endocrine and immunohistochemical studies on thyrotropin (TSH)-secreting pituitary adenomas: responses of TSH, α-subunit, and growth hormone to hypothalamic releasing hormones and their distribution in adenoma cells. J Clin Endocrinol Metab 1990;71:11031111.Google Scholar
Sherry, SH, Guay, AT, Lee, AK, et al. Concurrent production of adrenocorticotropin and prolactin from two distinct cell lines in a single pituitary adenoma: a detailed immunohistochemical analysis. J Clin Endocrinol Metab 1982;55:947955.Google Scholar
Sano, T, Kovacs, K, Asa, SL, Smyth, HS. Immunoreactive luteinizing hormone in functioning corticotroph adenomas of the pituitary. Immunohistochemical and tissue culture studies of two cases. Virchows Arch A Pathol Anat Histopathol 1990;417:361367.Google Scholar
Cunningham, GR, An, Huckins C. FSH and prolactin-secreting pituitary tumor: Pituitary dynamics and testicular histology. J Clin Endocrinol Metab 1977;44:248253.Google Scholar
Faggiano, M, Criscuolo, T, Perrone, L, Quarto, C, Sinisi, AA. Sexual precocity in a boy due to hypersecretion of LH and prolactin by a pituitary adenoma. Acta Endocrinol (Copenh) 1983;102:167172.Google Scholar
Koide, Y, Kugai, N, Kimura, S, et al. A case of pituitary adenoma with possible simultaneous secretion of thyrotropin and follicle-stimulating hormone. J Clin Endocrinol Metab 1982;54:397403.Google Scholar
Berg, KK, Scheithauer, BW, Felix, I, et al. Pituitary adenomas that produce adrenocorticotropic hormone and alpha-subunit: clinicopathological, immunohistochemical, ultrastructural, and immunoelectron microscopic studies in nine cases. Neurosurgery 1990;26:397403.Google Scholar
Alexander, JM, Biller, BMK, Bikkal, H, Zervas, NT, Arnold, A, Klibanski, A. Clinically nonfunctioning pituitary tumors are monoclonal in origin. J Clin Invest 1990;86:336340.Google Scholar
Herman, V, Fagin, J, Gonsky, R, Kovacs, K, Melmed, S. Clonal origin of pituitary adenomas. J Clin Endocrinol Metab 1990;71:14271433.Google Scholar
Schulte, HM, Oldfield, EH, Allolio, B, Katz, DA, Berkman, RA, Ali, IU. Clonal composition of pituitary adenomas in patients with Cushing’s disease: determination by X-chromosome inactivation analysis. J Clin Endocrinol Metab 1991;73:13021308.Google Scholar
Wermer, P. Genetic aspects of adenomatosis of endocrine glands. Am J Med 1954;16:363371.Google Scholar
Scheithauer, BW, Laws, ER Jr., Kovacs, K, Horvath, E, Randall, RV, Carney, JA. Pituitary adenomas of the multiple endocrine neoplasia type I syndrome. Semin Diagn Pathol 1987;4:205211.Google Scholar
Chandrasekharappa, SC, Guru, SC, Manickam, P, et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 1997;276:404407.Google Scholar
Dong, Q, Debelenko, LV, Chandrasekharappa, SC, et al. Loss of heterozygosity at 11p13: analysis of pituitary tumors, lung carcinoids, lipomas, and other uncommon tumors in subjects with familial multiple endocrine neoplasia type 1. J Clin Endocrinol Metab 1997;82:14161420.Google Scholar
Zhuang, Z, Ezzat, S, Vortmeyer, AO, et al. Mutations of the MEN1 tumor suppressor gene in pituitary tumors. Cancer Res 1997;57:54465451.Google Scholar
Asa, SL, Somers, K, Ezzat, S. The MEN1 gene is rarely down-regulated in pituitary adenomas. J Clin Endocrinol Metab 1998;83:32103212.Google Scholar
Pellegata, NS, Quintanilla-Martinez, L, Siggelkow, H, et al. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci USA 2006;103:1555815563.Google Scholar
Georgitsi, M, Raitila, A, Karhu, A, et al. Germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia. J Clin Endocrinol Metab 2007;92:33213325.Google Scholar
Agarwal, SK, Mateo, CM, Marx, SJ. Rare germline mutations in cyclin-dependent kinase inhibitor genes in multiple endocrine neoplasia type 1 and related states. J Clin Endocrinol Metab 2009;94:18261834.Google Scholar
Kirschner, LS, Carney, JA, Pack, SD, et al. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet 2000;26:8992.Google Scholar
Yin, Z, Williams-Simons, L, Parlow, AF, Asa, S, Kirschner, LS. Pituitary-specific knockout of the Carney complex gene prkar1a leads to pituitary tumorigenesis. Mol Endocrinol 2008;22:380387.Google Scholar
Carney, JA, Gordon, H, Carpenter, PC, Shenoy, BV, Go, VL. The complex of myxomas, spotty pigmentation, and endocrine overactivity. Medicine (Baltimore) 1985;64:270283.Google Scholar
Kaltsas, GA, Kola, B, Borboli, N, et al. Sequence analysis of the PRKAR1A gene in sporadic somatotroph and other pituitary tumours. Clin Endocrinol (Oxf) 2002;57:443448.Google Scholar
Sandrini, F, Kirschner, LS, Bei, T, et al. PRKAR1A, one of the Carney complex genes, and its locus (17q22–24) are rarely altered in pituitary tumours outside the Carney complex. J Med Genet 2002;39:e78.Google Scholar
Soares, BS, Frohman, LA. Isolated familial somatotropinoma. Pituitary 2004;7:95101.Google Scholar
Beckers, A, Daly, AF. The clinical, pathological, and genetic features of familial isolated pituitary adenomas. Eur J Endocrinol 2007;157:371382.Google Scholar
Vierimaa, O, Georgitsi, M, Lehtonen, R, et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 2006;312:12281230.Google Scholar
Georgitsi, M, De Menis, E, Cannavò, S, et al. Aryl hydrocarbon receptor interacting protein (AIP) gene mutation analysis in children and adolescents with sporadic pituitary adenomas. Clin Endocrinol (Oxf) 2008;69:621627.Google Scholar
DiGiovanni, R, Serra, S, Ezzat, S, Asa, SL. AIP mutations are not identified in patients with sporadic pituitary adenomas. Endocr Pathol 2007;18:7678.Google Scholar
Papathomas, TG, Gaal, J, Corssmit, EP, et al. Non-pheochromocytoma (PCC)/paraganglioma (PGL) tumors in patients with succinate dehydrogenase-related PCC–PGL syndromes: a clinicopathological and molecular analysis. Eur J Endocrinol 2014;170:112.Google Scholar
Gill, AJ, Toon, CW, Clarkson, A, et al. Succinate dehydrogenase deficiency is rare in pituitary adenomas. Am J Surg Pathol 2014;38:560566.Google Scholar
Asa, SL, Ezzat, S. The pathogenesis of pituitary tumours. Nat Rev Cancer 2002;2:836849.Google Scholar
Ezzat, S, Asa, SL. Mechanisms of disease: the pathogenesis of pituitary tumors. Nat Clin Pract Endocrinol Metab 2006;2:220230.Google Scholar
Asa, SL, Ezzat, S. The pathogenesis of pituitary tumors. Annu Rev Pathol 2009;4:97126.Google Scholar
Vallar, L, Spada, A, Giannattasio, G. Altered Gs and adenylate cyclase activity in human GH-secreting pituitary adenomas. Nature 1987;330:566568.Google Scholar
Landis, CA, Masters, SB, Spada, A, Pace, AM, Bourne, HR, Vallar, L. GTPase inhibiting mutations activate the alpha-chain of Gs and stimulate adenylate cyclase in human pituitary tumors. Nature 1989;340:692696.Google Scholar
Hayward, BE, Barlier, A, Korbonits, M, et al. Imprinting of the G(s)alpha gene GNAS1 in the pathogenesis of acromegaly. J Clin Invest 2001;107:R31R36.Google Scholar
Itoh, N, Ornitz, DM. Evolution of the Fgf and Fgfr gene families. Trends Genet 2004;20:563569.Google Scholar
Ezzat, S, Walpola, IA, Ramyar, L, Smyth, HS, Asa, SL. Membrane-anchored expression of transforming growth factor-a in human pituitary adenoma cells. J Clin Endocrinol Metab 1995;80:534539.Google Scholar
McAndrew, J, Paterson, AJ, Asa, SL, McCarthy, KJ, Kudlow, JE. Targeting of transforming growth factor-α expression to pituitary lactotrophs in transgenic mice results in selective lactotroph proliferation and adenomas. Endocrinology 1995;136:44794488.Google Scholar
LeRiche, V, Asa, SL, Ezzat, S. Epidermal growth factor and its receptor (EGF-R) in human pituitary adenomas: EGF-R correlates with tumor aggressiveness. J Clin Endocrinol Metab 1996;81:656662.Google Scholar
Ezzat, S, Zheng, L, Smyth, HS, Asa, SL. The c-erbB-2/neu proto-oncogene in human pituitary tumours. Clin Endocrinol (Oxf) 1997;46:599606.Google Scholar
Cooper, O, Vlotides, G, Fukuoka, H, Greene, MI, Melmed, S. Expression and function of ErbB receptors and ligands in the pituitary. Endocr Relat Cancer 2011;18:R197R211.Google Scholar
Haddad, G, Penabad, JL, Bashey, HM, et al. Expression of activin/inhibin subunit messenger ribonucleic acids by gonadotroph adenomas. J Clin Endocrinol Metab 1994;79:13991403.Google Scholar
Penabad, JL, Bashey, HM, Asa, SL, et al. Decreased follistatin gene expression in gonadotroph adenomas. J Clin Endocrinol Metab 1996;81:33973403.Google Scholar
Abbass, SAA, Asa, SL, Ezzat, S. Altered expression of fibroblast growth factor receptors in human pituitary adenomas. J Clin Endocrinol Metab 1997;82:11601166.Google Scholar
Zhu, X, Asa, SL, Ezzat, S. Fibroblast growth factor 2 and estrogen control the balance of histone 3 modifications targeting MAGE-A3 in pituitary neoplasia. Clin Cancer Res 2008;14:19841996.Google Scholar
Zhu, X, Lee, K, Asa, SL, Ezzat, S. Epigenetic silencing through DNA and histone methylation of fibroblast growth factor receptor 2 in neoplastic pituitary cells. Am J Pathol 2007;170:16181628.Google Scholar
Qian, ZK, Sano, T, Asa, SL, et al. Cytoplasmic expression of fibroblast growth factor receptor‐4 (ptd‐FGFR4) in human pituitary adenomas. J Clin Endocrinol Metab 2004;89:19041911.Google Scholar
Ezzat, S, Yu, S, Asa, SL. Ikaros isoforms in human pituitary tumors: distinct localization, histone acetylation, and activation of the 5′ fibroblast growth factor receptor-4 promoter. Am J Pathol 2003;163:11771184.Google Scholar
Yu, S, Asa, SL, Weigel, RJ, Ezzat, S. Pituitary tumor AP-2alpha recognizes a cryptic promoter in intron 4 of fibroblast growth factor receptor 4. J Biol Chem 2003;278:1959719602.Google Scholar
Ezzat, S, Zheng, L, Asa, SL. Pituitary tumor-derived fibroblast growth factor receptor 4 isoform disrupts neural cell-adhesion molecule/N-cadherin signaling to diminish cell adhesiveness: a mechanism underlying pituitary neoplasia. Mol Endocrinol 2004;18:25432552.Google Scholar
Daniel, L, Trouillas, J, Renaud, W, et al. Polysialylated-neural cell adhesion molecule expression in rat pituitary transplantable tumors (spontaneous mammotropic transplantable tumor in Wistar-Furth rats) is related to growth rate and malignancy. Cancer Res 2000;60:8085.Google Scholar
Zhu, X, Mao, X, Hurren, R, Schimmer, AD, Ezzat, S, Asa, SL. Deoxyribonucleic acid methyltransferase 3B promotes epigenetic silencing through histone 3 chromatin modifications in pituitary cells. J Clin Endocrinol Metab 2008;93:36103617.Google Scholar
Liu, W, Asa, SL, Ezzat, S. Vitamin D and its analog EB1089 induce p27 accumulation and diminish association of p27 with Skp2 independent of PTEN in pituitary corticotroph cells. Brain Pathol 2002;12:412419.Google Scholar
Amaral, FC, Torres, N, Saggioro, F, et al. MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab 2009;94:320323.Google Scholar
Bellodi, C, Krasnykh, O, Haynes, N, et al. Loss of function of the tumor suppressor DKC1 perturbs p27 translation control and contributes to pituitary tumorigenesis. Cancer Res 2010;70:60266035.Google Scholar
Ezzat, S, Zhu, X, Loeper, S, Fischer, S, Asa, SL. Tumor-derived Ikaros 6 acetylates the Bcl-XL promoter to up-regulate a survival signal in pituitary cells. Mol Endocrinol 2006;20:29762986.Google Scholar
Loeper, S, Asa, SL, Ezzat, S. Ikaros modulates cholesterol uptake: a link between tumor suppression and differentiation. Cancer Res 2008;68:37153723.Google Scholar
Fedele, M, Battista, S, Kenyon, L, et al. Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene 2002;21:31903198.Google Scholar
Fedele, M, Pentimalli, F, Baldassarre, G, et al. Transgenic mice overexpressing the wild-type form of the HMGA1 gene develop mixed growth hormone/prolactin cell pituitary adenomas and natural killer cell lymphomas. Oncogene 2005;24:34273435.Google Scholar
De, M, I, Visone, R, Wierinckx, A, et al. HMGA proteins up-regulate CCNB2 gene in mouse and human pituitary adenomas. Cancer Res 2009;69:18441850.Google Scholar
Finelli, P, Pierantoni, GM, Giardino, D, et al. The high mobility group A2 gene is amplified and overexpressed in human prolactinomas. Cancer Res 2002;62:23982405.Google Scholar
Evans, CO, Moreno, CS, Zhan, X, et al. Molecular pathogenesis of human prolactinomas identified by gene expression profiling, RT-qPCR, and proteomic analyses. Pituitary 2008;11:231245.Google Scholar
Qian, ZR, Asa, SL, Siomi, H, et al. Overexpression of HMGA2 relates to reduction of the Let-7 and its relationship to clinicopathological features in pituitary adenomas. Mod Pathol 2009;22:431441.Google Scholar
Muller, HL. Craniopharyngioma. Endocr Rev 2014;35:513543.Google Scholar
Banna, M. Cranopharyngioma: based on 160 cases. Br J Radiol 1976;49:206223.Google Scholar
Petito, CK, DeGirolami, U, Earle, KM. Craniopharyngiomas. A clinical and pathological review. Cancer 1976;37:19441952.Google Scholar
Louis, DN, Ohgaki, H, Wiestler, OD, Cavenee, WK, eds. WHO Classification of Tumours of the Central Nervous System. Lyon: International Agency for Research on Cancer, 2007.Google Scholar
Scheithauer, BW. The hypothalamus and neurohypophysis. In Kovacs, K, Asa, SL, eds. Functional Endocrine Pathology. Boston: Blackwell Scientific, 1998:171246.Google Scholar
Azar-Kia, B, Krishnan, UR, Schechter, MM. Neonatal craniopharyngioma. Case report. J Neurosurg 1975;42:9193.Google Scholar
Lederman, GS, Recht, A, Loeffler, JS, Dubuisson, D, Kleefield, J, Schnitt, SJ. Craniopharyngioma in an elderly patient. Cancer 1987;60:10771080.Google Scholar
Lewin, R, Ruffolo, E, Saraceno, C. Craniopharyngioma arising in the pharyngeal hypophysis. Southern Med J 1984;77:15191523.Google Scholar
Koral, K, Weprin, B, Rollins, NK. Sphenoid sinus craniopharyngioma simulating mucocele. Acta Radiol 2006;47:494496.Google Scholar
Baskin, DS, Wilson, CB. Surgical management of craniopharyngiomas. A review of 74 cases. J Neurosurg 1986;65:2227.Google Scholar
Brown, JL, Burton, DW, Deftos, LJ, Smith, AA, Pincus, DW, Haller, MJ. Congenital craniopharyngioma and hypercalcemia induced by parathyroid hormone-related protein. Endocr Pract 2007;13:6771.Google Scholar
Cusimano, MD, Kovacs, K, Bilbao, JM, Tucker, WS, Singer, W. Suprasellar craniopharyngioma associated with hyperprolactinemia, pituitary lactotroph hyperplasia, and microprolactinoma. Case report. J Neurosurg 1988;69:620623.Google Scholar
Wheatley, T, Clark, JDA, Stewart, S. Craniopharyngioma with hyperprolactinaemia due to a prolactinoma. J Neurol Neurosurg Psychiatry 1986;49:13051307.Google Scholar
Yoshida, A, Sen, C, Asa, SL, Rosenblum, MK. Composite pituitary adenoma and craniopharyngioma? An unusual sellar neoplasm with divergent differentiation. Am J Surg Pathol 2008;32:17361741.Google Scholar
Moshkin, O, Scheithauer, BW, Syro, LV, Velasquez, A, Horvath, E, Kovacs, K. Collision tumors of the sella: craniopharyngioma and silent pituitary adenoma subtype 3: case report. Endocr Pathol 2009;20:5055.Google Scholar
Gokden, M, Mrak, RE. Pituitary adenoma with craniopharyngioma component. Hum Pathol 2009;40:11891193.Google Scholar
Puchner, MJA, Lüdecke, DK, Saeger, W. The anterior pituitary lobe in patients with cystic craniopharyngiomas: three cases of associated lymphocytic hypophysitis. Acta Neurochir 1994;126:3843.Google Scholar
Xin, W, Rubin, MA, McKeever, PE. Differential expression of cytokeratins 8 and 20 distinguishes craniopharyngioma from Rathke cleft cyst. Arch Pathol Lab Med 2002;126:11741178.Google Scholar
Rickert, CH, Paulus, W. Lack of chromosomal imbalances in adamantinomatous and papillary craniopharyngiomas. J Neurol Neurosurg Psychiatry 2003;74:260261.Google Scholar
Rienstein, S, Adams, EF, Pilzer, D, Goldring, AA, Goldman, B, Friedman, E. Comparative genomic hybridization analysis of craniopharyngiomas. J Neurosurg 2003;98:162164.Google Scholar
Sekine, S, Shibata, T, Kokubu, A, et al. Craniopharyngiomas of adamantinomatous type harbor beta-catenin gene mutations. Am J Pathol 2002;161:19972001.Google Scholar
Buslei, R, Nolde, M, Hofmann, B, et al. Common mutations of beta-catenin in adamantinomatous craniopharyngiomas but not in other tumours originating from the sellar region. Acta Neuropathol 2005;109:589597.Google Scholar
Oikonomou, E, Barreto, DC, Soares, B, De Marco, L, Buchfelder, M, Adams, EF. Beta-catenin mutations in craniopharyngiomas and pituitary adenomas. J Neurooncol 2005;73:205209.Google Scholar
Brastianos, PK, Taylor-Weiner, A, Manley, PE, et al. Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat Genet 2014;46:161165.Google Scholar
Park, YS, Ahn, JY, Kim, DS, Kim, TS, Kim, SH. Late development of craniopharyngioma following surgery for Rathke’s cleft cyst. Clin Neuropathol 2009;28:177181.Google Scholar
Link, MJ, Driscoll, CL, Giannini, C. Isolated, giant cerebellopontine angle craniopharyngioma in a patient with Gardner syndrome: case report. Neurosurgery 2002;51:221225.Google Scholar
Sarubi, JC, Bei, H, Adams, EF, et al. Clonal composition of human adamantinomatous craniopharyngiomas and somatic mutation analyses of the patched (PTCH), Gsalpha and Gi2alpha genes. Neurosci Lett 2001;310:58.Google Scholar
Boch, AL, van Effenterre, R, Kujas, M. Craniopharyngiomas in two consanguineous siblings: case report. Neurosurgery 1997;41:11851187.Google Scholar
Laws, ER Jr. Craniopharyngioma: diagnosis and treatment. Endocrinologist 1992;2:184188.Google Scholar
Minniti, G, Esposito, V, Amichetti, M, Enrici, RM. The role of fractionated radiotherapy and radiosurgery in the management of patients with craniopharyngioma. Neurosurg Rev 2009;32:125132.Google Scholar
Gopalan, R, Dassoulas, K, Rainey, J, Sherman, JH, Sheehan, JP. Evaluation of the role of gamma knife surgery in the treatment of craniopharyngiomas. Neurosurg Focus 2008;24:E5.Google Scholar
Scheithauer, BW, Kovacs, K, Horvath, E, et al. Pituitary blastoma. Acta Neuropathol 2008;116:657666.Google Scholar
Scheithauer, BW, Horvath, E, Abel, TW, et al. Pituitary blastoma: a unique embryonal tumor. Pituitary 2012;15:365373.Google Scholar
Doros, L, Schultz, KA, Stewart, DR, et al. DICER-1 related disorders. In Pagon, RA, Adam, MP, Bird, TD, Dolan, CR, Fong, CT, Stephens, K eds. GeneReviews. Seattle, WA: University of Washington, 2014 (http://www.ncbi.nlm.nih.gov/books/NBK196157/, accessed 10 September 2015).Google Scholar
de Kock, L, Sabbaghian, N, Plourde, F, et al. Pituitary blastoma: a pathognomonic feature of germ-line DICER1 mutations. Acta Neuropathol 2014;128:111122.Google Scholar
Puchner, MJA, Lüdecke, DK, Saeger, W, Riedel, M, Asa, SL. Gangliocytomas of the sellar region: a review. Exper Clin Endocrinol 1995;103:129149.Google Scholar
Rhodes, RH, Dusseau, JJ, Boyd, AS, Knigge, KM. Intrasellar neural-adenohypophyseal choristoma. a morphological and immunocytochemical study. J Neuropathol Exp Neurol 1982;41:267280.Google Scholar
Scheithauer, BW, Kovacs, K, Randall, RV, Horvath, E, Okazaki, H, Laws, ER Jr. Hypothalamic neuronal hamartoma and adenohypophyseal neuronal choristoma: Their association with growth hormone adenoma of the pituitary gland. J Neuropathol Exp Neurol 1983;42:648663.Google Scholar
Felix, I, Bilbao, JM, Asa, SL, Tyndel, F, Kovacs, K, Becker, LE. Cerebral and cerebellar gangliocytomas: a morphological study of nine cases. Acta Neuropathol (Berl) 1994;88:246251.Google Scholar
Hall, JG, Pallister, PD, Clarren, SK, et al. Congenital hypothalamic hamartoblastoma, hypopituitarism, imperforate anus and postaxial polydactyly–a new syndrome? Part I: clinical, causal, and pathogenetic considerations. Am J Med Genet 1980;7:4774.Google Scholar
Kang, S, Graham, JM Jr., Olney, AH, Biesecker, LG. GLI3 frameshift mutations cause autosomal dominant Pallister–Hall syndrome. Nat Genet 1997;15:266268.Google Scholar
Johnston, JJ, Olivos-Glander, I, Killoran, C, et al. Molecular and clinical analyses of Greig cephalopolysyndactyly and Pallister–Hall syndromes: robust phenotype prediction from the type and position of GLI3 mutations. Am J Hum Genet 2005;76:609622.Google Scholar
Kontogeorgos, G, Mourouti, G, Kyrodimou, E, Liapi-Avgeri, G, Parasi, E. Ganglion cell containing pituitary adenomas: signs of neuronal differentiation in adenoma cells. Acta Neuropathol 2006;112:2128.Google Scholar
Bevan, JS, Asa, SL, Rossi, ML, Esiri, MM, Adams, CBT, Burke, CW. Intrasellar gangliocytoma containing gastrin and growth hormone-releasing hormone associated with a growth hormone-secreting pituitary adenoma. Clin Endocrinol (Oxf) 1989;30:213224.Google Scholar
Li, JY, Racadot, O, Kujas, M, Kouadri, M, Peillon, F, Racadot, J. Immunocytochemistry of four mixed pituitary adenomas and intrasellar gangliocytomas associated with different clinical syndromes: acromegaly, amenorrhea-galactorrhea, Cushing’s disease and isolated tumoral syndrome. Acta Neuropathol (Berl) 1989;77:320328.Google Scholar
Slowik, F, Fazekas, I, Bálint, K, et al. Intrasellar hamartoma associated with pituitary adenoma. Acta Neuropathol (Berl) 1990;80:328333.Google Scholar
Matsuno, A, Nagashima, T. Prolactin-secreting gangliocytoma. J Neurosurg 2001;95:167168.Google Scholar
Serri, O, Berthelet, F, Belair, M, Vallette, S, Asa, SL. An unusual association of a sellar gangliocytoma with a prolactinoma. Pituitary 2008;11:8587.Google Scholar
Judge, DM, Kulin, HE, Page, R, Santen, R, Trapukdi, S. Hypothalamic hamartoma. A source of luteinizing-hormone-releasing factor in precoucious puberty. N Engl J Med 1977;296:710.Google Scholar
Hochman, HI, Judge, DM, Reichlin, S. Precocious puberty and hypothalamic hamartoma. Pediatrics 1981;67:236244.Google Scholar
Culler, FL, James, HE, Simon, ML, Jones, KL. Identification of gonadotropin-releasing hormone in neurons of a hypothalamic hamartoma in a boy with precocious puberty. Neurosurgery 1985;17:408417.Google Scholar
Nishio, S, Fujiwara, S, Aiko, Y, Takeshita, I, Fukui, M. Hypothalamic hamartoma. Report of two cases. J Neurosurg 1989;70:640645.Google Scholar
Yamada, S, Stefaneanu, L, Kovacs, K, Aiba, T, Shishiba, Y, Hara, M. Intrasellar gangliocytoma with multiple immunoreactivities. Endocr Pathol 1990;1:5863.Google Scholar
Asa, SL, Bilbao, JM, Kovacs, K, Linfoot, JA. Hypothalamic neuronal hamartoma associated with pituitary growth hormone cell adenoma and acromegaly. Acta Neuropathol (Berl) 1980;52:231234.Google Scholar
Horvath, E, Kovacs, K, Tran, A, Scheithauer, BW. Ganglion cells in the posterior pituitary: result of ectopia or transdifferentiation? Acta Neuropathol 2000;100:106110.Google Scholar
Geddes, JF, Jansen, GH, Robinson, SF, et al. “Gangliocytomas” of the pituitary: a heterogeneous group of lesions with differing histogenesis. Am J Surg Pathol 2000;24:607613.Google Scholar
Romanelli, P, Muacevic, A, Striano, S. Radiosurgery for hypothalamic hamartomas. Neurosurg Focus 2008;24:E9.Google Scholar
Hassoun, J, Gambarelli, D, Grisoli, F, et al. Central neurocytoma. An electron-microscopic study of two cases. Acta Neuropathol 1982;56:151156.Google Scholar
Yang, GF, Wu, SY, Zhang, LJ, Lu, GM, Tian, W, Shah, K. Imaging findings of extraventricular neurocytoma: report of 3 cases and review of the literature. AJNR Am J Neuroradiol 2009;30:581585.Google Scholar
Maguire, JA, Bilbao, JM, Kovacs, K, Resch, L. Hypothalamic neurocytoma with vasopressin immunoreactivity: immunohistochemical and ultrastructural observations. Endocr Pathol 1992;3:99104.Google Scholar
Araki, Y, Sakai, N, Andoh, T, Yoshimura, S, Yamada, H. Central neurocytoma presenting with gigantism: case report. Surg Neurol 1992;38:141145.Google Scholar
Soylemezoglu, F, Scheithauer, BW, Esteve, J, Kleihues, P. Atypical central neurocytoma. J Neuropathol Exp Neurol 1997;56:551556.Google Scholar
Rades, D, Schild, SE, Fehlauer, F. Prognostic value of the MIB-1 labeling index for central neurocytomas. Neurology 2004;62:987989.Google Scholar
Myung, JK, Cho, HJ, Park, CK, et al. Clinicopathological and genetic characteristics of extraventricular neurocytomas. Neuropathology 2013;33:111121.Google Scholar
Rades, D, Fehlauer, F, Schild, SE. Treatment of atypical neurocytomas. Cancer 2004;100:814817.Google Scholar
Steel, TR, Dailey, AT, Born, D, Berger, MS, Mayberg, MR. Paragangliomas of the sellar region: report of two cases. Neurosurgery 1993;32:844847.Google Scholar
Mokry, M, Kleinert, R, Clarici, G, Obermayer-Pietsch, B. Primary paraganglioma simulating pituitary macroadenoma: a case report and review of the literature. Neuroradiology 1998;40:233237.Google Scholar
Sambaziotis, D, Kontogeorgos, G, Kovacs, K, Horvath, E, Levedis, A. Intrasellar paraganglioma presenting as nonfunctioning pituitary adenoma. Arch Pathol Lab Med 1999;123:429432.Google Scholar
Naggara, O, Varlet, P, Page, P, Oppenheim, C, Meder, JF. Suprasellar paraganglioma: a case report and review of the literature. Neuroradiology 2005;47:753757.Google Scholar
Boari, N, Losa, M, Mortini, P, Snider, S, Terreni, MR, Giovanelli, M. Intrasellar paraganglioma: a case report and review of the literature. Acta Neurochir (Wien) 2006;148:13111314.Google Scholar
Sinha, S, Sharma, MC, Sharma, BS. Malignant paraganglioma of the sellar region mimicking a pituitary macroadenoma. J Clin Neurosci 2008;15:937939.Google Scholar
Haresh, KP, Prabhakar, R, Anand Rajan, KD, Sharma, DN, Julka, PK, Rath, GK. A rare case of paraganglioma of the sella with bone metastases. Pituitary 2009;12:276279.Google Scholar
Scheithauer, BW, Parameswaran, A, Burdick, B. Intrasellar paraganglioma: report of a case in a sibship of von Hippel–Lindau disease. Neurosurgery 1996;38:395399.Google Scholar
Erlic, Z, Neumann, HP. Diagnosing patients with hereditary paraganglial tumours. Lancet Oncol 2009;10:741.Google Scholar
Dahia, PL. Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nat Rev Cancer 2014;14:108119.Google Scholar
Brat, DJ, Scheithauer, BW, Staugaitis, SM, Holtzman, RN, Morgello, S, Burger, PC. Pituicytoma: a distinctive low-grade glioma of the neurohypophysis. Am J Surg Pathol 2000;24:362368.Google Scholar
Roncaroli, F, Scheithauer, BW, Cenacchi, G, et al. ‘Spindle cell oncocytoma’ of the adenohypophysis: a tumor of folliculostellate cells? Am J Surg Pathol 2002;26:10481055.Google Scholar
Dahiya, S, Sarkar, C, Hedley-Whyte, ET, et al. Spindle cell oncocytoma of the adenohypophysis: report of two cases. Acta Neuropathol (Berl) 2005;110:9799.Google Scholar
Kloub, O, Perry, A, Tu, PH, Lipper, M, Lopes, MB. Spindle cell oncocytoma of the adenohypophysis: report of two recurrent cases. Am J Surg Pathol 2005;29:247253.Google Scholar
Vajtai, I, Sahli, R, Kappeler, A. Spindle cell oncocytoma of the adenohypophysis: report of a case with a 16-year follow-up. Pathol Res Pract 2006;202:745750.Google Scholar
Shanklin, WM. The origin, histology and senescence of tumorettes in the human neurohypophysis. Acta Anat (Basel) 1953;18:120.Google Scholar
Luse, SA, Kernohan, JW. Granular cell tumors of the stalk and posterior lobe of the pituitary gland. Cancer 1955;8:616622.Google Scholar
Kamil, Z, Sinson, S, Gucer, H, Asa, SL, Mete, O. TTF-1-expressing sellar neoplasm with ependymal rosettes and oncocytic change: mixed ependymal and oncocytic variant pituicytoma. Endocr Pathol 2013;25:436438.Google Scholar
Policarpio-Nicolas, ML, Le, BH, Mandell, JW, Lopes, MB. Granular cell tumor of the neurohypophysis: report of a case with intraoperative cytologic diagnosis. Diagn Cytopathol 2008;36:5863.Google Scholar
Vaquero, J, Leunda, G, Cabezudo, JM, Salazar, AR, de Miguel, J. Granular pituicytomas of the pituitary stalk. Acta Neurochir 1981;59:209215.Google Scholar
Tomita, T, Kuziez, M, Watanabe, I. Double tumors of the anterior and posterior pituitary gland. Acta Neuropathol (Berl) 1981;54:161164.Google Scholar
Tuch, BE, Carter, JN, Armellin, GM, Newland, RC. The association of a tumour of the posterior pituitary gland with multiple endocrine neoplasia type I. Aust NZ J Med 1982;12:179181.Google Scholar
Iglesias, A, Arias, M, Brasa, J, Paramo, C, Conde, C, Fernandez, R. MR imaging findings in granular cell tumor of the neurohypophysis: a difficult preoperative diagnosis. Eur Radiol 2000;10:18711873.Google Scholar
Borota, OC, Scheithauer, BW, Fougner, SL, Hald, JK, Ramm-Pettersen, J, Bollerslev, J. Spindle cell oncocytoma of the adenohypophysis: report of a case with marked cellular atypia and recurrence despite adjuvant treatment. Clin Neuropathol 2009;28:9195.Google Scholar
Coire, CI, Horvath, E, Smyth, HS, Kovacs, K. Rapidly recurring folliculostellate cell tumor of the adenohypophysis with the morphology of a spindle cell oncocytoma: case report with electron microscopic studies. Clin Neuropathol 2009;28:303308.Google Scholar
Ulrich, J, Heitz, PhU, Fischer, T, Obrist, E, Gullotta, F. Granular cell tumors: evidence for heterogeneous tumor cell differentiation. An immunocytochemical study. Virchows Arch B Cell Pathol Incl Mol Pathol 1987;53:5257.Google Scholar
Rodriguez, FJ, Scheithauer, BW, Roncaroli, F, et al. Galectin-3 expression is ubiquitous in tumors of the sellar region, nervous system, and mimics: an immunohistochemical and RT-PCR study. Am J Surg Pathol 2008;32:13441352.Google Scholar
Nishioka, H, Ii, K, Llena, JF, Hirano, A. Immunohistochemical study of granular cell tumors of the neurohypophysis. Virchows Arch B Cell Pathol Incl Mol Pathol 1991;60:413417.Google Scholar
Landolt, AM. Granular cell tumors of the neurohypophysis. Acta Neurochir Suppl 1975;22:120128.Google Scholar
Rossi, ML, Bevan, JS, Esiri, MM, Hughes, JT, Adams, CBT. Pituicytoma (pilocytic astrocytoma). J Neurosurg 1987;67:768772.Google Scholar
Winer, JB, Lidov, H, Scaravilli, F. An ependymoma involving the pituitary fossa. J Neurol Neurosurg Psychiatry 1989;52:14431444.Google Scholar
Scheithauer, BW, Swearingen, B, Whyte, ET, Auluck, PK, Stemmer-Rachamimov, AO. Ependymoma of the sella turcica: a variant of pituicytoma. Hum Pathol 2009;40:435440.Google Scholar
Huang, C-I, Chiou, W-H, Ho, DM. Oligodendroglioma occurring after radiation therapy for pituitary adenoma. J Neurol Neurosurg Psychiatry 1987;50:16191624.Google Scholar
Wong, JYC, Uhl, V, Wara, WM, Sheline, GE. Optic gliomas. a reanalysis of the University of California, San Francisco experience. Cancer 1987;60:18471855.Google Scholar
Rush, JA, Younge, BR, Campbell, RJ, MacCarty, CS. Optic glioma. Long-term follow-up of 85 histopathologically verified cases. Ophthalmology 1982;89:12131219.Google Scholar
Alvord, EC Jr., Lofton, S. Gliomas of the optic nerve or chiasm. Outcome by patients’ age, tumor site, and treatment. J Neurosurg 1988;68:8598.Google Scholar
Riccardi, VM. Neurofibromatosis. In Gomez, MR, ed. Neurocutaneous Syndromes: A Practical Approach. Boston: Butterworths, 1987:1129.Google Scholar
Weinstein, JM, Backonja, M, Houston, LW, et al. Optic glioma associated with Beckwith–Wiedemann syndrome. Pediatr Neurol 1986;2:308310.Google Scholar
Liwnicz, BH, Berger, TS, Liwnicz, RG, Aron, BS. Radiation-associated gliomas: a report of four cases and analysis of postradiation tumors of the central nervous system. Neurosurgery 1985;17:436445.Google Scholar
Hufnagel, TJ, Kim, JH, Lesser, R, et al. Malignant glioma of the optic chiasm eight years after radiotherapy for prolactinoma. Arch Ophthalmol 1988;106:17011705.Google Scholar
Dierssen, G, Figols, J, Trigueros, F, Alvarez, G. Gliomas astrocitarios asociados a radioterapia previa. Arch Neurobiol 1987;50:303308.Google Scholar
Marus, G, Levin, CV, Rutherfoord, GS. Malignant glioma following radiotherapy for unrelated primary tumors. Cancer 1986;58:886894.Google Scholar
Okamoto, S, Handa, H, Yamashita, J, Tokuriki, Y, Abe, M. Post-irradiation brain tumors. Neurol Med Chir 1985;25:528533.Google Scholar
Piatt, JH, Blue, JM, Schold, SC, Burger, PC. Glioblastoma multiforme after radiotherapy for acromegaly. Neurosurgery 1983;13:8589.Google Scholar
Zampieri, P, Zorat, PL, Mingrino, S, Soattin, GB. Radiation-associated cerebral gliomas. A report of two cases and review of the literature. J Neursurg Sci 1989;33:271279.Google Scholar
Kitanaka, C, Shitara, N, Nakagomi, T, et al. Postradiation astrocytoma. Report of two cases. J Neurosurg 1989;70:469474.Google Scholar
Ushio, Y, Arita, N, Yoshimine, T, Nagatani, M, Mogami, H. Glioblastoma after radiotherapy for craniopharyngioma: case report. Neurosurgery 1987;21:3338.Google Scholar
Maat-Schieman, MLC, Bots, GTAM, Thomeer, RTWM, Vielvoye, GJ. Malignant astrocytoma following radiotherapy for craniopharyngioma. Br J Radiol 1985;58:480482.Google Scholar
Okamoto, S, Handa, H, Yamashita, J, Tokuriki, Y, Abe, M. Post-irradiation brain tumors. Neurol Med Chir 1985;25:528533.Google Scholar
Tibbetts, KM, Emnett, RJ, Gao, F, Perry, A, Gutmann, DH, Leonard, JR. Histopathologic predictors of pilocytic astrocytoma event-free survival. Acta Neuropathol 2009;117:657665.Google Scholar
Horbinski, C, Hamilton, RL, Lovell, C, Burnham, J, Pollack, IF. Impact of morphology, MIB-1, p53 and MGMT on outcome in pilocytic astrocytomas. Brain Pathol 2010;20:581583.Google Scholar
Rodriguez, FJ, Scheithauer, BW, Burger, PC, Jenkins, S, Giannini, C. Anaplasia in pilocytic astrocytoma predicts aggressive behavior. Am J Surg Pathol 2010;34:147160.Google Scholar
Pfister, S, Janzarik, WG, Remke, M, et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 2008;118:17391749.Google Scholar
Jones, DT, Kocialkowski, S, Liu, L, et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 2008;68:86738677.Google Scholar
Jones, DT, Kocialkowski, S, Liu, L, Pearson, DM, Ichimura, K, Collins, VP. Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene 2009;28:21192123.Google Scholar
Janzarik, WG, Kratz, CP, Loges, NT, et al. Further evidence for a somatic KRAS mutation in a pilocytic astrocytoma. Neuropediatrics 2007;38:6163.Google Scholar
Tchoghandjian, A, Fernandez, C, Colin, C, et al. Pilocytic astrocytoma of the optic pathway: a tumour deriving from radial glia cells with a specific gene signature. Brain 2009;132:15231535.Google Scholar
Rohringer, M, Sutherland, GR, Louw, DF, Sima, AAF. Incidence and clinicopathological features of meningioma. J Neurosurg 1989;71:665672.Google Scholar
Sridhar, K, Ramamurthi, B. Intracranial meningioma subsequent to radiation for a pituitary tumor: case report. Neurosurgery 1989;25:643645.Google Scholar
Kasantikul, V, Shuangshoti, S, Phonprasert, C. Intrasellar meningioma after radiotherapy for prolactinoma. J Med Assoc Thai 1988;71:524527.Google Scholar
Spallone, A. Meningioma as a sequel of radiotherapy for pituitary adenoma. Neurochirurgia 1982;25:6872.Google Scholar
Yeakley, JW, Kulkarni, MV, McArdle, CB, Haar, FL, Tang, RA. High-resolution MR imaging of juxtasellar meningiomas with CT and angiographic correlation. AJNR Am J Neuroradiol 1988;9:279285.Google Scholar
Michael, AS, Paige, ML. MR imaging of intrasellar meningiomas simulating pituitary adenomas. J Comput Assist Tomogr 1988;12:944946.Google Scholar
Slavin, MJ, Weintraub, J. Suprasellar meningioma with intrasellar extension simulating pituitary adenoma. Arch Ophthalmol 1987;105:14881489.Google Scholar
Halper, J, Colvard, DS, Scheithauer, BW, et al. Estrogen and progesterone receptors in meningiomas: comparison of nuclear binding, dextran-coated charcoal, and immunoperoxidase staining assays. Neurosurgery 1989;25:546553.Google Scholar
Probst, Ch. Possibilities and limitations of microsurgery in patients with meningiomas of the sellar region. Acta Neurochir 1987;84:99102.Google Scholar
Ishige, N, Ito, C, Saeki, N, Oka, N. Neurinoma with intrasellar extension: a case report. Neurol Surg 1985;13:7984.Google Scholar
Wilberger, JE Jr. Primary intrasellar schwannoma: case report. Surg Neurol 1989;32:156158.Google Scholar
Perone, TP, Robinson, B, Holmes, SM. Intrasellar schwannoma: case report. Neurosurgery 1984;14:7173.Google Scholar
Maartens, NF, Ellegala, DB, Vance, ML, Lopes, MB, Laws, ER Jr. Intrasellar schwannomas: report of two cases. Neurosurgery 2003;52:12001205.Google Scholar
Honegger, J, Koerbel, A, Psaras, T, Petrick, M, Mueller, K. Primary intrasellar schwannoma: clinical, aetiopathological and surgical considerations. Br J Neurosurg 2005;19:432438.Google Scholar
Perez, MT, Farkas, J, Padron, S, Changus, JE, Webster, EL. Intrasellar and parasellar cellular schwannoma. Ann Diagn Pathol 2004;8:142150.Google Scholar
Pernicone, PJ, Scheithauer, B, Sebo, TJ, et al. Pituitary carcinoma: a clinicopathologic study of 15 cases. Cancer 1997;79:804812.Google Scholar
Petterson, T, MacFarlane, IA, MacKenzie, JM, Shaw, MDM. Prolactin secreting pituitary carcinoma. J Neurol Neurosurg Psychiatry 1992;55:12051206.Google Scholar
Walker, JD, Grossman, A, Anderson, JV, et al. Malignant prolactinoma with extracranial metastases: a report of three cases. Clin Endocrinol (Oxf) 1993;38:411419.Google Scholar
Saeger, W, Lüdecke, DK. Pituitary carcinomas. Endocr Pathol 1996;7:2135.Google Scholar
Brown, RL, Muzzafar, T, Wollman, R, Weiss, RE. A pituitary carcinoma secreting TSH and prolactin: a non-secreting adenoma gone awry. Eur J Endocrinol 2006;154:639643.Google Scholar
Guastamacchia, E, Triggiani, V, Tafaro, E, et al. Evolution of a prolactin-secreting pituitary microadenoma into a fatal carcinoma: a case report. Minerva Endocrinol 2007;32:231236.Google Scholar
Frost, AR, Tenner, S, Tenner, M, Rollhauser, C, Tabbara, SO. ACTH-producing pituitary carcinoma presenting as the cauda equina syndrome. Arch Pathol Lab Med 1995;119:9396.Google Scholar
Kouhara, H, Tatekawa, T, Koga, M, et al. Intracranial and intraspinal dissemination of an ACTH-secreting pituitary tumor. Endocrinol Jpn 1992;39:177184.Google Scholar
Pinchot, SN, Sippel, R, Chen, H. ACTH-producing carcinoma of the pituitary with refractory Cushing’s disease and hepatic metastases: a case report and review of the literature. World J Surg Oncol 2009;7:39.Google Scholar
Zahedi, A, Booth, GL, Smyth, HS, et al. Distinct clonal composition of primary and metastatic adrencorticotrophic hormone-producing pituitary carcinoma. Clin Endocrinol (Oxf) 2001;55:549556.Google Scholar
Stewart, PM, Carey, MP, Graham, CT, Wright, AD, London, DR. Growth hormone secreting pituitary carcinoma: a case report and literature review. Clin Endocrinol (Oxf) 1992;37:189195.Google Scholar
Mixson, AJ, Friedman, TC, Katz, DA, et al. Thyrotropin-secreting pituitary carcinoma. J Clin Endocrinol Metab 1993;76:529533.Google Scholar
Luzi, P, Miracco, C, Lio, R, et al. Endocrine inactive pituitary carcinoma metastasizing to cervical lymph nodes: a case report. Hum Pathol 1987;18:9092.Google Scholar
Kuroki, M, Tanaka, r, Yokoyama, M, Shimbo, Y, Ikuta, F. Subarachnoid dissemination of a pituitary adenoma. Surg Neurol 1987;28:7176.Google Scholar
Roncaroli, F, Scheithauer, BW, Horvath, E, et al. Silent subtype 3 carcinoma of the pituitary: a case report. Neuropathol Appl Neurobiol 2010;36:9094.Google Scholar
Guzel, A, Tatli, M, Senturk, S, Guzel, E, Cayli, SR, Sav, A. Pituitary carcinoma presenting with multiple metastases: case report. J Child Neurol 2008;23:14671471.Google Scholar
Vidal, S, Kovacs, K, Horvath, E, Scheithauer, BW, Kuroki, T, Lloyd, RV. Microvessel density in pituitary adenomas and carcinomas. Virchows Arch 2001;438:595602.Google Scholar
Thapar, K, Scheithauer, BW, Kovacs, K, Pernicone, PJ, Laws, ER, Jr. p53 expression in pituitary adenomas and carcinomas: correlation with invasiveness and tumor growth fractions. Neurosurgery 1996;38:765771.Google Scholar
Jin, L, Qian, X, Kulig, E, et al. Transforming growth factor-beta, transforming growth factor-beta receptor II, and p27Kip1 expression in nontumorous and neoplastic human pituitaries. Am J Pathol 1997;151:509519.Google Scholar
Korbonits, M, Chahal, HS, Kaltsas, G, et al. Expression of phosphorylated p27(Kip1) protein and Jun activation domain-binding protein 1 in human pituitary tumors. J Clin Endocrinol Metab 2002;87:26352643.Google Scholar
Nosé-Alberti, V, Mesquita, MI, Martin, LC, Kayath, MJ. Adrenocorticotropin-producing pituitary carcinoma with expression of c-erbB-2 and high PCNA index: a comparative study with pituitary adenomas and normal pituitary tissues. Endocr Pathol 1998;9:5362.Google Scholar
Pei, L, Melmed, S, Scheithauer, B, Kovacs, K, Prager, D. H-RAS mutations in human pituitary carcinoma metastases. J Clin Endocrinol Metab 1994;78:842846.Google Scholar
Cai, WY, Alexander, JM, Hedley-Whyte, ET, et al. RAS mutations in human prolactinomas and pituitary carcinomas. J Clin Endocrinol Metab 1994;78:8993.Google Scholar
Hinton, DR, Hahn, JA, Weiss, MH, Couldwell, WT. Loss of Rb expression in an ACTH-secreting pituitary carcinoma. Cancer Lett 1998;126:209214.Google Scholar
Tanizaki, Y, Jin, L, Scheithauer, BW, Kovacs, K, Roncaroli, F, Lloyd, RV. P53 gene mutations in pituitary carcinomas. Endocr Pathol 2007;18:217222.Google Scholar
Gaffey, TA, Scheithauer, BW, Lloyd, RV, et al. Corticotroph carcinoma of the pituitary: a clinicopathological study. Report of four cases. J Neurosurg 2002;96:352360.Google Scholar
Lim, S, Shahinian, H, Maya, MM, Yong, W, Heaney, AP. Temozolomide: a novel treatment for pituitary carcinoma. Lancet Oncol 2006;7:518520.Google Scholar
Fadul, CE, Kominsky, AL, Meyer, LP, et al. Long-term response of pituitary carcinoma to temozolomide. Report of two cases. J Neurosurg 2006;105:621626.Google Scholar
Hagen, C, Schroeder, HD, Hansen, S, Hagen, C, Andersen, M. Temozolomide treatment of a pituitary carcinoma and two pituitary macroadenomas resistant to conventional therapy. Eur J Endocrinol 2009;161:631637.Google Scholar
Annamalai, AK, Dean, AF, Kandasamy, N, et al. Temozolomide responsiveness in aggressive corticotroph tumours: a case report and review of the literature. Pituitary 2012;15:276287.Google Scholar
Kovacs, K, Scheithauer, BW, Lombardero, M, et al. MGMT immunoexpression predicts responsiveness of pituitary tumors to temozolomide therapy. Acta Neuropathol 2008;115:261262.Google Scholar
McCormack, A, Kaplan, W, Gill, AJ, et al. MGMT expression and pituitary tumours: relationship to tumour biology. Pituitary 2013;16:208219.Google Scholar
Bush, ZM, Longtine, JA, Cunningham, T, et al. Temozolomide treatment for aggressive pituitary tumors: correlation of clinical outcome with O-methylguanine methyltransferase (MGMT) promoter methylation and expression. J Clin Endocrinol Metab 2010;95:E280E290.Google Scholar
Frangou, EM, Tynan, JR, Robinson, CA, Ogieglo, LM, Vitali, AM. Metastatic craniopharyngioma: case report and literature review. Childs Nerv Syst 2009;25:11431147.Google Scholar
Gupta, K, Kuhn, MJ, Shevlin, DW, Wacaser, LE. Metastatic craniopharyngioma. AJNR Am J Neuroradiol 1999;20:10591060.Google Scholar
Grover, WD, Rorke, LB. Invasive craniopharyngioma. J Neurol Neurosurg Psychiatry 1968;31:580582.Google Scholar
Virik, K, Turner, J, Garrick, R, Sheehy, JP. Malignant transformation of craniopharyngioma. J Clin Neurosci 1999;6:527530.Google Scholar
Rodriguez, FJ, Scheithauer, BW, Tsunoda, S, Kovacs, K, Vidal, S, Piepgras, DG. The spectrum of malignancy in craniopharyngioma. Am J Surg Pathol 2007;31:10201028.Google Scholar
Mariani, L, Schaller, B, Weis, J, Ozdoba, C, Seiler, RW. Esthesioneuroblastoma of the pituitary gland: a clinicopathological entity? Case report and review of the literature. J Neurosurg 2004;101:10491052.Google Scholar
Sajko, T, Rumboldt, Z, Talan-Hranilovic, J, Radic, I, Gnjidic, Z. Primary sellar esthesioneuroblastoma. Acta Neurochir (Wien) 2005;147:447448.Google Scholar
Lin, JH, Tsai, DH, Chiang, YH. A primary sellar esthesioneuroblastomas with unusual presentations: a case report and reviews of literatures. Pituitary 2009;12:7075.Google Scholar
Oyama, K, Yamada, S, Usui, M, Kovacs, K. Sellar neuroblastoma mimicking pituitary adenoma. Pituitary 2005;8:109114.Google Scholar
Unger, F, Haselsberger, K, Walch, C, Stammberger, H, Papaefthymiou, G. Combined endoscopic surgery and radiosurgery as treatment modality for olfactory neuroblastoma (esthesioneuroblastoma). Acta Neurochir (Wien) 2005;147:595601.Google Scholar
Masse, SR, Wolk, RW, Conklin, RH. Peripituitary gland involvement in acute leukemia in adults. Arch Pathol 1973;96:141142.Google Scholar
Mancardi, GL, Mandybur, TI. Solitary intracranial plasmacytoma. Cancer 1983;51:22262233.Google Scholar
Jacquet, G, Vuillier, J, Viennet, A, Godard, J, Steimle, R. [Solitary plasmacytoma simulating pituitary adenoma.] Neurochirurgie 1991;37:6771.Google Scholar
Singh, VP, Mahapatra, AK, Dinde, AK. Sellar-suprasellar primary malignant lymphoma: case report. Indian J Cancer 1993;30:8891.Google Scholar
Samaratunga, H, Perry-Keene, D, Apel, RL. Primary lymphoma of the pituitary gland: a neoplasm of acquired MALT? Endocr Pathol 1997;8:335341.Google Scholar
Sanchez, JA, Rahman, S, Strauss, RA, Kaye, GI. Multiple myeloma masquerading as a pituitary tumor. Arch Pathol Lab Med 1977;101:5556.Google Scholar
Nemoto, K, Ohnishi, Y, Tsukada, T. Chronic lymphocytic leukemia showing pituitary tumor with massive leukemic cell infiltration, and special reference to clinicopathological findings of CLL. Acta Pathol Jpn 1978;28:797805.Google Scholar
Urbanski, SJ, Bilbao, JM, Horvath, E, Kovacs, K, So, W, Ward, JV. Intrasellar solitary plasmacytoma terminating in multiple myeloma: a report of a case including electron microscopical study. Surg Neurol 1980;14:233236.Google Scholar
Vaquero, J, Areitio, E, Martinez, R. Intracranial parasellar plasmacytoma. Arch Neurol 1982;39:738.Google Scholar
Bitterman, P, Ariza, A, Black, RA, Allen, WEI, Lee, SH. Multiple myeloma mimicking pituitary adenoma. Compt Radiol 1986;10:201205.Google Scholar
Maiuri, F. Primary cerebral lymphoma presenting as steroid-responsive chiasmal syndrome. Br J Neurosurg 1987;1:499502.Google Scholar
Sheehan, T, Cuthbert, RJG, Parker, AC. Central nervous system involvement in haematological malignancies. Clin Lab Haematol 1989;11:331338.Google Scholar
McLaughlin, DM, Gray, WJ, Jones, FG, et al. Plasmacytoma: an unusual cause of a pituitary mass lesion. A case report and a review of the literature. Pituitary 2004;7:179181.Google Scholar
Sinnott, BP, Hatipoglu, B, Sarne, DH. Intrasellar plasmacytoma presenting as a non-functional invasive pituitary macro-adenoma: case report & literature review. Pituitary 2006;9:6572.Google Scholar
Yaman, E, Benekli, M, Coskun, U, et al. Intrasellar plasmacytoma: an unusual presentation of multiple myeloma. Acta Neurochir (Wien) 2008;150:921924.Google Scholar
Roggli, VL, Suzuki, M, Armstrong, D, McGavran, MH. Pituitary microadenoma and primarylymphoma of brain associated with hypopthalamic invasion. Am J Clin Pathol 1979;71:724727.Google Scholar
Warnke, R, Dorfman, R, Weiss, L, Cleary, M, Chan, J. Atlas of Tumor Pathology, 3rd Series, Fascicle 14: Tumors of the Lymphoid System. Washington, DC: Armed Forces Institute of Pathology, 1995.Google Scholar
Jaffe, ES, Harris, NL, Stein, H, Vardiman, JW. Pathology and Genetics of Tumours of Hematopoietic and Lymphoid Tissues. Lyon: International Agency for Research on Cancer, 2001.Google Scholar
Favara, BE, Feller, AC, Pauli, M, et al. Contemporary classification of histiocytic disorders. The WHO Committee On Histiocytic/Reticulum Cell Proliferations. Reclassification Working Group of the Histiocyte Society. Med Pediatr Oncol 1997;29:157166.Google Scholar
Willman, CL, Busque, L, Griffith, BB, et al. Langerhans-cell histiocytosis (histiocytosis X): a clonal proliferative disease. N Engl J Med 1994;331:154160.Google Scholar
Yousem, SA, Colby, TV, Chen, YY, Chen, WG, Weiss, LM. Pulmonary Langerhans cell histiocytosis: molecular analysis of clonality. Am J Surg Pathol 2001;25:630636.Google Scholar
Kepes, JJ, Kepes, M. Predominantly cerebral forms of histiocytosis-X. A reappraisal of “Gagel’s hypothalamic granuloma,” “granuloma infiltrans of the hypothalamus” and “Ayala’s disease” with a report of four cases. Acta Neuropathol (Berl) 1969;14:7798.Google Scholar
Ober, KP, Alexander, E Jr., Challa, VR, Ferree, C, Elster, A. Histiocytosis X of the hypothalamus. Neurosurgery 1989;24:9395.Google Scholar
Nishio, S, Mizuno, J, Barrow, DL, Takei, Y, Tindall, GT. Isolated histiocytosis X of the pituitary gland: case report. Neurosurgery 1987;21:718721.Google Scholar
Kovacs, K, Bilbao, JM, Fornasier, VL, Horvath, E. Pituitary pathology in Erdheim–Chester disease. Endocr Pathol 2004;15:159166.Google Scholar
Mahnel, R, Tan, KH, Fahlbusch, R, et al. Problems in differential diagnosis of non Langerhans cell histiocytosis with pituitary involvement: case report and review of literature. Endocr Pathol 2002;13:361368.Google Scholar
Vadakekalem, J, Stamos, T, Shenker, Y. Sometimes the hooves do belong to zebras! An unusual case of hypopituitarism. J Clin Endocrinol Metab 1995;80:1720.Google Scholar
Oweity, T, Scheithauer, BW, Ching, HS, Lei, C, Wong, KP. Multiple system Erdheim–Chester disease with massive hypothalamic–sellar involvement and hypopituitarism. J Neurosurg 2002;96:344351.Google Scholar
Graif, M, Pennock, JM. MR imaging of histiocytosis X in the central nervous system. AJNR Am J Neuroradiol 1986;7:2123.Google Scholar
Peyster, RG, Hoover, ED. CT of the abnormal pituitary stalk. AJNR Am J Neuroradiol 1984;5:4952.Google Scholar
Tien, RD, Newton, TH, McDermott, MW, Dilon, WP, Kucharczyk, J. Thickened pituitary stalk on MR images in patients with diabetes insipidus and Langerhans cell histiocytosis. AJNR Am J Neuroradiol 1990;11:703708.Google Scholar
Schmitt, S, Wichmann, W, Martin e, , Zachmann, M, Schoenle, EJ. Primary stalk thickening with dibetes insipidus preceding typical manifestations of Langerhans cell histiocytosis in children. Eur J Pediatr 1993;152:399401.Google Scholar
Ornvold, K, Ralfkiaer, E, Carstensen, H. Immunohistochemical study of the abnormal cells in Langerhans cell histiocytosis (Histiocytosis X). Virchows Arch A Pathol Anat Histopathol 1990;416:403410.Google Scholar
Rueda-Pedraza, ME, Heifetz, SA, Sesterhenn, IA, Clark, GB. Primary intracranial germ cell tumors in the first two decades of life. A clinical, light-microscopic, and immunohistochemical analysis of 54 cases. Perspect Pediatr Pathol 1987;10:160207.Google Scholar
Jennings, MT, Gelman, R, Hochberg, F. Intracranial germ-cell tumors: natural history and pathogenesis. J Neurosurg 1985;63:155167.Google Scholar
Sakai, N, Yamada, H, Andoh, T, Hirata, T, Shimizu, K, Shinoda, J. Primary intracranial germ-cell tumors. A retrospective analysis with special reference to long-term results of treatment and the behavior of rare types of tumors. Acta Oncol 1988;27:4350.Google Scholar
Kageyama, N, Kobayashi, T, Kida, Y, Yoshida, J, Kato, K. Intracranial germinal tumors. Prog Exp Tumor Res 1987;30:255267.Google Scholar
Furukawa, F, Haebara, H, Hamashima, Y. Primary intracranial choriocarcinoma arising from the pituitary fossa. Report of an autopsy case with literature review. Acta Pathol Jpn 1986;36:773781.Google Scholar
Poon, W, Ng, HK, Wong, K, South, JR. Primary intrasellar germinoma presenting with cavernous sinus syndrome. Surg Neurol 1988;30:402405.Google Scholar
Ho, KL. Ecchordosis physaliphora and chordoma: a comparative ultrastructural study. Clin Neuropathol 1985;4:7786.Google Scholar
Sundaresan, N. Chordomas. Clin Orthop Rel Res 1986;204:135142.Google Scholar
Mathews, W, Wilson, CB. Ectopic intrasellar chordoma. J Neurosurg 1974;39:260263.Google Scholar
Wold, LE, Laws, ER. Cranial chordomas in children and young adults. J Neurosurg 1983;59:10431047.Google Scholar
Heffelfinger, MJ, Dahlin, DC, MacCarty, CS, Beabout, JW. Chordomas and cartilaginous tumors at the skull base. Cancer 1973;32:410420.Google Scholar
Vujovic, S, Henderson, S, Presneau, N, et al. Brachyury, a crucial regulator of notochordal development, is a novel biomarker for chordomas. J Pathol 2006;209:157165.Google Scholar
Castel, JP, Delorge-Kerdiles, C, Rivel, J. Angiome caverneux du chiasma optique. Neurochirurgie 1989;35:252256.Google Scholar
Sansone, ME, Liwnicz, BH, Mandybur, TI. Giant pituitary cavernous hemangioma. Case report. J Neurosurg 1980;53:124126.Google Scholar
Chang, WH, Khosla, VK, Radotra, BD, Kak, VK. Large cavernous hemangioma of the pituitary fossa: a case report. Br J Neurosurg 1991;5:627629.Google Scholar
Asa, SL, Kovacs, K, Horvath, E, Ezrin, C, Weiss, MH. Sellar glomangioma. Ultrastruct Pathol 1984;7:4954.Google Scholar
Dan, NG, Smith, DE. Pituitary hemangioblastoma in a patient with von Hippel–Lindau disease. J Neurosurg 1975;42:232235.Google Scholar
Goto, T, Nishi, T, Kunitoku, N, et al. Suprasellar hemangioblastoma in a patient with von Hippel–Lindau disease confirmed by germline mutation study: case report and review of the literature. Surg Neurol 2001;56:2226.Google Scholar
Cassarino, DS, Auerbach, A, Rushing, EJ. Widely invasive solitary fibrous tumor of the sphenoid sinus, cavernous sinus, and pituitary fossa. Ann Diagn Pathol 2003;7:169173.Google Scholar
Furlanetto, TW, Pinheiro, CF, Oppitz, PP, de Alencastro, LC, Asa, SL. Solitary fibrous tumor of the sella mimicking pituitary adenoma: an uncommon tumor in a rare location-a case report. Endocr Pathol 2009;20:5661.Google Scholar
Wu, KK, Ross, PM, Mitchell, DC, Sprague, HH. Evolution of a case of multicentric giant cell tumor over a 23-year period. Clin Orthop Rel Res 1986;213:279288.Google Scholar
Wolfe, JTI, Scheithauer, BW, Dahlin, DC. Giant-cell tumor of the sphenoid bone. Review of 10 cases. J Neurosurg 1983;59:322327.Google Scholar
Viswanathan, R, Jegathraman, AR, Ganapathy, K, Bharati, AS, Govindan, R. Parasellar chondromyxofibroma with ipsilateral total internal carotid artery occlusion. Surg Neurol 1987;28:141144.Google Scholar
Angiari, P, TTorcia, E, Botticelli, RA, villani, M, Merli, GA, Crisi, G. Ossifying parasellar chondroma. Case report. J Neursurg Sci 1987;31:5963.Google Scholar
Dutton, J. Intracranial solitary chondroma. Case report. J Neurosurg 1978;49:460463.Google Scholar
Inoue, T, Takahashi, N, Murakami, K, Nishimura, S, Kaimori, M, Nishijima, M. Osteochondroma of the sella turcica presenting with intratumoral hemorrhage. Neurol Med Chir (Tokyo) 2009;49:3741.Google Scholar
Miki, K, Kawamoto, K, Kawamura, Y, Matsumura, H, Asada, Y, Hamada, A. A rare case of Maffucci’s syndrome combined with tuberculum sellae enchondroma, pituitary adenoma and thyroid adenoma. Acta Neurochir 1987;87:7985.Google Scholar
Sindou, M, Daher, A, Vighetto, A, Goutelle, A. Chondrosarcome parasellaire: rapport d’un cas opéré par voie ptériono-temporale et revue de la littérature. Neurochirurgie 1989;35:186190.Google Scholar
Bots, GTAM, Tijssen, CC, Wijnalda, D, Teepen, JLJM. Alveolar soft part sarcoma of the pituitary gland with secondary involvement of the right cerebral ventricle. Br J Neurosurg 1988;2:101107.Google Scholar
Gerlach, H, Jänisch, W. Intrakranielles Sarkom nach Bestrahlung eines Hypophysenadenoms. Zentralbl Neurochir 1979;40:131136.Google Scholar
Ahmad, K, Fayos, JV. Pituitary fibrosarcoma secondary to radiation therapy. Cancer 1978;42:107110.Google Scholar
Amine, ARC, Sugar, O. Suprasellar osteogenic sarcoma following radiation for pituitary adenoma. Case report. J Neurosurg 1976;44:8891.Google Scholar
Powell, HC, Marshall, LF, Ignelzi, RJ. Post-irradiation pituitary sarcoma. Acta Neuropathol (Berl) 1977;39:165167.Google Scholar
Tanaka, S, Nishio, S, Morioka, T, Fukui, M, Kitamura, K, Hikita, K. Radiation-induced osteosarcoma of the sphenoid bone. Neurosurgery 1989;25:640643.Google Scholar
Yamamoto, A, Hashimoto, N, Yamashita, J, Kikuchi, H. A case of radiation-induced intracranial fibrosarcoma with repeated episodes of intratumoral hemorrhage. Neurol Surg 1989;17:193196.Google Scholar
Max, MB, Deck, MDF, Rottenberg, DA. Pituitary metastasis: incidence in cancer patients and clinical differentiation from pituitary adenoma. Neurology 1981;31:9981002.Google Scholar
Roessmann, U, Kaufman, B, Friede, RL. Metastatic lesions in the sella turcica and pituitary gland. Cancer 1970;25:478480.Google Scholar
Felix, IA. Pathology of the neurohypophysis. Pathol Res Pract 1988;183:535537.Google Scholar
Branch, CL Jr., Laws, ER Jr. Metastatic tumors of the sella turcica masquerading as primary pituitary tumors. J Clin Endocrinol Metab 1987;65:469474.Google Scholar
de la Monte, SM, Hutchins, GM, Moore, GW. Endocrine organ metastases from breast carcinoma. Am J Pathol 1984;114:131136.Google Scholar
Kattah, JC, Silgals, RM, Manz, HJ, Toro, JG, Dritschilo, A, Smith, FP. Presentation and management of parasellar and suprasellar metastatic mass lesions. J Neurol Neurosurg Psychiatry 1985;48:4449.Google Scholar
Allen, EM, Kannan, SR, Powell, A. Infundibular metastasis and panhypopituitarism. J Natl Med Assoc 1989;81:325330.Google Scholar
McCormick, PC, Post, KD, Kandji, AD, Hays, AP. Metastatic carcinoma to the pituitary gland. Br J Neurosurg 1989;3:7179.Google Scholar
van Seters, AP, Bots, GTAM, Van Dulken, H, Luyendijk, W, Vielvoye, GJ. Metastasis of an occult gastric carcinoma suggesting growth of a prolactinoma during bromocriptine therapy: a case report with a review of the literature. Neurosurgery 1985;16:813817.Google Scholar
Post, KD, McCormick, PC, Hays, AP, Kankji, AD. Metastatic carcinoma to pituitary adenoma. Report of two cases. Surg Neurol 1988;30:286292.Google Scholar
Molinatti, PA, Scheithauer, BW, Randall, RV, Laws, ER Jr. Metastasis to pituitary adenoma. Arch Pathol Lab Med 1985;109:287289.Google Scholar
Zager, EL, Hedley-White, ET. Metastasis within a pituitary adenoma presenting with bilateal abducens palsies: cae report and review of the literature. Neurosurgery 1987;21:383386.Google Scholar
James, RL, Arsenis, G, Stoler, M, Nelson, C, Baran, D. Hypophyseal metastatic renal cell carcinoma and pituitary adenoma. Case report and review of the literature. Am J Med 1984;76:337340.Google Scholar
Ramsay, JA, Kovacs, K, Scheithauer, BW, Ezrin, C, Weiss, MH. Metastatic carcinoma to pituitary adenomas: a report of two cases. Exper Clin Endocrinol 1988;92:6976.Google Scholar
Santarpia, L, Gagel, RF, Sherman, SI, Sarlis, NJ, Evans, DB, Hoff, AO. Diabetes insipidus and panhypopituitarism due to intrasellar metastasis from medullary thyroid cancer. Head Neck 2009;31:419423.Google Scholar
Williams, MD, Asa, SL, Fuller, GN. Medullary thyroid carcinoma metastatic to the pituitary gland: an unusual site of metastasis. Ann Diagn Pathol 2008;12:199203.Google Scholar
Neilson, JM, Moffat, AD. Hypopituitarism caused by a melanoma of the pituitary gland. J Clin Pathol 1963;16:144149.Google Scholar
Scholtz, CL, Siu, K. Melanoma of the pituitary. Case report. J Neurosurg 1976;45:101103.Google Scholar
Copeland, DD, Sink, JD, Seigler, HF. Primary intracranial melanoma presenting as a suprasellar tumor. Neurosurgery 1980;6:542545.Google Scholar
Chappell, PM, Kelly, WM, Ercius, M. Primary sellar melanoma simulating hemorrhagic pituitary adenoma: MR and pathologic findings. AJNR Am J Neuroradiol 1990;11:10541056.Google Scholar
Aubin, MJ, Hardy, J, Comtois, R. Primary sellar haemorrhagic melanoma: case report and review of the literature. Br J Neurosurg 1997;11:8083.Google Scholar
Borek, BT, McKee, PH, Freeman, JA, Maguire, B, Brander, WL, Calonje, E. Primary malignant melanoma with rhabdoid features: a histologic and immunocytochemical study of three cases. Am J Dermatopathol 1998;20:123127.Google Scholar
Tuttenberg, J, Fink, W, Back, W, Wenz, F, Schadendorf, D, Thome, C. A rare primary sellar melanoma. Case report. J Neurosurg 2004;100:931934.Google Scholar
Rousseau, A, Bernier, M, Kujas, M, Varlet, P. Primary intracranial melanocytic tumor simulating pituitary macroadenoma: case report and review of the literature. Neurosurgery 2005;57:E369.Google Scholar
Bell, CD, Kovacs, K, Horvath, E, Smythe, H, Asa, S. Papillary carcinoma of thyroid metastatic to the pituitary gland. Arch Pathol Lab Med 2001;125:935938.Google Scholar

References

Rosai, J., Carcangiu, M.D., DeLellis, R.A.. Atlas of Tumor Pathology, 3rd Series, Fascicle 5: Tumors of the Thyroid Gland. Washington DC: Armed Forces Institute of Pathology, 1992:117.Google Scholar
Lloyd, R.V., Douglas, B.R., Young, W.F.. Atlas of Non-tumor Pathology: Endocrine Diseases, 1st Series, Fascicle 1: Thyroid Gland. Bethesda, MD: ARP Press, 2002: 91169.Google Scholar
McNicol, A.M., Lewis, P.D.. The endocrine system. In Lewis, P.D., Emeritus, S.W., eds. Systemic Pathology, 3rd edn. Edinburgh: Churchill Livingstone, 1996:131185.Google Scholar
Organ, G.M., Organ, C.H. Jr. Thyroid gland and surgery of the thyroglossal duct: exercise in applied embryology. World J Surg 2000;24:886890.Google Scholar
Murray, D.. The thyroid gland. In Kalman, K., Asa, S.L., eds. Functional Endocrine Pathology, 2nd edn. Oxford: Blackwell, 1998:295380.Google Scholar
LiVolsi, V.A.. Surgical Pathology of the Thyroid. Philadelphia PA: WB Saunders, 1990.Google Scholar
Kay, C., Abrahams, S., McClain, P.. The weight of normal thyroid glands in children. Arch Pathol 1966;82:349352.Google Scholar
Sobrinho-Simoes, M.A., Sambade, M.C., Goncalves, V.. Latent thyroid carcinoma at autopsy: a study from Oporto, Portugal. Cancer 1979;43:17021706.Google Scholar
Mochizuki, Y., Mowafy, R., Pasternack, B.. Weights of human thyroids in New York City. Health Phys 1963;9:12991301.Google Scholar
Pankow, B.G., Michalak, J., McGee, M.K.. Adult human thyroid weight. Health Phys 1985;49:10971103.Google Scholar
Hegedus, L., Karstrup, S., Rasmussen, N.. Evidence of cyclic alterations of thyroid size during the menstrual cycle in healthy women. Am J Obstet Gynecol 1986;155:142145.Google Scholar
Kendall, C.H., Sanderson, P.R., Cope, J., Talbot, I.C.. Follicular thyroid tumours: a study of laminin and type IV collagen in basement membrane and endothelium. J Clin Pathol 1985;38:11001105.Google Scholar
Isotalo, P.A., Lloyd, R.V.. Presence of birefringent crystals is useful in distinguishing thyroid from parathyroid gland tissues. Am J Surg Pathol 2002;26:813814.Google Scholar
Harach, H.R.. Solid cell nests of the thyroid. J Pathol 1988;155:191200.Google Scholar
Kabel, P.J., Voorbij, H.A., De Haan, M., van der Gaag, R.D., Drexhage, H.A.. Intrathyroidal dendritic cells. J Clin Endocrinol Metab 1988;66:199207.Google Scholar
Haimoto, H., Hosoda, S., Kato, K.. Differential distribution of immunoreactive S100-alpha and S100-beta proteins in normal nonnervous human tissues. Lab Invest 1987;57:489498.Google Scholar
LiVolsi, V.A.. Surgical Pathology of the Thyroid. Philadelphia PA:WB Saunders, 1990.Google Scholar
Pianzola, H.M., Ottino, A., Castelletto, R.H.. Solid cell nests of the thyroid. Hum Pathol 1995;26:929930.Google Scholar
Mizukami, Y., Nonomura, A., Michigishi, T., Noguchi, M., Hashimoto, T., Nakamura, S., et al. Solid cell nests of the thyroid. A histologic and immunohistochemical study. Am J Clin Pathol 1994;101:186191.Google Scholar
DeLellis, R.A., May, L., Tashjian, A.H. Jr., Wolfe, H.J.. C-cell granule heterogeneity in man. An ultrastructural immunocytochemical study. Lab Invest 1978;38:263269.Google Scholar
Martin, V., Martin, L., Viennet, G., Hergel, M., Carbillet, J.P., Fellmann, D.. Ultrastructural features of “solid cell nest” of the human thyroid gland: a study of 8 cases. Ultrastruct Pathol 2000;24:18.Google Scholar
Nosé, V., Asa, S.L., Erickson, L.A., Lopez, B.S., Tischler, A.S.. Diagnostic Pathology: Endocrine. New York: Lippincott Williams & Wilkins (Amirsys), 2012.Google Scholar
Nosé, V., Greenson, J.K., Paner, G.P., Rodriguez, F.J., Ko, C.J., Morgan, E.. Diagnostic Pathology: Familial Cancer Syndromes. New York: Lippincott Williams & Wilkins (Amirsys), 2013.Google Scholar
Green, W.I.. The physiology of the thyroid gland and its hormones. In Green, W.I., ed. The Thyroid. New York: Elsevier, 1987:146.Google Scholar
Pittman, J.A. Jr. Thyrotropin-releasing hormone. Adv Intern Med 1974;19:303325.Google Scholar
Wilber, J.F.. Thyrotropin releasing hormone: secretion and actions. Annu Rev Med 1973;24:353364.Google Scholar
Yamada, M., Radovick, S., Wondisford, F.E., Nakayama, Y., Weintraub, B.D., Wilber, J.F.. Cloning and structure of human genomic DNA and hypothalamic cDNA encoding human prepro thyrotropin-releasing hormone. Mol Endocrinol 1990;4:551556.Google Scholar
Michalkiewicz, M., Huffman, L.J., Connors, J.M., Hedge, G.A.. Alterations in thyroid blood flow induced by varying levels of iodine intake in the rat. Endocrinology. 1989;125:5460.Google Scholar
Zannini, M., Francis-Lang, H., Plachov, D., Di Lauro, R.. Pax-8, a paired domain-containing protein, binds to a sequence overlapping the recognition site of a homeodomain and activates transcription from two thyroid-specific promoters. Mol Cell Biol 1992;12:42304241.Google Scholar
Di Lauro, R., Obici, S., Condliffe, D., Ursini, V.M., Musti, A., Moscatelli, C., et al. The sequence of 967 amino acids at the carboxyl-end of rat thyroglobulin. Location and surroundings of two thyroxine-forming sites. Eur J Biochem 1985;148:711.Google Scholar
Sinclair, A.J., Lonigro, R., Civitareale, D., Ghibelli, L., Di Lauro, R.. The tissue-specific expression of the thyroglobulin gene requires interaction between thyroid-specific and ubiquitous factors. Eur J Biochem 1990;193:311318.Google Scholar
Ishii, H., Inada, M., Tanaka, K., Mashio, Y., Naito, K., Nishikawa, M., et al. Induction of outer and inner ring monodeiodinases in human thyroid gland by thyrotropin. J Clin Endocrinol Metab 1983;57:500505.Google Scholar
Laresen, P.R., Davies, T.F., Hay, I.D.. The thyroid gland. In Wilson, J.D., Foster, D.W., Kronenberg, H.M., Larsen, P.R., eds. Williams Textbook of Endocrinology, 9th edn. Philadelphia PA: WB Saunders; 1998:389515.Google Scholar
Austin, L.A., Heath, H., 3rd. Calcitonin: physiology and pathophysiology. N Engl J Med 1981;304:269278.Google Scholar

References

Nosé, V., Asa, S.L., Erickson, L.A., Lopez, B.S., Tischler, A.S.. Diagnostic Pathology: Endocrine. New York: Lippincott Williams & Wilkins (Amirsys), 2012.Google Scholar
Nosé, V., Greenson, J.K., Paner, G.P., Rodriguez, F.J., Ko, C.J., Morgan, E.. Diagnostic Pathology: Familial Cancer Syndromes. New York: Lippincott Williams & Wilkins (Amirsys), 2013.Google Scholar
Lester, S.C.. Thyroid and parathyroid glands. In Lester, S.C., ed. Manual of Surgical Pathology, 3rd edn. Philadelphia PA: Elsevier, 2010:555563.Google Scholar
Westra, W.H., Hruban, R.H., Phelps, T.H., Isacson, C.. Thyroid. In Westra, W.H., Hruban, R.H., Phelps, T.H., Isacson, C., eds. Surgical Pathology Dissection An Illustrated Guide, 2nd edn. New York: Springer, 2003:202205.Google Scholar
Cibas, E.S.. Thyroid. In Cibas, E.S., Ducatman, B., eds. Cytology, Diagnostic Principles and Clinical Correlates, 2nd edn. New York:WB Saunders, 2003:247272.Google Scholar
Cibas, E.S., Ali, S.Z.. The Bethesda system for reporting thyroid cytopathology. Thyroid 2009;19:11591165.Google Scholar
Cibas, E.S., Ali, S.Z.. The Bethesda system for reporting thyroid cytopathology. Am J Clin Pathol 2009;132:658665.Google Scholar
Crippa, S., Mazzucchelli, L., Cibas, E.S., Ali, S.Z.. The Bethesda system for reporting thyroid fine-needle aspiration specimens. Am J Clin Pathol 2010;134:343344; author reply 5.Google Scholar

References

Nosé, V., Asa, S.L., Erickson, L.A., Lopez, B.S., Tischler, A.S.. Diagnostic Pathology: Endocrine. New York: Lippincott Williams & Wilkins (Amirsys), 2012.Google Scholar
Nosé, V., Greenson, J.K., Paner, G.P., Rodriguez, F.J., Ko, C.J., Morgan, E.. Diagnostic Pathology: Familial Cancer Syndromes. New York: Lippincott Williams & Wilkins (Amirsys), 2013.Google Scholar
Rastogi, M.V., LaFranchi, S.H.. Congenital hypothyroidism. Orphanet J Rare Dis 2010;5:17.Google Scholar
McNicol, A.M., Lewis, P.D.. The endocrine system. In Lewis, P.D., Emeritus, S.W., eds. Systemic Pathology, 3rd edn. Edinburgh: Churchill Livingstone, 1996:131185.Google Scholar
Lloyd, R.V., Douglas, B.R., Young, W.F.. Atlas of Non-tumor Pathology: Endocrine Diseases, 1st Series, Fascicle 1: Thyroid Gland. Bethesda, MD: ARP Press, 2002: 91169.Google Scholar
Jain, S.N.. Lingual thyroid. Int Surg 1969;52:320325.Google Scholar
Jaques, D.A., Chambers, R.G., Oertel, J.E.. Thyroglossal tract carcinoma. A review of the literature and addition of eighteen cases. Am J Surg 1970;120:439446.Google Scholar
Sohn, N., Gumport, S.L., Blum, M.. Thyroglossal duct carcinoma. N Y State J Med 1974;74:20042005.Google Scholar
Stanley, D.G., Robinson, F.W.. Thyroid carcinoma in thyroglossal duct cysts: a case report and literature review. Am Surg 1970;36:581582.Google Scholar
LiVolsi, V.A., Perzin, K.H., Savetsky, L.. Carcinoma arising in median ectopic thyroid (including thyroglossal duct tissue). Cancer 1974;34:13031315.Google Scholar
Nussbaum, M., Buchwald, R.P., Ribner, A., Mori, K., Litwins, J.. Anaplastic carcinoma arising from median ectopic thyroid (thyroglossal duct remnant). Cancer 1981;48:27242728.Google Scholar
Hathaway, B.M.. Innocuous accessory thyroid nodules. Arch Surg 1965;90:222227.Google Scholar
Sisson, J.C., Schmidt, R.W., Beierwaltes, W.H.. Sequestered nodular goiter. N Engl J Med 1964;270:927932.Google Scholar
Assi, A., Sironi, M., Di Bella, C., Declich, P., Cozzi, L., Pareschi, R.. Parasitic nodule of the right carotid triangle. Arch Otolaryngol Head Neck Surg 1996;122:14091411.Google Scholar
Pistono, M., Occhetta, E., Sarasso, G., Piccinino, C., Bortnik, M., Aina, S., et al. [Intracardiac ectopic thyroid: a report of a clinical case with a long-term follow-up.] Cardiologia 1999;44:8388.Google Scholar
Jamshidi, M., Kasirye, O., Smith, D.J.. Ectopic thyroid nodular goiter presenting as a porta hepatis mass. Am Surg 1998;64:305306.Google Scholar
Pollice, L., Caruso, G.. Struma cordis. Ectopic thyroid goiter in the right ventricle. Arch Pathol Lab Med 1986;110:452453.Google Scholar
Curtis, L.E., Sheahan, D.G.. Heterotopic tissues in the gallbladder. Arch Pathol 1969;88:677683.Google Scholar
Kurman, R.J., Prabha, A.C.. Thyroid and parathyroid glands in the vaginal wall: report of a case. Am J Clin Pathol 1973;59:503507.Google Scholar
Ruchti, C., Balli-Antunes, M., Gerber, H.A.. Follicular tumor in the sellar region without primary cancer of the thyroid. Heterotopic carcinoma? Am J Clin Pathol 1987;87:776780.Google Scholar
Romero-Rojas, A., Bella-Cueto, M.R., Meza-Cabrera, I.A., Cabezuelo-Hernandez, A., Garcia-Rojo, D., Vargas-Uricoechea, H., et al. Ectopic thyroid tissue in the adrenal gland: a report of two cases with pathogenetic implications. Thyroid 2013;23:16441650.Google Scholar
Bone, R.C., Biller, H.F., Irwin, T.M.. Intralaryngotracheal thyroid. Ann Otol Rhinol Laryngol 1972;81:424428.Google Scholar
Hardwick, D.F., Cormode, E.J., Riddell, D.G.. Respiratory distress and neck mass in a neonate. J Pediatr. 1976;89:501505.Google Scholar
Pang, Y.T.. Ectopic multinodular goitre. Singapore Med J. 1998;39:169170.Google Scholar
Kakudo, K., Shan, L., Nakamura, Y., Inoue, D., Koshiyama, H., Sato, H.. Clonal analysis helps to differentiate aberrant thyroid tissue from thyroid carcinoma. Hum Pathol 1998;29:187190.Google Scholar
Scully, R.E., Young, R.H., Clemnent, P.B.. Atlas of Tumor Pathology, 3rd Series, Fascicle 23: Tumors of the Ovary, Maldeveloped Gonads, Fallopian Tube, and Broad Ligament. Washington, DC: Armed Forces Institute of Pathology, 1999.Google Scholar
Izumi, T., Araki, Y., Satoh, H., Katoh, K., Ueda, Y., Yuhki, T., et al. [A case report of postoperative thyroid crisis accompanied with struma ovarii.] Masui 1990;39:391395.Google Scholar
Rutgers, J.L., Scully, R.E.. Functioning ovarian tumors with peripheral steroid cell proliferation: a report of twenty-four cases. Int J Gynecol Pathol 1986;5:319337.Google Scholar
Logani, S., Baloch, Z.W., Snyder, P.J., Weinstein, R., LiVolsi, V.A.. Cystic ovarian metastasis from papillary thyroid carcinoma: a case report. Thyroid 2001;11:10731075.Google Scholar
Young, R.H., Jackson, A., Wells, M.. Ovarian metastasis from thyroid carcinoma 12 years after partial thyroidectomy mimicking struma ovarii: report of a case. Int J Gynecol Pathol 1994;13:181185.Google Scholar
Jacobsen, G.K., Talerman, A.. Atlas of Germ Cell Tumors. Copenhagen: Munksgaard, 1989.Google Scholar
Devaney, K., Snyder, R., Norris, H.J., Tavassoli, F.A.. Proliferative and histologically malignant struma ovarii: a clinicopathological study of 54 cases. Int J Gynecol Pathol 1993;12:333343.Google Scholar
Doldi, N., Taccagni, G.L., Bassan, M., Frigerio, L., Mangili, G., Jansen, A.M., et al. Hashimoto's disease in a papillary carcinoma of the thyroid originating in a teratoma of the ovary (malignant struma ovarii). Gynecol Endocrinol 1998;12:4142.Google Scholar
Bonadio, A.G.. [Hashimoto's thyroiditis in “struma ovarii.” Case report and review of the literature.] Minerv Endocrinol 2002;27:4952.Google Scholar
Griffiths, A.N., Jain, B., Vine, S.J.. Papillary thyroid carcinoma of struma ovarii. J Obstet Gynaecol 2004;24:9293.Google Scholar
Ro, J.Y., Sahin, A.A., el-Naggar, A.K., Ordóñez, N.G., Mackay, B., Llamas, L.L., et al. Intraluminal crystalloids in struma ovarii. Immunohistochemical, DNA flow cytometric, and ultrastructural study. Arch Pathol Lab Med 1991;115:145149.Google Scholar
Ribeiro-Silva, A., Bezerra, A.M., Serafini, L.N.. Malignant struma ovarii: an autopsy report of a clinically unsuspected tumor. Gynecol Oncol 2002;87:213215.Google Scholar
Bhansali, A., Jain, V., Rajwanshi, A., Lodha, S., Dash, R.J.. Follicular carcinoma in a functioning struma ovarii. Postgrad Med J. 1999;75:617618.Google Scholar
Piana, S., Damiani, S., Santini, D.. Oxyphilic follicular tumor arising in struma ovarii. Tumori 1994;80:482484.Google Scholar
Olinici, C.D., Mera, M.. Poorly differentiated ("insular") thyroid carcinoma of the ovary. Morphol Embryol (Bucur) 1988;34:135137.Google Scholar
Schmidt, J., Derr, V., Heinrich, M.C., Crum, C.P., Fletcher, J.A., Corless, C.L., et al. BRAF in papillary thyroid carcinoma of ovary (struma ovarii). Am J Surg Pathol 2007;31:13371343.Google Scholar
Boutross-Tadross, O, Saleh, R, Asa, SL. Follicular variant papillary thyroid carcinoma arising in struma ovarii. Endocr Pathol 2007;18:182186.Google Scholar
Fayemi, A.O., Ali, M., Braun, E.V.. Oxalosis in hemodialysis patients: a pathologic study of 80 cases. Arch Pathol Lab Med 1979;103:5862.Google Scholar
LiVolsi, V.A.. Surgical Pathology of the Thyroid. Philadelphia PA: WB Saunders, 1990.Google Scholar
MacMahon, H.E., Lee, H.Y., Rivelis, C.F.. Birefringent crystals in human thyroid. Acta Endocrinol (Copenh) 1968;58:172176.Google Scholar
Reid, J.D., Choi, C.H., Oldroyd, N.O.. Calcium oxalate crystals in the thyroid. Their identification, prevalence, origin, and possible significance. Am J Clin Pathol 1987;87:443454.Google Scholar
Richter, M.N., Mc, C.K.. Anisotropic crystals in the human thyroid gland. Am J Pathol 1954;30:545553.Google Scholar

References

Nosé, V., Asa, S.L., Erickson, L.A., Lopez, B.S., Tischler, A.S.. Diagnostic Pathology: Endocrine. New York: Lippincott Williams & Wilkins (Amirsys), 2012.Google Scholar
Nosé, V., Greenson, J.K., Paner, G.P., Rodriguez, F.J., Ko, C.J., Morgan, E.. Diagnostic Pathology: Familial Cancer Syndromes. New York: Lippincott Williams & Wilkins (Amirsys), 2013.Google Scholar
Hashimoto, H.. Notes on lymphomatic thyroid changes (struma lymphomatosa). Arch Klin Chirur. 1912;97:219.Google Scholar
Weetman, A.P.. Chronic autoimmune thyroiditis. In Braverman, L.E., Utiger, R.D., eds. Werner and Ingbar's The Thyroid: A Fundamental and Clinical Text, 8th edn. Philadelphia PA: Lippincott Williams & Wilkins, 2000:721732.Google Scholar
del Prete, G.F., Maggi, E., Mariotti, S., Tiri, A., Vercelli, D., Parronchi, P., et al. Cytolytic T lymphocytes with natural killer activity in thyroid infiltrate of patients with Hashimoto's thyroiditis: analysis at clonal level. J Clin Endocrinol Metab 1986;62:5257.Google Scholar
Burman, P., Totterman, T.H., Oberg, K., Karlsson, F.A.. Thyroid autoimmunity in patients on long term therapy with leukocyte-derived interferon. J Clin Endocrinol Metab 1986;63:10861090.Google Scholar
Chopra, I.J., Solomon, D.H., Chopra, U., Yoshihara, E., Terasaki, P.I., Smith, F.. Abnormalities in thyroid function in relatives of patients with Graves' disease and Hashimoto's thyroiditis: lack of correlation with inheritance of HLA-B8. J Clin Endocrinol Metab 1977;45:4554.Google Scholar
Doniach, D., Bottazzo, G.F., Russell, R.C.. Goitrous autoimmune thyroiditis (Hashimoto's disease). Clin Endocrinol Metab 1979;8:6380.Google Scholar
Ewins, D.L., Rossor, M.N., Butler, J., Roques, P.K., Mullan, M.J., McGregor, A.M.. Association between autoimmune thyroid disease and familial Alzheimer's disease. Clin Endocrinol (Oxf) 1991;35:9396.Google Scholar
Kennedy, R.L., Jones, T.H., Cuckle, H.S.. Down's syndrome and the thyroid. Clin Endocrinol (Oxf) 1992;37:471476.Google Scholar
Shalitin, S., Phillip, M.. Autoimmune thyroiditis in infants with Down's syndrome. J Pediatr Endocrinol Metab 2002;15:649652.Google Scholar
Roitt, I.M., Doniach, D.. A reassessment of studies on the aggregation of thyroid autoimmunity in families of thyroiditis patients. Clin Exp Immunol 1967;2(suppl):727736.Google Scholar
Roitt, I.M., Doniach, D., Campbell, P.N., al, E.. Autoantibodies in Hashimoto's thyroiditis (lymphadenoid goitre). Lancet 1956;ii:820.Google Scholar
Trotter, W.R., Belyavin, G., Waddams, A.. Precipitating and complement-fixing antibodies in Hashimoto's disease. Proc R Soc Med 1957;50:961962.Google Scholar
Weetman, A.P., McGregor, A.M.. Autoimmune thyroid disease: further developments in our understanding. Endocr Rev 1994;15:788830.Google Scholar
Tomer, Y., Davies, T.F.. Infection, thyroid disease, and autoimmunity. Endocr Rev 1993;14:107120.Google Scholar
Valtonen, V.V., Ruutu, P., Varis, K., Ranki, M., Malkamaki, M., Makela, P.H.. Serological evidence for the role of bacterial infections in the pathogenesis of thyroid diseases. Acta Med Scand 1986;219:105111.Google Scholar
Dayan, C.M., Daniels, G.H.. Chronic autoimmune thyroiditis. N Engl J Med 1996;335:99107.Google Scholar
Hanafusa, T., Pujol-Borrell, R., Chiovato, L., Russell, R.C., Doniach, D., Bottazzo, G.F.. Aberrant expression of HLA-DR antigen on thyrocytes in Graves' disease: relevance for autoimmunity. Lancet 1983;ii:11111115.Google Scholar
Lloyd, R.V., Johnson, T.L., Blaivas, M., Sisson, J.C., Wilson, B.S.. Detection of HLA-DR antigens in paraffin-embedded thyroid epithelial cells with a monoclonal antibody. Am J Pathol 1985;120:106111.Google Scholar
Tamai, H., Kimura, A., Dong, R.P., Matsubayashi, S., Kuma, K., Nagataki, S., et al. Resistance to autoimmune thyroid disease is associated with HLA-DQ. J Clin Endocrinol Metab 1994;78:9497.Google Scholar
Yu, M., Xu, M., Savas, L., Khan, A.. Discordant expression of Ii and HLA-DR in thyrocytes: a possible pathogenetic factor in Hashimoto's thyroiditis. Endocr Pathol 1998;9:201208.Google Scholar
Londei, M., Bottazzo, G.F., Feldmann, M.. Human T-cell clones from autoimmune thyroid glands: specific recognition of autologous thyroid cells. Science 1985;228:8589.Google Scholar
Giordano, C., Stassi, G., De Maria, R., Todaro, M., Richiusa, P., Papoff, G., et al. Potential involvement of FAS and its ligand in the pathogenesis of Hashimoto's thyroiditis. Science 1997;275:960963.Google Scholar
Williams, N.. Thyroid disease: a case of cell suicide? Science 1997;275:926.Google Scholar
Arscott, P.L., Baker, J.R. Jr. Apoptosis and thyroiditis. Clin Immunol Immunopathol 1998;87:207217.Google Scholar
Palazzo, F.F., Hammond, L.J., Goode, A.W., Mirakian, R.. Death of the autoimmune thyrocyte: is it pushed or does it jump? Thyroid 2000;10:561572.Google Scholar
Andrikoula, M., Tsatsoulis, A.. The role of Fas-mediated apoptosis in thyroid disease. Eur J Endocrinol 2001;144:561568.Google Scholar
Lin, J.D.. The role of apoptosis in autoimmune thyroid disorders and thyroid cancer. Br Med J 2001;322:15251527.Google Scholar
Stassi, G., Zeuner, A., Di Liberto, D., Todaro, M., Ricci-Vitiani, L., De Maria, R.. Fas–FasL in Hashimoto's thyroiditis. J Clin Immunol 2001;21:1923.Google Scholar
Mitsiades, N., Poulaki, V., Mitsiades, C.S., Koutras, D.A., Chrousos, G.P.. Apoptosis induced by FasL and TRAIL/Apo2L in the pathogenesis of thyroid diseases. Trends Endocrinol Metab 2001;12:384390.Google Scholar
Eguchi, K.. Apoptosis in autoimmune diseases. Intern Med 2001;40:275284.Google Scholar
Phelps, E., Wu, P., Bretz, J., Baker, J.R. Jr. Thyroid cell apoptosis. A new understanding of thyroid autoimmunity. Endocrinol Metab Clin North Am 2000;29:375388, viii.Google Scholar
Hammond, L.J., Lowdell, M.W., Cerrano, P.G., Goode, A.W., Bottazzo, G.F., Mirakian, R.. Analysis of apoptosis in relation to tissue destruction associated with Hashimoto's autoimmune thyroiditis. J Pathol 1997;182:138144.Google Scholar
Stassi, G., Todaro, M., Bucchieri, F., Stoppacciaro, A., Farina, F., Zummo, G., et al. Fas/Fas ligand-driven T cell apoptosis as a consequence of ineffective thyroid immunoprivilege in Hashimoto's thyroiditis. J Immunol 1999;162:263267.Google Scholar
Mitsiades, N., Poulaki, V., Kotoula, V., Mastorakos, G., Tseleni-Balafouta, S., Koutras, D.A., et al. Fas/Fas ligand up-regulation and Bcl-2 down-regulation may be significant in the pathogenesis of Hashimoto's thyroiditis. J Clin Endocrinol Metab 1998;83:21992203.Google Scholar
Jiang, Z., Savas, L., Patwardhan, N.A., Wuu, J., Khan, A.. Frequency and distribution of DNA fragmentation in Hashimoto's thyroiditis and development of papillary thyroid carcinoma. Endocr Pathol 1999;10:137144.Google Scholar
Baloch, Z.W., LiVolsi, V.A.. Pathology of thyroid gland. In LiVolsi, V.A., Asa, S.L.. eds. Endocrine Pathology. Philadelphia PA: Churchill Livingstone, 2002:6188.Google Scholar
LiVolsi, V.A.. Surgical Pathology of the Thyroid. Philadelphia PA: WB Saunders, 1990.Google Scholar
Rosai, J., Carcangiu, M.D., DeLellis, R.A.. Atlas of Tumor Pathology, 3rd Series, Fascicle 5: Tumors of the Thyroid Gland. Washington DC: Armed Forces Institute of Pathology, 1992:117.Google Scholar
Berho, M., Suster, S.. Clear nuclear changes in Hashimoto's thyroiditis. A clinicopathologic study of 12 cases. Ann Clin Lab Sci. 1995;25:513521.Google Scholar
Harach, H.R., Williams, E.D.. Fibrous thyroiditis–an immunopathological study. Histopathology 1983;7:739751.Google Scholar
Katz, S.M., Vickery, A.L. Jr. The fibrous variant of Hashimoto's thyroiditis. Hum Pathol 1974;5:161170.Google Scholar
Deshpande, V.. IgG4-related disease. Introduction. Semin Diagn Pathol 2012;29:175176.Google Scholar
Deshpande, V., Huck, A., Ooi, E., Stone, J.H., Faquin, W.C., Nielsen, G.P.. Fibrosing variant of Hashimoto thyroiditis is an IgG4 related disease. J Clin Pathol 2012;65:725728.Google Scholar
Kakudo, K., Li, Y., Hirokawa, M., Ozaki, T.. Diagnosis of Hashimoto's thyroiditis and IgG4-related sclerosing disease. Pathol Int 2011;61:175183.Google Scholar
Kakudo, K., Li, Y., Taniguchi, E., Mori, I., Ozaki, T., Nishihara, E., et al. IgG4-related disease of the thyroid glands. Endocr J. 2012;59:273281.Google Scholar
Lloyd, R.V., Douglas, B.R., Young, W.F.. Atlas of Non-tumor Pathology: Endocrine Diseases, 1st Series, Fascicle 1: Thyroid Gland. Washington, DC: Armed Forces Institute of Pathology, 2002: 91169.Google Scholar
Muller, A.F., Drexhage, H.A., Berghout, A.. Postpartum thyroiditis and autoimmune thyroiditis in women of childbearing age: recent insights and consequences for antenatal and postnatal care. Endocr Rev 2001;22:605630.Google Scholar
Roti, E., Uberti, E.. Post-partum thyroiditis: a clinical update. Eur J Endocrinol 2002;146:275279.Google Scholar
Stagnaro-Green, A.. Postpartum thyroiditis: prevalence, etiology and clinical implications. Thyroid Today 1993;16:111.Google Scholar
Farwell, A.P.. Infectious thyroiditis. In Braverman, L.E., Utiger, R.D., eds. Werner and Ingbar's The Thyroid: A Fundamental and Clinical Text, 8th edn. Philadelphia PA: Lippincott Williams & Wilkins, 2000: 10441050.Google Scholar
Miyauchi, A., Matsuzuka, F., Kuma, K., Takai, S.. Piriform sinus fistula: an underlying abnormality common in patients with acute suppurative thyroiditis. World J Surg 1990;14:400405.Google Scholar
Jeng, L.B., Lin, J.D., Chen, M.F.. Acute suppurative thyroiditis: a ten-year review in a Taiwanese hospital. Scand J Infect Dis 1994;26:297300.Google Scholar
Hay, I.D.. Thyroiditis: a clinical update. Mayo Clin Proc 1985;60:836843.Google Scholar
Szabo, S.M., Allen, D.B.. Thyroiditis. Differentiation of acute suppurative and subacute. Case report and review of the literature. Clin Pediatr (Phila) 1989;28:171174.Google Scholar
Farwell, A.P., Braverman, L.E.. Inflammatory thyroid disorders. Otolaryngol Clin North Am 1996;29:541556.Google Scholar
Fernandez, J.F., Anaissie, E.J., Vassilopoulou-Sellin, R., Samaan, N.A.. Acute fungal thyroiditis in a patient with acute myelogenous leukaemia. J Intern Med 1991;230:539541.Google Scholar
Goodwin, R.A. Jr., Shapiro, J.L., Thurman, G.H., Thurman, S.S., Des Prez, R.M.. Disseminated histoplasmosis: clinical and pathologic correlations. Medicine (Baltimore). 1980;59:133.Google Scholar
Loeb, J.M., Livermore, B.M., Wofsy, D.. Coccidioidomycosis of the thyroid. Ann Intern Med 1979;91:409411.Google Scholar
Lewin, S.R., Street, A.C., Snider, J.. Suppurative thyroiditis due to Nocardia asteroides. J Infect. 1993;26:339340.Google Scholar
Reichert, C.M., O'Leary, T.J., Levens, D.L., Simrell, C.R., Macher, A.M.. Autopsy pathology in the acquired immune deficiency syndrome. Am J Pathol 1983;112:357382.Google Scholar
Frank, T.S., LiVolsi, V.A., Connor, A.M.. Cytomegalovirus infection of the thyroid in immunocompromised adults. Yale J Biol Med 1987;60:18.Google Scholar
Horsburgh, C.R. Jr. Mycobacterium avium complex infection in the acquired immunodeficiency syndrome. N Engl J Med 1991;324:13321338.Google Scholar
Robillon, J.F., Sadoul, J.L., Guerin, P., Iafrate-Lacoste, C., Talbodec, A., Santini, J., et al. Mycobacterium avium intracellulare suppurative thyroiditis in a patient with Hashimoto's thyroiditis. J Endocrinol Invest 1994;17:133134.Google Scholar
Emerson, C.H., Farwell, A.P.. Sporadic silent thyroiditis, postpartum thyroiditis, and subacute thyroiditis. In Braverman, L.E., Utiger, R.D., eds. Werner and Ingbar's The Thyroid: A Fundamental and Clinical Text, 8th edn. Philadelphia PA: Lippincott Williams & Wilkins, 2000:573589.Google Scholar
Daniels, G.H.. Atypical subacute thyroiditis: preliminary observations. Thyroid 2001;11:691695.Google Scholar
Obuobie, K., Al-Sabah, A., Lazarus, J.H.. Subacute thyroiditis in an immunosuppressed patient. J Endocrinol Invest 2002;25:169171.Google Scholar
Benker, G., Olbricht, T., Windeck, R., Wagner, R., Albers, H., Lederbogen, S., et al. The sonographical and functional sequelae of de Quervain's subacute thyroiditis: long-term follow-up. Acta Endocrinol (Copenh) 1988;117:435441.Google Scholar
de Pauw, B.E., de Rooy, H.A.. De Quervain's subacute thyroiditis. A report on 14 cases and a review of the literature. Neth J Med 1975;18:7078.Google Scholar
Singer, P.A.. Primary hypothyroidism due to other causes. In Braverman, L.E., Utiger, R.D., eds. Werner and Ingbar's The Thyroid: A Fundamental and Clinical Text, 8th edn. Philadelphia PA: Lippincott Williams & Wilkins, 2000: 755761.Google Scholar
de Lange, W.E., Freling, N.J., Molenaar, W.M., Doorenbos, H.. Invasive fibrous thyroiditis (Riedel's struma): a manifestation of multifocal fibrosclerosis? A case report with review of the literature. Q J Med 1989;72:709717.Google Scholar
Best, T.B., Munro, R.E., Burwell, S., Volpe, R.. Riedel's thyroiditis associated with Hashimoto's thyroiditis, hypoparathyroidism, and retroperitoneal fibrosis. J Endocrinol Invest 1991;14:767772.Google Scholar
Volpe, R.. Is silent thyroiditis an autoimmune disease? Arch Intern Med 1988;148:19071908.Google Scholar
Carney, J.A., Moore, S.B., Northcutt, R.C., Woolner, L.B., Stillwell, G.K.. Palpation thyroiditis (multifocal granulomatour folliculitis). Am J Clin Pathol 1975;64:639647.Google Scholar

References

Nosé, V., Asa, S.L., Erickson, L.A., Lopez, B.S., Tischler, A.S.. Diagnostic Pathology: Endocrine. New York: Lippincott Williams & Wilkins (Amirsys), 2012.Google Scholar
Bogazzi, F., Bartalena, L., Gasperi, M., Braverman, L.E., Martino, E.. The various effects of amiodarone on thyroid function. Thyroid 2001;11:511519.Google Scholar
Smyrk, T.C., Goellner, J.R., Brennan, M.D., Carney, J.A.. Pathology of the thyroid in amiodarone-associated thyrotoxicosis. Am J Surg Pathol 1987;11:197204.Google Scholar
Berens, S.C., Bernstein, R.S., Robbins, J., Wolff, J.. Antithyroid effects of lithium. J Clin Invest 1970;49:13571367.Google Scholar
Ricarte-Filho, J.C., Li, S., Garcia-Rendueles, M.E., Montero-Conde, C., Voza, F., Knauf, J.A., et al. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers. J Clin Invest 2013;123:49354944.Google Scholar
Shibuya, K., Gilmour, S., Oshima, A.. Time to reconsider thyroid cancer screening in Fukushima. Lancet 2014;383:18831884.Google Scholar
Rhodes, C.J.. The Fukushima Daiichi nuclear accident. Sci Prog. 2014;97:7286.Google Scholar
Yamashita, S.. Tenth Warren, K. Sinclair keynote address-the Fukushima nuclear power plant accident and comprehensive health risk management. Health Phys 2014;106:166180.Google Scholar
Carr, R.F., LiVolsi, V.A.. Morphologic changes in the thyroid after irradiation for Hodgkin's and non-Hodgkin's lymphoma. Cancer 1989;64:825829.Google Scholar
Droese, M., Kempken, K., Schneider, M.L., Hor, G.. [Cytologic changes in aspiration biopsy smears from various conditions of the thyroid treated with radioiodine (author's transl).] Verh Dtsch Ges Pathol 1973;57:336338.Google Scholar
Favus, M.J., Schneider, A.B., Stachura, M.E., Arnold, J.E., Ryo, U.Y., Pinsky, S.M., et al. Thyroid cancer occurring as a late consequence of head-and-neck irradiation. Evaluation of 1056 patients. N Engl J Med 1976;294:10191025.Google Scholar
Holten, I.. Acute response of the thyroid to external radiation. Acta Pathol Microbiol Immunol Scand Suppl 1983;283:1111.Google Scholar
Kennedy, J.S., Thomson, J.A.. The changes in the thyroid gland after irradiation with 131I or partial thyroidectomy for thyrotoxicosis. J Pathol 1974;112:6581.Google Scholar
Yamashita, S.. [Lessons learnt from Chernobyl and health risk management after Fukushima nuclear disaster.] Nihon Geka Gakkai Zasshi 2012;113:309313.Google Scholar
Yamashita, S., Saenko, V.. Mechanisms of disease: molecular genetics of childhood thyroid cancers. Nat Clin Pract Endocrinol Metab 2007;3:422429.Google Scholar
Suzuki, K., Yamashita, S.. Low-dose radiation exposure and carcinogenesis. Jpn J Clin Oncol 2012;42:563568.Google Scholar
Fogelfeld, L., Wiviott, M.B., Shore-Freedman, E., Blend, M., Bekerman, C., Pinsky, S., et al. Recurrence of thyroid nodules after surgical removal in patients irradiated in childhood for benign conditions. N Engl J Med 1989;320:835840.Google Scholar
Schneider, A.B., Recant, W., Pinsky, S.M., Ryo, U.Y., Bekerman, C., Shore-Freedman, E.. Radiation-induced thyroid carcinoma. Clinical course and results of therapy in 296 patients. Ann Intern Med 1986;105:405412.Google Scholar
LiVolsi, V.A.. Surgical Pathology of the Thyroid. Philadelphia PA: WB Saunders, 1990.Google Scholar
Cappell, D.F., Hutchison, H.E., Jowett, M.. Transfusional siderosis. The effects of excessive iron deposits on the tissues. J Pathol Bacteriol 1957;74:245249.Google Scholar
Oliver, R.A.. Siderosis following transfusion of blood. J Pathol Bacteriol 1959;77:171176.Google Scholar
Alexander, C.B., Herrera, G.A., Jaffe, K., Yu, H.. Black thyroid: clinical manifestations, ultrastructural findings, and possible mechanisms. Hum Pathol 1985;16:7278.Google Scholar
Benitz, K.F., Roberts, G.K., Yusa, A.. Morphologic effects of minocycline in laboratory animals. Toxicol Appl Pharmacol 1967;11:150170.Google Scholar
Billano, R.A., Ward, W.Q., Little, W.P.. Minocycline and black thyroid. JAMA 1983;249:1887.Google Scholar
Gordon, G., Sparano, B.M., Kramer, A.W., Kelly, R.G., Iatropoulos, M.J.. Thyroid gland pigmentation and minocycline therapy. Am J Pathol 1984;117:98109.Google Scholar
Kurosumi, M., Fujita, H.. Fine structural aspects on the fate of rat black thyroids induced by minocycline. Virchows Arch B Cell Pathol Incl Mol Pathol 1986;51:207213.Google Scholar
Matsubara, F., Mizukami, Y., Tanaka, Y.. Black thyroid. Morphological, biochemical and geriatric studies on the brown granules in the thyroid follicular cells. Acta Pathol Jpn. 1982;32:1322.Google Scholar
Bell, C.D., Kovacs, K., Horvath, E., Rotondo, F.. Histologic, immunohistochemical, and ultrastructural findings in a case of minocycline-associated “black thyroid.” Endocr Pathol 2001;12:443451.Google Scholar
Thompson, A.D., Pasieka, J.L., Kneafsey, P., DiFrancesco, L.M.. Hypopigmentation of a papillary carcinoma arising in a black thyroid. Mod Pathol 1999;12:11811185.Google Scholar
Pastolero, G.C., Asa, S.L.. Drug-related pigmentation of the thyroid associated with papillary carcinoma. Arch Pathol Lab Med 1994;118:7983.Google Scholar

References

Lamberg, BA. Endemic goitre: iodine deficiency disorders. Ann Med 1991;23:367372.Google Scholar
Kelly, FC, Snedden, WW. Prevalence and geographical distribution of endemic goitre. Bull World Health Organ. 1958;18:5173.Google Scholar
Kouame, P, Koffi, M, Ake, O, Nama-Diarra, AJ, Chaventre, A. [Management strategies for endemic goiter in developing countries.] Med Trop (Mars) 1999;59:401410.Google Scholar
Gaitan, E., Nelson, N.C., Poole, G.V. Endemic goiter and endemic thyroid disorders. World J Surg 1991;15:205215.Google Scholar
Nosé, V, Asa, SL, Erickson, LA, Lopez, BS, Tischler, AS. Diagnostic Pathology: Endocrine. New York: Lippincott Williams & Wilkins (Amirsys), 2012.Google Scholar
Khan, A, Nosé, V. Pathology of thyroid gland. In Lloyd, RV, ed. Endocrine Pathology. New York: Springer, 2010:181235.Google Scholar
Fuhrer, D, Bockisch, A, Schmid, KW. Euthyroid goiter with and without nodulesdiagnosis and treatment. Dtsch Arztebl Int 2012;109:506515; quiz 16.Google Scholar
Delange, FM. Intrinsic and extrinsic variables: iodine deficiency. In Braverman, L.E., Utiger, R.D., eds. Werner and Ingbar's The Thyroid: A Fundamental and Clinical Text, 8th edn. Philadelphia PA: Lippincott Williams & Wilkins, 2000:295316.Google Scholar
Nosé, V, Paner, GP, Greenson, JK, Rodriguez, FJ, Ko, CJ, Morgan, E. Diagnostic Pathology: Familial Cancer Syndromes. New York: Lippincott Williams & Wilkins (Amirsys), 2013.Google Scholar
Luo, J, McManus, C, Chen, H, Sippel, RS. Are there predictors of malignancy in patients with multinodular goiter? J Surg Res 2012;174:207210.Google Scholar
Krohn, K, Fuhrer, D, Bayer, Y, et al. Molecular pathogenesis of euthyroid and toxic multinodular goiter. Endocr Rev 2005;26:504524.Google Scholar
Chaudhary, V, Bano, S. Thyroid ultrasound. Indian J Endocrinol Metab 2013;17:219227.Google Scholar
Lee, YH, Kim, DW, In, HS, et al. Differentiation between benign and malignant solid thyroid nodules using an US classification system. Korean J Radiol 2011;12:559567.Google Scholar
A. Syrenicz, A, Koziolek, A, Ciechanowicz, A, Sieradzka, A, Binczak-Kuleta, M, Parczewski, M. New insights into the diagnosis of nodular goiter. Thyroid Res 2014;7:6.Google Scholar
Berghout, A, Wiersinga, WM, Smits, NJ, Touber, JL. Interrelationships between age, thyroid volume, thyroid nodularity, and thyroid function in patients with sporadic nontoxic goiter. Am J Med 1990;89:602608.Google Scholar
Albores-Saavedra, J, Wu, J. The many faces and mimics of papillary thyroid carcinoma. Endocr Pathol 2006;17:118.Google Scholar
McNicol, AM, Lewis, PD. The endocrine system. In Lewis, PD, Emeritus, SW, eds. Systemic Pathology, 3rd edn. Edinburgh: Churchill Livingstone, 1996:131185.Google Scholar
Muddegowda, PH, Srinivasan, S, Lingegowda, JB, Kurpad, RR, Murthy, KS. Spectrum of cytology of neck lesions: comparative study from two centers. J Clin Diagn Res 2014;8:4445.Google Scholar
Stagnaro-Green, A, Abalovich, M, Alexander, E, et al. Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum. Thyroid 2011;21:10811125.Google Scholar
Vanderpump, MPJ, Turnbridge, WM. The epidemiology of thyroid diseases. In Braverman, LE, Utiger, RD, eds. Werner and Ingbar's The Thyroid: A Fundamental and Clinical Text, 8th edn. Philadelphia PA: Lippincott Williams & Wilkins, 2000:467473.Google Scholar
Hermus, AR, Huysmans, DA. Pathogenesis of nontoxic diffuse and nodular goiter. In Braverman, LE, Utiger, RD, eds. Werner and Ingbar's The Thyroid: A Fundamental and Clinical Text, 8th edn. Philadelphia PA: Lippincott Williams & Wilkins, 2000:861865.Google Scholar
Girgis, CM, Champion, BL, Wall, JR. Current concepts in Graves' disease. Ther Adv Endocrinol Metab 2011;2:135144.Google Scholar
Brent, GA. Clinical practice. Graves disease. N Engl J Med 2008;358:25942605.Google Scholar
Manji, N, Carr-Smith, JD, Boelaert, K, et al. Influences of age, gender, smoking, and family history on autoimmune thyroid disease phenotype. J Clin Endocrinol Metab 2006;91:48734880.Google Scholar
Ploski, R, Szymanski, K, Bednarczuk, T. The genetic basis of Graves' disease. Curr Genomics. 2011;12:542563.Google Scholar
Amodio, F, Di Martino, S, Esposito, S, et al. [Role of flowmetric analysis and of color-Doppler ultrasonography with contrast media in the different phases and follow-up of Graves' disease.] Radiol Med 2001;102:233237.Google Scholar
Tonacchera, M, Chiovato, L, Pinchera, A, et al. Hyperfunctioning thyroid nodules in toxic multinodular goiter share activating thyrotropin receptor mutations with solitary toxic adenoma. J Clin Endocrinol Metab 1998;83:492498.Google Scholar
Van Sande, J, Parma, J, Tonacchera, M, et al. Somatic and germline mutations of the TSH receptor gene in thyroid diseases. J Clin Endocrinol Metab 1995;80:25772585.Google Scholar
Parma, J, Duprez, L, Van Sande, J, et al. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature 1993;365: 649651.Google Scholar
Porcellini, A, Ciullo, I, Laviola, L, et al. Novel mutations of thyrotropin receptor gene in thyroid hyperfunctioning adenomas. Rapid identification by fine needle aspiration biopsy. J Clin Endocrinol Metab 1994;79:657661.Google Scholar
Trulzsch, B, Krohn, K, Wonerow, P, et al. Detection of thyroid-stimulating hormone receptor and Gsalpha mutations: in 75 toxic thyroid nodules by denaturing gradient gel electrophoresis. J Mol Med (Berl). 2001;78:684691.Google Scholar
Farfel, Z, Bourne, HR, Iiri, T. The expanding spectrum of G protein diseases. N Engl J Med 1999;340:10121020.Google Scholar
Liu, J, Bargren, A, Schaefer, S, et al. Total thyroidectomy: a safe and effective treatment for Graves' disease. J Surg Res 2011;168:14.Google Scholar
Wassner, AJ, Brown, RS. Hypothyroidism in the newborn period. Curr Opin Endocrinol Diabetes Obes. 2013;20:449454.Google Scholar
Park, SM, Chatterjee, VK. Genetics of congenital hypothyroidism. J Med Genet 2005;42:379389.Google Scholar
Khamisi, S, Lindgren, P, Karlsson, FA. A rare case of dyshormonogenetic fetal goiter responding to intra-amniotic thyroxine injections. Eur Thyroid J. 2014;3:5156.Google Scholar
Hashemipour, M, Rostampour, N, Nasry, P, et al. The role of ultrasonography in primary congenital hypothyroidism. J Res Med Sci. 2011;16:11221128.Google Scholar
Nishiyama, RH. Overview of surgical pathology of the thyroid gland. World J Surg 2000;24:898906.Google Scholar
Camargo, R, Limbert, E, Gillam, M, et al. Aggressive metastatic follicular thyroid carcinoma with anaplastic transformation arising from a long-standing goiter in a patient with Pendred's syndrome. Thyroid 2001;11:981988.Google Scholar
Everett, LA, Glaser, B, Beck, JC, et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 1997;17:411422.Google Scholar
Everett, LA, Green, ED. A family of mammalian anion transporters and their involvement in human genetic diseases. Hum Mol Genet 1999;8:18831891.Google Scholar
Scott, DA, Wang, R, Kreman, TM, et al. The Pendred syndrome gene encodes a chloride-iodide transport protein. Nat Genet 1999;21:440443.Google Scholar
Ghossein, RA, Rosai, J, Heffess, C. Dyshormonogenetic goiter: a clinicopathologic study of 56 cases. Endocr Pathol 1997;8:283292.Google Scholar
Jamal, MN, Arnaout, MA, Jarrar, R. Pendred's syndrome: a study of patients and relatives. Ann Otol Rhinol Laryngol 1995;104:957962.Google Scholar
Sheffield, VC, Kraiem, Z, Beck, JC, et al. Pendred syndrome maps to chromosome 7q21–34 and is caused by an intrinsic defect in thyroid iodine organification. Nat Genet 1996;12:424426.Google Scholar
Baloch, ZW, LiVolsi, VA. Pathology of thyroid gland. In LiVolsi, VA, Asa, SL, eds. Endocrine Pathology. Philadelphia PA: Churchill Livingstone, 2002:6188.Google Scholar
Vickery, AL Jr. The diagnosis of malignancy in dyshormonogenetic goitre. Clin Endocrinol Metab 1981;10:317335.Google Scholar
James, PD. Amyloid goitre. J Clin Pathol 1972;25:683688.Google Scholar
Schroder, S, Bocker, W, Husselmann, H, et al. Adenolipoma (thyrolipoma) of the thyroid gland report of two cases and review of literature. Virchows Arch A Pathol Anat Histopathol 1984;404:99103.Google Scholar
Pinto, A, Nosé, V. Localized amyloid in thyroid: are we missing it? Adv Anat Pathol 2013;20:6167.Google Scholar
Amado, JA, Ondiviela, R, Palacios, S, et al. Fast growing goitre as the first clinical manifestation of systemic amyloidosis. Postgrad Med J. 1982;58: 171172.Google Scholar
Arean, VM, Klein, RE. Amyloid goiter. Review of the literature and report of a case. Am J Clin Pathol 1961;36: 341355.Google Scholar
Daoud, F, Nieman, RE, Vilter, RW. Amyloid goiter in a case of generalized primary amyloidosis. Am J Med 1967;43:604608.Google Scholar
Kennedy, JS, Thomson, JA, Buchanan, WM. Amyloid in the thyroid. Q J Med 1974;43:127143.Google Scholar
Vanguri, VK, Nosé, V. Transthyretin amyloid goiter in a renal allograft recipient. Endocr Pathol 2008;19:6673.Google Scholar

References

Mete, O, Asa, SL. Pitfalls in the diagnosis of follicular epithelial proliferations of the thyroid. Adv Anat Pathol 2012;19:363373.Google Scholar
Baloch, ZW, Livolsi, VA. Follicular-patterned afflictions of the thyroid gland: reappraisal of the most discussed entity in endocrine pathology. Endocr Pathol 2014;25: 1220.Google Scholar
Boerner, SL, Asa, SL. Biopsy Interpretation of the Thyroid. Philadelphia, PA: Lippincott Williams & Wilkins, 2010.Google Scholar
Mete, O, Asa, SL. Pathological definition and clinical significance of vascular invasion in thyroid carcinomas of follicular epithelial derivation. Mod Pathol 2011;24:15451552.Google Scholar
LiVolsi, VA, Merino, MJ. Worrisome histologic alterations following fine-needle aspiration of the thyroid (WHAFFT). Pathol Annu 1994;29:99120.Google Scholar
Chui, MH, Cassol, CA, Asa, SL, Mete, O. Follicular epithelial dysplasia of the thyroid: morphological and immunohistochemical characterization of a putative preneoplastic lesion to papillary thyroid carcinoma in chronic lymphocytic thyroiditis. Virchows Arch 2013;462:557563.Google Scholar
Johnson, RL, Hasteh, F. Thyroid cyst wall atypia in a patient with a history of malignant melanoma: a pitfall in fine-needle aspiration cytology. Diagn Cytopathol 2013;41:716719.Google Scholar
LiVolsi, VA. Hashimoto's thyroiditis: is the epithelium premalignant? International Congress Series 2007;1299:281288.Google Scholar
Baloch, ZW, Wu, H, LiVolsi, VA. Post-fine-needle aspiration spindle cell nodules of the thyroid (PSCNT). Am J Clin Pathol 1999;111:7074.Google Scholar
Baloch, ZW, LiVolsi, VA. Post fine-needle aspiration histologic alterations of thyroid revisited. Am J Clin Pathol 1999;112:311316.Google Scholar
Vergilio, J, Baloch, ZW, LiVolsi, VA. Spindle cell metaplasia of the thyroid arising in association with papillary carcinoma and follicular adenoma. Am J Clin Pathol 2002;117:199204.Google Scholar
Corrado, S, Corsello, SM, Maiorana, A, Rossi, ED, Pontecorvi, A, et al. Papillary thyroid carcinoma with predominant spindle cell component: report of two rare cases and discussion on the differential diagnosis with other spindled thyroid neoplasm. Endocr Pathol 2014;25:307314.Google Scholar
Woenckhaus, C, Cameselle-Teijeiro, J, Ruiz-Ponte, C, Abdulkader, I, Reyes-Santías, R, et al. Spindle cell variant of papillary thyroid carcinoma. Histopathology 2004;45: 424427.Google Scholar
Papotti, M, Arrondini, M, Tavaglione, V, Veltri, A, Volante, M. Diagnostic controversies in vascular proliferations of the thyroid gland. Endocr Pathol 2008;19: 175183.Google Scholar
Sapino, A, Papotti, M, Macrì, L, Satolli, MA, Bussolati, G. Intranodular reactive endothelial hyperplasia in adenomatous goitre. Histopathol 1995;26:457462.Google Scholar
Kefeli, M, Mete, O. An unusual malignant thyroid nodule: coexistence of epithelioid angiosarcoma and follicular variant papillary thyroid carcinoma. Endocr Pathol 2014;25:350352.Google Scholar
Axiotis, CA, Merino, MJ, Ain, K, Norton, JA. Papillary endothelial hyperplasia in the thyroid following fine-needle aspiration. Arch Pathol Lab Med 1991;115:240242.Google Scholar
Winkler, A, Mueller, B, Diem, P. Masson's papillary endothelial hyperplasia mimicking a poorly differentiated thyroid carcinoma: a case report. Eur J Endocrinol 2001;145:667668.Google Scholar
Aida, N, Yamada, N, Asano, G, Tanaka, S. 3-D analysis of vascular and capsular invasion in thyroid follicular carcinoma. Pathol Int 2001;51:425430.Google Scholar
Layfield, LJ, Lones, MA. Necrosis in thyroid nodules after fine needle aspiration biopsy. Report of two cases. Acta Cytol 1991;35:427430.Google Scholar
Das, DK, Janardan, C, Pathan, SK, George, SS, Sheikh, ZA. Infarction in a thyroid nodule after fine needle aspiration: report of 2 cases with a discussion of the cause of pitfalls in the histopathologic diagnosis of papillary thyroid carcinoma. Acta Cytol 2009;53:571575.Google Scholar
Mete, O, Asa, SL. Oncocytes, oxyphils, Hürthle, and Askanazy cells: morphological and molecular features of oncocytic thyroid nodules. Endocr Pathol 2010;21:1624.Google Scholar
Fischer, S, Asa, SL. Application of immunohistochemistry to thyroid neoplasms. Arch Pathol Lab Med 2008;132:359372.Google Scholar
Us-Krasovec, M, Golouh, R. Papillary thyroid carcinoma with exuberant nodular fasciitis-like stroma in a fine needle aspirate. A case report. Acta Cytol 1999;43: 11011104.Google Scholar
Papi, G, Corrado, S, LiVolsi, VA. Primary spindle cell lesions of the thyroid gland; an overview. Am J Clin Pathol 2006;125(suppl:S95123.Google Scholar
Gopal, PP, Montone, KT, Baloch, Z, Tuluc, M, LiVolsi, V. The variable presentations of anaplastic spindle cell squamous carcinoma associated with tall cell variant of papillary thyroid carcinoma. Thyroid 2011;21:493499.Google Scholar
Santeusanio, G, Schiaroli, S, Ortenzi, A, Mulè, A, Perrone, G, et al. Solitary fibrous tumour of thyroid: report of two cases with immunohistochemical features and literature review. Head Neck Pathol 2008;2:231235.Google Scholar
Kim, SW, Oh, YL, Choi, JY, Lee, JI, Chung, JH, et al. Postoperative spindle cell nodule after thyroidectomy: a case mimicking recurrence with anaplastic transformation of thyroid cancer. Head Neck 2013;35:E1317.Google Scholar
Llamas-Gutierrez, FJ, Falcon-Escobedo, R, De Anda-Gonzalez, J, Angeles-Angeles, A. Spindle epithelial tumor with thymus-like differentiation of the thyroid (SETTLE): Report of two cases (one associated with a parathyroid adenoma). Ann Diagn Pathol 2013;17:217221.Google Scholar
Tanboon, J, Keskool, P. Leiomyosarcoma: a rare tumor of the thyroid. Endocr Pathol 2013;24:136143.Google Scholar
Hayashi, T, Mete, O. Head and neck paragangliomas: what does the pathologist need to know? Diagn Pathol 2014;20: 316325.Google Scholar
DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004.Google Scholar
Dralle, H, Musholt, TJ, Schabram, J, Steinmüller, T, Frilling, A, et al. German Association of Endocrine Surgeons practice guideline for the surgical management of malignant thyroid tumors. Langenbecks Arch Surg 2013;398:347375.Google Scholar
Seethala, R, Asa, SL, Carty, SE, Hodak, SP, McHugh, JB, et al. The College of American Pathologists Cancer Checklists: Protocol for the Examination of Specimens from Patients with Carcinomas of the Thyroid Gland. Northfield, IL: College of American Pathologists, 2014 (http://www.cap.org/apps/docs/committees/cancer/cancer_protocols/2009/Thyroid_09protocol.pdf, accessed 4 October 2015).Google Scholar
Ghossein, RA, Rosai, J, Heffess, C. Dyshormonogenetic goiter: a clinicopathologic study of 56 cases. Endocr Pathol 1997;8:283292.Google Scholar
Deshpande, AH, Bobhate, SK. Cytological features of dyshormonogenetic goiter: case report and review of the literature. Diagn Cytopathol 2005;33:252254.Google Scholar
Rakoff-Nahoum, S. Why cancer and inflammation? Yale J Biol Med 2006;79:123130.Google Scholar
Coussens, LM, Werb, Z. Inflammation and cancer. Nature 2002;420: 860867.Google Scholar
Hussain, SP, Hofseth, LJ, Harris, CC. Radical causes of cancer. Nat Rev Cancer 2003;3:276285.Google Scholar
Frank, R, Baloch, ZW, Gentile, C, Watt, CD, LiVolsi, VA. Multifocal fibrosing thyroiditis and its association with papillary thyroid carcinoma using BRAF pyrosequencing. Endocr Pathol 2014;25:236240.Google Scholar
Teijeiro, JC, Carrillo, KH, Eloy, C, Ares, MS, Fricke, CA, et al. Multifocal sclerosing thyroiditis: morphological, immunohistochemical and molecular studies of three cases. Virchow Archiv 2014;465(suppl 1):S207.Google Scholar
Rhoden, KJ, Unger, K, Salvatore, G, Yilmaz, Y, Vovk, V, et al. RET/papillary thyroid cancer rearrangement in nonneoplastic thyrocytes: follicular cells of Hashimoto's thyroiditis share low-level recombination events with a subset of papillary carcinoma. J Clin Endocrinol Metab 2006;91:24142423.Google Scholar
Prasad, ML, Huang, Y, Pellegata, NS, de la Chapelle, A, Kloos, RT. Hashimoto's thyroiditis with papillary thyroid carcinoma (PTC)-like nuclear alterations express molecular markers of PTC. Histopathology 2004;45:3946.Google Scholar
Fusco, A, Chiappetta, G, Hui, P, Garcia-Rostan, G, Golden, L, et al. Assessment of RET/PTC oncogene activation and clonality in thyroid nodules with incomplete morphological evidence of papillary carcinoma: a search for the early precursors of papillary cancer. Am J Pathol 2002;160:21572167.Google Scholar
Jankovic, B, Le, KT, Hershman, JM. Clinical review. Hashimoto's thyroiditis and papillary thyroid carcinoma: is there a correlation? J Clin Endocrinol Metab 2013;98:474482.Google Scholar
Chou, A, Fraser, S, Toon, CW, Clarkson, A, Sioson, L, et al. A detailed clinicopathological study of ALK-translocated papillary thyroid carcinoma. Am J Surg Pathol 2015;39:652659.Google Scholar

References

Mete, O, Asa, SL. Pitfalls in the diagnosis of follicular epithelial proliferations of the thyroid. Adv Anat Pathol 2012;19:363373.Google Scholar
Baloch, ZW, Livolsi, VA. Follicular-patterned afflictions of the thyroid gland: reappraisal of the most discussed entity in endocrine pathology. Endocr Pathol 2014;25: 1220.Google Scholar
Boerner, SL, Asa, SL. Biopsy Interpretation of the Thyroid. Philadelphia, PA: Lippincott Williams & Wilkins, 2010.Google Scholar
DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004.Google Scholar
Asa, SL, Mete, O. Thyroid neoplasms of follicular cell derivation: a simplified approach. Semin Diagn Pathol 2013;30:178185.Google Scholar
Mazzaferri, EL. Thyroid cancer in thyroid nodules: finding a needle in the haystack. Am J Med 1992;93:359362.Google Scholar
Gharib, H. Changing trends in thyroid practice: understanding nodular thyroid disease. Endocr Pract 2004;10:3139.Google Scholar
Rojeski, MT, Gharib, H. Nodular thyroid disease. Evaluation and management. N Engl J Med 1985;313:428436.Google Scholar
Mazzaferri, EL. Management of a solitary thyroid nodule. N Engl J Med 1993;328:553559.Google Scholar
Wiest, PW, Hartshorne, MF, Inskip, PD, Crooks, LA, Vela, BS, et al. Thyroid palpation versus high-resolution thyroid ultrasonography in the detection of nodules. J Ultrasound Med 1998;17:487496.Google Scholar
American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper, DS, Doherty, GM, Haugen, BR, Kloos, RT, Lee, SL, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009;19:11671214.Google Scholar
Chaikhoutdinov, I, Mitzner, R, Goldenberg, D. Incidental thyroid nodules: incidence, evaluation, and outcome. Otolaryngol Head Neck Surg 2014;150:939942.Google Scholar
Chen, AY, Bernet, VJ, Carty, SE, Davies, TF, Ganly, I, et al. American Thyroid Association statement on optimal surgical management of goiter. Thyroid 2014;24:181189.Google Scholar
Shin, JJ, Grillo, HC, Mathisen, D, Katlic, MR, Zurakowski, D, et al. The surgical management of goiter: Part I. Preoperative evaluation. Laryngoscope 2011;121:6067.Google Scholar
Hedayati, N, McHenry, CR. The clinical presentation and operative management of nodular and diffuse substernal thyroid disease. Am Surg 2002;68:245251.Google Scholar
Hughes, K, Eastman, C. Goitre: causes, investigation and management. Aust Fam Physician. 2012;41:572576.Google Scholar
Sturniolo, G, Gagliano, E, Tonante, A, Taranto, F, Vermiglio, F, et al. Toxic multinodular goitre. Personal case histories and literature review. G Chir. 2013;34:257259.Google Scholar
Wallaschofski, H, Orda, C, Georgi, P, Miehle, K, Paschke, R. Distinction between autoimmune and non-autoimmune hyperthyroidism by determination of TSH-receptor antibodies in patients with the initial diagnosis of toxic multinodular goiter. Horm Metab Res 2001;33:504507.Google Scholar
Smith, JJ, Chen, X, Schneider, DF, Nookala, R, Broome, JT, et al. Toxic nodular goiter and cancer: a compelling case for thyroidectomy. Ann Surg Oncol 2013;20: 13361340.Google Scholar
Lee, ES, Kim, JH, Na, DG, Paeng, JC, Min, HS, et al. Hyperfunction thyroid nodules: their risk for becoming or being associated with thyroid cancers. Korean J Radiol 2013;14:643652.Google Scholar
Führer, D, Tannapfel, A, Sabri, O, Lamesch, P, Paschke, R. Two somatic TSH receptor mutations in a patient with toxic metastasising follicular thyroid carcinoma and non-functional lung metastases. Endocr Relat Cancer 2003;10:591600.Google Scholar
Lado-Abeal, J, Celestino, R, Bravo, SB, Garcia-Rendueles, ME, de la Calzada, J, et al. Identification of a paired box gene 8-peroxisome proliferator-activated receptor gamma (PAX8–PPARgamma) rearrangement mosaicism in a patient with an autonomous functioning follicular thyroid carcinoma bearing an activating mutation in the TSH receptor. Endocr Relat Cancer 2010;17:599610.Google Scholar
Mete, O, Rotstein, L, Asa, SL. Controversies in thyroid pathology: thyroid capsule invasion and extrathyroidal extension. Ann Surg Oncol 2010;17:386391.Google Scholar
Cassol, CA, Noria, D, Asa, SL. Ectopic thyroid tissue within the gall bladder: case report and brief review of the literature. Endocr Pathol 2010;21:263265.Google Scholar
Ianni, F, Perotti, G, Prete, A, Paragliola, RM, Ricciato, MP, et al. Thyroid scintigraphy: an old tool is still the gold standard for an effective diagnosis of autonomously functioning thyroid nodules. J Endocrinol Invest 2013;36:233236.Google Scholar
Kleinau, G, Jaeschke, H, Worth, CL, Mueller, S, Gonzalez, J, et al. Principles and determinants of G-protein coupling by the rhodopsin-like thyrotropin receptor. PLOS ONE 2010;18: e9745.Google Scholar
Liu, Z, Fan, F, Xiao, X, Sun, Y. Constitutive activation of the thyroid-stimulating hormone receptor (TSHR) by mutating Ile691 in the cytoplasmic tail segment. PLOS ONE 2011;6:e16335.Google Scholar
Acharya, S, Sarafoglou, K, LaQuaglia, M, Lindsley, S, Gerald, W, et al. Thyroid neoplasms after therapeutic radiation for malignancies during childhood or adolescence. Cancer 2003;97:23972403.Google Scholar
Shore, RE, Hildreth, N, Dvoretsky, P, Pasternack, B, Andresen, E. Benign thyroid adenomas among persons X-irradiated in infancy for enlarged thymus glands. Radiat Res 1993;134:217223.Google Scholar
Monnier, A. Late effects of ionizing radiations on the thyroid gland. Cancer Radiother 1997;1:717731.Google Scholar
Knudsen, N, Laurberg, P, Perrild, H, Bülow, I, Ovesen, L, et al. Risk factors for goiter and thyroid nodules. Thyroid 2002;12:879888.Google Scholar
Knudsen, N, Bülow, I, Laurberg, P, Ovesen, L, Perrild, H, et al. Association of tobacco smoking with goiter in a low-iodine-intake area. Arch Intern Med 2002;162:439443.Google Scholar
Barbesino, G. Drugs affecting thyroid function. Thyroid 2010;20:763770.Google Scholar
McCord, EL, Goenka, S. Development of thyroid follicular adenoma on simvastatin therapy. Tenn Med 2000;93:210212.Google Scholar
Duprez, L, Parma, J, Van Sande, J, Allgeier, A, Leclère, J et al. Germline mutations in the thyrotropin receptor gene cause non-autoimmune autosomal dominant hyperthyroidism. Nat Genet 1994;7: 396401.Google Scholar
Alberti, L, Proverbio, MC, Costagliola, S, Weber, G, Beck-Peccoz, P, et al. A novel germline mutation in the TSH receptor gene causes non-autoimmune autosomal dominant hyperthyroidism. Eur J Endocrinol 2001;145: 249254.Google Scholar
Duprez, L, Parma, J, Costagliola, S, Hermans, J, Van Sande, J, et al. Constitutive activation of the TSH receptor by spontaneous mutations affecting the N-terminal extracellular domain. FEBS Lett 1997;409: 469474.Google Scholar
Rodien, P, Brémont, C, Sanson, ML, Parma, J, Van Sande, J, et al. Familial gestational hyperthyroidism caused by a mutant thyrotropin receptor hypersensitive to human chorionic gonadotropin. N Engl J Med 1998;339: 18231826.Google Scholar
Biebermann, H, Schöneberg, T, Hess, C, Germak, J, Gudermann, T, et al. The first activating TSH receptor mutation in transmembrane domain 1 identified in a family with nonautoimmune hyperthyroidism. J Clin Endocrinol Metab 2001;86: 44294433.Google Scholar
Lee, YS, Poh, L, Loke, KY. An activating mutation of the thyrotropin receptor gene in hereditary non-autoimmune hyperthyroidism. J Pediatr Endocrinol Metab 2002;15: 211215.Google Scholar
Parma, J, Van Sande, J, Swillens, S, Tonacchera, M, Dumont, J, et al. Somatic mutations causing constitutive activity of the thyrotropin receptor are the major cause of hyperfunctioning thyroid adenomas: identification of additional mutations activating both the cyclic adenosine 3′, 5′-monophosphate and inositol phosphate-Ca2+ cascades. Mol Endocrinol 1995;9: 725733.Google Scholar
Tonacchera, M, Van Sande, J, Cetani, F, Swillens, S, Schvartz, C, et al. Functional characteristics of three new germline mutations of the thyrotropin receptor gene causing autosomal dominant toxic thyroid hyperplasia. J Clin Endocrinol Metab 1996;81: 547554.Google Scholar
Schwab, KO, Gerlich, M, Broecker, M, Söhlemann, P, Derwahl, M, et al. Constitutively active germline mutation of the thyrotropin receptor gene as a cause of congenital hyperthyroidism. J Pediatr 1997;131: 899904.Google Scholar
Khoo, DH, Parma, J, Rajasoorya, C, Ho, SC, Vassart, G. A germline mutation of the thyrotropin receptor gene associated with thyrotoxicosis and mitral valve prolapse in a Chinese family. J Clin Endocrinol Metab 1999;84: 14591462.Google Scholar
Palos-Paz, F, Perez-Guerra, O, Cameselle-Teijeiro, J, Rueda-Chimeno, C, Barreiro-Morandeira, F, et al. for the Galician Group for the Study of Toxic Multinodular Goitre. Prevalence of mutations in TSHR, GNAS, PRKAR1A and RAS genes in a large series of toxic thyroid adenomas from Galicia, an iodine-deficient area in NW Spain. Eur J Endocrinol 2008;159:623631.Google Scholar
Murakami, M, Kamiya, Y, Yanagita, Y, Mori, M. Gs alpha mutations in hyperfunctioning thyroid adenomas. Arch Med Res 1999;30:514521.Google Scholar
Eszlinger, M, Jaeschke, H, Paschke, R. Insights from molecular pathways: potential pharmacologic targets of benign thyroid nodules. Curr Opin Endocrinol Diabetes Obes 2007;14:393397.Google Scholar
Tonacchera, M, Chiovato, L, Pinchera, A, Agretti, P, Fiore, E, et al. Hyperfunctioning thyroid nodules in toxic multinodular goiter share activating thyrotropin receptor mutations with solitary toxic adenoma. J Clin Endocrinol Metab 1998;83:492498.Google Scholar
Liu, C, Wu, C, Wang, F, Zhou, M. Mutations of GNAS and TSHR genes in subclinical toxic multinodular goiter. Ann Otol Rhinol Laryngol 2010;119:118124.Google Scholar
Krohn, K, Reske, A, Ackermann, F, Müller, A, Paschke, R. RAS mutations are rare in solitary cold and toxic thyroid nodules. Clin Endocrinol (Oxf) 2001;55:241248.Google Scholar
Lemoine, NR, Mayall, ES, Wyllie, FS, Williams, ED, Goyns, M, et al. High frequency of RAS oncogene activation in all stages of human thyroid tumorigenesis. Oncogene. 1989;4:159164.Google Scholar
Namba, H, Rubin, SA, Fagin, JA. Point mutations of RAS oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol 1990;4:14741479.Google Scholar
Esapa, CT, Johnson, SJ, Kendall-Taylor, P, Lennard, TW, Harris, PE. Prevalence of RAS mutations in thyroid neoplasia. Clin Endocrinol (Oxf) 1999;50:529535.Google Scholar
Cassol, CA, Asa, SL. Molecular pathology of thyroid. Diagn Histopathol 2011;17:124139.Google Scholar
Nikiforov, YE. Molecular analysis of thyroid tumors. Mod Pathol 2011;24(suppl 2):S34S43.Google Scholar
Capella, G, Matias-Guiu, X, Ampudia, X, de Leiva, A, Perucho, M, et al. RAS oncogene mutations in thyroid tumors: polymerase chain reaction-restriction-fragment-length polymorphism analysis from paraffin-embedded tissues. Diagn Mol Pathol 1996;5:4552.Google Scholar
Nikiforova, MN, Lynch, RA, Biddinger, PW, Alexander, EK, Dorn, GW 2nd, et al. RAS point mutations and PAX8–PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab 2003;88:23182326.Google Scholar
Dwight, T, Thoppe, SR, Foukakis, T, Lui, WO, Wallin, G, et al. Involvement of the PAX8/peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J Clin Endocrinol Metab 2003;88:44404445.Google Scholar
Marques, AR, Espadinha, C, Catarino, AL, Moniz, S, Pereira, T, et al. Expression of PAX8PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 2002;87:39473952.Google Scholar
Ciampi, R, Zhu, Z, Nikiforov, YE. BRAF copy number gains in thyroid tumors detected by fluorescence in situ hybridization. Endocr Pathol 2005;16:99105.Google Scholar
Roque, L, Serpa, A, Clode, A, Castedo, S, Soares, J. Significance of trisomy 7 and 12 in thyroid lesions with follicular differentiation: a cytogenetic and in situ hybridization study. Lab Invest 1999;79:369378.Google Scholar
Belge, G, Roque, L, Soares, J, Bruckmann, S, Thode, B, et al. Cytogenetic investigations of 340 thyroid hyperplasias and adenomas revealing correlations between cytogenetic findings and histology. Cancer Genet CytoGenet 1998;101:4248.Google Scholar
Rippe, V, Drieschner, N, Meiboom, M, Murua, Escobar H, Bonk, U, et al. Identification of a gene rearranged by 2p21 aberrations in thyroid adenomas. Oncogene 2003;22:61116114.Google Scholar
Nosé, V. Familial thyroid cancer: a review. Mod Pathol 2011;24(suppl 2):S19S33.Google Scholar
Laury, AR, Bongiovanni, M, Tille, JC, Kozakewich, H, Nosé, V. Thyroid pathology in PTEN-hamartoma tumor syndrome: characteristic findings of a distinct entity. Thyroid 2011;21:135144.Google Scholar
Nosé, V. Thyroid cancer of follicular cell origin in inherited tumor syndromes. Adv Anat Pathol 2010;17:428436.Google Scholar
Smith, JR, Marqusee, E, Webb, S, Nosé, V, Fishman, SJ, et al. Thyroid nodules and cancer in children with PTEN hamartoma tumor syndrome. J Clin Endocrinol Metab 2011;96:3437.Google Scholar
Nosé, V. Familial follicular cell tumors: classification and morphological characteristics. Endocr Pathol 2010;21:219226.Google Scholar
Dotto, J, Nosé, V. Familial thyroid carcinoma: a diagnostic algorithm. Adv Anat Pathol 2008;15:332349.Google Scholar
Salpea, P, Stratakis, CA. Carney complex and McCune–Albright syndrome: an overview of clinical manifestations and human molecular genetics. Mol Cell Endocrinol 2014;386:8591.Google Scholar
Matyakhina, L, Pack, S, Kirschner, LS, Pak, E, Mannan, P, et al. Chromosome 2 (2p16) abnormalities in Carney complex tumours. J Med Genet 2003;40:268277.Google Scholar
Rath, SR, Bartley, A, Charles, A, Powers, N, Baynam, G, et al. Multinodular Goiter in children: an important pointer to a germline DICER1 mutation. J Clin Endocrinol Metab 2014;99:19471948.Google Scholar
Rio Frio, T, Bahubeshi, A, Kanellopoulou, C, Hamel, N, Niedziela, M, et al. DICER1 mutations in familial multinodular goiter with and without ovarian Sertoli–Leydig cell tumors. JAMA 2011;305:6877.Google Scholar
Rossing, M, Gerdes, AM, Juul, A, Rechnitzer, C, Rudnicki, M, et al. A novel DICER1 mutation identified in a female with ovarian Sertoli–Leydig cell tumor and multinodular goiter: a case report. J Med Case Rep 2014;8:112.Google Scholar
Darrat, I, Bedoyan, JK, Chen, M, Schuette, JL, Lesperance, MM. Novel DICER1 mutation as cause of multinodular goiter in children. Head Neck 2013;35:E369E371.Google Scholar
Mete, O, Asa, SL. Precursor lesions of endocrine system neoplasms. Pathology 2013;45:316330.Google Scholar
Hunt, JL, ed. Molecular Pathology of Endocrine Diseases. New York: Springer, 2010.Google Scholar
Apel, RL, Ezzat, S, Bapat, BV, Pan, N, LiVolsi, VA, et al. Clonality of thyroid nodules in sporadic goiter. Diagn Mol Pathol 1995;4:113121.Google Scholar
Aeschimann, S, Kopp, PA, Kimura, ET, Zbaeren, J, Tobler, A, et al. Morphological and functional polymorphism within clonal thyroid nodules. J Clin Endocrinol Metab 1993;77:846851.Google Scholar
Kopp, P, Kimura, ET, Aeschimann, S, Oestreicher, M, Tobler, A, et al. Polyclonal and monoclonal thyroid nodules coexist within human multinodular goiters. J Clin Endocrinol Metab 1994;79:134139.Google Scholar
Mete, O, Asa, SL. Oncocytes, oxyphils, Hürthle, and Askanazy cells: morphological and molecular features of oncocytic thyroid nodules. Endocr Pathol 2010;21:1624.Google Scholar
Krohn, K, Paschke, R. Somatic mutations in thyroid nodular disease. Mol Genet Metab 2002;75:202208.Google Scholar
Hazard, JB, Kenyon, R. Atypical adenoma of the thyroid. Am Med Assoc Arch Pathol 1954;58: 554563.Google Scholar
Carney, JA, Ryan, J, Goellner, JR. Hyalinizing trabecular adenoma of the thyroid gland. Am J Surg Pathol 1987;11:583591.Google Scholar
Salvatore, G, Chiappetta, G, Nikiforov, YE, Decaussin-Petrucci, M, Fusco, A, et al. Molecular profile of hyalinizing trabecular tumours of the thyroid: high prevalence of RET/PTC rearrangements and absence of B-RAF and N-RAS point mutations. Eur J Cancer 2005;41:816821.Google Scholar
Lloyd, RV. Hyalinizing trabecular tumors of the thyroid: a variant of papillary carcinoma? Adv Anat Pathol 2002;9:711.Google Scholar
Lenggenhager, D, Maggio, EM, Moch, H, Rössle, M. HBME-1 expression in hyalinizing trabecular tumours of the thyroid gland. Histopathology 2013;62:10921097.Google Scholar
Gaffney, RL, Carney, JA, Sebo, TJ, Erickson, LA, Volante, M et al. Galectin-3 expression in hyalinizing trabecular tumors of the thyroid gland. Am J Surg Pathol 2003;27:494498.Google Scholar
Nosé, V, Volante, M, Papotti, M. Hyalinizing trabecular tumor of the thyroid: an update. Endocr Pathol 2008;19:18.Google Scholar
Carney, JA, Hirokawa, M, Lloyd, RV, Papotti, M, Sebo, TJ. Hyalinizing trabecular tumors of the thyroid gland are almost all benign. Am J Surg Pathol 2008;32:18771889.Google Scholar
Gowrishankar, S, Pai, SA, Carney, JA. Hyalinizing trabecular carcinoma of the thyroid gland. Histopathology 2008;52:529531.Google Scholar
Mete, O, Asa, SL. Images in endocrine pathology: thyrotoxicosis associated with destructive thyroiditis. Endocr Pathol 2012;23:212214.Google Scholar
Fischer, S, Asa, SL. Application of immunohistochemistry to thyroid neoplasms. Arch Pathol Lab Med 2008;132:359372.Google Scholar
Ordóñez, NG. Value of PAX 8 immunostaining in tumor diagnosis: a review and update. Adv Anat Pathol 2012;19:140151.Google Scholar
Nonaka, D. Study of parathyroid transcription factor GCM2 expression in parathyroid lesions. Am J Surg Pathol 2011;35:145151.Google Scholar
Ordóñez, NG. Value of GATA3 immunostaining in tumor diagnosis: a review. Adv Anat Pathol 2013;20:352360.Google Scholar
Mete, O, Asa, SL. Composite medullary and papillary thyroid carcinoma in a patient with MEN2B: case report and review of c-cell lesions of the thyroid. Pathol Case Rev 2009;14:208213.Google Scholar
Barletta, JA, Bellizzi, AM, Hornick, JL. Immunohistochemical staining of thyroidectomy specimens for PTEN can aid in the identification of patients with Cowden syndrome. Am J Surg Pathol 2011;35:15051511.Google Scholar
Asa, SL, Mete, O. Tumors of endocrine system. In Bartlett, J Shaaban, A, Schmitt, F, eds. Molecular Pathology: A Practical Guide for the Surgical Pathologist and Cytopathologist. Cambridge, UK: Cambridge University Press, 2016.Google Scholar
Ghossein, RA, Rosai, J, Heffess, C. Dyshormonogenetic goiter: a clinicopathologic study of 56 cases. Endocr Pathol 1997;8:283292.Google Scholar

References

DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004.Google Scholar
Mete, O, Asa, SL. Pitfalls in the diagnosis of follicular epithelial proliferations of the thyroid. Adv Anat Pathol 2012;19:363373.Google Scholar
Baloch, ZW, Livolsi, VA. Follicular-patterned afflictions of the thyroid gland: reappraisal of the most discussed entity in endocrine pathology. Endocr Pathol 2014;25:1220.Google Scholar
Boerner, SL, Asa, SL. Biopsy Interpretation of the Thyroid. Philadelphia, PA: Lippincott Williams & Wilkins, 2010.Google Scholar
Asa, SL, Mete, O. Thyroid neoplasms of follicular cell derivation: a simplified approach. Semin Diagn Pathol 2013;30:178185.Google Scholar
American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper, DS, Doherty, GM, Haugen, BR, Kloos, RT, Lee, SL, Mandel, SJ, Mazzaferri, EL, McIver, B, Pacini, F, Schlumberger, M, Sherman, SI, Steward, DL, Tuttle, RM. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009;19:11671214.Google Scholar
Chaikhoutdinov, I, Mitzner, R, Goldenberg, D. Incidental thyroid nodules: incidence, evaluation, and outcome. Otolaryngol Head Neck Surg 2014;150:939942.Google Scholar
Howlader, N, Noone, AM, Krapcho, M, Garshell, J, Neyman, N, Altekruse, SF, Kosary, CL, Yu, M, Ruhl, J, Tatalovich, Z, Cho, H, Mariotto, A, Lewis, DR, Chen, HS, Feuer, EJ, Cronin, KA. 2013 SEER Cancer Statistics Review, 1975–2010. Bethesda, MD: National Cancer Institute, 2013 (http://seer.cancer.gov/csr/1975_2010/, updated June 2013, accessed 4 October 2015).Google Scholar
Mete, O, Asa, SL. Pathological definition and clinical significance of vascular invasion in thyroid carcinomas of follicular epithelial derivation. Mod Pathol 2011;24:15451552.Google Scholar
Mete, O, Asa, SL. Oncocytes, oxyphils, Hürthle, Askanazy cells: morphological and molecular features of oncocytic thyroid nodules. Endocr Pathol 2010;21:1624.Google Scholar
Ahn, HS, Kim, HJ, Welch, HG. Korea's thyroid-cancer “epidemic”: screening and overdiagnosis. N Engl J Med 2014;371:17651767.Google Scholar
Jung, CK, Little, MP, Lubin, JH, Brenner, AV, Wells, SA Jr., Sigurdson, AJ, Nikiforov, YE. The increase in thyroid cancer incidence during the last four decades is accompanied by a high frequency of BRAF mutations and a sharp increase in RAS mutations. J Clin Endocrinol Metab 2014;99:E276E285.Google Scholar
Hsiao, SJ, Nikiforov, Y. Molecular approaches to thyroid cancer diagnosis. Endocr Relat Cancer 2014;21:T301T313.Google Scholar
Soares, P, Celestino, R, Gaspar da Rocha, A, Sobrinho-Simões, M. Papillary thyroid microcarcinoma: how to diagnose and manage this epidemic? Int J Surg Pathol 2014;22:113119.Google Scholar
Smith, JJ, Chen, X, Schneider, DF, Nookala, R, Broome, JT, Sippel, RS, Chen, H, Solorzano, CC. Toxic nodular goiter and cancer: a compelling case for thyroidectomy. Ann Surg Oncol 2013;20:13361340.Google Scholar
Lee, ES, Kim, JH, Na, DG, Paeng, JC, Min, HS, Choi, SH, Sohn, CH, Chang, KH. Hyperfunction thyroid nodules: their risk for becoming or being associated with thyroid cancers. Korean J Radiol 2013;14:643652.Google Scholar
Führer, D, Tannapfel, A, Sabri, O, Lamesch, P, Paschke, R. Two somatic TSH receptor mutations in a patient with toxic metastasising follicular thyroid carcinoma and non-functional lung metastases. Endocr Relat Cancer 2003;10:591600.Google Scholar
Lado-Abeal, J, Celestino, R, Bravo, SB, Garcia-Rendueles, ME, de la Calzada, J, Castro, I, Castro, P, Espadinha, C, Palos, F, Soares, P, Alvarez, CV, Sobrinho-Simões, M, Cameselle-Teijeiro, J. Identification of a paired box gene 8-peroxisome proliferator-activated receptor gamma (PAX8-PPARgamma) rearrangement mosaicism in a patient with an autonomous functioning follicular thyroid carcinoma bearing an activating mutation in the TSH receptor. Endocr Relat Cancer 2010;17:599610.Google Scholar
Nosé, V. Familial thyroid cancer: a review. Mod Pathol 2011;24(suppl 2):S19S33.Google Scholar
Prazeres, H, Torres, J, Soares, P, Sobrinho-Simões, M. The familial counterparts of follicular cell-derived thyroid tumors. Int J Surg Pathol 2010;18:233234.Google Scholar
Nosé, V. Familial follicular cell tumors: classification and morphological characteristics. Endocr Pathol 2010;21:219226.Google Scholar
Nosé, V. Thyroid cancer of follicular cell origin in inherited tumor syndromes. Adv Anat Pathol 2010;17:428436.Google Scholar
Zhang, Y, Nosé, V. Endocrine tumors as part of inherited tumor syndromes. Adv Anat Pathol 2011;18:206218.Google Scholar
Khan, A, Smellie, J, Nutting, C, Harrington, K, Newbold, K. Familial nonmedullary thyroid cancer: a review of the genetics. Thyroid 2010;20:795780.Google Scholar
Sheth, S. Role of ultrasonography in thyroid disease. Otolaryngol Clin North Am 2010;43:239255.Google Scholar
Horvath, E, Majlis, S, Rossi, R, Franco, C, Niedmann, JP, Castro, A, Dominguez, M. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. J Clin Endocrinol Metab 2009;94:17481751.Google Scholar
Tae, HJ, Lim, DJ, Baek, KH, Park, WC, Lee, YS, Choi, JE, Lee, JM, Kang, MI, Cha, BY, Son, HY, Lee, KW, Kang, SK. Diagnostic value of ultrasonography to distinguish between benign and malignant lesions in the management of thyroid nodules. Thyroid 2007;17:461466.Google Scholar
Ito, Y, Amino, N, Yokozawa, T, Ota, H, Ohshita, M, Murata, N, Morita, S, Kobayashi, K, Miyauchi, A. Ultrasonographic evaluation of thyroid nodules in 900 patients: comparison among ultrasonographic, cytological, and histological findings. Thyroid 2007;17:12691276.Google Scholar
Salmaslioglu, A, Erbil, Y, Dural, C, Issever, H, Kapran, Y, Ozarmagan, S, Tezelman, S. Predictive value of sonographic features in preoperative evaluation of malignant thyroid nodules in a multinodular goiter. World J Surg 2008;32:19481954.Google Scholar
Kwak, JY, Han, KH, Yoon, JH, Moon, HJ, Son, EJ, Park, SH, Jung, HK, Choi, JS, Kim, BM, Kim, EK. Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology 2011;260:892899.Google Scholar
Nam-Goong, IS, Kim, HY, Gong, G, Lee, HK, Hong, SJ, Kim, WB, Shong, YK. Ultrasonography-guided fine-needle aspiration of thyroid incidentaloma: correlation with pathological findings. Clin Endocrinol (Oxf) 2004;60:2128.Google Scholar
Frates, MC, Benson, CB, Doubilet, PM, Kunreuther, E, Contreras, M, Cibas, ES, Orcutt, J, Moore, FD Jr., Larsen, PR, Marqusee, E, Alexander, EK. Prevalence and distribution of carcinoma in patients with solitary and multiple thyroid nodules on sonography. J Clin Endocrinol Metab 2006;91:34113417.Google Scholar
Gustafson, S, Zbuk, KM, Scacheri, C, Eng, C. Cowden syndrome. Semin Oncol 2007;34:428434.Google Scholar
Ngeow, J, Ni, Y, Tohme, R, Song Chen, F, Bebek, G, Eng, C. Germline alterations in RASAL1 in Cowden syndrome patients presenting with follicular thyroid cancer and in individuals with apparently sporadic epithelial thyroid cancer. J Clin Endocrinol Metab 2014;99: E13161321.Google Scholar
Xing, M. RASAL1 in thyroid cancer: promise from a new friend. J Clin Endocrinol Metab 2014;99:36193621.Google Scholar
Mahdi, H, Mester, JL, Nizialek, EA, Ngeow, J, Michener, C, Eng, C. Germline PTEN, SDHB–D, and KLLN alterations in endometrial cancer patients with Cowden and Cowden-like syndromes: an international, multicenter, prospective study. Cancer 2015;121:688696.Google Scholar
Ni, Y, He, X, Chen, J, Moline, J, Mester, J, Orloff, MS, Ringel, MD, Eng, C. Germline SDHx variants modify breast and thyroid cancer risks in Cowden and Cowden-like syndrome via FAD/NAD-dependent destabilization of p53. Hum Mol Genet 2012;21:300310.Google Scholar
Ngeow, J, Mester, J, Rybicki, LA, Ni, Y, Milas, M, Eng, C. Incidence and clinical characteristics of thyroid cancer in prospective series of individuals with Cowden and Cowden-like syndrome characterized by germline PTEN, SDH, or KLLN alterations. J Clin Endocrinol Metab 2011;96:E2063E2071.Google Scholar
Harach, HR, Williams, GT, Williams, ED. Familial adenomatous polyposis associated thyroid carcinoma: a distinct type of follicular cell neoplasm. Histopathology 1994;25:549561.Google Scholar
Kirschner, LS, Carney, JA, Pack, SD, Taymans, SE, Giatzakis, C, Cho, YS, Cho-Chung, YS, Stratakis, CA. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet 2000;26:8992.Google Scholar
Salpea, P, Stratakis, CA. Carney complex and McCune–Albright syndrome: an overview of clinical manifestations and human molecular genetics. Mol Cell Endocrinol 2014;386:8591.Google Scholar
Matyakhina, L, Pack, S, Kirschner, LS, Pak, E, Mannan, P, Jaikumar, J, Taymans, SE, Sandrini, F, Carney, JA, Stratakis, CA. Chromosome 2 (2p16) abnormalities in Carney complex tumours. J Med Genet 2003;40:268277.Google Scholar
Stratakis, CA, Courcoutsakis, NA, Abati, A, Filie, A, Doppman, JL, Carney, JA, Shawker, T. Thyroid gland abnormalities in patients with the syndrome of spotty skin pigmentation, myxomas, endocrine overactivity, and schwannomas (Carney complex). J Clin Endocrinol Metab 1997;82:20372043.Google Scholar
Weinstein, LS, Shenker, A, Gejman, PV, Merino, MJ, Friedman, E, Spiegel, AM. Activating mutations of the stimulatory G protein in the McCune–Albright syndrome. N Engl J Med 1991;325:16881695.Google Scholar
Doros, L, Schultz, KA, Stewart, DR, Bauer, AJ, Williams, G, Rossi, CT, Carr, A, Yang, J, Dehner, LP, Messinger, Y, Hill, AD.DICER-1 related disorders. In Pagon, RA, Adam, MP, Bird, TD, Dolan, CR, Fong, CT, Stephens, K eds. GeneReviews. Seattle, WA: University of Washington, 2014 (http://www.ncbi.nlm.nih.gov/books/NBK196157/, accessed 10 September 2015).Google Scholar
Rath, SR, Bartley, A, Charles, A, Powers, N, Baynam, G, Jones, T, Priest, JR, Foulkes, WD, Choong, CS. Multinodular goiter in children: an important pointer to a germline DICER1 mutation. J Clin Endocrinol Metab 2014;99:19471948.Google Scholar
Rio Frio, T, Bahubeshi, A, Kanellopoulou, C, Hamel, N, Niedziela, M, Sabbaghian, N, Pouchet, C, Gilbert, L, O'Brien, PK, Serfas, K, Broderick, P, Houlston, RS, Lesueur, F, Bonora, E, Muljo, S, Schimke, RN, Bouron-Dal Soglio, D, Arseneau, J, Schultz, KA, Priest, JR, Nguyen, VH, Harach, HR, Livingston, DM, Foulkes, WD, Tischkowitz, M. DICER1 mutations in familial multinodular goiter with and without ovarian Sertoli–Leydig cell tumors. JAMA 2011;305:6877.Google Scholar
Rossing, M, Gerdes, AM, Juul, A, Rechnitzer, C, Rudnicki, M, Nielsen, FC, Vo Hansen, T. A novel DICER1 mutation identified in a female with ovarian Sertoli-Leydig cell tumor and multinodular goiter: a case report. J Med Case Rep 2014;8:112.Google Scholar
Darrat, I, Bedoyan, JK, Chen, M, Schuette, JL, Lesperance, MM. Novel DICER1 mutation as cause of multinodular goiter in children. Head Neck 2013;35:E369371.Google Scholar
Winer, DA, Winer, S, Rotstein, L, Asa, SL, Mete, O. Villous papillary thyroid carcinoma: a variant associated with marfan syndrome. Endocr Pathol 2012;23:254259.Google Scholar
Nikiforov, YE. Radiation-induced thyroid cancer: what we have learned from Chernobyl. Endocr Pathol 2006;17:307317.Google Scholar
Thomas, G, Unger, K, Krznaric, M, Galpine, A, Bethel, J, Tomlinson, C, Woodbridge, M, Butcher, S. The Chernobyl tissue bank: a repository for biomaterial and data used in integrative and systems biology modeling the human response to radiation. Genes (Basel) 2012;3:278290.Google Scholar
Fridman, M, Savva, N, Krasko, O, Mankovskaya, S, Branovan, DI, Schmid, KW, Demidchik, Y. Initial presentation and late results of treatment of post-Chernobyl papillary thyroid carcinoma in children and adolescents of Belarus. J Clin Endocrinol Metab 2014;99:29322941.Google Scholar
Cardis, E, Howe, G, Ron, E, Bebeshko, V, Bogdanova, T, Bouville, A, Carr, Z, Chumak, V, Davis, S, Demidchik, Y, Drozdovitch, V, Gentner, N, Gudzenko, N, Hatch, M, Ivanov, V, Jacob, P, Kapitonova, E, Kenigsberg, Y, Kesminiene, A, Kopecky, KJ, Kryuchkov, V, Loos, A, Pinchera, A, Reiners, C, Repacholi, M, Shibata, Y, Shore, RE, Thomas, G, Tirmarche, M, Yamashita, S, Zvonova, I. Cancer consequences of the Chernobyl accident: 20 years on. J Radiol Prot 2006;26:127140.Google Scholar
Leeman-Neill, RJ, Kelly, LM, Liu, P, Brenner, AV, Little, MP, Bogdanova, TI, Evdokimova, VN, Hatch, M, Zurnadzy, LY, Nikiforova, MN, Yue, NJ, Zhang, M, Mabuchi, K, Tronko, MD, Nikiforov, YE. ETV6–NTRK3 is a common chromosomal rearrangement in radiation-associated thyroid cancer. Cancer 2014;120:799807.Google Scholar
Ory, C, Ugolin, N, Hofman, P, Schlumberger, M, Likhtarev, IA, Chevillard, S. Comparison of transcriptomic signature of post-Chernobyl and postradiotherapy thyroid tumors. Thyroid 2013;23:13901400.Google Scholar
Tronko, M, Bogdanova, T, Voskoboynyk, L, Zurnadzhy, L, Shpak, V, Gulak, L. Radiation induced thyroid cancer: fundamental and applied aspects. Exp Oncol 2010;32:200204.Google Scholar
Ricarte-Filho, JC, Li, S, Garcia-Rendueles, ME, Montero-Conde, C, Voza, F, Knauf, JA, Heguy, A, Viale, A, Bogdanova, T, Thomas, GA, Mason, CE, Fagin, JA. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers. J Clin Invest 2013;123:49354944.Google Scholar
Santoro, M, Carlomagno, F. Oncogenic rearrangements driving ionizing radiation-associated human cancer. J Clin Invest 2013;123:45664568.Google Scholar
Vejbjerg, P, Knudsen, N, Perrild, H, Carlé, A, Laurberg, P, Pedersen, IB, Rasmussen, LB, Ovesen, L, Jørgensen, T. Effect of a mandatory iodization program on thyroid gland volume based on individuals' age, gender, and preceding severity of dietary iodine deficiency: a prospective, population-based study. J Clin Endocrinol Metab 2007;92:13971401.Google Scholar
Belfiore, A, La Rosa, GL, La Porta, GA, Giuffrida, D, Milazzo, G, Lupo, L, Regalbuto, C, Vigneri, R. Cancer risk in patients with cold thyroid nodules: relevance of iodine intake, sex, age, and multinodularity. Am J Med 1992;93:363369.Google Scholar
Albores-Saavedra, J, Henson, DE, Glazer, E, Schwartz, AM. Changing patterns in the incidence and survival of thyroid cancer with follicular phenotype–papillary, follicular, and anaplastic: a morphological and epidemiological study. Endocr Pathol 2007;18:17.Google Scholar
Poncin, S, Van Eeckoudt, S, Humblet, K, Colin, IM, Gérard, AC. Oxidative stress: a required condition for thyroid cell proliferation. Am J Pathol 2010;176:13551363.Google Scholar
Poncin, S, Gérard, AC, Boucquey, M, Senou, M, Calderon, PB, Knoops, B, Lengelé, B, Many, MC, Colin, IM. Oxidative stress in the thyroid gland: from harmlessness to hazard depending on the iodine content. Endocrinology 2008;149:424433.Google Scholar
Karbownik-Lewiska, M, Kokoszko-Bilska, A. Oxidative damage to macromolecules in the thyroid: experimental evidence. Thyroid Res 2012;5:25.Google Scholar
Pitoia, F, Abelleira, E, Bueno, F, Urciuoli, C, Schmidt, A, Niepomniszcze, H. Insulin resistance is another factor that increases the risk of recurrence in patients with thyroid cancer. Endocrine 2015;48:894901.Google Scholar
Bae, MJ, Kim, SS, Kim, WJ, Yi, YS, Jeon, YK, Kim, BH, Lee, BJ, Lee, JC, Kim, IJ, Wang, SG, Kim, YK. High prevalence of papillary thyroid cancer in Korean women with insulin resistance. Head Neck 2014; doi: 10.1002/hed.23848.Google Scholar
Marcello, MA, Cunha, LL, Batista, FA, Ward, LS. Obesity and thyroid cancer. Endocr Relat Cancer 2014;21:T255271.Google Scholar
Pazaitou-Panayiotou, K, Polyzos, SA, Mantzoros, CS. Obesity and thyroid cancer: epidemiologic associations and underlying mechanisms. Obes Rev 2013;14:10061022.Google Scholar
Malaguarnera, R, Morcavallo, A, Belfiore, A. The insulin and IGF-I pathway in endocrine glands carcinogenesis. J Oncol 2012;2012:635614.Google Scholar
Guo, S. Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol 2014;220:T1T23.Google Scholar
Vella, V, Sciacca, L, Pandini, G, Mineo, R, Squatrito, S, Vigneri, R, Belfiore, A. The IGF system in thyroid cancer: new concepts. Mol Pathol 2001;54:121124.Google Scholar
Banu, KS, Govindarajulu, P, Aruldhas, MM. Testosterone and estradiol have specific differential modulatory effect on the proliferation of human thyroid papillary and follicular carcinoma cell lines independent of TSH action. Endocr Pathol 2001;12:315327.Google Scholar
Adamson, LA, Fowler, LJ, Clare-Salzler, MJ, Hobbs, JA. Parvovirus B19 infection in Hashimoto's thyroiditis, papillary thyroid carcinoma, and anaplastic thyroid carcinoma. Thyroid 2011;21:411417.Google Scholar
Adamson-Small, LA, Fowler, LJ, Hobbs, JA. Parvovirus b19 persistence in abnormal thyroid tissue of a mature cystic ovarian teratoma: a case report. Endocr Pathol 2014;25:339343.Google Scholar
Stamatiou, D, Derdas, SP, Symvoulakis, EK, Sakorafas, GH, Zoras, O, Spandidos, DA. Investigation of BK virus, Epstein–Barr virus and human papillomavirus sequences in postoperative thyroid gland specimens. Int J Biol Markers 2014; 30:e104e110.Google Scholar
Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014;159:676690.Google Scholar
Mete, O, Asa, SL. Precursor lesions of endocrine system neoplasms. Pathology 2013;45:316330.Google Scholar
Laury, AR, Bongiovanni, M, Tille, JC, Kozakewich, H, Nosé, V. Thyroid pathology in PTEN-hamartoma tumor syndrome: characteristic findings of a distinct entity. Thyroid 2011;21:135144.Google Scholar
Chui, MH, Cassol, CA, Asa, SL, Mete, O. Follicular epithelial dysplasia of the thyroid: morphological and immunohistochemical characterization of a putative preneoplastic lesion to papillary thyroid carcinoma in chronic lymphocytic thyroiditis. Virchows Arch 2013;462:557563.Google Scholar
Cassol, CA, Asa, SL. Molecular pathology of thyroid. Diagn Histopathol 2011;17:124139.Google Scholar
Nikiforov, YE. Molecular analysis of thyroid tumors. Mod Pathol 2011;24(suppl 2):S34S43.Google Scholar
Xing, M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer 2013;13, 184199.Google Scholar
Maurer, G, Tarkowski, B, Baccarini, M. Raf kinases in cancer: roles and therapeutic opportunities. Oncogene 2011;30:34773488.Google Scholar
Xing, M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev 2007;28: 742e62.Google Scholar
Vadysirisack, DD, Venkateswaran, A, Zhang, Z, Jhiang, SM. MEK signaling modulates sodium iodide symporter at multiple levels and in a paradoxical manner. Endocr Relat Cancer 2007;14:421432.Google Scholar
Gao, WL, Wie, LL, Chao, YG, Wie, L, Song, TL. Prognostic prediction of BRAF(V600E) and its relationship with sodium iodide symporter in classic variant of papillary thyroid carcinomas. Clin Lab. 2012;58:919926.Google Scholar
Fenton, MS, Marion, KM, Salem, AK, Hogen, R, Naeim, F, Hershman, JM. Sunitinib inhibits MEK/ERK and SAPK/JNK pathways and increases sodium/iodide symporter expression in papillary thyroid cancer. Thyroid 2010;20:965974.Google Scholar
D'Agostino, M, Sponziello, M, Puppin, C, Celano, M, Maggisano, V, Baldan, F, Biffoni, M, Bulotta, S, Durante, C, Filetti, S, Damante, G, Russo, D. Different expression of TSH receptor and NIS genes in thyroid cancer: role of epigenetics. J Mol Endocrinol 2014;52:121131.Google Scholar
Pierotti, MA., Bongarzone, I., Borrello, MG, Mariani, C., Miranda, C, Sozzi, G, Greco, A. Rearrangements of TRK proto-oncogene in papillary thyroid carcinomas. J Endocrinol Invest 1995;18: 130133.Google Scholar
McFadden, DG, Dias-Santagata, D, Sadow, PM, Lynch, KD, Lubitz, C, Donovan, SE, Zheng, Z, Le, L, Iafrate, AJ, Daniels, GH. Identification of oncogenic mutations and gene fusions in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab 2014;99:E24572462.Google Scholar
Ciampi, R, Zhu, Z, Nikiforov, YE. BRAF copy number gains in thyroid tumors detected by fluorescence in situ hybridization. Endocr Pathol 2005;16:99105.Google Scholar
Hamatani, K, Mukai, M, Takahashi, K, Hayashi, Y, Nakachi, K, Kusunoki, Y. Rearranged anaplastic lymphoma kinase (ALK) gene in adult-onset papillary thyroid cancer amongst atomic bomb survivors. Thyroid 2012;22:11531159.Google Scholar
Park, G, Kim, TH, Lee, HO, Lim, JA, Won, JK, Min, HS, Lee, KE, Park do, J, Park, YJ, Park, WY. Standard immunohistochemistry efficiently screens for anaplastic lymphoma kinase rearrangements in differentiated thyroid cancer. Endocr Relat Cancer 2015;22:5563.Google Scholar
Pérot, G, Soubeyran, I, Ribeiro, A, Bonhomme, B, Savagner, F, Boutet-Bouzamondo, N, Hostein, I, Bonichon, F, Godbert, Y, Chibon, F. Identification of a recurrent STRN/ALK fusion in thyroid carcinomas. PLOS ONE 2014;9:e87170.Google Scholar
Asa, SL, Mete, O. Tumors of the endocrine system. In Bartlett, J Shaaban, A, Schmitt, F, eds. Molecular Pathology: A Practical Guide for the Surgical Pathologist and Cytopathologist. Cambridge, UK: Cambridge University Press, 2016.Google Scholar
He, H, Jazdzewski, K, Li, W, Liyanarachchi, S, Nagy, R, Volinia, S, Calin, GA, Liu, CG, Franssila, K, Suster, S, Kloos, RT, Croce, CM, de la Chapelle, A. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 2005;102:1907519080.Google Scholar
Pallante, P, Visone, R, Ferracin, M, Ferraro, A, Berlingieri, MT, Troncone, G, Chiappetta, G, Liu, CG, Santoro, M, Negrini, M, Croce, CM, Fusco, A. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer 2006;13:497508.Google Scholar
Felli, N, Fontana, L, Pelosi, E, Botta, R, Bonci, D, Facchiano, F, Liuzzi, F, Lulli, V, Morsilli, O, Santoro, S, Valtieri, M, Calin, GA, Liu, CG, Sorrentino, A, Croce, CM, Peschle, C. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 2005;102:1808118086.Google Scholar
Weber, F, Teresi, RE, Broelsch, CE, Frilling, A, Eng, C. A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma. J Clin Endocrinol Metab 2006;91:3584e91.Google Scholar
Visone, R, Russo, L, Pallante, P, De Martino, I, Ferraro, A, Leone, V, Borbone, E, Petrocca, F, Alder, H, Croce, CM, Fusco, A. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer 2007;14:791798.Google Scholar
Nikiforova, MN, Tseng, GC, Steward, D, Diorio, D, Nikiforov, YE. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab 2008;93:1600e8.Google Scholar
Kim, HJ, Kim, YH, Lee, DS, Chung, JK, Kim, S. In vivo imaging of functional targeting of miR-221 in papillary thyroid carcinoma. J Nucl Med 2008;49:1686e93.Google Scholar
Tetzlaff, MT, Liu, A, Xu, X, Master, SR, Baldwin, DA, Tobias, JW, Livolsi, VA, Baloch, ZW. Differential expression of miRNAs in papillary thyroid carcinoma compared to multinodular goiter using formalin fixed paraffin embedded tissues. Endocr Pathol 2007;18:163173.Google Scholar
Peng, Y, Li, C, Luo, DC, Ding, JW, Zhang, W, Pan, G. Expression profile and clinical significance of microRNAs in papillary thyroid carcinoma. Molecules. 2014;19:1158611599.Google Scholar
Máximo, V, Lima, J, Prazeres, H, Soares, P, Sobrinho-Simões, M. The biology and the genetics of Hürthle cell tumors of the thyroid. Endocr Relat Cancer 2012;19:R131R147.Google Scholar
Bonora, E, Porcelli, AM, Gasparre, G, Biondi, A, Ghelli, A, Carelli, V, Baracca, A, Tallini, G, Martinuzzi, A, Lenaz, G, Rugolo, M, Romeo, G. Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III. Cancer Res 2006;66:60876096.Google Scholar
Máximo, V, Sobrinho-Simões, M. Mitochondrial DNA “common” deletion in Hürthle cell lesions of the thyroid. J Pathol 2000;192:561562.Google Scholar
Máximo, V, Sobrinho-Simões, M. Hürthle cell tumours of the thyroid. A review with emphasis on mitochondrial abnormalities with clinical relevance. Virchows Arch 2000;437:107115.Google Scholar
Rogounovitch, T, Saenko, V, Yamashita, S. Mitochondrial DNA and human thyroid diseases. Endocr J 2004;51:265277.Google Scholar
Máximo, V, Botelho, T, Capela, J, Soares, P, Lima, J, Taveira, A, Amaro, T, Barbosa, AP, Preto, A, Harach, HR, Williams, D, Sobrinho-Simões, M. Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hürthle cell) tumours of the thyroid. Br J Cancer 2005;92:18921898.Google Scholar
Harach, HR, Lesueur, F, Amati, P, Brown, A, Canzian, F, Kraimps, JL, Levillain, P, Menet, E, Romeo, G, Bonneau, D. Histology of familial thyroid tumours linked to a genemapping to chromosome 19p13.2. J Pathol 1999;189:387393.Google Scholar
Asa, SL. My approach to oncocytic tumours of the thyroid. J Clin Pathol 2004;57:225232.Google Scholar
Mete, O, Rotstein, L, Asa, SL. Controversies in thyroid pathology: thyroid capsule invasion and extrathyroidal extension. Ann Surg Oncol 2010;17:386391.Google Scholar
Asa, SL, Giordano, TJ, LiVolsi, VA. Implications of the TCGA genomic characterization of papillary thyroid carcinoma for thyroid pathology: does follicular variant papillary thyroid carcinoma exist? Thyroid 2015;25:12.Google Scholar
Lindsay, S. Carcinoma of the Thyroid Gland. A Clinical and Pathological Study of 293 Patients at the University of California Hospital. Springfield, IL: Charles C Thomas, 1960.Google Scholar
Chem, KT, Rosai, J. Follicular variant of thyroid papillary carcinoma: a clinicopathologic study of six cases. Am J Surg Pathol 1977;1:123130.Google Scholar
Rosai, J, Carcangiu, ML, DeLellis, RA. Atlas of Tumor Pathology, 3rd Series, Fascicle 5: Tumors of the Thyroid Gland. Washington DC: Armed Forces Institute of Pathology, 1992.Google Scholar
LiVolsi, VA. Papillary thyroid carcinoma: an update. Mod Pathol 2011;24: S1S9.Google Scholar
Serra, S, Asa, SL. Controversies in thyroid pathology: the diagnosis of follicular neoplasms. Endocr Pathol 2008;19:156165.Google Scholar
LiVolsi, VA, Baloch, ZW. The many faces of follicular variant of papillary thyroid carcinoma. Pathol Case Rev 2009;14:214218.Google Scholar
Elsheikh, TM, Asa, SL, Chan, JK, DeLellis, RA, Heffess, CS, LiVolsi, VA, Wenig, BM. Interobserver and intraobserver variation among experts in the diagnosis of thyroid follicular lesions with borderline nuclear features of papillary carcinoma. Am J Clin Pathol 2008;130:736744.Google Scholar
Lloyd, RV, Erickson, LA, Casey, MB, Lam, KY, Lohse, CM, Asa, SL, Chan, JK, DeLellis, RA, Harach, HR, Kakudo, K, LiVolsi, VA, Rosai, J, Sebo, TJ, Sobrinho-Simoes, M, Wenig, BM, Lae, ME. Observer variation in the diagnosis of follicular variant of papillary thyroid carcinoma. Am J Surg Pathol 2004;28:13361340.Google Scholar
Ghossein, R. Problems and controversies in the histopathology of thyroid carcinomas of follicular cell origin. Arch Pathol Lab Med 2009;133:683691.Google Scholar
Ghossein, R. Update to the College of American Pathologists reporting on thyroid carcinomas. Head Neck Pathol 2009;3:8693.Google Scholar
Nikiforov, YE, Biddinger, PW, Thompson, LDR. Diagnostic Pathology and Molecular Genetics of the Thyroid. A Comprehensive Guide for Practicing Thyroid Pathology. Baltimore, MD: Lippincott Williams &Wilkins, 2009.Google Scholar
LiVolsi, VA, Baloch, ZW. Follicular-patterned tumors of the thyroid: the battle of benign vs. malignant vs. so-called uncertain. Endocr Pathol 2011;22:184189.Google Scholar
DeGroot, LJ, Kaplan, EL, Shukla, MSM, Salti, G, Straus, FH. Morbidity and mortality in follicular thyroid carcinoma. J Clin Endocrinol Metab 1995;80:29462953.Google Scholar
Furlan, JC, Bedrad, YC, Rosen, IB. Clinicopathologic significance of histologic vascular invasion in papillary and follicular thyroid carcinomas. J Am Coll Surg 2004;198:341348.Google Scholar
Ozaki, O, Ito, K, Sugino, K. Clinico-pathologic study of pulmonary metastasis of differentiated thyroid carcinoma: age-, sex-, and histology-matched case–control study. Int Surg 1993;78:218220.Google Scholar
Simpson, WJ, McKinney, SE, Carruthers, JS, Gospodarowicz, MK, Sutcliffe, SB, Panzarella, T. Papillary and follicular thyroid cancer: prognostic factors in 1578 patients. Am J Med 1987;83:479488.Google Scholar
Ramsed, JD. Angiogenesis of the thyroid gland. J Endocrinol 2000;166:475480.Google Scholar
Mills, SE. Histology for Pathologists, 3rd edn. Philadelphia PA: Lippincott Williams & Wilkins, 2007.Google Scholar
Foschini, MP, Papotti, M, Parmeggiani, A, Tallini, G, Castaldini, L, Meringolo, D, Eusebi, V. Three-dimensional reconstruction of vessel distribution in benign and malignant lesions of thyroid. Virchows Arch 2004;445:189198.Google Scholar
Kumar, V, Abbas, AK, Fausto, N, Aster, JC, eds. Robbins and Cotran Pathologic Basis of Disease, 8th edn. Philadelphia PA: Elsevier-Saunders, 2010.Google Scholar
Crissman, JD, Hatfield, JS, Menter, DG, Sloane, B, Honn, KV. Morphological study of the interaction of Intravascular tumor cells with endothelial cells and subendothelial matrix. Cancer Res 1988;48:40654072.Google Scholar
Hejna, M, Raderer, M, Zielinsky, CC. Inhibition of metastases by anticoagulants. J Nat Cancer Inst 1999;91:2236.Google Scholar
Letai, A, Kuter, DI. Cancer, coagulation, and anticoagulation. Oncologist 1999;4:443449.Google Scholar
Loreto, MF, De Martinis, M, Corsi, MP, Modesti, M, Ginaldi, L. Coagulation and cancer: implications for diagnosis and management. Pathol Oncol Res 2000;6:301312.Google Scholar
Nash, GF, Walsh, DC, Kakkar, AK. The role of the coagulation system in tumour angiogenesis. Lancet Oncol 2001;2:608613.Google Scholar
Trikha, M, Nakada, MT. Platelets and cancer: implications for antiangiogenic therapy. Semin Thromb Haemost 2002;28:3944.Google Scholar
Gay, LJ, Felding-Habermann, B. Contribution of platelets to tumour metastasis. Nat Rev Cancer 2011;11:123134.Google Scholar
Seethala, RR, Asa, SL, Carty, SE, Hodak, SP, McHugh, JB, Richardson, MS, Shah, J, Thompson, LDR, Nikiforov, YE. The College of American Pathologists Cancer Checklists: Protocol for the Examination of Specimens from Patients with Carcinomas of the Thyroid Gland. Northfield, IL: College of American Pathologists, 2014 (http://www.cap.org/apps/docs/committees/cancer/cancer_protocols/2009/Thyroid_09protocol.pdf, accessed 4 October 2015).Google Scholar
Lang, W, Choritz, H, Hundeshagen, H. Risk factors in follicular thyroid carcinomas: a retrospective follow-up study covering a 14-year period with emphasis on morphological findings. Am J Surg Pathol 1986;10:246255.Google Scholar
Erovic, BM, Kim, D, Cassol, C, Goldstein, DP, Irish, JC, Asa, SL, Mete, O.Prognostic and predictive markers in medullary thyroid carcinoma. Endocr Pathol 2012;23:232242.Google Scholar
Erovic, BM, Harris, L, Jamali, M, Goldstein, DP, Irish, JC, Asa, SL, Mete, O. Biomarkers of parathyroid carcinoma. Endocr Pathol 2012;23:221231.Google Scholar
Erovic, BM, Goldstein, DP, Kim, D, Mete, O, Brierley, J, Tsang, R, Freeman, JL, Asa, SL, Rotstein, L, Irish, JC. Parathyroid cancer: outcome analysis of 16 patients treated at the Princess Margaret Hospital. Head Neck 2013;35:3539.Google Scholar
Standring, S. Thyroid gland. In Stranding, S, ed. Gray's Anatomy. The Anatomical Basis of Clinical Practice, 39th edn. Edinburgh: Churchill Livingstone, 2005:560564.Google Scholar
Stewart, WB, Rizzolo, LL. Embryology and surgical anatomy of the thyroid and parathyroid glands. In Oertli, D, Udelsman, R, eds. Surgery of the Thyroid and Parathyroid Glands. New York: Springer, 2007:1320.Google Scholar
Ranade, AV, Rai, R, Pai, MM, Nayak, SR, Prakash Krisnamurthy, A, Narayana, S. Anatomical variations of the thyroid gland: possible surgical implications. Singapore Med J 2008;49:831834.Google Scholar
Loukas, M, Merbs, W, Tubbs, RS, Curry, B, Jordan, R. Levator glandulae thyroideae muscle with three slips. Anat Sci Int 2008;83:273276.Google Scholar
Niu, D, Murata, S, Kondo, T, Nakazawa, T, Kawasaki, T, Ma, D, Yamane, T, Nakamura, N, Katoh, R. Involvement of centrosomes in nuclear irregularity of thyroid carcinoma cells. Virchows Arch 2009;455:149157.Google Scholar
Papotti, M, Manazza, AD, Chiarle, R, Bussolati, G. Confocal microscope analysis and tridimensional reconstruction of papillary thyroid carcinoma nuclei. Virchows Arch 2004;444:350355.Google Scholar
Rosai, J, Kuhn, E, Carcangiu, ML. Pitfalls in thyroid tumour pathology. Histopathology 2006;49:107120.Google Scholar
Al-Brahim, N, Asa, SL. Papillary thyroid carcinoma: an overview. Arch Pathol Lab Med 2006;130:10571062.Google Scholar
Albores-Saavedra, J, Gould, E, Vardaman, C, Vuitch, F. The macrofollicular variant of papillary thyroid carcinoma: a study of 17 cases. Hum Pathol 1991;22:11951205.Google Scholar
Jakubowski, M, Hunt, JL. BRAF mutational analysis in papillary carcinomas with mixed follicular and papillary growth patterns. Am J Surg Pathol 2009;33:15901593.Google Scholar
Howitt, BE, Jia, Y, Sholl, LM, Barletta, JA. Molecular alterations in partially-encapsulated or well circumscribed follicular variant of papillary thyroid carcinoma. Thyroid 2013;23:12561262.Google Scholar
Chetty, R. Follicular patterned lesions of the thyroid gland: a practical algorithmic approach. J Clin Pathol 2011;64:737741.Google Scholar
Liu, J, Singh, B, Tallini, G, Carlson, DL, Katabi, N, Shaha, A, Tuttle, RM, Ghossein, RA. Follicular variant of papillary thyroid carcinoma: a clinicopathologic study of a problematic entity. Cancer 2006;107:12551264.Google Scholar
Ghossein, R. Encapsulated malignant follicular cell-derived thyroid tumors. Endocr Pathol 2010;21:212218.Google Scholar
Vivero, M, Kraft, S, Barletta, JA. Risk stratification of follicular variant of papillary thyroid carcinoma. Thyroid 2013;23:273279.Google Scholar
Fridman, MV, Savva, NN, Krasko, OV, Zborovskaya, AA, Mankovskaya, SV, Kurt Werner, S, Demidchik, YE. Clinical and pathologic features of “sporadic” papillary thyroid carcinoma registered in the years 2005 to 2008 in children and adolescents of Belarus. Thyroid 2012;22:10161024.Google Scholar
LiVolsi, VA, Abrosimov, AA, Bogdanova, T, Fadda, G, Hunt, JL, Ito, M, Rosai, J, Thomas, GA, Williams, ED. The Chernobyl thyroid cancer experience: pathology. Clin Oncol 2011;23:261267.Google Scholar
Baloch, Z, LiVolsi, VA, Tondon, R. Aggressive variants of follicular cell derived thyroid carcinoma; the so called “real thyroid carcinomas.” J Clin Pathol 2013;66:733743.Google Scholar
Leonardo, E, Volante, M, Barbareschi, M, Cavazza, A, Dei Tos, AP, Bussolati, G, Papotti, M. Cell membrane reactivity of MIB-1 antibody to Ki67 in human tumors: fact or artifact? Appl Immunohistochem Mol Morphol 2007;15:220223.Google Scholar
Nosé, V, Volante, M, Papotti, M. Hyalinizing trabecular tumor of the thyroid: an update. Endocr Pathol 2008;19:18.Google Scholar
Carney, JA, Hirokawa, M, Lloyd, RV, Papotti, M, Sebo, TJ. Hyalinizing trabecular tumors of the thyroid gland are almost all benign. Am J Surg Pathol 2008;32:18771889.Google Scholar
Gowrishankar, S, Pai, SA, Carney, JA. Hyalinizing trabecular carcinoma of the thyroid gland. Histopathology 2008;52:529531.Google Scholar
Lenggenhager, D, Maggio, EM, Moch, H, Rössle, M. HBME-1 expression in hyalinizing trabecular tumours of the thyroid gland. Histopathology 2013;62:10921097.Google Scholar
Carney, JA, Ryan, J, Goellner, JR. Hyalinizing trabecular adenoma of the thyroid gland. Am J Surg Pathol 1987;11:583591.Google Scholar
Salvatore, G, Chiappetta, G, Nikiforov, YE, Decaussin-Petrucci, M, Fusco, A, Carney, JA, Santoro, M. Molecular profile of hyalinizing trabecular tumours of the thyroid: high prevalence of RET/PTC rearrangements and absence of B-Raf and N-Ras point mutations. Eur J Cancer 2005;41:816821.Google Scholar
Cheung, CC, Boerner, SL, MacMillan, CM, Ramyar, L, Asa, SL. Hyalinized trabecular tumor of the thyroid: a variant of papillary carcinoma proved by molecular genetics. Am J Surg Pathol 2000;24:16221626.Google Scholar
Gaffney, RL, Carney, JA, Sebo, TJ, Erickson, LA, Volante, M, Papotti, M, Lloyd, RV. Galectin-3 expression in hyalinizing trabecular tumors of the thyroid gland. Am J Surg Pathol 2003;27:494498.Google Scholar
Papotti, M, Volante, M, Giuliano, A, Fassina, A, Fusco, A, Bussolati, G, Santoro, M, Chiappetta, G. RET/PTC activation in hyalinizing trabecular tumors of the thyroid. Am J Surg Pathol 2000;24:16151621.Google Scholar
Vickery, AL Jr., Carcangiu, ML, Johannessen, JV, Sobrinho-Simoes, M. Papillary carcinoma. Semin Diagn Pathol 1985;2:90100.Google Scholar
McElvanna, K, McCusker, G, Stirling, I. Diffuse sclerosing variant of papillary thyroid carcinoma: a rare cause of goitre in a young patient. Ulster Med J 2007;76:113114.Google Scholar
Lam, AK, Lo, CY. Diffuse sclerosing variant of papillary carcinoma of the thyroid: a 35-year comparative study at a single institution. Ann Surg Oncol 2006;13:176181.Google Scholar
Carcangiu, ML, Bianchi, S. Diffuse sclerosing variant of papillary thyroid carcinoma. Clinicopathologic study of 15 cases. Am J Surg Pathol 1989;13:10411049.Google Scholar
Soares, J, Limbert, E, Sobrinho-Simoes, M. Diffuse sclerosing variant of papillary thyroid carcinoma. A clinicopathologic study of 10 cases. Pathol Res Pract 1989;185:200206.Google Scholar
Takagi, N, Hirokawa, M, Nobuoka, Y, Higuchi, M, Kuma, S, Miyauchi, A. Diffuse sclerosing variant of papillary thyroid carcinoma: a study of fine needle aspiration cytology in 20 patients. Cytopathology 2014;25:199204.Google Scholar
Regalbuto, C, Malandrino, P, Tumminia, A, Le Moli, R, Vigneri, R, Pezzino, V. A diffuse sclerosing variant of papillary thyroid carcinoma: clinical and pathologic features and outcomes of 34 consecutive cases. Thyroid 2011;21:383389.Google Scholar
Kameyama, K, Mukai, M, Takami, H, Ito, K. Cribriform–morular variant of papillary thyroid carcinoma: ultrastructural study and somatic/germline mutation analysis of the APC gene. Ultrastruct Pathol 2004;28:97102.Google Scholar
Xu, B, Yoshimoto, K, Miyauchi, A, Kuma, S, Mizusawa, N, Hirokawa, M, Sano, T. Cribriform–morular variant of papillary thyroid carcinoma: a pathological and molecular genetic study with evidence of frequent somatic mutations in exon 3 of the beta-catenin gene. J Pathol 2003;199:5867.Google Scholar
Cameselle-Teijeiro, J, Ruiz-Ponte, C, Loidi, L, Suarez-Peñaranda, J, Baltar, J, Sobrinho-Simoes, M. Somatic but not germline mutation of the APC gene in a case of cribriform–morular variant of papillary thyroid carcinoma. Am J Clin Pathol 2001;115:486493.Google Scholar
Ng, SB, Sittampalam, K, Goh, YH, Eu, KW. Cribriform–morular variant of papillary carcinoma: the sporadic counterpart of familial adenomatous polyposis-associated thyroid carcinoma. A case report with clinical and molecular genetic correlation. Pathology 2003;35:4246.Google Scholar
Cameselle-Teijeiro, J, Chan, JK. Cribriform–morular variant of papillary carcinoma: a distinctive variant representing the sporadic counterpart of familial adenomatous polyposis-associated thyroid carcinoma? Mod Pathol 1999;12:400411.Google Scholar
Hirokawa, M, Kuma, S, Miyauchi, A, Qian, ZR, Nakasono, M, Sano, T, Kakudo, K. Morules in cribriform–morular variant of papillary thyroid carcinoma: Immunohistochemical characteristics and distinction from squamous metaplasia. APMIS 2004;112:275282.Google Scholar
Levy, RA, Hui, VW, Sood, R, Fish, S, Markowitz, AJ, Wong, RJ, Guillem, JG. Cribriform–morular variant of papillary thyroid carcinoma: an indication to screen for occult FAP. Fam Cancer 2014;13:547551.Google Scholar
Ito, Y, Miyauchi, A, Ishikawa, H, Hirokawa, M, Kudo, T, Tomoda, C, Miya, A. Our experience of treatment of cribriform morular variant of papillary thyroid carcinoma; difference in clinicopathological features of FAP-associated andsporadic patients. Endocr J 2011;58:685689.Google Scholar
Yang, GC, Stern, CM, Messina, AV. Cystic papillary thyroid carcinoma in fine needle aspiration may represent a subset of the encapsulated variant in WHO classification. Diagn Cytopathol 2010;38:721726.Google Scholar
Chan, JK, Carcangiu, ML, Rosai, J. Papillary carcinoma of thyroid with exuberant nodular fasciitis-like stroma. Report of three cases. Am J Clin Pathol 1991;95:309314.Google Scholar
Basu, S, Nair, N, Shet, T, Borges, AM. Papillary thyroid carcinoma with exuberant nodular fasciitis-like stroma: treatment outcome and prognosis. J Laryngol Otol 2006;120:338342.Google Scholar
LiVolsi, VA, Asa, SL. Endocrine Pathology. Philadelphia, PA: Churchil Livingstone, 2002.Google Scholar
Yang, YJ, LiVolsi, VA, Khurana, KK. Papillary thyroid carcinoma with nodular fasciitis-like stroma. Pitfalls in fine-needle aspiration cytology. Arch Pathol Lab Med 1999;123:838841.Google Scholar
Vestfrid, MA. Papillary carcinoma of the thyroid gland with lipomatous stroma: report of a peculiar histological type of thyroid tumour. Histopathology 1986;10:97100.Google Scholar
Bisi, H, Longatto Filho, A, de Camargo, RY, Fernandes, VS. Thyroid papillary carcinoma lipomatous type: report of two cases. Pathologica 1993;85:761764.Google Scholar
Bruno, J, Ciancia, EM, Pingitore, R. Thyroid papillary adenocarcinoma; lipomatous-type. Virchows Arch A Pathol Anat Histopathol 1989;414:371373.Google Scholar
Akslen, LA, Maehle, BO. Papillary thyroid carcinoma with lipomatous stroma. Am J Surg Pathol 1997;21:12561257.Google Scholar
Ostrowski, MA, Asa, SL, Chamberlain, D, Moffar, FL. Myxomatous change in papillary carcinoma of thyroid. Surg Pathol. 1989;2:249256.Google Scholar
Kuma, S, Hirokawa, M, Miyauchi, A, Kakudo, K. Oncocytic thyroid carcinoma with extensive myxoid stroma. Histopathology 2003;42:514516.Google Scholar
Kondo, T, Kato, K, Nakazawa, T, Miyata, K, Murata, SI, Katoh, R. Mucinous carcinoma (poorly differentiated carcinoma with extensive extracellular mucin deposition) of the thyroid: a case report with immunohistochemical studies. Hum Pathol 2005;36:698701.Google Scholar
Cretney, A, Mow, C. Mucinous variant of follicular carcinoma of the thyroid gland. Pathology 2006;38:184186.Google Scholar
Murakami, S, Sakata, H, Okubo, K, Tsuji, Y, Kayano, H. Thyroid adenoma with extensive extracellular mucin deposition: report of a case. Surg Today 2007;37:226229.Google Scholar
Morrison, C, Wakely, P Jr. Aspiration cytopathology of metastatic mucinous papillary thyroid carcinoma. Mod Pathol 2001;14:361365.Google Scholar
Mlynek, ML, Richter, HJ, Leder, LD. Mucins in carcinomas of the thyroid. Cancer 1985;56: 26472650.Google Scholar
Chan, JKC, Tse, CC. Mucin production in metastatic papillary carcinoma of the thyroid. Hum Pathol 1988;19: 195200.Google Scholar
Ghossein, R, Livolsi, VA. Papillary thyroid carcinoma tall cell variant. Thyroid 2008;18:11791181.Google Scholar
LiVolsi, VA. Papillary carcinoma tall cell variant (TCV): a review. Endocr Pathol 2010;21:1215.Google Scholar
Silver, CE, Owen, RP, Rodrigo, JP, Rinaldo, A, Devaney, KO, Ferlito, A. Aggressive variants of papillary thyroid carcinoma. Head Neck 2011;33:10521059.Google Scholar
Abrosimov, A, Kozhushnaia, SM. Papillary thyroid carcinoma from tall and columnar cells. Arkh Patol 2011;73:5054.Google Scholar
Akslen, LA, LiVolsi, VA. Prognostic significance of histologic grading compared with subclassification of papillary thyroid carcinoma. Cancer 2000;88:19021908.Google Scholar
van den Brekel, MW, Hekkenberg, RJ, Asa, SL, Tomlinson, G, Rosen, IB, Freeman, JL. Prognostic features in tall cell papillary carcinoma and insular thyroid carcinoma. Laryngoscope 1997;107:254259.Google Scholar
Ganly, I, Ibrahimpasic, T, Rivera, M, Nixon, I, Palmer, F, Patel, SG, Tuttle, RM, Shah, JP, Ghossein, R. Prognostic implications of papillary thyroid carcinoma with tall-cell features. Thyroid 2014;24:662670.Google Scholar
Solomon, A, Gupta, PK, LiVolsi, VA, Baloch, ZW. Distinguishing tall cell variant of papillary thyroid carcinoma from usual variant of papillary thyroid carcinoma in cytologic specimens. Diagn Cytopathol 2002;27:143148.Google Scholar
Evans, HL. Columnar-cell carcinoma of the thyroid. A report of two cases of an aggressive variant of thyroid carcinoma. Am J Clin Pathol 1986;85:7780.Google Scholar
LiVolsi, VA. Surgical Pathology of The Thyroid. Philadelphia PA: WB Saunders, 1990.Google Scholar
Mizukami, Y, Nonomura, A, Michigishi, T, Noguchi, M, Nakamura, S, Hashimoto, T. Columnar cell carcinoma of the thyroid gland: a case report and review of the literature. Hum Pathol 1994;25:10981101.Google Scholar
Gaertner, EM, Davidson, M, Wenig, BM. The columnar cell variant of thyroid papillary carcinoma. Case report and discussion of an unusually aggressive thyroid papillary carcinoma. Am J Surg Pathol 1995;19:940947.Google Scholar
Wenig, BM, Thompson, LD, Adair, CF, Shmookler, B, Heffess, CS. Thyroid papillary carcinoma of columnar cell type: a clinicopathologic study of 16 cases. Cancer 1998;82:740753.Google Scholar
Enriquez, ML, Baloch, ZW, Montone, KT, Zhang, PJ, LiVolsi, VA. CDX2 expression in columnar cell variant of papillary thyroid carcinoma. Am J Clin Pathol 2012;137:722726.Google Scholar
Bongiovanni, M, Piana, S, Frattini, M, Giovanella, L, Spitale, A, Ragazzi, M, Ciarrocchi, A. CDX2 expression in columnar variant of papillary thyroid carcinoma. Thyroid 2013;23:14981499.Google Scholar
Sujoy, V, Pinto, A, Nosé, V. Columnar cell variant of papillary thyroid carcinoma: a study of 10 cases with emphasis on CDX2 expression. Thyroid 2013;23:714719.Google Scholar
Asioli, S, Erickson, LA, Sebo, TJ, Zhang, J, Jin, L, Thompson, GB, Lloyd, RV. Papillary thyroid carcinoma with prominent hobnail features: a new aggressive variant of moderately differentiated papillary carcinoma. A clinicopathologic, immunohistochemical, and molecular study of eight cases. Am J Surg Pathol 2010;34:4452.Google Scholar
Asioli, S, Erickson, LA, Righi, A, Lloyd, RV. Papillary thyroid carcinoma with hobnail features: histopathologic criteria to predict aggressive behavior. Hum Pathol 2013;44:320328.Google Scholar
Asioli, S, Maletta, F, Pagni, F, Pacchioni, D, Vanzati, A, Mariani, S, Palestini, N, Lloyd, RV, Sapino, A. Cytomorphologic and molecular features of hobnail variant of papillary thyroid carcinoma: case series and literature review. Diagn Cytopathol 2014;42:7884.Google Scholar
Lubitz, CC, Economopoulos, KP, Pawlak, AC, Lynch, K, Dias-Santagata, D, Faquin, WC, Sadow, PM. Hobnail variant of papillary thyroid carcinoma: an institutional case series and molecular profile. Thyroid 2014;24:958965.Google Scholar
Hürthle, K. Beitrage zur Kenntiss der Secretionsvorgangs in der Schilddruse. Arch Gesamte Physiol 1894;56:144.Google Scholar
Askanazy, M. Patologisch anatomische Beitrage zur Kenntiss des Morbus Basedowii, insbesondere uber die dabei auftretende Muskelerkrankung. Dtsch Arch Klin Med 1898;61:118186.Google Scholar
Cheung, CC, Ezzat, S, Ramgar, L, Freeman, JL, Asa, SL. Molucular basis of Hürthle cell papillary thyroid carcinoma. J Clin Endocrinol Metab 2000;85:878882.Google Scholar
Sobrinho-Simões, M, Eloy, C, Magalhães, J, Lobo, C, Amaro, T. Follicular thyroid carcinoma. Mod Pathol 2011;24(suppl 2):S10S18.Google Scholar
Carcangiu, ML, Sibley, RK, Rosai, J. Clear cell change in primary thyroid tumors. A study of 38 cases. Am J Surg Pathol 1985;9:705722.Google Scholar
Vergilio, J, Baloch, ZW, LiVolsi, VA. Spindle cell metaplasia of the thyroid arising in association with papillary carcinoma and follicular adenoma. Am J Clin Pathol 2002;117:199204.Google Scholar
Corrado, S, Corsello, SM, Maiorana, A, Rossi, ED, Pontecorvi, A, Fadda, G, Papi, G. Papillary thyroid carcinoma with predominant spindle cell component: report of two rare cases and discussion on the differential diagnosis with other spindled thyroid neoplasm. Endocr Pathol 2014;25:307314.Google Scholar
Woenckhaus, C, Cameselle-Teijeiro, J, Ruiz-Ponte, C, Abdulkader, I, Reyes-Santías, R, Sobrinho Simões, M. Spindle cell variant of papillary thyroid carcinoma. Histopathology 2004;45: 424427.Google Scholar
Apel, RL, Asa, SL, LiVolsi, VA. Papillary Hürthle cell carcinoma with lymphocytic stroma. “Warthin-like tumor” of the thyroid. Am J Surg Pathol 1995;19:810814.Google Scholar
Baloch, ZW, LiVolsi, VA. Warthin-like papillary carcinoma of the thyroid. Arch Pathol Lab Med 2000;124:11921195.Google Scholar
Erşen, A, Durak, MG, Canda, T, Sevınç, AI, Saydam, S, Koçdor, MA. Warthin-like papillary carcinoma of the thyroid: a case series and review of the literature. Turk Patoloji Derg 2013;29:150155.Google Scholar
Lam, KY, Lo, CY, Wei, WI. Warthin tumor-like variant of papillary thyroid carcinoma: a case with dedifferentiation (anaplastic changes) and aggressive biological behavior. Endocr Pathol 2005;16:8389.Google Scholar
Fadda, G, Mulè, A, Zannoni, GF, Vincenzoni, C, Ardito, G, Capelli, A. Fine needle aspiration of a warthin-like thyroid tumor. Report of a case with differential diagnostic criteria vs. other lymphocyte-rich thyroid lesions. Acta Cytol 1998;42:9981002.Google Scholar
Urano, M, Abe, M, Kuroda, M, Mizoguchi, Y, Horibe, Y, Kasahara, M, Tanaka, K, Sudo, K, Hirasawa, Y. Warthin-like tumor variant of papillary thyroid carcinoma: case report and literature review. Pathol Int 2001;51:707712.Google Scholar
Thompson, LD, Wieneke, JA, Paal, E, Frommelt, RA, Adair, CF, Heffess, CS: A clinicopathologic study of minimally invasive follicular carcinoma of the thyroid gland with a review of the English literature. Cancer 2001;91:505524.Google Scholar
Huang, CC, Hsueh, C, Liu, FH, Chao, TC, Lin, JD: Diagnostic and therapeutic strategies for minimally and widely invasive follicular thyroid carcinomas. Surg Oncol 2011;20:16.Google Scholar
Romero-Rojas, AE, Diaz-Perez, JA, Mastrodimos, M, Chinchilla, SI. Follicular thyroid carcinoma with signet ring cell morphology: fine-needle aspiration cytology, histopathology, and immunohistochemistry. Endocr Pathol 2013;24:239245.Google Scholar
Trovisco, V, Soares, P, Preto, A, de Castro, IV, Lima, J, Castro, P, Máximo, V, Botelho, T, Moreira, S, Meireles, AM, Magalhães, J, Abrosimov, A, Cameselle-Teijeiro, J, Sobrinho-Simões, M. Type and prevalence of BRAF mutations are closely associated with papillary thyroid carcinoma histotype and patients' age but not with tumour aggressiveness. Virchows Arch 2005;446:589595.Google Scholar
Musholt, PB, Musholt, TJ, Morgenstern, SC, Worm, K, Sheu, SY, Schmid, KW. Follicular histotypes of oncocytic thyroid carcinomas do not carry mutations of the BRAF hot-spot. World J Surg 2008;32:722728.Google Scholar
Finkelstein, A, Levy, GH, Hui, P, Prasad, A, Virk, R, Chhieng, DC, Carling, T, Roman, SA, Sosa, JA, Udelsman, R, Theoharis, CG, Prasad, ML. Papillary thyroid carcinomas with and without BRAFV600E mutations are morphologically distinct. Histopathology 2012;60:10521059.Google Scholar
Santarpia, L, Myers, JN, Sherman, SI, Trimarchi, F, Clayman, GL, El-Naggar, AK. Genetic alterations in the RAS/RAF/mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways in the follicular variant of papillary thyroid carcinoma. Cancer 2010;116:29742983.Google Scholar
Couto, JP, Prazeres, H, Castro, P, Lima, J, Máximo, V, Soares, P, Sobrinho-Simões, M.How molecular pathology is changing and will change the therapeutics of patients with follicular cell-derived thyroid cancer. J Clin Pathol 2009;62:414421.Google Scholar
Giordano, TJ, Beaudenon-Huibregtse, S, Shinde, R, Langfield, L, Vinco, M, Laosinchai-Wolf, W, Labourier, E. Molecular testing for oncogenic gene mutations in thyroid lesions: a case–control validation study in 413 postsurgical specimens. Hum Pathol 2014;45:13391347.Google Scholar
Chou, A, Fraser, S, Toon, CW, Clarkson, A, Sioson, L, Farzin, M, Cussigh, C, Aniss, A, O'Neill, C, Watson, N, Clifton-Bligh, RJ, Learoyd, DL, Robinson, BG, Selinger, CI, Delbridge, LW, Sidhu, SB, O'Toole, SA, Sywak, M, Gill, AJ. A detailed clinicopathologic study of alk-translocated papillary thyroid carcinoma. Am J Surg Pathol 2014;39:652659.Google Scholar
Kim, TH, Park, YJ, Lim, JA, Ahn, HY, Lee, EK, Lee, YJ, Kim, KW, Hahn, SK, Youn, YK, Kim, KH, Cho, BY, Park do, J. The association of the BRAF(V600E) mutation with prognostic factors and poor clinical outcome in papillary thyroid cancer: a meta-analysis. Cancer 2012;118:17641773.Google Scholar
Xing, M. Prognostic utility of BRAF mutation in papillary thyroid cancer. Mol Cell Endocrinol 2010;32: 8693.Google Scholar
Kwak, JY, Kim, EK, Chung, WY, Moon, HJ, Kim, MJ, Choi, JR. Association of BRAFV600E mutation with poor clinical prognostic factors and US features in Korean patients with papillary thyroid microcarcinoma. Radiology 2009;253:854860.Google Scholar
Howell, GM, Carty, SE, Armstrong, MJ, Lebeau, SO, Hodak, SP, Coyne, C, Stang, MT, McCoy, KL, Nikiforova, MN, Nikiforov, YE, Yip, L. Both BRAFV600E mutation and older age (≥65 years) are associated with recurrent papillary thyroid cancer. Ann Surg Oncol 2011;18:35663571.Google Scholar
Cheng, S, Serra, S, Mercado, M, Ezzat, S, Asa, SL. A high-throughput proteomic approach provides distinct signatures for thyroid cancer behavior. Clin Cancer Res 2011;17:23852394.Google Scholar
Niederer-Wüst, SM, Jochum, W, Förbs, D, Brändle, M, Bilz, S, Clerici, T, Oettli, R, Müller, J, Haile, SR, Ess, S, Stoeckli, SJ, Broglie, MA. Impact of clinical risk scores and BRAFV600E mutation status on outcome in papillary thyroid cancer. Surgery 2015;157:119125.Google Scholar
Walczyk, A, Kowalska, A, Kowalik, A, Sygut, J, Wypiórkiewicz, E, Chodurska, R, Pięciak, L, Góźdź, S. The BRAF(V600E) mutation in papillary thyroid microcarcinoma: does the mutation have an impact on clinical outcome? Clin Endocrinol (Oxf) 2014;80:899904.Google Scholar
Choi, SY, Park, H, Kang, MK, Lee, DK, Lee, KD, Lee, HS, Kim, SW, Lee, EN, Hong, JC. The relationship between the BRAF(V600E) mutation in papillary thyroid microcarcinoma and clinicopathologic factors. World J Surg Oncol 2013;11:291.Google Scholar
Gouveia, C, Can, NT, Bostrom, A, Grenert, JP, van Zante, A, Orloff, LA. Lack of association of BRAF mutation with negative prognostic indicators in papillary thyroid carcinoma: the University of California, San Francisco, experience. JAMA Otolaryngol Head Neck Surg 2013;139:11641170.Google Scholar
Barbaro, D, Incensati, RM, Materazzi, G, Boni, G, Grosso, M, Panicucci, E, Lapi, P, Pasquini, C, Miccoli, P. The BRAFV600E mutation in papillary thyroid cancer with positive or suspected pre-surgical cytological finding is not associated with advanced stages or worse prognosis. Endocrine 2014;45:462468.Google Scholar
Ahn, D, Park, JS, Sohn, JH, Kim, JH, Park, SK, Seo, AN, Park, JY. BRAFV600E mutation does not serve as a prognostic factor in Korean patients with papillary thyroid carcinoma. Auris Nasus Larynx 2012;39:198203.Google Scholar
Nam, JK, Jung, CK, Song, BJ, Lim, DJ, Chae, BJ, Lee, NS, Park, WC, Kim, JS, Jung, SS, Bae, JS. Is the BRAF(V600E) mutation useful as a predictor of preoperative risk in papillary thyroid cancer? Am J Surg 2012;203:436441.Google Scholar
Ito, Y, Yoshida, H, Kihara, M, Kobayashi, K, Miya, A, Miyauchi, A. BRAF(V600E) mutation analysis in papillary thyroid carcinoma: is it useful for all patients? World J Surg 2014;38:679687.Google Scholar
Givens, DJ, Buchmann, LO, Agarwal, AM, Grimmer, JF, Hunt, JP. BRAFV600E does not predict aggressive features of pediatric papillary thyroid carcinoma. Laryngoscope 2014;124:E389E393.Google Scholar
Li, C, Aragon Han, P, Lee, KC, Lee, LC, Fox, AC, Beninato, T, Thiess, M, Dy, BM, Sebo, TJ, Thompson, GB, Grant, CS, Giordano, TJ, Gauger, PG, Doherty, GM, Fahey, TJ 3rd, Bishop, J, Eshleman, JR, Umbricht, CB, Schneider, EB, Zeiger, MA. Does BRAFV600E mutation predict aggressive features in papillary thyroid cancer? Results from four endocrine surgery centers. J Clin Endocrinol Metab 2013;98:37023712.Google Scholar
Zheng, X, Wei, S, Han, Y, Li, Y, Yu, Y, Yun, X, Ren, X, Gao, M. Papillary microcarcinoma of the thyroid: clinical characteristics and BRAF(V600E) mutational status of 977 cases. Ann Surg Oncol 2013;20:22662273.Google Scholar
Fugazzola, L, Puxeddu, E, Avenia, N, Romei, C, Cirello, V, Cavaliere, A, Faviana, P, Mannavola, D, Moretti, S, Rossi, S, Sculli, M, Bottici, V, Beck-Peccoz, P, Pacini, F, Pinchera, A, Santeusanio, F, Elisei, R. Correlation between B-RAFV600E mutation and clinico-pathologic parameters in papillary thyroid carcinoma: data from a multicentric Italian study and review of the literature. Endocr Relat Cancer 2006;13:455464.Google Scholar
Costa, AM, Herrero, A, Fresno, MF, Heymann, J, Alvarez, JA, Cameselle-Teijeiro, J, García-Rostán, G. BRAF mutation associated with other genetic events identifies a subset of aggressive papillary thyroid carcinoma. Clin Endocrinol (Oxf) 2008;68:618634.Google Scholar
Kurt, B, Yalçın, S, Alagöz, E, Karslıoğlu, Y, Yigit, N, Günal, A, Deveci, MS. The relationship of the BRAF(V600E) mutation and the established prognostic factors in papillary thyroid carcinomas. Endocr Pathol 2012;23:135140.Google Scholar
Vinagre, J, Almeida, A, Pópulo, H, Batista, R, Lyra, J, Pinto, V, Coelho, R, Celestino, R, Prazeres, H, Lima, L, Melo, M, da Rocha, AG, Preto, A, Castro, P, Castro, L, Pardal, F, Lopes, JM, Santos, LL, Reis, RM, Cameselle-Teijeiro, J, Sobrinho-Simões, M, Lima, J, Máximo, V, Soares, P. Frequency of TERT promoter mutations in human cancers. Nat Commun 2013; 4:2185.Google Scholar
Liu, T, Wang, N, Cao, J, Sofiadis, A, Dinets, A, Zedenius, J, Larsson, C, Xu, D. The age- and shorter telomere-dependent TERT promoter mutation in follicular thyroid cell-derived carcinomas. Oncogene 2014;33:49784984.Google Scholar
Melo, M, da Rocha, AG, Vinagre, J, Batista, R, Peixoto, J, Tavares, C, Celestino, R, Almeida, A, Salgado, C, Eloy, C, Castro, P, Prazeres, H, Lima, J, Amaro, T, Lobo, C, Martins, MJ, Moura, M, Cavaco, B, Leite, V, Cameselle-Teijeiro, JM, Carrilho, F, Carvalheiro, M, Máximo, V, Sobrinho-Simões, M, Soares, P. TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metab 2014;99:E754765.Google Scholar
Xing, M, Liu, R, Liu, X, Murugan, AK, Zhu, G, Zeiger, MA, Pai, S, Bishop, J. BRAFV600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol 2014;32:27182726.Google Scholar
Liu, X, Qu, S, Liu, R, Sheng, C, Shi, X, Zhu, G, Murugan, AK, Guan, H, Yu, H, Wang, Y, Sun, H, Shan, Z, Teng, W, Xing, M. TERT promoter mutations and their association with BRAFV600E mutation and aggressive clinicopathological characteristics of thyroid cancer. J Clin Endocrinol Metab 2014;99:E1130E1136.Google Scholar
Soares, P, Celestino, R, Melo, M, Fonseca, E, Sobrinho-Simões, M. Prognostic biomarkers in thyroid cancer. Virchows Arch 2014;464:333346.Google Scholar
Giannelli, SM, McPhaul, L, Nakamoto, J, Gianoukakis, AG. Familial adenomatous polyposis-associated, cribriform morular variant of papillary thyroid carcinoma harboring a K-RAS mutation: case presentation and review of molecular mechanisms. Thyroid 2014;24:11841189.Google Scholar
Cameselle-Teijeiro, J, Menasce, LP, Yap, BK, Colaco, RJ, Castro, P, Celestino, R, Ruíz-Ponte, C, Soares, P, Sobrinho-Simões, M. Cribriform–morular variant of papillary thyroid carcinoma: molecular characterization of a case with neuroendocrine differentiation and aggressive behavior. Am J Clin Pathol 2009;131:134142.Google Scholar
Schuetze, D, Hoschar, AP, Seethala, RR, Assaad, A, Zhang, X, Hunt, JL. The T1799A BRAF mutation is absent in cribriform–morular variant of papillary carcinoma. Arch Pathol Lab Med 2009;133:803805.Google Scholar
Rossi, ED, Revelli, L, Martini, M, Taddei, A, Pintus, C, Panunzi, C, Fadda, G. Cribriform–morular variant of papillary thyroid carcinoma in an 8-year-old girl: a case report with immunohistochemical and molecular testing. Int J Surg Pathol 2012;20:629632.Google Scholar
Jung, CK, Choi, YJ, Lee, KY, Bae, JS, Kim, HJ, Yoon, SK, Son, YI, Chung, JH, Oh, YL. The cytological, clinical, and pathological features of the cribriform–morular variant of papillary thyroid carcinoma and mutation analysis of CTNNB1 and BRAF genes. Thyroid 2009;19:905913.Google Scholar
Barletta, JA, Bellizzi, AM, Hornick, JL. Immunohistochemical staining of thyroidectomy specimens for PTEN can aid in the identification of patients with Cowden syndrome. Am J Surg Pathol 2011;35:15051511.Google Scholar
Ordóñez, NG. Value of thyroid transcription factor-1 immunostaining in tumor diagnosis: a review and update. Appl Immunohistochem Mol Morphol 2012;20:429444.Google Scholar
Ordóñez, NG. Value of PAX 8 immunostaining in tumor diagnosis: a review and update. Adv Anat Pathol 2012;19:140151.Google Scholar
Cheung, CC, Ezzat, S, Freeman, JL, Rosen, IB, Asa, SL. Immunohistochemical diagnosis of papillary thyroid carcinoma. Mod Pathol 2001;14:338342.Google Scholar
Barut, F, Onak Kandemir, N, Bektas, S, Bahadir, B, Keser, S, Ozdamar, SO. Universal markers of thyroid malignancies: galectin-3, HBME-1, and cytokeratin-19. Endocr Pathol 2010;21:8089.Google Scholar
Fischer, S, Asa, SL. Application of immunohistochemistry to thyroid neoplasms. Arch Pathol Lab Med 2008;132:359372.Google Scholar
Nga, ME, Lim, GS, Soh, CH, Kumarasinghe, MP. HBME-1 and CK19 are highly discriminatory in the cytological diagnosis of papillary thyroid carcinoma. Diagn Cytopathol 2008;36:550556.Google Scholar
Liu, YY, Morreau, H, Kievit, J, Romijn, JA, Carrasco, N, Smit, JW. Combined immunostaining with galectin-3, fibronectin-1, CITED-1, Hector Battifora mesothelial-1, cytokeratin-19, peroxisome proliferator-activated receptor-[gamma], and sodium/iodide symporter antibodies for the differential diagnosis of non-medullary thyroid carcinoma. Eur J Endocrinol 2008;158:375384.Google Scholar
Shahebrahimi, K, Madani, SH, Fazaeli, AR, Khazaei, S, Kanani, M, Keshavarz, A. Diagnostic value of CD56 and nm23 markers in papillary thyroid carcinoma. Indian J Pathol Microbiol 2013;56:25.Google Scholar
Nechifor-Boila, A, Borda, A, Sassolas, G, Hafdi-Nejjari, Z, Borson-Chazot, F, Lifante, JC, Sturm, N, Lavérriere, MH, Berger, N, Decaussin-Petrucci, M. Immunohistochemical markers in the diagnosis of papillary thyroid carcinomas: the promising role of combined immunostaining using HBME-1 and CD56. Pathol Res Pract 2013;209:585592.Google Scholar
Nechifor-Boilă, A, Cătană, R, Loghin, A, Radu, TG, Borda, A. Diagnostic value of HBME-1, CD56, galectin-3 and cytokeratin-19 in papillary thyroid carcinomas and thyroid tumors of uncertain malignant potential. Rom J Morphol Embryol 2014;55:4956.Google Scholar
Torregrossa, L, Faviana, P, Camacci, T, Materazzi, G, Berti, P, Minuto, M, Elisei, R, Vitti, P, Miccoli, P, Basolo, F. Galectin-3 is highly expressed in nonencapsulated papillary thyroid carcinoma but weakly expressed in encapsulated type; comparison with Hector Battifora mesothelial cell 1 immunoreactivity. Hum Pathol 2007;38:14821488.Google Scholar
Davidov, T, Nagar, M, Kierson, M, Chekmareva, M, Chen, C, Lu, SE, Lin, Y, Chernyavsky, V, Potdevin, L, Arumugam, D, Barnard, N, Trooskin, S. Carbonic anhydrase 4 and crystallin α-B immunoreactivity may distinguish benign from malignant thyroid nodules in patients with indeterminate thyroid cytology. J Surg Res 2014;190:565574.Google Scholar
Yorukoglu, A, Yalcin, N, Avci, A, Cakalagaoglu, F, Yaylali, G, Akin, F, Haciyanli, M, Ozden, A. Significance of IMP3, nucleophosmin, and Ki-67 expression in papillary thyroid carcinoma. Int J Surg Pathol 2014;23:512.Google Scholar
Slosar, M, Vohra, P, Prasad, M, Fischer, A, Quinlan, R, Khan, A. Insulin-like growth factor mRNA binding protein 3 (IMP3) is differentially expressed in benign and malignant follicular patterned thyroid tumors. Endocr Pathol 2009;20:149157.Google Scholar
Pusztaszeri, MP, Sadow, PM, Faquin, WC. CD117: a novel ancillary marker for papillary thyroid carcinoma in fine-needle aspiration biopsies. Cancer Cytopathol 2014;122:596603.Google Scholar
Cui, W, Sang, W, Zheng, S, Ma, Y, Liu, X, Zhang, W. Usefulness of cytokeratin-19, galectin-3, and Hector Battifora mesothelial-1 in the diagnosis of benign and malignant thyroid nodules. Clin Lab 2012;58:673680.Google Scholar
Abd El Atti, RM, Shash, LS. Potential diagnostic utility of CD56 and claudin-1 in papillary thyroid carcinoma and solitary follicular thyroid nodules. J Egypt Natl Canc Inst 2012;24:175184.Google Scholar
El Demellawy, D, Nasr, AL, Babay, S, Alowami, S. Diagnostic utility of CD56 immunohistochemistry in papillary carcinoma of the thyroid. Pathol Res Pract 2009;205:303309.Google Scholar
Ma, H, Xu, S, Yan, J, Zhang, C, Qin, S, Wang, X, Li, N. The value of tumor markers in the diagnosis of papillary thyroid carcinoma alone and in combination. Pol J Pathol 2014;65:202209.Google Scholar
Paunovic, I, Isic, T, Havelka, M, Tatic, S, Cvejic, D, Savin, S. Combined immunohistochemistry for thyroid peroxidase, galectin-3, CK19 and HBME-1 in differential diagnosis of thyroid tumors. APMIS 2012;120:368379.Google Scholar
Darr, EA, Patel, AD, Yu, G, Komorowski, Z, McCormick, S, Tiwari, R, Schantz, SP, Geliebter, J. Reduced Cx43 gap junction plaque expression differentiates thyroid carcinomas from benign disease. Arch Otolaryngol Head Neck Surg 2011;137:11611165.Google Scholar
Zhu, X, Sun, T, Lu, H, Zhou, X, Lu, Y, Cai, X, Zhu, X. Diagnostic significance of CK19, RET, galectin-3 and HBME-1 expression for papillary thyroid carcinoma. J Clin Pathol 2010;63:786789.Google Scholar
Nasr, MR, Mukhopadhyay, S, Zhang, S, Katzenstein, AL. Immunohistochemical markers in diagnosis of papillary thyroid carcinoma: Utility of HBME1 combined with CK19immunostaining. Mod Pathol 2006;19:16311637.Google Scholar
Isic Dencic, T, Cvejic, D, Paunovic, I, Tatic, S, Havelka, M, Savin, S. Cytokeratin19 expression discriminates papillary thyroid carcinoma from other thyroid lesions and predicts its aggressive behavior. Med Oncol 2013;30:362.Google Scholar
He, X, Wei, Q, Zhang, X, Xiao, J, Jin, X, Zhu, Y, Cui, B, Ning, G. Immunohistochemical expression of CXCR4 in thyroid carcinomas and thyroid benign lesions. Pathol Res Pract 2010;206:712715.Google Scholar
Torregrossa, L, Faviana, P, Filice, ME, Materazzi, G, Miccoli, P, Vitti, P, Fontanini, G, Melillo, RM, Santoro, M, Basolo, F. CXC chemokine receptor 4 immunodetection in the follicular variant of papillary thyroid carcinoma: comparison to galectin-3 and Hector Battifora mesothelial cell-1. Thyroid 2010;20:495504.Google Scholar
Mai, KT, Landry, DC, Thomas, J, Burns, BF, Commons, AS, Yazdi, HM, Odell, PF. Follicular adenoma with papillary architecture: a lesion mimicking papillary thyroid carcinoma. Histopathology 2001;39:2532.Google Scholar
Capper, D, Preusser, M, Habel, A, Sahm, F, Ackermann, U, Schindler, G, Pusch, S, Mechtersheimer, G, Zentgraf, H, von Deimling, A. Assessment of BRAFV600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody. Acta NeuroPathol 2011;122:1119.Google Scholar
Zimmermann, AK, Camenisch, U, Rechsteiner, MP, Bode-Lesniewska, B, Rössle, M. Value of immunohistochemistry in the detection of BRAF(V600E) mutations in fine-needle aspiration biopsies of papillary thyroid carcinoma. Cancer Cytopathol 2014;122:4858.Google Scholar
Routhier, CA, Mochel, MC, Lynch, K, Dias-Santagata, D, Louis, DN, Hoang, MP. Comparison of 2 monoclonal antibodies for immunohistochemical detection of BRAFV600E mutation in malignant melanoma, pulmonary carcinoma, gastrointestinal carcinoma, thyroid carcinoma, and gliomas. Hum Pathol 2013;44:25632570.Google Scholar
Ilie, MI, Lassalle, S, Long-Mira, E, Bonnetaud, C, Bordone, O, Lespinet, V, Lamy, A, Sabourin, JC, Haudebourg, J, Butori, C, Guevara, N, Peyrottes, I, Sadoul, JL, Bozec, A, Santini, J, Capper, D, von Deimling, A, Emile, JF, Hofman, V, Hofman, P. Diagnostic value of immunohistochemistry for the detection of the BRAF(V600E) mutation in papillary thyroid carcinoma: comparative analysis with three DNA-based assays. Thyroid 2014;24:858866.Google Scholar
Crescenzi, A, Guidobaldi, L, Nasrollah, N, Taccogna, S, Cicciarella Modica, DD, Turrini, L, Nigri, G, Romanelli, F, Valabrega, S, Giovanella, L, Onetti Muda, A, Trimboli, P. Immunohistochemistry for BRAF(V600E) antibody VE1 performed in core needle biopsy samples identifies mutated papillary thyroid cancers. Horm Metab Res 2014;46:370374.Google Scholar
Rossi, ED, Martini, M, Capodimonti, S, Cenci, T, Straccia, P, Angrisani, B, Ricci, C, Lanza, P, Lombardi, CP, Pontecorvi, A, Larocca, LM, Fadda, G. Analysis of immunocytochemical and molecular BRAF expression in thyroid carcinomas: a cytohistologic institutional experience. Cancer Cytopathol 2014;122:527535.Google Scholar
Adackapara, CA, Sholl, LM, Barletta, JA, Hornick, JL. Immunohistochemistry using the BRAFV600E mutation-specific monoclonal antibody VE1 is not a useful surrogate for genotyping in colorectal adenocarcinoma. Histopathology 2013;63:187193.Google Scholar
Kuan, SF, Navina, S, Cressman, KL, Pai, RK. Immunohistochemical detection of BRAFV600E mutant protein using the VE1 antibody in colorectal carcinoma is highly concordant with molecular testing but requires rigorous antibody optimization. Hum Pathol 2014;45:464472.Google Scholar
Jones, RT, Abedalthagafi, MS, Brahmandam, M, Greenfield, EA, Hoang, MP, Louis, DN, Hornick, JL, Santagata, S. Cross-reactivity of the BRAF VE1 antibody with epitopes in axonemal dyneins leads to staining of cilia. Mod Pathol 2015;28:596606.Google Scholar
Mordes, DA, Lynch, K, Campbell, S, Dias-Santagata, D, Nosé, V, Louis, DN, Hoang, MP. VE1 antibody immunoreactivity in normal anterior pituitary and adrenal cortex without detectable BRAFV600E mutations. Am J Clin Pathol 2014;141:811815.Google Scholar
Fisher, KE, Neill, SG, Ehsani, L, Caltharp, SA, Siddiqui, MT, Cohen, C. Immunohistochemical Investigation of BRAF p.V600E mutations in thyroid carcinoma using 2 separate BRAF antibodies. Appl Immunohistochem Mol Morphol 2014;22:562567.Google Scholar
Asioli, S, Bussolati, G. Emerin immunohistochemistry reveals diagnostic features of nuclear membrane arrangement in thyroid lesions. Histopathology 2009;54:571579.Google Scholar
Asioli, S, Maletta, F, Pacchioni, D, Lupo, R, Bussolati, G. Cytological detection of papillary thyroid carcinomas by nuclear membrane decoration with emerin staining. Virchows Arch 2010;457:4351.Google Scholar
Kinsella, MD, Hinrichs, B, Cohen, C, Siddiqui, MT. Highlighting nuclear membrane staining in thyroid neoplasms with emerin: review and diagnostic utility. Diagn Cytopathol 2013;41:497504.Google Scholar
Coban, I, Cakir, A, Unal, TD, Bassullu, N, Karpuz, V, Dogusoy, GB, Alper, M. Emerin expression in well differentiated epithelial lesions of thyroid: implications in papillary thyroid carcinoma diagnosis and predicting malignant behavior. Pathol Oncol Res 2015;21:357366.Google Scholar
Bussolati, G. Proper detection of the nuclear shape: ways and significance. Rom J Morphol Embryol 2008;49:435439.Google Scholar
Bussolati, G, Maletta, F, Asioli, S, Annaratone, L, Sapino, A, Marchiò, C. "To be or not to be in a good shape": diagnostic and clinical value of nuclear shape irregularities in thyroid and breast cancer. Adv Exp Med Biol 2014;773:101121.Google Scholar
Khoo, ML, Beasley, NJ, Ezzat, S, Freeman, JL, Asa, SL. Overexpression of cyclin D1 and underexpression of p27 predict lymph node metastases in papillary thyroid carcinoma. J Clin Endocrinol Metab 2002;87:18141818.Google Scholar
Khoo, ML, Freeman, JL, Witterick, IJ, Irish, JC, Rotstein, LE, Gullane, PJ, Asa, SL. Underexpression of p27/Kip in thyroid papillary microcarcinomas with gross metastatic disease. Arch Otolaryngol Head Neck Surg 2002;128:253257.Google Scholar
Karlidag, T, Cobanoglu, B, Keles, E, Alpay, HC, Ozercan, I, Kaygusuz, I, Yalcin, S, Sakallioglu, O. Expression of Bax, p53, and p27/kip in patients with papillary thyroid carcinoma with or without cervical nodal metastasis. Am J Otolaryngol 2007;28:3136.Google Scholar
Pesutić-Pisac, V, Punda, A, Gluncić, I, Bedeković, V, Pranić-Kragić, A, Kunac, N. Cyclin D1 and p27 expression as prognostic factor in papillary carcinoma of thyroid: association with clinicopathological parameters. Croat Med J 2008;49:643649.Google Scholar
von Wasielewski, R, Rhein, A, Werner, M, Scheumann, GF, Dralle, H, Pötter, E, Brabant, G, Georgii, A. Immunohistochemical detection of E-cadherin in differentiated thyroid carcinomas correlates with clinical outcome. Cancer Res 1997;57:25012507.Google Scholar
Cerrato, A, Fulciniti, F, Avallone, A, Benincasa, G, Palombini, L, Grieco, M. Beta- and gamma-catenin expression in thyroid carcinomas. J Pathol 1998;185:267272.Google Scholar
Liu, Z, Kakudo, K, Bai, Y, Li, Y, Ozaki, T, Miyauchi, A, Taniguchi, E, Mori, I. Loss of cellular polarity/cohesiveness in the invasive front of papillary thyroid carcinoma, a novel predictor for lymph node metastasis; possible morphological indicator of epithelial mesenchymal transition. J Clin Pathol 2011;64:325329.Google Scholar
Eloy, C, Santos, J, Cameselle-Teijeiro, J, Soares, P, Sobrinho-Simões, M. TGF-beta/Smad pathway and BRAF mutation play different roles in circumscribed and infiltrative papillary thyroid carcinoma. Virchows Arch 2012;460:587600.Google Scholar
Knauf, JA, Sartor, MA, Medvedovic, M, Lundsmith, E, Ryder, M, Salzano, M, Nikiforov, YE, Giordano, TJ, Ghossein, RA, Fagin, JA. Progression of BRAF-induced thyroid cancer is associated with epithelial-mesenchymal transition requiring concomitant MAP kinase and TGFβ signaling. Oncogene. 2011;30:31533162.Google Scholar
Rocha, AS, Soares, P, Fonseca, E, Cameselle-Teijeiro, J, Oliveira, MC, Sobrinho-Simões, M. E-cadherin loss rather than betacatenin alterations is a common feature of poorly differentiated thyroid carcinomas. Histopathology 2003;42:580587.Google Scholar
Garcia-Rostan, G, Camp, RL, Herrero, A, Carcangiu, ML, Rimm, DL, Tallini, G. Beta-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am J Pathol 2001;158:987996.Google Scholar
Kjellman, P, Wallin, G, Höög, A, Auer, G, Larsson, C, Zedenius, J. MIB-1 index in thyroid tumors: a predictor of the clinical course in papillary thyroid carcinoma. Thyroid 2003;13:371380.Google Scholar
Ito, Y, Miyauchi, A, Kakudo, K, Hirokawa, M, Kobayashi, K, Miya, A. Prognostic significance of ki-67 labeling index in papillary thyroid carcinoma. World J Surg 2010;34:30153021.Google Scholar
Alexander, EK, Kennedy, GC, Baloch, ZW, Cibas, ES, Chudova, D, Diggans, J, Friedman, L, Kloos, RT, LiVolsi, VA, Mandel, SJ, Raab, SS, Rosai, J, Steward, DL, Walsh, PS, Wilde, JI, Zeiger, MA, Lanman, RB, Haugen, BR. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med 2012;367:705715.Google Scholar
McIver, B, Castro, MR, Morris, JC, Bernet, V, Smallridge, R, Henry, M, Kosok, L, Reddi, H. An independent study of a gene expression classifier (Afirma) in the evaluation of cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab 2014;99:40694077.Google Scholar
Alexander, EK, Schorr, M, Klopper, J, Kim, C, Sipos, J, Nabhan, F, Parker, C, Steward, DL, Mandel, SJ, Haugen, BR. Multicenter clinical experience with the Afirma gene expression classifier. J Clin Endocrinol Metab 2014;99:119125.Google Scholar
Nikiforova, MN, Wald, AI, Roy, S, Durso, MB, Nikiforov, YE. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J Clin Endocrinol Metab 2013;98:E1852E1860.Google Scholar
Nikiforov, YE, Carty, SE, Chiosea, SI, Coyne, C, Duvvuri, U, Ferris, RL, Gooding, WE, Hodak, SP, LeBeau, SO, Ohori, NP, Seethala, RR, Tublin, ME, Yip, L, Nikiforova, MN. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer 2014;120:36273634.Google Scholar
Nikiforova, MN, Lynch, RA, Biddinger, PW, Alexander, EK, Dorn, GW 2nd, Tallini, G, Kroll, TG, Nikiforov, YE. RAS point mutations and PAX8-PPARgamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab 2003;88:23182326.Google Scholar
Dwight, T, Thoppe, SR, Foukakis, T, Lui, WO, Wallin, G, Höög, A, Frisk, T, Larsson, C, Zedenius, J. Involvement of the PAX8/peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J Clin Endocrinol Metab 2003;88:44404445.Google Scholar
Marques, AR, Espadinha, C, Catarino, AL, Moniz, S, Pereira, T, Sobrinho, LG, Leite, V. Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 2002;87:39473952.Google Scholar
Chu, PG, Chung, L, Weiss, LM, Lau, SK. Determining the site of origin of mucinous adenocarcinoma: an immunohistochemical study of 175 cases. Am J Surg Pathol 2011;35:18301836.Google Scholar
Lin, X, Lindner, JL, Silverman, JF, Liu, Y. Intestinal type and endocervical-like ovarian mucinous neoplasms are immunophenotypically distinct entities. Appl Immunohistochem Mol Morphol 2008;16:453458.Google Scholar
Silverman, JF, Zhu, B, Liu, Y, Lin, X. Distinctive immunohistochemical profile of mucinous cystic neoplasms of pancreas, ovary and lung. Histol HistoPathol 2009;24:7782.Google Scholar
Woodard, AH, Yu, J, Dabbs, DJ, Beriwal, S, Florea, AV, Elishaev, E, Davison, JM, Krasinskas, AM, Bhargava, R. NY-BR-1 and PAX8 immunoreactivity in breast, gynecologic tract, and other CK7+ carcinomas: potential use for determining site of origin. Am J Clin Pathol 2011;136:428435.Google Scholar
Ni, YB, Tsang, JY, Shao, MM, Chan, SK, Tong, J, To, KF, Tse, GM. TTF-1 expression in breast carcinoma: an unusual but real phenomenon. Histopathology 2014;64:504511.Google Scholar
Hay, ID, Thompson, GB, Grant, CS, Bergstralh, EJ, Dvorak, CE, Gorman, CA, Maurer, MS, McIver, B, Mullan, BP, Oberg, AL, Powell, CC, van Heerden, JA, Goellner, JR. Papillary thyroid carcinoma managed at the Mayo Clinic during six decades (1940–1999): temporal trends in initial therapy and long-term outcome in 2444 consecutively treated patients. World J Surg 2002;26:879885.Google Scholar
Momesso, DP, Tuttle, RM. Update on differentiated thyroid cancer staging. Endocrinol Metab Clin North Am 2014;43:401421.Google Scholar
Kazaure, HS, Roman, SA, Sosa, JA. Insular thyroid cancer: a population-level analysis of patient characteristics and predictors of survival. Cancer 2012;118:32603267.Google Scholar
Volante, M, Landolfi, S, Chiusa, L, Palestini, N, Motta, M, Codegone, A, Torchio, B, Papotti, MG. Poorly differentiated carcinomas of the thyroid with trabecular, insular, and solid patterns: a clinicopathologic study of 183 patients. Cancer 2004;100:950957.Google Scholar
Wu, YL, Ting, WH, Wey, SL, Chen, CK, Huang, CY, Cheng, SP, Lees, YJ. Poorly differentiated thyroid carcinoma in a 9-year-old boy: case report. J Pediatr Endocrinol Metab 2011;24:783786.Google Scholar
Diehl, M, Graichen, S, Menzel, C, Lindhorst, E, Grünwald, F. F-18 FDG PET in insular thyroid cancer. Clin Nucl Med 2003;28:728731.Google Scholar
Bongiovanni, M, Bloom, L, Krane, JF, Baloch, ZW, Powers, CN, Hintermann, S, Pache, JC, Faquin, WC. Cytomorphologic features of poorly differentiated thyroid carcinoma: a multi-institutional analysis of 40 cases. Cancer 2009;117:185194.Google Scholar
Dettmer, M, Schmitt, A, Steinert, H, Haldemann, A, Meili, A, Moch, H, Komminoth, P, Perren, A. Poorly differentiated thyroid carcinomas: how much poorly differentiated is needed? Am J Surg Pathol 2011;35:18661872.Google Scholar
Volante, M, Collini, P, Nikiforov, YE, Sakamoto, A, Kakudo, K, Katoh, R, Lloyd, RV, LiVolsi, VA, Papotti, M, Sobrinho-Simoes, M, Bussolati, G, Rosai, J. Poorly differentiated thyroid carcinoma: the Turin proposal for the use of uniform diagnostic criteria and an algorithmic diagnostic approach. Am J Surg Pathol 2007;31:12561264.Google Scholar
Asioli, S, Erickson, LA, Righi, A, Jin, L, Volante, M, Jenkins, S, Papotti, M, Bussolati, G, Lloyd, RV. Poorly differentiated carcinoma of the thyroid: validation of the Turin proposal and analysis of IMP3 expression. Mod Pathol 2010;23:12691278.Google Scholar
Ito, Y, Hirokawa, M, Fukushima, M, Inoue, H, Yabuta, T, Uruno, T, Kihara, M. Prevalence and prognostic significance of poor differentiation and tall cell variant in papillary carcinoma in Japan. World J Surg 2008;32:15351543.Google Scholar
Wreesmann, VB, Ghossein, RA, Patel, SG, Harris, CP, Schnaser, EA, Shaha, AR, Tuttle, RM, Shah, JP, Rao, PH, Singh, B. Genome-wide appraisal of thyroid cancer progression. Am J Pathol 2002;161:15491556.Google Scholar
Volante, M, Rapa, I, Gandhi, M, Bussolati, G, Giachino, D, Papotti, M, Nikiforov, YE. RAS mutations are the predominant molecular alteration in poorly differentiated thyroid carcinomas and bear prognostic impact. J Clin Endocrinol Metab 2009;94:47354741.Google Scholar
Nikiforova, MN, Kimura, ET, Gandhi, M, Biddinger, PW, Knauf, JA, Basolo, F, Zhu, Z, Giannini, R, Salvatore, G, Fusco, A, Santoro, M, Fagin, JA Nikiforov, YE. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 2003;88:53995404.Google Scholar
Soares, P, Trovisco, V, Rocha, AS, Feijão, T, Rebocho, AP, Fonseca, E, Vieira de Castro, I, Cameselle-Teijeiro, J, Cardoso-Oliveira, M, Sobrinho-Simões, M. BRAF mutations typical of papillary thyroid carcinoma are more frequently detected in undifferentiated than in insular and insular-like poorly differentiated carcinomas. Virchows Arch 2004;444:572576.Google Scholar
Soares, P, Lima, J, Preto, A, Castro, P, Vinagre, J, Celestino, R, Couto, JP, Prazeres, H, Eloy, C, Máximo, V, Sobrinho-Simões, M. Genetic alterations in poorly differentiated and undifferentiated thyroid carcinomas. Curr Genom 2011;12:609617.Google Scholar
Ibrahimpasic, T, Ghossein, R, Carlson, DL, Chernichenko, N, Nixon, I, Palmer, FL, Lee, NY, Shaha, AR, Patel, SG, Tuttle, RM, Balm, AJ, Shah, JP, Ganly, I. Poorly differentiated thyroid carcinoma presenting with gross extrathyroidal extension: 1986–2009 Memorial Sloan-Kettering Cancer Center experience. Thyroid 2013;23:9971002.Google Scholar
Yang, L, Shen, W, Sakamoto, N. Population-based study evaluating and predicting the probability of death resulting from thyroid cancer and other causes among patients with thyroid cancer. J Clin Oncol 2013;31:468474.Google Scholar
Sanders, EM Jr., LiVolsi, VA, Brierley, J, Shin, J, Randolph, GW. An evidence-based review of poorly differentiated thyroid cancer. World J Surg 2007;31:934945.Google Scholar
Nikiforov, YE. Thyroid carcinoma: molecular pathways and therapeutic targets. Mod Pathol 2008;21(suppl 2):S37S43.Google Scholar
Sun, XS, Sun, SR, Guevara, N, Fakhry, N, Marcy, PY, Lassalle, S, Peyrottes, I, Bensadoun, RJ, Lacout, A, Santini, J, Cals, L, Bosset, JF Garden, AS, Thariat, J. Chemoradiation in anaplastic thyroid carcinomas. Crit Rev Oncol Hematol 2013;86:290301.Google Scholar
Deshpande, HA, Roman, S, Sosa, JA. New targeted therapies and other advances in the management of anaplastic thyroid cancer. Curr Opin Oncol 2013;25:4449.Google Scholar
Akaishi, J, Sugino, K, Kitagawa, W, Nagahama, M, Kameyama, K, Shimizu, K, Ito, K, Ito, K. Prognostic factors and treatment outcomes of 100 cases of anaplastic thyroid carcinoma. Thyroid 2011;21:11831189.Google Scholar
Lam, KY, Lo, CY, Chan, KW, Wan, KY. Insular and anaplastic carcinoma of the thyroid: a 45-year comparative study at a single institution and a review of the significance of p53 and p21. Ann Surg 2000;231:329338.Google Scholar

References

Albores-Saavedra, JA, Krueger, JE. C-cell hyperplasia and medullary thyroid microcarcinoma. Endocr Pathol 2001;12:365377.Google Scholar
Biddinger, PW, Ray, M. Distribution of C cells in the normal and diseased thyroid gland. Pathol Annu 1993;28:205229.Google Scholar
Mete, O, Asa, SL. Precursor lesions of endocrine system neoplasms. Pathology 2013;45:316330.Google Scholar
DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004.Google Scholar
Mete, O, Asa, SL. Composite medullary and papillary thyroid carcinoma in a patient with MEN2B: case report and review of c-cell lesions of the thyroid. Pathol Case Rev 2009;14:208213.Google Scholar
Zambrano, E, Holm, I, Glickman, J, et al. Abnormal distribution and hyperplasia of thyroid C-cells in PTEN-associated tumor syndromes. Endocr Pathol 2004;15:5564.Google Scholar
Albores-Saavedra, J, Monforte, H, Nadji, M, et al. C-cell hyperplasia in thyroid tissue adjacent to follicular cell tumors. Hum Pathol 1988;19:795799.Google Scholar
Wolfe, HJ, Melvin, KE, Cervi-Skinner, SJ, et al. C-cell hyperplasia preceding medullary thyroid carcinoma. N Engl J Med 1973;289:437441.Google Scholar
LiVolsi, VA. C cell hyperplasia/neoplasia. J Clin Endocrinol Metab 1997;82:3941.Google Scholar
Carney, JA, Sizemore, GW, Hayles, AB. Multiple endocrine neoplasia, type 2b. Pathobiol Annu 1978;8: 105153.Google Scholar
Diaz-Cano, SJ, de Miguel, M, Blanes, A, et al. Germline RET 634 mutation positive MEN 2A-related C-cell hyperplasias have genetic features consistent with intraepithelial neoplasia. J Clin Endocrinol Metab 2001;86:39483957.Google Scholar
Komminoth, P, Roth, J, Saremaslani, P, et al. Polysialic acid of the neural cell adhesion molecule in the human thyroid: a marker for medullary thyroid carcinoma and primary C-cell hyperplasia. An immunohistochemical study on 79 thyroid lesions. Am J Surg Pathol 1994;18:399411.Google Scholar
Kotzmann, H, Schmidt, A, Scheuba, C, et al. Basal calcitonin levels and the response to pentagastrin stimulation in patients after kidney transplantation or on chronic hemodialysis as indicators of medullary carcinoma. Thyroid 1999;9:943947.Google Scholar
Tomita, T, Millard, DM. C-cell hyperplasia in secondary hyperparathyroidism. Histopathology 1992;21:469474.Google Scholar
Biddinger, PW, Brennan, MF, Rosen, PP. Symptomatic C-cell hyperplasia associated with chronic lymphocytic thyroiditis. Am J Surg Pathol 1991;15:599604.Google Scholar
Libbey, NP, Nowakowski, KJ, Tucci, JR. C-cell hyperplasia of the thyroid in a patient with goitrous hypothyroidism and Hashimoto's thyroiditis. Am J Surg Pathol 1989;13:7177.Google Scholar
Scheuba, C, Kaserer, K, Kotzmann, H, et al. Prevalence of C-cell hyperplasia in patients with normal basal and pentagastrin-stimulated calcitonin. Thyroid 2000;10:413416.Google Scholar
Scopsi, L, Di Palma, S, Ferrari, C, et al. C-cell hyperplasia accompanying thyroid diseases other than medullary carcinoma: an immunocytochemical study by means of antibodies to calcitonin and somatostatin. Mod Pathol 1991;4:297304.Google Scholar
Ulbright, TM, Kraus, FT, O'Neal, LW. C-cell hyperplasia developing in residual thyroid following resection for sporadic medullary carcinoma. Cancer 1981;48:20762079.Google Scholar
Harach, HR. Solid cell nests of the thyroid. J Pathol 1988;155:191200.Google Scholar
Nosé, V, Asa, SL, Erickson, LA, et al. Diagnostic Pathology: Endocrine. New York: Lippincott Williams & Wilkins (Amirsys), 2012.Google Scholar

References

Rosai, J., Carcangiu, M.D., DeLellis, R.A.. Atlas of Tumor Pathology, 3rd Series, Fascicle 5: Tumors of the Thyroid Gland. Washington DC: Armed Forces Institute of Pathology, 1992:117.Google Scholar
Matias-Guiu, X, DeLellis, RA, Moley, JF, et al. Medullary thyroid carcinoma. In DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004.8691.Google Scholar
Horn, RC. Carcinoma of the thyroid. Description of a distinctive morphological variant and report of seven cases. Cancer 1951;4: 697707.Google Scholar
Baloch, ZW, LiVolsi, VA. Pathology of thyroid gland. In LiVolsi, VA, Asa, SL, eds. Endocrine Pathology. Philadelphia PA: Churchill Livingstone, 2002:6188.Google Scholar
Williams, ED. Histogenesis of medullary carcinoma of the thyroid. J Clin Pathol 1966;19:114118.Google Scholar
Bussolati, G, Pearse, AGE. Immunofluorescent localization of calcitonin in the C-cells of the dog and pig thyroid. J Endocrinol 1967;37: 205209.Google Scholar
Tashjian, AH Jr., Melvin, EW. Medullary carcinoma of the thyroid gland. Studies of thyrocalcitonin in plasma and tumor extracts. N Engl J Med 1968;279:279283.Google Scholar
Melvin, KE, Miller, HH, Tashjian, AH Jr. Early diagnosis of medullary carcinoma of the thyroid gland by means of calcitonin assay. N Engl J Med 1971;285:11151120.Google Scholar
Kaserer, K, Scheuba, C, Neuhold, N, et al. Sporadic versus familial medullary thyroid microcarcinoma: a histopathologic study of 50 consecutive patients. Am J Surg Pathol 2001;25:12451251.Google Scholar
Wells, SA Jr., Franz, C. Medullary carcinoma of the thyroid gland. World J Surg 2000;24:952956.Google Scholar
DeLellis, RA. Multiple endocrine neoplasia syndromes revisited. Clinical, morphological and molecular features. Lab Invest 1995;72: 494505.Google Scholar
Lips, CMJ, Vasen, HFA, Lamers, CBHW. Multiple endocrine neoplasia syndromes. CRC Crit Rev Oncol Hematol 1988;2: 117184.Google Scholar
Gimm, O, Cd, Morrison, Suster, S, et al. Multiple endocrine neoplasia type 2. In DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004:211217.Google Scholar
Gagel, RF, Tashjian, AH Jr., Cummings, T, et al. The clinical outcome of prospective screening for multiple endocrine neoplasia type 2a. An 18-year experience. N Engl J Med 1988;318:478484.Google Scholar
Verdy, M, Weber, AM, Roy, CC, et al. Hirschsprung's disease in a family with multiple endocrine neoplasia type 2. J Pediatr Gastroenterol Nutr. 1982;1:603607.Google Scholar
Nosé, V, Asa, SL, Erickson, LA, et al. Diagnostic Pathology: Endocrine. New York: Lippincott Williams & Wilkins (Amirsys), 2012.Google Scholar
Nosé, V, Greenson, JK, Paner, GP, et al. Diagnostic Pathology: Familial Cancer Syndromes. New York: Lippincott Williams & Wilkins (Amirsys), 2013.Google Scholar
DeLellis, RA, Wolfe, HJ, Gagel, RF, et al. Adrenal medullary hyperplasia. A morphometric analysis in patients with familial medullary thyroid carcinoma. Am J Pathol 1976;83:177196.Google Scholar
Carney, JA, Sizemore, GW, Tyce, GM. Bilateral adrenal medullary hyperplasia in multiple endocrine neoplasia, type 2: the precursor of bilateral pheochromocytoma. Mayo Clin Proc 1975;50:310.Google Scholar
Carney, JA, Sizemore, GW, Hayles, AB. Multiple endocrine neoplasia, type 2b. Pathobiol Annu 1978;8: 105153.Google Scholar
Farndon, JR, Leight, GS, Dilley, WG, et al. Familial medullary thyroid carcinoma without associated endocrinopathies: a distinct clinical entity. Br J Surg 1986;73:278281.Google Scholar
Elisei, R, Romei, C, Cosci, B, et al. RET genetic screening in patients with medullary thyroid cancer and their relatives: experience with 807 individuals at one center. J Clin Endocrinol Metab 2007;92:47254729.Google Scholar
Trimboli, P, Nasrollah, N, Amendola, S, et al. Should we use ultrasound features associated with papillary thyroid cancer in diagnosing medullary thyroid cancer? Endocr J. 2012;59:503508.Google Scholar
Kim, SH, Kim, BS, Jung, SL, et al. Ultrasonographic findings of medullary thyroid carcinoma: a comparison with papillary thyroid carcinoma. Korean J Radiol 2009;10:101105.Google Scholar
Fukushima, M, Ito, Y, Hirokawa, M, et al. Excellent prognosis of patients with nonhereditary medullary thyroid carcinoma with ultrasonographic findings of follicular tumor or benign nodule. World J Surg 2009;33:963968.Google Scholar
Hundahl, SA, Cady, B, Cunningham, MP, et al. Initial results from a prospective cohort study of 5583 cases of thyroid carcinoma treated in the united states during 1996. US and German Thyroid Cancer Study Group. An American College of Surgeons Commission on Cancer Patient Care Evaluation study. Cancer 2000;89:202217.Google Scholar
Donis-Keller, H, Dou, S, Chi, D, et al. Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum Mol Genet 1993;2:851856.Google Scholar
Hofstra, RM, Landsvater, RM, Ceccherini, I, et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 1994;367:375376.Google Scholar
Lee, NC, Norton, JA. Multiple endocrine neoplasia type 2B: genetic basis and clinical expression. Surg Oncol 2000;9:111118.Google Scholar
Mulligan, LM, Kwok, JB, Healey, CS, et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 1993;363:458460.Google Scholar
Thakker, RV. Multiple endocrine neoplasia. Horm Res 2001;56(suppl 1):6772.Google Scholar
Beressi, N, Campos, JM, Beressi, JP, et al. Sporadic medullary microcarcinoma of the thyroid: a retrospective analysis of eighty cases. Thyroid 1998;8:10391044.Google Scholar
Guyetant, S, Wion-Barbot, N, Rousselet, MC, et al. C-cell hyperplasia associated with chronic lymphocytic thyroiditis: a retrospective quantitative study of 112 cases. Hum Pathol 1994;25:514521.Google Scholar
Sironi, M, Cozzi, L, Pareschi, R, et al. Occult sporadic medullary microcarcinoma with lymph node metastases. Diagn Cytopathol 1999;21:203206.Google Scholar
Ozkara, SK, Gurbuz, Y, Muezzinoglu, B, et al. Encapsulated cystic papillary variant of medullary carcinoma of thyroid gland. Endocr Pathol 2002;13:167171.Google Scholar
Zaatari, GS, Saigo, PE, Huvos, AG. Mucin production in medullary carcinoma of the thyroid. Arch Pathol Lab Med 1983;107:7074.Google Scholar
Baloch, ZW, LiVolsi, VA. Neuroendocrine tumors of the thyroid gland. Am J Clin Pathol 2001;115(suppl):S56S67.Google Scholar
Chen, H, Nicol, TL, Zeiger, MA, et al. Hürthle cell neoplasms of the thyroid: are there factors predictive of malignancy? Ann Surg 1998;227:542546.Google Scholar
Krueger, JE, Maitra, A, Albores-Saavedra, J. Inherited medullary microcarcinoma of the thyroid: a study of 11 cases. Am J Surg Pathol 2000;24:853858.Google Scholar
Mizukami, Y, Kurumaya, H, Nonomura, A, et al. Sporadic medullary microcarcinoma of the thyroid. Histopathology 1992;21:375377.Google Scholar
Albores-Saavedra, JA, Krueger, JE. C-cell hyperplasia and medullary thyroid microcarcinoma. Endocr Pathol 2001;12:365377.Google Scholar
Guyetant, S, Dupre, F, Bigorgne, JC, et al. Medullary thyroid microcarcinoma: a clinicopathologic retrospective study of 38 patients with no prior familial disease. Hum Pathol 1999;30:957963.Google Scholar
Huss, LJ, Mendelsohn, G. Medullary carcinoma of the thyroid gland: an encapsulated variant resembling the hyalinizing trabecular (paraganglioma-like) adenoma of thyroid. Mod Pathol 1990;3:581585.Google Scholar
Kaufmann, O, Dietel, M. Expression of thyroid transcription factor-1 in pulmonary and extrapulmonary small cell carcinomas and other neuroendocrine carcinomas of various primary sites. Histopathology 2000;36:415420.Google Scholar
Bejarano, PA, Nikiforov, YE, Swenson, ES, et al. Thyroid transcription factor-1, thyroglobulin, cytokeratin 7, and cytokeratin 20 in thyroid neoplasms. Appl Immunohistochem Mol Morphol 2000;8:189194.Google Scholar
Kimura, N, Nakazato, Y, Nagura, H, et al. Expression of intermediate filaments in neuroendocrine tumors. Arch Pathol Lab Med 1990;114:506510.Google Scholar
Holm, R, Sobrinho-Simoes, M, Nesland, JM, et al. Medullary carcinoma of the thyroid gland: an immunocytochemical study. Ultrastruct Pathol 1985;8:2541.Google Scholar
Portela-Gomes, GM, Lukinius, A, Grimelius, L. Synaptic vesicle protein 2, A new neuroendocrine cell marker. Am J Pathol 2000;157:12991309.Google Scholar
Saad, MF, Ordóñez, NG, Guido, JJ, et al. The prognostic value of calcitonin immunostaining in medullary carcinoma of the thyroid. J Clin Endocrinol Metab 1984;59:850856.Google Scholar
Sikri, KL, Varndell, IM, Hamid, QA, et al. Medullary carcinoma of the thyroid. An immunocytochemical and histochemical study of 25 cases using eight separate markers. Cancer 1985;56:24812491.Google Scholar
Steenbergh, PH, Hoppener, JW, Zandberg, J, et al. Calcitonin gene related peptide coding sequence is conserved in the human genome and is expressed in medullary thyroid carcinoma. J Clin Endocrinol Metab 1984;59:358360.Google Scholar
Zajac, JD, Penschow, J, Mason, T, et al. Identification of calcitonin and calcitonin gene-related peptide messenger ribonucleic acid in medullary thyroid carcinomas by hybridization histochemistry. J Clin Endocrinol Metab 1986;62:10371043.Google Scholar
Scopsi, L, Ferrari, C, Pilotti, S, et al. Immunocytochemical localization and identification of prosomatostatin gene products in medullary carcinoma of human thyroid gland. Hum Pathol 1990;21:820830.Google Scholar
Sunday, ME, Wolfe, HJ, Roos, BA, et al. Gastrin-releasing peptide gene expression in developing, hyperplastic, and neoplastic human thyroid C-cells. Endocrinology. 1988;122:15511558.Google Scholar
Williams, ED, Morales, AM, Horn, RC. Thyroid carcinoma and Cushing's syndrome. A report of two cases with a review of the common features of the “non-endocrine” tumours associated with Cushing's syndrome. J Clin Pathol 1968;21:129135.Google Scholar
Roth, KA, Bensch, KG, Hoffman, AR. Characterization of opioid peptides in human thyroid medullary carcinoma. Cancer 1987;59:15941598.Google Scholar
Birkenhager, JC, Upton, GV, Seldenrath, HJ, et al. Medullary thyroid carcinoma: ectopic production of peptides with ACTH-like, corticotrophin releasing factor-like and prolactin production-stimulating activities. Acta Endocrinol (Copenh) 1976;83:280292.Google Scholar
DeLellis, RA, Rule, AH, Spiler, I, et al. Calcitonin and carcinoembryonic antigen as tumor markers in medullary thyroid carcinoma. Am J Clin Pathol 1978;70:587594.Google Scholar
Uribe, M, Fenoglio-Preiser, CM, Grimes, M, et al. Medullary carcinoma of the thyroid gland. Clinical, pathological, and immunohistochemical features with review of the literature. Am J Surg Pathol 1985;9:577594.Google Scholar
Faggiano, A, Talbot, M, Lacroix, L, et al. Differential expression of galectin-3 in medullary thyroid carcinoma and C-cell hyperplasia. Clin Endocrinol (Oxf) 2002;57:813819.Google Scholar
Schroder, S, Kloppel, G. Carcinoembryonic antigen and nonspecific cross-reacting antigen in thyroid cancer. An immunocytochemical study using polyclonal and monoclonal antibodies. Am J Surg Pathol 1987;11:100108.Google Scholar
Mendelsohn, G, Wells, SA Jr., Baylin, SB. Relationship of tissue carcinoembryonic antigen and calcitonin to tumor virulence in medullary thyroid carcinoma. An immunohistochemical study in early, localized, and virulent disseminated stages of disease. Cancer 1984;54:657662.Google Scholar
Colomer, A, Martinez-Mas, JV, Matias-Guiu, X, et al. Sex-steroid hormone receptors in human medullary thyroid carcinoma. Mod Pathol 1996;9:6872.Google Scholar
DeLellis, RA, Wolfe, HJ. The pathobiology of the human calcitonin (C)-cell: a review. Pathol Annu 1981;16: 2552.Google Scholar
DeLellis, RA, Nunnemacher, G, Wolfe, HJ. C-cell hyperplasia. An ultrastructural analysis. Lab Invest 1977;36:237248.Google Scholar
Sletten, K, Westermark, P, Natvig, JB. Characterization of amyloid fibril proteins from medullary carcinoma of the thyroid. J Exp Med 1976;143:993998.Google Scholar
Khurana, R, Agarwal, A, Bajpai, VK, et al. Unraveling the amyloid associated with human medullary thyroid carcinoma. Endocrinology. 2004;145:54655470.Google Scholar
Mathew, CG, Chin, KS, Easton, DF, et al. A linked genetic marker for multiple endocrine neoplasia type 2A on chromosome 10. Nature 1987;328: 527528.Google Scholar
Simpson, NE, Kidd, KK, Goodfellow, PJ, et al. Assignment of multiple endocrine neoplasia type 2A to chromosome 10 by linkage. Nature 1987;328: 528530.Google Scholar
Gardner, E, Papi, L, Easton, DF, et al. Genetic linkage studies map the multiple endocrine neoplasia type 2 loci to a small interval on chromosome 10q11.2. Hum Mol Genet 1993;2:241246.Google Scholar
Lairmore, TC, Dou, S, Howe, JR, et al. A 1.5-megabase yeast artificial chromosome contig from human chromosome 10q11.2 connecting three genetic loci (RET, D10S94, and D10S102) closely linked to the MEN2A locus. Proc Natl Acad Sci USA 1993;90:492496.Google Scholar
Mole, SE, Mulligan, LM, Healey, CS, et al. Localisation of the gene for multiple endocrine neoplasia type 2A to a 480 kb region in chromosome band 10q11.2. Hum Mol Genet 1993;2:247252.Google Scholar
Eng, C, Smith, DP, Mulligan, LM, et al. Point mutation within the tyrosine kinase domain of the RET proto-oncogene in multiple endocrine neoplasia type 2B and related sporadic tumours. Hum Mol Genet 1994;3:237241.Google Scholar
Carlson, KM, Dou, S, Chi, D, et al. Single missense mutation in the tyrosine kinase catalytic domain of the RET protooncogene is associated with multiple endocrine neoplasia type 2B. Proc Natl Acad Sci USA 1994;91:15791583.Google Scholar
Eng, C, Clayton, D, Schuffenecker, I, et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA 1996;276:15751579.Google Scholar
Eng, C. RET proto-oncogene in the development of human cancer. J Clin Oncol 1999;17:380393.Google Scholar
Hoff, AO, Cote, GJ, Gagel, RF. Multiple endocrine neoplasias. Annu Rev Physiol 2000;62: 377411.Google Scholar
Takahashi, M, Buma, Y, Iwamoto, T, et al. Cloning and expression of the ret proto-oncogene encoding a tyrosine kinase with two potential transmembrane domains. Oncogene. 1988;3:571578.Google Scholar
Pasini, B, Hofstra, RM, Yin, L, et al. The physical map of the human RET proto-oncogene. Oncogene. 1995;11:17371743.Google Scholar
Pachnis, V, Mankoo, B, Costantini, F. Expression of the c-Ret proto-oncogene during mouse embryogenesis. Development. 1993;119:10051017.Google Scholar
Gimm, O, Marsh, DJ, Andrew, SD, et al. Germline dinucleotide mutation in codon 883 of the RET proto-oncogene in multiple endocrine neoplasia type 2B without codon 918 mutation. J Clin Endocrinol Metab 1997;82:39023904.Google Scholar
Smith, DP, Houghton, C, Ponder, BA. Germline mutation of RET codon 883 in two cases of de novo MEN 2B. Oncogene. 1997;15:12131217.Google Scholar
Santoro, M, Carlomagno, F, Romano, A, et al. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science 1995;267: 381383.Google Scholar
Saggiorato, E, Rapa, I, Garino, F, et al. Absence of RET gene point mutations in sporadic thyroid C-cell hyperplasia. J Mol Diagn 2007;9:214219.Google Scholar
Eng, C, Crossey, PA, Mulligan, LM, et al. Mutations in the RET proto-oncogene and the von Hippel–Lindau disease tumour suppressor gene in sporadic and syndromic phaeochromocytomas. J Med Genet 1995;32:934937.Google Scholar
Lindor, NM, Honchel, R, Khosla, S, et al. Mutations in the RET protooncogene in sporadic pheochromocytomas. J Clin Endocrinol Metab 1995;80:627629.Google Scholar
Beldjord, C, Desclaux-Arramond, F, Raffin-Sanson, M, et al. The RET protooncogene in sporadic pheochromocytomas: frequent MEN2-like mutations and new molecular defects. J Clin Endocrinol Metab 1995;80:20632068.Google Scholar
Padberg, BC, Schroder, S, Jochum, W, et al. Absence of RET proto-oncogene point mutations in sporadic hyperplastic and neoplastic lesions of the parathyroid gland. Am J Pathol 1995;147:16001607.Google Scholar
Komminoth, P, Roth, J, Muletta-Feurer, S, et al. RET proto-oncogene point mutations in sporadic neuroendocrine tumors. J Clin Endocrinol Metab 1996;81:20412046.Google Scholar
Eng, C, Mulligan, LM. Mutations of the RET proto-oncogene in the multiple endocrine neoplasia type 2 syndromes, related sporadic tumours, and Hirschsprung disease. Hum Mutat 1997;9:97109.Google Scholar
Shikama, Y, Osawa, T, Yagihashi, N, et al. Neuroendocrine differentiation in hyalinizing trabecular tumor of the thyroid. Virchows Arch 2003;443:792796.Google Scholar
Peacock, ML, Borst, MJ, Sweet, JD, et al. Detection of RET mutations in multiple endocrine neoplasia type 2a and familial medullary thyroid carcinoma by denaturing gradient gel electrophoresis. Hum Mutat 1996;7:100104.Google Scholar
Wohllk, N, Cote, GJ, Evans, DB, et al. Application of genetic screening information to the management of medullary thyroid carcinoma and multiple endocrine neoplasia type 2. Endocrinol Metab Clin North Am 1996;25:125.Google Scholar
Wells, SA Jr., Chi, DD, Toshima, K, et al. Predictive DNA testing and prophylactic thyroidectomy in patients at risk for multiple endocrine neoplasia type 2A. Ann Surg 1994;220:237247; discussion 247–250.Google Scholar
Lips, CJ, Landsvater, RM, Hoppener, JW, et al. Clinical screening as compared with DNA analysis in families with multiple endocrine neoplasia type 2A. N Engl J Med 1994;331:828835.Google Scholar
Dralle, H, Gimm, O, Simon, D, et al. Prophylactic thyroidectomy in 75 children and adolescents with hereditary medullary thyroid carcinoma: German and Austrian experience. World J Surg 1998;22:744750; discussion 750–751.Google Scholar
Hales, M, Rosenau, W, Okerlund, MD, et al. Carcinoma of the thyroid with a mixed medullary and follicular pattern: morphologic, immunohistochemical, and clinical laboratory studies. Cancer 1982;50:13521359.Google Scholar
Fialkowski, EA, Moley, JF. Current approaches to medullary thyroid carcinoma, sporadic and familial. J Surg Oncol 2006;94:737747.Google Scholar
Moley, JF, Fialkowski, EA. Evidence-based approach to the management of sporadic medullary thyroid carcinoma. World J Surg 2007;31:946956.Google Scholar
Modigliani, E, Cohen, R, Campos, JM, et al. Prognostic factors for survival and for biochemical cure in medullary thyroid carcinoma: results in 899 patients. The GETC Study Group. Groupe d'etude des tumeurs a calcitonine. Clin Endocrinol (Oxf) 1998;48:265273.Google Scholar
Vezzosi, D, Bennet, A, Caron, P. Recent advances in treatment of medullary thyroid carcinoma. Ann Endocrinol (Paris) 2007;68: 147153.Google Scholar
Kebebew, E, Ituarte, PH, Siperstein, AE, et al. Medullary thyroid carcinoma: clinical characteristics, treatment, prognostic factors, and a comparison of staging systems. Cancer 2000;88:11391148.Google Scholar
Leboulleux, S, Travagli, JP, Caillou, B, et al. Medullary thyroid carcinoma as part of a multiple endocrine neoplasia type 2B syndrome: influence of the stage on the clinical course. Cancer 2002;94:4450.Google Scholar
Schroder, S, Bocker, W, Baisch, H, et al. Prognostic factors in medullary thyroid carcinomas. Survival in relation to age, sex, stage, histology, immunocytochemistry, and DNA content. Cancer 1988;61:806816.Google Scholar
Barbet, J, Campion, L, Kraeber-Bodere, F, et al. Prognostic impact of serum calcitonin and carcinoembryonic antigen doubling-times in patients with medullary thyroid carcinoma. J Clin Endocrinol Metab 2005;90:60776084.Google Scholar
Erovic, BM, Kim, D, Cassol, C, et al. Prognostic and predictive markers in medullary thyroid carcinoma. Endocr Pathol 2012;23:232242.Google Scholar
Zedenius, J, Wallin, G, Hamberger, B, et al. Somatic and MEN2A de novo mutations identified in the RET proto-oncogene by screening of sporadic MTCs. Hum Mol Genet 1994;3:12591262.Google Scholar
Eng, C, Mulligan, LM, Healey, CS, et al. Heterogeneous mutation of the RET proto-oncogene in subpopulations of medullary thyroid carcinoma. Cancer Res 1996;56:21672170.Google Scholar
Elisei, R, Cosci, B, Romei, C, et al. Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J Clin Endocrinol Metab 2008;93:682687.Google Scholar
Simbolo, M, Mian, C, Barollo, S, Fassan, M, Mafficini, A, Neves, D, Scardoni, M, Pennelli, G, Rugge, M, Pelizzo, MR, Cavedon, E, Fugazzola, L, Scarpa, A.High-throughput mutation profiling improves diagnostic stratification of sporadic medullary thyroid carcinomas. Virchows Arch 2014;465:7378.Google Scholar

References

Papotti, M, Bussolati, G, Komminoth, P, et al. Mixed medullary and follicular cell carcinoma. In DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004:9293.Google Scholar
Baloch, ZW, LiVolsi, VA. Pathology of thyroid gland. In LiVolsi, VA, Asa, SL, eds. Endocrine Pathology. Philadelphia PA: Churchill Livingstone, 2002:6188.Google Scholar
Papotti, M, Volante, M, Komminoth, P, et al. Thyroid carcinomas with mixed follicular and C-cell differentiation patterns. Semin Diagn Pathol 2000;17:109119.Google Scholar
Mizukami, Y, Nonomura, A, Michigishi, T, et al. Mixed medullary-follicular carcinoma of the thyroid gland: a clinicopathologic variant of medullary thyroid carcinoma. Mod Pathol 1996;9:631635.Google Scholar
Sobrinho-Simoes, M. Mixed medullary and follicular carcinoma of the thyroid. Histopathology 1993;23:287289.Google Scholar
McNicol, AM, Lewis, PD. The endocrine system. In Lewis, PD, Emeritus, SW, eds. Systemic Pathology, 3rd edn. Edinburgh: Churchill Livingstone, 1996:131185.Google Scholar
Rossi, S, Fugazzola, L, De Pasquale, L, et al. Medullary and papillary carcinoma of the thyroid gland occurring as a collision tumour: report of three cases with molecular analysis and review of the literature. Endocr Relat Cancer 2005;12:281289.Google Scholar
Sadow, PM, Hunt, JL. Mixed medullary–follicular-derived carcinomas of the thyroid gland. Adv Anat Pathol 2010;17:282285.Google Scholar
Albores-Saavedra, J, Gorraez de la Mora, T, de la Torre-Rendon, F, et al. Mixed medullary-papillary carcinoma of the thyroid: a previously unrecognized variant of thyroid carcinoma. Hum Pathol 1990;21:11511155.Google Scholar
Mete, O, Asa, SL. Composite medullary and papillary thyroid carcinoma in a patient with MEN2B: case report and review of c-cell lesions of the thyroid. Pathol Case Rev 2009;14:208213.Google Scholar
Volante, M, Papotti, M, Roth, J, et al. Mixed medullary-follicular thyroid carcinoma. Molecular evidence for a dual origin of tumor components. Am J Pathol 1999;155:14991509.Google Scholar
Matias-Guiu, X. Mixed medullary and follicular carcinoma of the thyroid. On the search for its histogenesis. Am J Pathol 1999;155:14131418.Google Scholar
Albores-Saavedra, J, Wu, J. The many faces and mimics of papillary thyroid carcinoma. Endocr Pathol 2006;17:118.Google Scholar

References

Lam, KY, Sakamoto, A. Squamous cell carcinoma. In DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004:81.Google Scholar
Nosé, V, Thompson, L. Squamous cell carcinoma, thyroid. In Nosé, V, Asa, SL, Erickson, LA, et al. eds. Diagnostic Pathology: Endocrine. New York: Lippincott Williams & Wilkins (Amirsys), 2012:1241–1-245.Google Scholar
Syed, MI, Stewart, M, Syed, S, et al. Squamous cell carcinoma of the thyroid gland: primary or secondary disease? J Laryngol Otol 2011;125:39.Google Scholar
Kleer, CG, Giordano, TJ, Merino, MJ. Squamous cell carcinoma of the thyroid: an aggressive tumor associated with tall cell variant of papillary thyroid carcinoma. Mod Pathol 2000;13:742746.Google Scholar
Cho, JK, Woo, SH, Park, J, Kim, MJ, Jeong, HS. Primary squamous cell carcinomas in the thyroid gland: an individual participant data meta-analysis. Cancer Med 2014;3:13961403.Google Scholar
Jang, JY, Kwon, KW, Kim, SW, Youn, I. Primary squamous cell carcinoma of thyroid gland with local recurrence: ultrasonographic and computed tomographic findings. Ultrasonography 2014;33:143148.Google Scholar
LiVolsi, VA, Merino, MJ. Squamous cells in the human thyroid gland. Am J Surg Pathol 1978;2:133140.Google Scholar
Rosa, M, Toronczyk, K. Fine needle aspiration biopsy of three cases of squamous cell carcinoma presenting as a thyroid mass: cytological findings and differential diagnosis. Cytopathology 2012;23:4549.Google Scholar
Sahoo, M, Bal, CS, Bhatnagar, D. Primary squamous-cell carcinoma of the thyroid gland: new evidence in support of follicular epithelial cell origin. Diagn Cytopathol 2002;27:227231.Google Scholar
Booya, F, Sebo, TJ, Kasperbauer, JL, Fatourechi, V. Primary squamous cell carcinoma of the thyroid: report of ten cases. Thyroid 2006;16:8993.Google Scholar
Lam, KY, Lo, CY, Liu, MC. Primary squamous cell carcinoma of the thyroid gland: an entity with aggressive clinical behaviour and distinctive cytokeratin expression profiles. Histopathology 2001;39:279286.Google Scholar
Bonetti, LR, Lupi, M, Trani, M, et al. EGFR polysomy in squamous cell carcinoma of the thyroid. report of two cases and review of the literature. Tumori 2010;96:503507.Google Scholar
Long, JL, Strocker, AM, Wang, MB, Blackwell, KE. EGFR expression in primary squamous cell carcinoma of the thyroid. Laryngoscope 2009;119:8990.Google Scholar
Ko, YS, Hwang, TS, Han, HS, Lim, SD, Kim, WS, Oh, SY. Primary pure squamous cell carcinoma of the thyroid: report and histogenic consideration of a case involving a BRAF mutation. Pathol Int 2012;62:4348.Google Scholar
De Carvalho, TG, De Carvalho, AC, Maia, DC, Ogawa, JK, Carvalho, AL, Vettore, AL. Search for mutations in signaling pathways in head and neck squamous cell carcinoma. Oncol Rep 2013;30:334340.Google Scholar
Ito, Y, Hirokawa, M, Higashiyama, T, et al. Biological behavior of papillary carcinoma of the thyroid including squamous cell carcinoma components and prognosis of patients who underwent locally curative surgery. J Thyroid Res 2012;2012:230283.Google Scholar
Harada, T, Shimaoka, K, Katagiri, M, Shimizu, M, Hosoda, Y, Ito, K. Rarity of squamous cell carcinoma of the thyroid: Autopsy review. World J Surg 1994;18:542546.Google Scholar
Gaillardin, L, Beutter, P, Cottier, JP, Arbion, F, Moriniere, S. Thyroid gland invasion in laryngopharyngeal squamous cell carcinoma: prevalence, endoscopic and CT predictors. Eur Ann Otorhinolaryngol Head Neck Dis 2012;129:15.Google Scholar
Musso-Lassalle, S, Butori, C, Bailleux, S, Santini, J, Franc, B, Hofman, P. A diagnostic pitfall: nodular tumor-like squamous metaplasia with hashimoto's thyroiditis mimicking a sclerosing mucoepidermoid carcinoma with eosinophilia. Pathol Res Pract 2006;202:379383.Google Scholar
Ryska, A, Ludvikova, M, Rydlova, M, Cap, J, Zalud, R. Massive squamous metaplasia of the thyroid gland: report of three cases. Pathol Res Pract 2006;202:99106.Google Scholar
Cook, AM, Vini, L, Harmer, C. Squamous cell carcinoma of the thyroid: outcome of treatment in 16 patients. Eur J Surg Oncol 1999;25:606609.Google Scholar
Simpson, WJ, Carruthers, J. Squamous cell carcinoma of the thyroid gland. Am J Surg 1988;156:4446.Google Scholar
Cameselle-Teijeiro, J, Wenig, B, Sobrinho-Simoes, M, Albores-Saavedra, J. Mucoepidermoid carcinoma. In DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004:82.Google Scholar
Farhat, NA, Faquin, WC, Sadow, PM. Primary mucoepidermoid carcinoma of the thyroid gland: a report of three cases and review of the literature. Endocr Pathol 2013;24:229233.Google Scholar
Prichard, RS, Lee, JC, Gill, AJ, et al. Mucoepidermoid carcinoma of the thyroid: a report of three cases and postulated histogenesis. Thyroid 2012;22:205209.Google Scholar
Baloch, ZW, Solomon, AC, LiVolsi, VA. Primary mucoepidermoid carcinoma and sclerosing mucoepidermoid carcinoma with eosinophilia of the thyroid gland: a report of nine cases. Mod Pathol 2000;13:802807.Google Scholar
Wenig, BM, Adair, CF, Heffess, CS. Primary mucoepidermoid carcinoma of the thyroid gland: a report of six cases and a review of the literature of a follicular epithelial-derived tumor. Hum Pathol 1995;26:10991108.Google Scholar
Wissmeyer, M, Weidner, S, Muggli, B, Weimann, R, Juengling, FD, Krause, T. FDG uptake in metastatic spreading mucoepidermoid carcinoma of the thyroid. Clin Nucl Med 2007;32:383387.Google Scholar
Minagawa, A, Iitaka, M, Suzuki, M, et al. A case of primary mucoepidermoid carcinoma of the thyroid: molecular evidence of its origin. Clin Endocrinol (Oxf) 2002;57:551556.Google Scholar
Rocha, AS, Soares, P, Machado, JC, et al. Mucoepidermoid carcinoma of the thyroid: a tumour histotype characterised by P-cadherin neoexpression and marked abnormalities of E-cadherin/catenins complex. Virchows Arch 2002;440:498504.Google Scholar
Rhatigan, RM, Roque, JL, Bucher, RL. Mucoepidermoid carcinoma of the thyroid gland. Cancer 1977;39:210214.Google Scholar
Mizukami, Y, Matsubara, F, Hashimoto, T, et al. Primary mucoepidermoid carcinoma in the thyroid gland. A case report including an ultrastructural and biochemical study. Cancer 1984;53:17411745.Google Scholar
Katoh, R, Sugai, T, Ono, S, et al. Mucoepidermoid carcinoma of the thyroid gland. Cancer 1990;65:20202027.Google Scholar
Ando, M, Nakanishi, Y, Asai, M, Maeshima, A, Matsuno, Y. Mucoepidermoid carcinoma of the thyroid gland showing marked ciliation suggestive of its pathogenesis. Pathol Int 2008;58:741744.Google Scholar
Tirado, Y, Williams, MD, Hanna, EY, Kaye, FJ, Batsakis, JG, El-Naggar, AK. CRTC1/MAML2 fusion transcript in high grade mucoepidermoid carcinomas of salivary and thyroid glands and Warthin's tumors: Implications for histogenesis and biologic behavior. Genes Chromosomes Cancer 2007;46:708715.Google Scholar
Sobrinho-Simoes, M, Cameselle-Teijeiro, J, Harach, HR. Mucinous carcinoma. In DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004:85.Google Scholar
Cretney, A, Mow, C. Mucinous variant of follicular carcinoma of the thyroid gland. Pathology 2006;38:184186.Google Scholar
Chan, J, LiVolsi, V, Bondeson, L, et al. Sclerosing mucoepidermoid carcinoma with eosinophilia. In DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004:84.Google Scholar
Nosé, V. Sclerosing mucoepidermoid carcinoma with eosinophilia. In Nosé, V, Asa, SL, Erickson, LA, et al. eds. Diagnostic Pathology: Endocrine. New York: Lippincott Williams & Wilkins (Amirsys), 2012:1204–1-207.Google Scholar
Chan, JK, Albores-Saavedra, J, Battifora, H, Carcangiu, ML, Rosai, J. Sclerosing mucoepidermoid thyroid carcinoma with eosinophilia. A distinctive low-grade malignancy arising from the metaplastic follicles of Hashimoto's thyroiditis. Am J Surg Pathol 1991;15:438448.Google Scholar
Shehadeh, NJ, Vernick, J, Lonardo, F, et al. Sclerosing mucoepidermoid carcinoma with eosinophilia of the thyroid: a case report and review of the literature. Am J Otolaryngol 2004;25:4853.Google Scholar
Hunt, JL, LiVolsi, VA, Barnes, EL. P63 expression in sclerosing mucoepidermoid carcinomas with eosinophilia arising in the thyroid. Mod Pathol 2004;17:526529.Google Scholar
Bondeson, L, Bondeson, AG. Cytologic features in fine-needle aspirates from a sclerosing mucoepidermoid thyroid carcinoma with eosinophilia. Diagn Cytopathol 1996;15:301305.Google Scholar
Geisinger, KR, Hartle, EO, Warren, T. Eosinophilic replacement infiltrates in cystic Hashimoto's thyroiditis: a potential diagnostic pitfall. Endocr Pathol 2014.Google Scholar
Albores-Saavedra, J, Gu, X, Luna, MA. Clear cells and thyroid transcription factor I reactivity in sclerosing mucoepidermoid carcinoma of the thyroid gland. Ann Diagn Pathol 2003;7:348353.Google Scholar
Solomon, AC, Baloch, ZW, Salhany, KE, Mandel, S, Weber, RS, LiVolsi, VA. Thyroid sclerosing mucoepidermoid carcinoma with eosinophilia: mimic of Hodgkin disease in nodal metastases. Arch Pathol Lab Med 2000;124:446449.Google Scholar
Sim, SJ, Ro, JY, Ordóñez, NG, Cleary, KR, Ayala, AG. Sclerosing mucoepidermoid carcinoma with eosinophilia of the thyroid: report of two patients, one with distant metastasis, and review of the literature. Hum Pathol 1997;28:10911096.Google Scholar
Mnif, H, Chakroun, A, Charfi, S, Ellouze, S, Ghorbel, M, Sallemi-Boudawara, T. Primary mucinous carcinoma of the thyroid gland: case report with review of the literature. Pathologica 2013;105:128131.Google Scholar
Kondo, T, Kato, K, Nakazawa, T, Miyata, K, Murata, S, Katoh, R. Mucinous carcinoma (poorly differentiated carcinoma with extensive extracellular mucin deposition) of the thyroid: a case report with immunohistochemical studies. Hum Pathol 2005;36:698701.Google Scholar
D'Antonio, A, Addesso, M, De Dominicis, G, Boscaino, A, Liguori, G, Nappi, O. Mucinous carcinoma of thyroid gland. report of a primary and a metastatic mucinous tumour from ovarian adenocarcinoma with immunohistochemical study and review of literature. Virchows Arch 2007;451:847851.Google Scholar
Diaz-Perez, R, Quiroz, H, Nishiyama, RH. Primary mucinous adenocarcinoma of thyroid gland. Cancer 1976;38:13231325.Google Scholar
Uccella, S, La Rosa, S, Finzi, G, Erba, S, Sessa, F. Mixed mucus-secreting and oncocytic carcinoma of the thyroid: pathologic, histochemical, immunohistochemical, and ultrastructural study of a case. Arch Pathol Lab Med 2000;124:15471552.Google Scholar
Deligdisch, L, Subhani, Z, Gordon, RE. Primary mucinous carcinoma of the thyroid gland: report of a case and ultrastructural study. Cancer 1980;45:25642567.Google Scholar
Mlynek, ML, Richter, HJ, Leder, LD. Mucin in carcinomas of the thyroid. Cancer 1985;56:26472650.Google Scholar
Rigaud, C, Bogomoletz, WV. “Mucin secreting” and “mucinous” primary thyroid carcinomas: pitfalls in mucin histochemistry applied to thyroid tumours. J Clin Pathol 1987;40:890895.Google Scholar

References

Dorfman, DM, Shahsafaei, A, Miyauchi, A. Intrathyroidal epithelial thymoma (ITET)/carcinoma showing thymus-like differentiation (CASTLE) exhibits CD5 immunoreactivity: new evidence for thymic differentiation. Histopathology 1998;32:104109.Google Scholar
Chan, JK, Rosai, J. Tumors of the neck showing thymic or related branchial pouch differentiation: a unifying concept. Hum Pathol 1991;22:349367.Google Scholar
Reimann, JD, Dorfman, DM, Nosé, V. Carcinoma showing thymus-like differentiation of the thyroid (CASTLE): a comparative study: evidence of thymic differentiation and solid cell nest origin. Am J Surg Pathol 2006;30:9941001.Google Scholar
Beckner, ME, Shultz, JJ, Richardson, T. Solid and cystic ultimobranchial body remnants in the thyroid. Arch Pathol Lab Med 1990;114:10491052.Google Scholar
Harach, HR. Solid cell nests of the human thyroid in early stages of postnatal life. Systematic autopsy study. Acta Anat (Basel) 1986;127:262264.Google Scholar
Su, L, Beals, T, Bernacki, EG, et al. Spindle epithelial tumor with thymus-like differentiation: a case report with cytologic, histologic, immunohistologic, and ultrastructural findings. Mod Pathol 1997;10:510514.Google Scholar
Kakudo, K, Mori, I, Tamaoki, N, et al. Carcinoma of possible thymic origin presenting as a thyroid mass: a new subgroup of squamous cell carcinoma of the thyroid. J Surg Oncol 1988;38:187192.Google Scholar
Nosé, V, Asa, SL, Erickson, LA, et al. Diagnostic Pathology: Endocrine. New York: Lippincott Williams & Wilkins (Amirsys), 2012.Google Scholar
Berezowski, K, Grimes, MM, Gal, A, et al. CD5 immunoreactivity of epithelial cells in thymic carcinoma and CASTLE using paraffin-embedded tissue. Am J Clin Pathol 1996;106:483486.Google Scholar
Rosai, J, Carcangiu, MD, DeLellis, RA. Atlas of Tumor Pathology, 3rd Series, Fascicle 5: Tumors of the Thyroid Gland. Washington DC: Armed Forces Institute of Pathology, 1992:117.Google Scholar
Chan, JK, Rosai, J. Tumors of the neck showing thymic or related branchial pouch differentiation: a unifying concept. Hum Pathol 1991;22:349367.Google Scholar
Kloboves-Prevodnik, V, Jazbec, J, Us-Krasovec, M, et al. Thyroid spindle epithelial tumor with thymus-like differentiation (SETTLE): is cytopathological diagnosis possible? Diagn Cytopathol 2002;26:314319.Google Scholar
Cheuk, W, Jacobson, AA, Chan, JK. Spindle epithelial tumor with thymus-like differentiation (SETTLE): a distinctive malignant thyroid neoplasm with significant metastatic potential. Mod Pathol 2000;13:11501155.Google Scholar
Hofman, P, Mainguene, C, Michiels, JF, et al. Thyroid spindle epithelial tumor with thymus-like differentiation (the “SETTLE” tumor). An immunohistochemical and electron microscopic study. Eur Arch Otorhinolaryngol 1995;252:316320.Google Scholar
Kirby, PA, Ellison, WA, Thomas, PA. Spindle epithelial tumor with thymus-like differentiation (SETTLE) of the thyroid with prominent mitotic activity and focal necrosis. Am J Surg Pathol 1999;23:712716.Google Scholar
Su, L, Beals, T, Bernacki, EG, et al. Spindle epithelial tumor with thymus-like differentiation: a case report with cytologic, histologic, immunohistologic, and ultrastructural findings. Mod Pathol 1997;10:510514.Google Scholar
Folpe, AL, Lloyd, RV, Bacchi, CE, et al. Spindle epithelial tumor with thymus-like differentiation: a morphologic, immunohistochemical, and molecular genetic study of 11 cases. Am J Surg Pathol 2009;33:11791186.Google Scholar
Baloch, ZW, LiVolsi, VA. Pathology of thyroid gland. In LiVolsi, VA, Asa, SL, eds. Endocrine Pathology. Philadelphia, PA: Churchill Livingstone. 2002: 6188.Google Scholar

References

Lack, EE. Atlas of Tumor Pathology, 4th Series, Fascicle 8: Tumors of the Adrenal Glands and Extraadrenal Paraganglia.Bethesda, MD: ARP Press, 2007.Google Scholar
Hayashi, T, Mete, O. Head and neck paragangliomas: what does the pathologist need to know? Diagnostic Histopathol 2014;20:316325.Google Scholar
DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours, Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004.Google Scholar
Mete, O, Tischler, AS, de Krijger, R, McNicol, AM, Eisenhofer, G, Pacak, K, Ezzat, S, Asa, SL. Protocol for the examination of specimens from patients with pheochromocytomas and extra-adrenal paragangliomas. Arch Pathol Lab Med 2014;138:182188.Google Scholar
Michel, J, Taïeb, D, Jolibert, M, Torrents, J, Wassef, M, Morange, I, Essamet, W, Barlier, A, Dessi, P, Fakhry, N. Sinonasal paraganglioma with long-delayed recurrence and metastases: genetic and imaging findings. J Clin Endocrinol Metab 2013;98:42624266.Google Scholar
Yu, BH, Sheng, WQ, Wang, J. Primary paraganglioma of thyroid gland: a clinicopathologic and immunohistochemical analysis of three cases with a review of the literature. Head Neck Pathol 2013;7:373380.Google Scholar
LaGuette, J, Matias-Guiu, X, Rosai, J. Thyroid paraganglioma: a clinicopathologic and immunohistochemical study of three cases. Am J Surg Pathol 1997;21:748753.Google Scholar
Treglia, G, Giovanella, L, Caldarella, C, Bertagna, F. A rare case of thyroid paraganglioma detected by 18F-FDG PET/CT. Rev Esp Med Nucl Imag Mol 2014;33:320321.Google Scholar
Filipović, A, Vucković, L, Pejakov, L. Paraganglioma of the thyroid gland: a case report. Vojnosanit Pregl 2014;71:875878.Google Scholar
Mohyuddin, N, Ferrer, K, Patel, U. Malignant paraganglioma of the thyroid gland with synchronous bilateral carotid body tumors. Ear Nose Throat J 2013;92:E20E23.Google Scholar
Calò, PG, Lai, ML, Guaitoli, E, Pisano, G, Favoriti, P, Nicolosi, A, Pinna, G, Sorrenti, S. Difficulties in the diagnosis of thyroid paraganglioma: a clinical case. Clin Ter 2013;164:e35e39.Google Scholar
D'Angelo, FA, Antolino, L, Magistri, P, Giubettini, M, Aurello, P, Maceli, F, Bollanti, L, Bartolazzi, A, Ramacciato, G. Primary thyroid paraganglioma: a rare entity affecting middle-aged women. Am Surg 2013;79:E351E353.Google Scholar
Evankovich, J, Dedhia, RC, Bastaki, JM, Tublin, M, Johnson, JT. Primary sclerosing paraganglioma of the thyroid gland: a case report. Ann Otol Rhinol Laryngol 2012;121:510515.Google Scholar
Costinean, S, Balatti, V, Bottoni, A, Old, M, Croce, C, Wakely, PE Jr. Primary intrathyroidal paraganglioma: histopathology and novel molecular alterations. Hum Pathol 2012;43:23712375.Google Scholar
Yano, Y, Nagahama, M, Sugino, K, Ito, K, Kameyama, K, Ito, K. Paraganglioma of the thyroid: report of a male case with ultrasonographic imagings, cytologic, histologic, and immunohistochemical features. Thyroid 2007;17:575578.Google Scholar
González Poggioli, N, López Amado, M, Pimentel, MT. Paraganglioma of the thyroid gland: a rare entity. Endocr Pathol 2009;20:6265.Google Scholar
Erem, C, Kocak, M, Nuhoglu, İ, Cobanoglu, U, Ucuncu, O, Okatan, BK. Primary thyroid paraganglioma presenting with double thyroid nodule: a case report. Endocrine 2009;36:368371.Google Scholar
Ferri, E, Manconi, R, Armato, E, Ianniello, F. Primary paraganglioma of thyroid gland: a clinicopathologic and immunohistochemical study with review of the literature. Acta Otorhinolaryngol Ital 2009;29:97102.Google Scholar
Phitayakorn, R, Faquin, W, Wei, N, Barbesino, G, Stephen, AE. Thyroid-associated paragangliomas. Thyroid 2011;21:725733.Google Scholar
Basu, S, Viswanathan, S. Primary paraganglioma of thyroid presenting as solitary thyroid mass. J Cancer Res Ther 2011;7:385387.Google Scholar
Grajower, MM. Malignant paraganglioma of thyroid. Endocr Pract 2006;12:696697.Google Scholar
Kronz, JD, Argani, P, Udelsman, R, Silverberg, L, Westra, WH. Paraganglioma of the thyroid: two cases that clarify and expand the clinical spectrum. Head Neck 2000;22:621625.Google Scholar
Tiong, HY, White, SA, Roop, L, Furness, PN, Nicholson, ML. Paraganglioma-an unusual solitary nodule of the thyroid. Eur J Surg Oncol 2000;26:720721.Google Scholar
Napolitano, L, Francomano, F, Angelucci, D, Napolitano, AM. Thyroid paraganglioma: report of a case and review of the literature. Ann Ital Chir 2000;71:511513.Google Scholar
Zantour, B, Guilhaume, B, Tissier, F, Louvel, A, Jeunemaitre, X, Gimenez-Roqueplo, AP, Bertagna, X. A thyroid nodule revealing a paraganglioma in a patient with a new germline mutation in the succinate dehydrogenase B gene. Eur J Endocrinol 2004;151:433438.Google Scholar
Corrado, S, Montanini, V, De Gaetani, C, Borghi, F, Papi, G. Primary paraganglioma of the thyroid gland. J Endocrinol Invest 2004;27:788792.Google Scholar
Bizollon, MH, Darreye, G, Berger, N. Thyroid paraganglioma: report of a case. Ann Pathol 1997;17:416418.Google Scholar
Brownlee, RE, Shockley, WW. Thyroid paraganglioma. Ann Otol Rhinol Laryngol 1992;101:293299.Google Scholar
Buss, DH, Marshall, RB, Baird, FG, Myers, RT. Paraganglioma of the thyroid gland. Am J Surg Pathol 1980;4:589593.Google Scholar
de Vries, E, Watson, CG. Paraganglioma of the thyroid. Head Neck 1989;11:462465.Google Scholar
Haegert, DG, Wang, MS, Farrer, PA, Seemayer, TA, Thelmo, W. Non-chromaffin paragangliomatosis manifesting as a cold thyroid nodule. Am J Clin Pathol 1974;61:561570.Google Scholar
Kay, S, Montague, JW, Dodd, RW. Nonchromaffin paraganglioma (chemodectoma) of thyroid region. Cancer 1975;36:582585.Google Scholar
Mitsudo, SM, Grajower, MM, Balbi, H, Silver, C. Malignant paraganglioma of the thyroid gland. Arch Pathol Lab Med 1987;1111:378380.Google Scholar
Van Der Horst-Schrivers, AN, Osinga, TE, Kema, IP, Van Der Laan, BF, Dullaart, RP. Dopamine excess in patients with head and neck paragangliomas. Anticancer Res 2010;30: 5153e8.Google Scholar
Pacak, K. Phaeochromocytoma: a catecholamine and oxidative stress disorder. Endocr Regul 2011;45: 65e90.Google Scholar
ter Bekke, RM, Crijns, HJ, Kroon, AA, Gorgels, AP. Pheochromocytoma-induced ventricular tachycardia and reversible cardiomyopathy. Int J Cardiol 2011;147: 145e6.Google Scholar
Tischler, A, Pacak, K, Eisenhofer, G. The adrenal medulla and extraadrenal paraganglia: then and now. Endocr Pathol 2014;25: 4958.Google Scholar
Timmers, HJ, Taieb, D, Pacak, K. Current and future anatomical and functional imaging approaches to pheochromocytoma and paraganglioma. Horm Metab Res 2012;44: 367372.Google Scholar
Blanchet, EM, Gabriel, S, Martucci, V, Fakhry, N, Chen, CC, Deveze, A, Millo, C, Barlier, A, Pertuit, M, Loundou, A, Pacak, K, Taïeb, D. 18F-FDG PET/CT as a predictor of hereditary head and neck paragangliomas. Eur J Clin Invest 2014;44:325332.Google Scholar
Blanchet, EM, Millo, C, Martucci, V, Maass-Moreno, R, Bluemke, DA, Pacak, K. Integrated whole-body PET/MRI with 18F-FDG, 18F-FDOPA, and 18F-FDA in paragangliomas in comparison with PET/CT: NIH first clinical experience with a single-injection, dual-modality imaging protocol. Clin Nucl Med 2014;39: 243250.Google Scholar
Gabriel, S, Blanchet, EM, Sebag, F, Chen, CC, Fakhry, N, Deveze, A, Barlier, A, Morange, I, Pacak, K, Taïeb, D.Functional characterization of nonmetastatic paraganglioma and pheochromocytoma by (18)FFDOPA PET: focus on missed lesions. Clin Endocrinol (Oxf) 2013;79: 170177.Google Scholar
Magro, G, Grasso, S. Sustentacular cells in sporadic paraganglioma-like medullary thyroid carcinoma: report of a case with diagnostic and histogenetic considerations. Pathol Res Pract 2000;196:5559.Google Scholar
Warth, A, Krysa, S, Zahel, T, Hoffmann, H, Schirmacher, P, Schnabel, PA, Herpel, E. S100 protein positive sustentacular cells in pulmonary carcinoids and thoracic paragangliomas: differential diagnostic and prognostic evaluation. Pathologe 2010;31:379384.Google Scholar
Asa, SL. Atlas of Tumor Pathology, 4th Series, Fascicle 15: Tumors of the Pituitary Gland. WBethesada, MD: ARP Press, 2011.Google Scholar
Tischler, AS. Pheochromocytoma and extra-adrenal paraganglioma: updates. Arch Pathol Lab Med 2008;132: 12721284.Google Scholar
Papathomas, TG, de Krijger, RR, Tischler, AS. Paragangliomas: update on differential diagnostic considerations, composite tumors, and recent genetic developments. Semin Diagn Pathol 2013;30:207223.Google Scholar
van Nederveen, FH, Gaal, J, Favier, J, Korpershoek, E, Oldenburg, RA, de Bruyn, EM, Sleddens, HF, Derkx, P, Rivière, J, Dannenberg, H, Petri, BJ, Komminoth, P, Pacak, K, Hop, WC, Pollard, PJ, Mannelli, M, Bayley, JP, Perren, A, Niemann, S, Verhofstad, AA, de Bruïne, AP, Maher, ER, Tissier, F, Méatchi, T, Badoual, C, Bertherat, J, Amar, L, Alataki, D, Van Marck, E, Ferrau, F, François, J, de Herder, WW, Peeters, MP, van Linge, A, Lenders, JW, Gimenez-Roqueplo, AP, de Krijger, RR, Dinjens, WN. An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis. Lancet Oncol 2009;10:764771.Google Scholar
Korpershoek, E, Favier, J, Gaal, J, Burnichon, N, van Gessel, B, Oudijk, L, Badoual, C, Gadessaud, N, Venisse, A, Bayley, JP, van Dooren, MF, de Herder, WW, Tissier, F, Plouin, PF, van Nederveen, FH, Dinjens, WN, Gimenez-Roqueplo, AP, de Krijger, RR. SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas. J Clin Endocrinol Metab 2011;96:E14721476.Google Scholar
Menara, M, Oudjik, L, Badoual, C, Bertherat, J, Lepoutre-Lussey, C, Amar, L, Iturrioz, X, Sibony, M, Zinzindohoué, F, de Krijger, R, Gimenez-Roqueplo, AP, Favier, J. SDHD immunohistochemistry: a new tool to validate SDHx mutations in pheochromocytoma/paraganglioma. J Clin Endocrinol Metab 2014;100:E287E291.Google Scholar
Srirajaskanthan, R, Mcstay, M, Toumpanakis, C, Meyer, T, Caplin, ME. Parathyroid hormone-related peptide-secreting pancreatic neuroendocrine tumours: case series and literature review. Neuroendocrinology 2009;89:4855.Google Scholar
Nonaka, D. Study of parathyroid transcription factor GCM2 expression in parathyroid lesions. Am J Surg Pathol 2011;35:145151.Google Scholar
Ordóñez, NG. Value of GATA3 immunostaining in tumor diagnosis: a review. Adv Anat Pathol 2013;20:352360.Google Scholar
Asa, SL, Mete, O. Tumors of the endocrine system. In Bartlett, J Shaaban, A, Schmitt, F, eds. Molecular Pathology: A Practical Guide for the Surgical Pathologist and Cytopathologist. Cambridge, UK: Cambridge University Press, 2016.Google Scholar

References

Watanabe, N., Noh, J.Y., Narimatsu, H., et al. Clinicopathological features of 171 cases of primary thyroid lymphoma: a long-term study involving 24 553 patients with Hashimoto's disease. Br J Haematol 2011;153:236243.Google Scholar
Takakuwa, T., Dong, Z., Takayama, H., et al. Frequent mutations of FAS gene in thyroid lymphoma. Cancer Res 2001;61:13821385.Google Scholar
Stein, S.A., Wartofsky, L.. Primary thyroid lymphoma: a clinical review. J Clin Endocrinol Metab 2013;98:31313138.Google Scholar
Rhomberg, W., Gruber-Mösenbacher, U., Eiter, H., et al. Prognosis and epidemiology of malignant hemangioendotheliomas of the thyroid gland. Schweiz Med Wochenschr 1993;123:16401644.Google Scholar
Maiorana, A., Collina, G., Cesinaro, A.M., et al. Angiomatoid carcinoma of the thyroid: clinicopathological analysis of seven cases from non-Alpine areas. Virchows Arch 1996;429:131137.Google Scholar
Papotti, M., Volante, M., Negro, F., et al. Thyroglobulin mRNA expression helps to distinguish anaplastic carcinoma from angiosarcoma of the thyroid. Virchows Arch 2000;437:635642.Google Scholar
Papotti, M., Arrondini, M., Tavaglione, V., et al. Diagnostic controversies in vascular proliferations of the thyroid gland. Endocr Pathol 2008;19:175183.Google Scholar
Mills, S.E., Gaffey, M.J., Watts, J.C., et al. Angiomatoid carcinoma and “angiosarcoma” of the thyroid gland. Am J Clin Pathol 1994;102:322330.Google Scholar
Papotti, M., Sapino, A., Abbona, G., et al. Pseudoangiosarcomatous features in medullary carcinomas of the thyroid. Report of two cases. Int J Surg Pathol 1995;3:2934.Google Scholar
Thompson, L.D., Wenig, B.M., Adair, C.F., et al. Primary smooth muscle tumors of the thyroid gland. Cancer 1997;79:579587.Google Scholar
Tulbah, A., Al-Dayel, F., Fawaz, I., et al. Epstein–Barr virus-associated leiomyosarcoma of the thyroid in a child with congenital immunodeficiency: a case report. Am J Surg Pathol 1999;23:473476.Google Scholar
Kandil, E., Abdel Khalek, M., Abdullah, O., et al. Primary peripheral nerve sheath tumors of the thyroid gland. Thyroid 2010;20:583586.Google Scholar
Pérez-Mies, B., Regojo Zapata, R.M., García-Fernández, E., et al. Malignant teratoma of the thyroid in a pregnant woman. Ann Diagn Pathol 2010;14:264267.Google Scholar
Ranaldi, R., Morichetti, D., Goteri, G., et al. Immature teratoma of the mediastinum arising in ectopic thyroid tissue: a case report. Anal Quant Cytol Histol 2009;31:233238.Google Scholar
Thompson, L.D., Rosai, J., Heffess, C.S.. Primary thyroid teratomas: a clinicopathologic study of 30 cases. Cancer 2000;88:11491158.Google Scholar
Lin, M.W., Wu, C.T., Lee, Y.H., et al. Intrathoracic thyroid solitary fibrous tumor presenting with respiratory failure. Ann Thorac Cardiovasc Surg 2013;20(suppl):427429.Google Scholar
Ning, S., Song, X., Xiang, L., et al. Malignant solitary fibrous tumor of the thyroid gland: report of a case and review of the literature. Diagn Cytopathol 2011;39:694699.Google Scholar
Galati, L.T., Barnes, E.L., Myers, E.N.. Dendritic cell sarcoma of the thyroid. Head Neck 1999;21:273275.Google Scholar
Yu, L., Yang, S.J.. Primary follicular dendritic cell sarcoma of the thyroid gland coexisting with Hashimoto's thyroiditis. Int J Surg Pathol 2011;19:502505.Google Scholar
Jabbour, M.N., Fedda, F.A., Tawil, A.N., et al. Follicular dendritic cell sarcoma of the head and neck expressing thyroid transcription factor-1: a case report with clinicopathologic and immunohistochemical literature review. Appl Immunohistochem Mol Morphol 2014;22:705712.Google Scholar

References

Heffess, C.S., Wenig, B.M., Thompson, L.D.. Metastatic renal cell carcinoma to the thyroid gland: a clinicopathologic study of 36 cases. Cancer 2002;95:18691878.Google Scholar
Di Stasi, V., D'Antonio, A., Caleo, A., et al. Metastatic renal cell carcinoma to the thyroid gland 24 years after the primary tumour. Br Med J Case Rep 2013;pii:bcr2012007569.Google Scholar

References

Seethala, RR, Asa, SL, Carty, SE, Hodak, SP, McHugh, JB, Richardson, MS, Shah, J, Thompson, LDR, Nikiforov, YE. The College of American Pathologists Cancer Checklists: Protocol for the Examination of Specimens from Patients with Carcinomas of the Thyroid Gland. Northfield, IL: College of American Pathologists, 2014 (http://www.cap.org/apps/docs/committees/cancer/cancer_protocols/2009/Thyroid_09protocol.pdf, accessed 4 October 2015).Google Scholar
Cranshaw, IM, Carnaille, B. Micrometastases in thyroid cancer: an important finding? Surg Oncol 2008;17:253258.Google Scholar
Urken, ML, Mechanick, JI, Sarlin, J, Scherl, S, Wenig, BM. Pathologic reporting of lymph node metastases in differentiated thyroid cancer: a call to action for the College of American Pathologists. Endocr Pathol 2013;25:214218.Google Scholar
Randolph, GW, Duh, QY, Heller, KS, LiVolsi, VA, Mandel, SJ, Steward, DL, Tufano, RP, Tuttle, RM. The prognostic significance of nodal metastases from papillary thyroid carcinoma can be stratified based on the size and number of metastatic lymph nodes, as well as the presence of extranodal extension. Thyroid 2012;22:11441152.Google Scholar

References

Rosai, J, DeLellis, RA. Atlas of Tumor Pathology, 4th Series, Fascicle 21: Tumors of the Thyroid and Parathyroid Glands Bethesda, MD: ARP Press, 2015.Google Scholar
Lappas, D, Noussios, G, Anagnostis, P, Adamidou, F, Chatzigeorgiou, A, Skandalakis, P. Location, number and morphology of parathyroid glands: results from a large anatomical series. Anat Sci Int 87:160164, 2012.Google Scholar
Akersstrom, G, Malmaeus, J, Berstrom, R. Surgical anatomy of human parathyroid glands. Surgery 95:1421, 1984.Google Scholar
Phitayakorn, R, McHenry, CR. Incidence and location of ectopic abnormal parathyroid glands. Am J Surg 191;418423, 2006.Google Scholar
Noussios, G, Anagnostis, P, Natsis, K. Ectopic parathyroid glands and their anatomical, clinical and surgical implications. Exp Clin Endocrinol Diabetes 120:604610, 2012.Google Scholar
Uchino, S, Noguchi, S, Sato, M, Yamashita, H, Watanabe, S, Murakami, T, Toda, M, Ohshima, A, Futata, T, Mizukoshi, T, Koike, E, Takatsu, K, Terao, K, Wakiya, S, Nagatomo, M, Adachi, M. Screening of the MEN1 gene and discovery of germ-line and somatic mutations in apparently sporadic parathyroid tumors. Cancer Res 60:55535557, 2000.Google Scholar
Chandrasekharappa, SC, Guru, SC, Manickam, P, Olufemi, SE, Collins, FS, Emmert-Buck, MR, Debelenko, LV, Zhuang, Z, Lubensky, IA, Liotta, LA, Crabtree, JS, Wang, Y, Roe, BA, Weisemann, J, Boguski, MS, Agarwal, SK, Kester, MB, Kim, YS, Heppner, C, Dong, Q, Spiegel, AM, Burns, AL, Marx, SJ. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 276:404407, 1997.Google Scholar
Romei, C, Pardi, E, Cetani, F, Elisei, R. Genetic and clinical features of multiple endocrine neoplasia types 1 and 2. J Oncol 115, 2012.Google Scholar
Marx, SJ, Agarwal, SK, Kester, MB, Heppner, C, Kim, YS, Skarulis, MC, James, LA, Goldsmith, PK, Saggar, SK, Park, SY, Spiegel, AM, Burns, AL, Debelenko, LV, Zhuang, Z, Lubensky, IA, Liotta, LA, Emmert-Buck, MR, Guru, SC, Manickam, P, Crabtree, J, Erdos, MR, Collins, FS, Chandrasekharappa, SC. Multiple endocrine neoplasia type 1: clinical and genetic features of the hereditary endocrine neoplasias. Recent Prog Horm Res 54:397438; discussion 438–439, 1999.Google Scholar
Agarwal, SK, Lee Burns, A, Sukhodolets, KE, Kennedy, PA, Obungu, VH, Hickman, AB, Mullendore, ME, Whitten, I, Skarulis, MC, Simonds, WF, Mateo, C, Crabtree, JS, Scacheri, PC, Ji, Y, Novotny, EA, Garrett-Beal, L, Ward, JM, Libutti, SK, Richard Alexander, H, Cerrato, A, Parisi, MJ, Santa Anna, AS, Oliver, B, Chandrasekharappa, SC, Collins, FS, Spiegel, AM, Marx, SJ. Molecular pathology of the MEN1 gene. Ann N Y Acad Sci 1014:189198, 2004.Google Scholar
Arnold, A, Shattuck, TM, Mallya, SM, Krebs, LJ, Costa, J, Gallagher, J, Wild, Y, Saucier, K. Molecular pathogenesis of primary hyperparathyroidism. J Bone Miner Res 17(suppl 2):N30N36, 2002.Google Scholar
Friedman, E, Sakaguchi, K, Bale, AE, Falchetti, A, Streeten, E, Zimering, MB, Weinstein, LS, McBride, WO, Nakamura, Y, Brandi, ML, Norton, JA, Aurbach, GD, Spiegel, AM,Marx, SJ. Clonality of parathyroid tumors in familial multiple endocrine neoplasia type 1. N Engl J Med 321:213218, 1989.Google Scholar
Agah, A, Carpenter, R, Bhattacharya, S, Edmonson, SJ, Carlsen, E, Monson, JP. Parathyroid carcinoma in multiple endocrine neoplasia type 1 (MEN1) syndrome: two case reports of an unrecognized entity. J Endocrinol Invest 2007;30:145149.Google Scholar
del Pozo, C, Garcia-Pascual, L, Balsells, M, Barahona, MJ, Veloso, E, González, C, Anglada-Barceló, J. Parathyroid carcinoma in multiple endocrine neoplasia type 1. Case report and review of the literature. Hormones 10:326331, 2011.Google Scholar
Lemos, MC, Thakker, RV. Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene. Hum Mutat 29:2232, 2008.Google Scholar
Scarpelli, D, D'Aloiso, L, Arturi, F, Scillitani, A, Presta, I, Bisceglia, M, Cristofaro, C, Russo, D, Filetti, S. Novel somatic MEN1 gene alterations in sporadic primary hyperparathyroidism and correlation with clinical characteristics. J Endocrinol Invest 27:10151021, 2004.Google Scholar
Haven, CJ, van Puijenbroek, M, Tan, MH, Teh, BT, Fleuren, GJ, van Wezel, T, Morreau, H. Identification of MEN1 and HRPT2 somatic mutations in paraffin-embedded (sporadic) parathyroid carcinomas. Clin Endocrinol (Oxf) 67:370376, 2007.Google Scholar
Haven, CJ, Howell, VM, Eilers, PH, Dunne, R, Takahashi, M, van Puijenbroek, M, Furge, K, Kievit, J, Tan, MH, Fleuren, GJ, Robinson, BG, Delbridge, LW, Philips, J, Nelson, AE, Krause, U, Dralle, H, Hoang-Vu, C, Gimm, O, Morreau, H, Marsh, DJ, Teh, BT. Gene expression of parathyroid tumors: molecular subclassification and identification of the potential malignant phenotype. Cancer Res 64:74057411, 2004.Google Scholar
Alvelos, MI, Vinagre, J, Fonseca, E, et al. MEN1 intragenic deletions may represent the most prevalent somatic event in sporadic primary hyperparathyroidism. Eur J Endocrinol 168:119128, 2013.Google Scholar
Oishi, S, Sato, T, Takiguchi-Shirahama, S, Nakamura, Y. Mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A (Sipple's syndrome). Endocr J 42:527536, 1995.Google Scholar
Machens, A, Dralle, H. Genotype–phenotype based surgical concept of hereditary medullary thyroid carcinoma. World J Surg 31:957968, 2007.Google Scholar
Eng, C, Clayton, D, Schuffenecker, I, Lenoir, G, Cote, G, Gagel, RF, van Amstel, HK, Lips, CJ, Nishisho, I, Takai, SI, Marsh, DJ, Robinson, BG, Frank-Raue, K, Raue, F, Xue, F, Noll, WW, Romei, C, Pacini, F, Fink, M, Niederle, B, Zedenius, J, Nordenskjold, M, Komminoth, P, Hendy, GN, Mulligan, LM:The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA 276:15751579, 1996.Google Scholar
Jenkins, PJ, Satta, MA, Simmgen, M, Drake, WM, Williamson, C, Lowe, DG, Britton, K, Chew, SL, Thakker, RV, Besser, GM. Metastatic parathyroid carcinoma in MEN2A syndrome. Clin Endocrinol (Oxf) 47:747751, 1997.Google Scholar
Kimura, T, Yoshimoto, K, Tanaka, C, Ohkura, T, Iwahana, H, Miyauchi, A, Sano, T, Itakura, M. Obvious mRNA and protein expression but absence of mutations of the RET proto-oncogene in parathyroid tumors. Eur J Endocrinol 134:314319, 1996.Google Scholar
Pellegata, NS, Quintanilla-Martinez, L, Siggelkow, H, et al. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia in rats and humans. Proc Natl Acad Sci USA 103; 1555815563, 2006.Google Scholar
Malanga, D, De Gisi, S, Riccardi, M, Scrima, M, De Marco, C, Robledo, M, Viglietto, G. Functional characterization of a rare germline mutation in the gene encoding the cyclin-dependent kinase inhibitor p27Kip1 (CDKN1B) in a Spanish patient with multiple endocrine neoplasia-like phenotype. Eur J Endocrinol 166:551560, 2012.Google Scholar
Hemmer, S, Wasenius, VM, Haglund, C, Zhu, Y, Knuutila, S, Franssila, K, Joensuu, H. Deletion of 11q23 and cyclin D1 overexpression are frequent aberrations in parathyroid adenomas. Am J Pathol 158:13551362, 2001.Google Scholar
Hsi, ED, Zukerberg, LR, Yang, WI, Arnold, A. Cyclin D1/PRAD1 expression in parathyroid adenomas: an immunohistochemical study. J Clin Endocrinol Metab 81:17361739, 1996.Google Scholar
Erickson, LA, Jalal, SM, Harwood, A, Shearer, B, Jin, L, Lloyd, RV. Analysis of parathyroid neoplasms by interphase fluorescence in situ hybridization. Am J Surg Pathol 28:578584, 2004.Google Scholar
Teh, BT, Farnebo, F, Twigg, S, Hoog, A, Kytola, S, Korpi-Hyovalti, E, Wong, FK, Nordenstrom, J, Grimelius, L, Sandelin, K, Robinson, B, Farnebo, LO, Larsson, C. Familial isolated hyperparathyroidism maps to the hyperparathyroidism-jaw tumor locus in 1q21-q32 in a subset of families. J Clin Endocrinol Metab 83:21142120, 1998.Google Scholar
Carpten, JD, Robbins, CM, Villablanca, A, Forsberg, L, Presciuttini, S, Bailey-Wilson, J, Simonds, WF, Gillanders, EM, Kennedy, AM, Chen, JD, Agarwal, SK, Sood, R, Jones, MP, Moses, TY, Haven, C, Petillo, D, Leotlela, PD, Harding, B, Cameron, D, Pannett, AA, Hoog, A, Heath, H 3rd, James-Newton, LA, Robinson, B, Zarbo, RJ, Cavaco, BM, Wassif, W, Perrier, ND, Rosen, IB, Kristoffersson, U, Turnpenny, PD, Farnebo, LO, Besser, GM, Jackson, CE, Morreau, H, Trent, JM, Thakker, RV, Marx, SJ, Teh, BT, Larsson, C, Hobbs, MR. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet 32:676680, 2002.Google Scholar
Marx, SJ, Simonds, WF, Agarwal, SK, Burns, AL, Weinstein, LS, Cochran, C, Chandrasekharappa, SC, Collins, FS. Hyperparathyroidism in hereditary syndromes: special expressions and special managements. J Bone Miner Res 17(suppl 2):N37N43, 2002.Google Scholar
Howell, VM, Haven, CJ, Kahnoski, K, Khoo, SK, Petillo, D, Chen, J, Fleuren, GJ, Robinson, BG, Delbridge, LW, Philips, J, Nelson, AE, Krause, U, Hammje, K, Dralle, H, Hoang-Vu, C, Gimm, O, Marsh, DJ, Morreau, H, Teh, BT. HRPT2 mutations are associated with malignancy in sporadic parathyroid tumours. J Med Genet 40:657663, 2003.Google Scholar
Shattuck, TM, Valimaki, S, Obara, T, Gaz, RD, Clark, OH, Shoback, D, Wierman, ME, Tojo, K, Robbins, CM, Carpten, JD, Farnebo, LO, Larsson, C, Arnold, A. Somatic and germ-line mutations of the HRPT2 gene in sporadic parathyroid carcinoma. N Engl J Med 349:17221729, 2003.Google Scholar
Krebs, LJ, Shattuck, TM, Arnold, A. HRPT2 mutational analysis of typical sporadic parathyroid adenomas. J Clin Endocrinol Metab 90:50155017, 2005.Google Scholar
Warner, JV, Nyholt, DR, Busfield, F, Epstein, M, Burgess, J, Stranks, S, Hill, P, Perry-Keene, D, Learoyd, D, Robinson, B, Teh, BT, Prins, JB, Cardinal, JW. Familial isolated hyperparathyroidism is linked to a 1.7 Mb region on chromosome 2p13.3-14. J Med Genet 43:e12, 2006.Google Scholar
Wassif, WS, Moniz, CF, Friedman, E, Wong, S, Weber, G, Nordenskjold, M, Peters, TJ, Larsson, C. Familial isolated hyperparathyroidism: a distinct genetic entity with an increased risk of parathyroid cancer. J Clin Endocrinol Metab 77:14851489, 1993.Google Scholar
Simonds, WF, Robbins, CM, Agarwal, SK, Hendy, GN, Carpten, JD, Marx, SJ. Familial isolated hyperparathyroidism is rarely caused by germline mutation in HRPT2, the gene for the hyperparathyroidism-jaw tumor syndrome. J Clin Endocrinol Metab 89:96102, 2004.Google Scholar
Aida, K, Koishi, S, Inoue, M, Nakazato, M, Tawata, M, Onaya, T. Familial hypocalciuric hypercalcemia associated with mutation in the human Ca(2+)-sensing receptor gene. J Clin Endocrinol Metab 80:25942598, 1995.Google Scholar
Marx, SJ. Hyperparathyroid and hypoparathyroid disorders. N Engl J Med 343:18631875, 2000.Google Scholar
Hellman, P, Carling, T, Rask, L, Akerstrom, G. Pathophysiology of primary hyperparathyroidism. Histol Histopathol 15:619627, 2000.Google Scholar
Cole, DE, Janicic, N, Salisbury, SR, Hendy, GN. Neonatal severe hyperparathyroidism, secondary hyperparathyroidism, and familial hypocalciuric hypercalcemia: multiple different phenotypes associated with an inactivating Alu insertion mutation of the calcium-sensing receptor gene. Am J Med Genet 71:202210, 1997.Google Scholar
Kifor, O, Moore, FD Jr., Delaney, M, Garber, J, Hendy, GN, Butters, R, Gao, P, Cantor, TL, Kifor, I, Brown, EM, Wysolmerski, J. A syndrome of hypocalciuric hypercalcemia caused by autoantibodies directed at the calcium-sensing receptor. J Clin Endocrinol Metab 88:6072, 2003.Google Scholar
Agarwal, SK, Schrock, E, Kester, MB, Burns, AL, Heffess, CS, Ried, T, Marx, SJ. Comparative genomic hybridization analysis of human parathyroid tumors. Cancer Genet Cytogenet 106:3036, 1998.Google Scholar
Palanisamy, N, Imanishi, Y, Rao, PH, Tahara, H, Chaganti, RS, Arnold, A. Novel chromosomal abnormalities identified by comparative genomic hybridization in parathyroid adenomas. J Clin Endocrinol Metab 83:17661770, 1998.Google Scholar
Garcia, JL, Tardio, JC, Gutierrez, NC, Gonzalez, MB, Polo, JR, Hernandez, JM, Menarguez, J. Chromosomal imbalances identified by comparative genomic hybridization in sporadic parathyroid adenomas. Eur J Endocrinol 146:209213, 2002.Google Scholar
Cryns, VL, Rubio, MP, Thor, AD, Louis, DN, Arnold, A. p53 abnormalities in human parathyroid carcinoma. J Clin Endocrinol Metab 78:13201324, 1994.Google Scholar
Cryns, VL, Thor, A, Xu, HJ, Hu, SX, Wierman, ME, Vickery, AL Jr., Benedict, WF, Arnold, A. Loss of the retinoblastoma tumor-suppressor gene in parathyroid carcinoma. N Engl J Med 330:757761, 1994.Google Scholar
Samander, EH, Arnold, A. Mutational analysis of the vitamin D receptor does not support its candidacy as a tumor suppressor gene in parathyhroid adenomas. J Clin Endocrinol Metab 91:50195021, 2006.Google Scholar
Parvari, R, Hershkovitz, E, Grossman, N, Gorodischer, R, Loeys, B, Zecic, A, Mortier, G, Gregory, S, Sharony, R, Kambouris, M, Sakati, N, Meyer, BF, Al Aqeel, AI, Al Humaidan, AK, Al Zanhrani, F, Al Swaid, A, Al Othman, J, Diaz, GA, Weiner, R, Khan, KT, Gordon, R, Gelb, BD. Mutation of TBCE causes hypoparathyroidism-retardation-dysmorphism and autosomal recessive Kenny-Caffey syndrome. Nat Genet 32:448452, 2002.Google Scholar
Goswami, R, Brown, EM, Kochupillai, N, Gupta, N, Rani, R, Kifor, O, Chattopadhyay, N. Prevalence of calcium sensing receptor autoantibodies in patients with sporadic idiopathic hypoparathyroidism. Eur J Endocrinol 150:918, 2004.Google Scholar
Heath, H. 3rd. Primary hyperparathyroidism: recent advances in pathogenesis, diagnosis, and management. Adv Intern Med 37:275293, 1992.Google Scholar
Brandi, ML, Gagel, RF, Angeli, A, Bilezikian, JP, Beck-Peccoz, P, Bordi, C, Conte-Devolx, B, Falchetti, A, Gheri, RG, Libroia, A, Lips, CJ, Lombardi, G, Mannelli, M, Pacini, F, Ponder, BA, Raue, F, Skogseid, B, Tamburrano, G, Thakker, RV, Thompson, NW, Tomassetti, P, Tonelli, F, Wells, SA Jr., Marx, SJ. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol Metab 86:56585671, 2001.Google Scholar
Castleman, B, Roth, SI. Atlas of Tumor Pathology, 2nd Series, Fascicle 14: Tumors of the Parathyroid Gland. Washington DC: Armed Forces Institute of Pathology, 2015.Google Scholar
Harach, HR, Jasani, B. Parathyroid hyperplasia in multiple endocrine neoplasia type 1: a pathological and immunohistochemical reappraisal. Histopathology 20:305313, 1991.Google Scholar
Tominaga, Y, Grimelius, L, Johansson, H, Rudberg, C, Johansson, H, Ljunghall, S, Bergstrom, R, Rastad, J, Akerstrom, G. Histological and clinical features of non-familial primary parathyroid hyperplasia. Pathol Res Pract 188:115122, 1992.Google Scholar
DeLellis, RA. Parathyroid tumors and related disorders. Mod Pathol 24:578593, 2011.Google Scholar
Snover, D, Foucar, K. Mitotic activity in benign parathyroid disease. Am J Clin Pathol 75:345347, 1981.Google Scholar
Albright, F, Bloomberg, E, Castleman, B, Churchill, ED. Hyperparathyroidism due to diffuse hyperplasia of all parathyroid glands rather than adenoma of one. Clinical studies on three such cases. Arch Int Med 54:35329, 1934.Google Scholar
Erickson, LA, Jin, L, Wollan, P, Thompson, GB, van Heerden, JA, Lloyd, RV. Parathyroid hyperplasia, adenomas, and carcinomas: differential expression of p27Kip1 protein. Am J Surg Pathol 23:288295, 1999.Google Scholar
Ellard, S, Hattersley, AT, Brewer, CM, Vaidya, B. Detection of an MEN1 gene mutation depends on clinical features and supports current referral criteria for diagnostic molecular genetic testing. Clin Endocrinol (Oxf) 62:169175, 2005.Google Scholar
Klein, RD, Salih, S, Bessoni, J, Bale, AE. Clinical testing for multiple endocrine neoplasia type 1 in a DNA diagnostic laboratory. Genet Med 7:131138, 2005.Google Scholar
Goudet, P, Bonithon-Kopp, C, Murat, A, Ruszniewski, P, Niccoli, P, Ménégaux, F, Chabrier, G, Borson-Chazot, F, Tabarin, A, Bouchard, P, Cadiot, G, Beckers, A, Guilhem, I, Chabre, O, Caron, P, Du Boullay, H, Verges, B, Cardot-Bauters, C. Gender-related differences in MEN1 lesion occurrence and diagnosis: a cohort study of 734 cases from the Groupe d'etude des Tumeurs Endocrines. Eur J Endocrinol 165:97105, 2011.Google Scholar
Lips, CJ, Dreijerink, KM, Hoppener, JW. Variable clinical expression in patients with germline MEN1 disease gene mutation: clues to genotype–phenotype correlation. Clinics 67(suppl):4956, 2012.Google Scholar
Cope, O, Keynes, M, Roth, SI, Castleman, B. Primary chief cell hyperplasia of the parathyroid glands: a new entity in the surgery of hyperparathyroidism. Ann Surg 148:375388, 1958.Google Scholar
Stojadinovic, A, Hoos, A, Nissan, A, Dudas, ME, Cordon-Cardo, C, Shaha, AR, Brennan, MF, Singh, B, Ghossein, RA. Parathyroid neoplasms: clinical, histopathological, and tissue microarray-based molecular analysis. Hum Pathol 34:5464, 2003.Google Scholar
Gill, AJ, Clarkson, A, Gimm, O, Keil, J, Dralle, H, Howell, VM, Marsh, DJ. Loss of nuclear expression of parafibromin distinguishes parathyroid carcinomas and hyperparathyroidism-jaw tumor (HPT-JT) syndrome-related adenomas from sporadic parathyroid adenomas and hyperplasias. Am J Surg Pathol 30:11401149, 2006.Google Scholar
Tominaga, Y, Tsuzuki, T, Matsuoka, S, Uno, N, Sato, T, Shimabukuro, S, Goto, N, Nagasaka, T, Uchida, K. Expression of parafibromin in distant metastatic parathyroid tumors in patients with advanced secondary hyperparathyroidism due to chronic kidney disease. World J Surg 32:815821, 2008.Google Scholar
Wermers, RA, Khosia, S, Atkinson, EJ, et al. Incidence of primary hyperparathyroidism in Rochester, Minnesota, 1993–2001: an update on changing epidemiology of the disease. J Bone Miner Res 21:171177, 2006.Google Scholar
Russ, JE, Scanlon, EF, Sener, SF. Parathyroid adenomas following irradiation. Cancer 43:10781083, 1979.Google Scholar
Castleman, B, Mallory, TB. The pathology of the parathyroid gland in hyperparathyroidism: a study of 25 cases. Am J Pathol 11:172, 1935.Google Scholar
Bedetti, CD, Dekker, A, Watson, CG. Functioning oxyphil adenoma of the parathyroid gland. A clinicopathologic study of ten patients with hyperparathyroidism. Hum Pathol 15:11211126, 1984.Google Scholar
Erickson, LA, Jin, L, Papotti, M, Lloyd, RV. Oxyphil parathyroid carcinomas: a clinicopathologic and immunohistochemical study of 10 cases. Am J Surg Pathol 26:344349, 2002.Google Scholar
Chow, LS, Erickson, LA, Abu-Lebdeh, HS, Wermers, RA; Parathyroid lipoadenomas: a rare cause of primary hyperparathyroidism. Endocr Pract 12:131136, 2006.Google Scholar
Abbona, CG, Papotti, M, Gasparri, G, Gasparri, G, Bussolati, G. Proliferative activity in parathyroid tumors as detected by Ki-67 immunostaining. Hum Pathol 26:135138, 1995.Google Scholar
Lloyd, RV, Carney, JA, Ferreiro, JA, Jin, L, Thompson, GB, Van Heerden, JA, Grant, CS, Wollan, PC. Immunohistochemical analysis of the cell cycle associated antigens Ki-67 and retinoblastoma protein in parathyroid carcinomas and adenomas. Endocr Pathol 6:279287, 1995.Google Scholar
Vargas, MP, Vargas, HI, Keiner, DE, Merino, MJ. The role of prognostic markers (MIB-1, RB and BCL-2) in the diagnosis of parathyroid tumors. Mod Pathol 10:1217, 1997.Google Scholar
Bergero, N, DePompa, R, Sacerdote, C, Gasparri, G, Volante, M, Bussolati, G, Papotti, M. Galectin-3 expression in parathyroid carcinoma: immunohistochemical study of 26 cases. Hum Pathol 36:908914, 2005.Google Scholar
Howell, VM, Gill, A, Clarkson, A, Nelson, AE, Dunne, R, Delbridge, LW, Robinson, BG, The, BT, Gimm, O, Marsh, DJ. Accuracy of combined protein gene product 9.5 and parafibromin markers for immunohistochemical diagnosis of parathyroid carcinoma. J Clin Endocrinol Metab 94:343441, 2009.Google Scholar
DeLellis, RA. Parathyroid carcinoma: an overview. Adv Anat Pathol 12:5361, 2005.Google Scholar
Giessler, GA, Beech, DJ. Nonfunctional parathyroid carcinoma. J Natl Med Assoc 93:251255, 2001.Google Scholar
Busaidy, NL, Jimenez, C, Habra, MA, Schultz, PN, El-Naggar, AK, Clayman, GL, Asper, JA, Diaz, EM Jr., Evans, DB, Gagel, RF, Garden, A, Hoff, AO, Lee, JE, Morrison, WH, Rosenthal, DI, Sherman, SI, Sturgis, EM, Waguespack, SG, Weber, RS, Wirfel, K, Vassilopoulou-Sellin, R. Parathyroid carcinoma: a 22-year experience. Head Neck 26:716726, 2004.Google Scholar
Schantz, A, Castleman, B. Parathyroid carcinoma: a study of 70 cases. Cancer 31:600605, 1973.Google Scholar
Wynne, AG, van Heerden, J, Carney, JA, Fitzpatrick, LA. Parathyroid carcinoma: clinical and pathologic features in 43 patients. Medicine 71:197205, 1992.Google Scholar
Hundahl, SA, Fleming, ID, Fremgen, AM and Menck, HR. Two hundred eighty-six cases of parathyroid carcinoma treated in the US between 1985–1995: a National Cancer Data Base report. The American College of Surgeons Commission on Cancer and the American Cancer Society. Cancer 86,538544, 1999.Google Scholar
Mangray, S, DeLellis, RA. Parafibromin as a tool for the diagnosis of parathyroid tumors [letter to the editor]. Adv Anat Pathol 15:179, 2008.Google Scholar
Juhlin, C, Larsson, C, Yakoleva, T, Leibiger, I, Leibiger, B, Alimov, A, Weber, G, Hoog, A, Villablanca, A. Loss of parafibromin expression in a subset of parathyroid adenomas. Endocr Relat Cancer 13:509523, 2006.Google Scholar
Talat, N, Schulte, K. Clinical presentation, staging and long-term evolution of parathyroid cancer. Ann Surg Oncol 17;21562174, 2010.Google Scholar
Schulte, K.M. and Talat, N. Diagnosis and management of parathyroid cancer. Nat Rev Endocrinol 8; 612622, 2012.Google Scholar
Lee, PK, Jarosek, SL, Virnig, BA, Evasovich, M, Tuttle, TM. Trends in the incidence and treatment of parathyroid cancer in the United States. Cancer 109; 17361741, 2007.Google Scholar
Sandelin, K, Auer, G, Bondeson, L, Grimelius, L, Farnebo, LO. Prognostic factors in parathyroid cancer: a review of 95 cases. World J Surg 16:724731, 1992.Google Scholar
Munson, ND, Foote, RL, Northcutt, RC, Tiegs, RD, Fitzpatrick, LA, Grant, CS, van Heerden, JA, Thompson, GB, Lloyd, RV. Parathyroid carcinoma: is there a role for adjuvant radiation therapy? Cancer 98:23782384, 2003.Google Scholar

References

Luo, X., Ikeda, Y., Parker, K.L. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 1994;77, 481490.Google Scholar
Sadovsky, Y., Crawford, P.A., Woodson, K.G., Polish, J.A., Clements, M.A., Tourtellotte, L.M., Simburger, K., Milbrandt, J. Mice deficient in the orphan receptor steroidogenic factor 1 lack adrenal glands and gonads but express P450 side-chain-cleavage enzyme in the placenta and have normal embryonic serum levels of corticosteroids. Proc Natl Acad Sci USA 1995;92, 1093910943.Google Scholar
Achermann, J.C., Ito, M., Ito, M., Hindmarsh, P.C., Jameson, J.L. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat Genet 1999;22, 125126.Google Scholar
Donnellan, W.L. Surgical anatomy of adrenal glands. Ann Surg 1961;154, 298305.Google Scholar
Cesmebasi, A., Du Plessis, M., Iannatuono, M., Shah, S., Tubbs, R.S., Loukas, M.A. Review of the anatomy and clinical significance of adrenal veins. Clin Anat 2014;27, 12531263.Google Scholar
Parnaby, C.N., Galbraith, N., O’Dwyer, P.J. Importance of the adrenal gland blood supply during laparoscopic subtotal adrenalectomy. J Laparoendosc Adv Surg Tech A 2010;20, 311315.Google Scholar
Sadowski, S.M., Kebebew, E. Variations on a theme. Variant venous adrenal anatomy at work. JAMA Surg 2013;148, 384.Google Scholar
Scholten, A., Cisco, R.M., Vriens, M.R., Shen, W.T., Duh, Q.Y. Variant adrenal venous anatomy in 546 laparoscopic adrenalectomies. JAMA Surg 2013;148, 378383.Google Scholar
McNutt, N.S., Jones, A.L. Observations on the ultrastructure of cytodifferentiation in the human fetal adrenal cortex. Lab Invest 1970;22, 513527.Google Scholar
Tahka, H. On the weight and structure of the adrenal glands and the factors affecting them in children of 0–2 years. Acta Paed Suppl 1951;40, 195.Google Scholar
Bocian-Sobkowska, J. Morphometric study of the human suprarenal gland in the first postnatal year. Folia Morphol 2000;58, 275284.Google Scholar
Lanman, J.T. The fetal zone of the adrenal gland: its developmental course, comparative anatomy, and possible physiologic functions. Medicine 1953;32, 389430.Google Scholar
Studzinski, G.P., Hay, D.C., Symington, T. Observations on the weight of the human adrenal gland and the effect of preparations of corticotropin of different purity on the weight and morphology of the human adrenal gland. J Clin Endocrinol Metab 1963;23, 248–254.Google Scholar
Anderson, J.R., Ross, A.H. Ectopic adrenal tissue in adults. Postgrad Med J 1980;56, 806808.Google Scholar
Ren, P.T., Fu, H., He, X.W. Ectopic adrenal cortical adenoma in the gastric wall: case report. World J Gastroenterol 2013;19, 778780.Google Scholar
Mitchell, A., Scheithauer, B.W., Sasano, H., Hubbard, E.W., Ebersold, M.J. Symptomatic intradural adrenal adenoma of the spinal nerve root: report of two cases. Neurosurgery 1993;32, 658661; discussion 661–652.Google Scholar

References

Mete, O, Asa, SL. Morphological distinction of cortisol-producing and aldosterone-producing adrenal cortical adenomas: not only possible but a critical clinical responsibility. Histopathology 2012;60:10151016.Google Scholar
Duan, K, Gomez Hernandez, K, Mete, O. Clinicopathological correlates of adrenal Cushing’s syndrome. J Clin Pathol 2015;68:175186.Google Scholar

References

Anderson, JR, Ross, AH. Ectopic adrenal tissue in adults. Postgrad Med J 1980;56:806808.Google Scholar
Lack, EE. Atlas of Tumor Pathology, 4th Series, Fascicle 8: Tumors of the Adrenal Glands and Extraadrenal Paraganglia. Bethesda, MD: ARP Press, 2007.Google Scholar
Klatt, EC, Pysher, TJ, Pavlova, Z. Adrenal fusion. Pediatr Dev Pathol 1998;1:475479.Google Scholar
Paterson, A. Adrenal pathology in childhood: a spectrum of disease. Eur Radiol 2002;12:24912508.Google Scholar
Pakravan, P, Kenny, FM, Depp, R, Allen, AC. Familial congenital absence of adrenal glands; evaluation of glucocorticoid, mineralocorticoid, and estrogen metabolism in the perinatal period. J Pediatr 1974;84:7478.Google Scholar
Schechter, DC. Aberrant adrenal tissue. Ann Surg 1968;167:421426.Google Scholar
Barwick, TD, Malhotra, A, Webb, JA, Savage, MO, Reznek, RH. Embryology of the adrenal glands and its relevance to diagnostic imaging. Clin Radiol 2005;60:953959.Google Scholar
Merke, DP, Bornstein, SR. Congenital adrenal hyperplasia. Lancet 2005;365:21252136.Google Scholar
McNicol, AM. Lesions of the adrenal cortex. Arch Pathol Lab Med. 2008;132:12631271.Google Scholar
Llyod, RV, Douglas, BR, Young, WF. Atlas of Non-tumor Pathology: Endocrine Diseases. Bethesda, MD: ARP Press, 2002.Google Scholar
Pang, S, Becker, D, Cotelingam, J, Foley, TP Jr, Drash, AL. Adrenocortical tumor in a patient with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Pediatrics. 1981 Aug;68:242246.Google Scholar
Varan, A, Unal, S, Ruacan, S, Vidinlisan, S. Adrenocortical carcinoma associated with adrenogenital syndrome in a child. Med Pediatr Oncol. 2000;35:8890.Google Scholar

References

Paolo, WF, Nosanchuk, JD. Adrenal infections. Int J Infect Dis 2006;10:343353.Google Scholar
Lack, EE. Atlas of Tumor Pathology, 4th Series, Fascicle 8: Tumors of the Adrenal Glands and Extraadrenal Paraganglia. Bethesda, MD: ARP Press, 2007.Google Scholar
Lattin, GE, Sturgill, ED, Tujo, CA, et al. From the radiologic pathology archives: Adrenal tumors and tumor-like conditions in the adult: radiologic-pathologic correlation. Radiographics 2014;34:805829.Google Scholar
Johnson, PT, Horton, KM, Fishman, EK. Adrenal imaging with MDCT: nonneoplastic disease. AJR Am J Roentgenol 2009;193:11281135.Google Scholar
Hermsen, IG, Polak, MP, Haak, HR. Disappearing adrenal masses. Endocrine 2010;38:153157.Google Scholar
Arlt, W, Allolio, B. Adrenal insufficiency. Lancet 2003;361:18811893.Google Scholar
Huebener, KH, Treugut, H. Adrenal cortex dysfunction: CT findings. Radiology 1984;150:195199.Google Scholar
Polat, P, Kantarci, M, Alper, F, Suma, S, Koruyucu, MB, Okur, A. Hydatid disease from head to toe. Radiographics 2003;23:475494.Google Scholar
Young, WF. Clinical practice. The incidentally discovered adrenal mass. N Engl J Med 2007;356:601610.Google Scholar
Llyod, RV, Douglas, BR, Young, WF. Atlas of Non-tumor Pathology: Endocrine Diseases, 1st Series, Fascicle 1. Bethesda, MD: ARP Press, 2002.Google Scholar
Koene, RJ, Catanese, J, Sarosi, GA. Adrenal hypofunction from histoplasmosis: a literature review from 1971 to 2012. Infection 2013;41:757759.Google Scholar
Pulakhandam, U, Dincsoy, HP. Cytomegaloviral adrenalitis and adrenal insufficiency in AIDS. Am J Clin Pathol 1990;93:651656.Google Scholar
Ardalan, M, Shoja, MM. Cytomegalovirus-induced adrenal insufficiency in a renal transplant recipient. Transplant Proc 2009;41:29152916.Google Scholar
Glasgow, BJ, Steinsapir, KD, Anders, K, Layfield, LJ. Adrenal pathology in the acquired immune deficiency syndrome. Am J Clin Pathol 1985;84:594597.Google Scholar
Carvounis, E, Marinis, A, Arkadopoulos, N, Theodosopoulos, T, Smyrniotis, V. Vascular adrenal cysts: a brief review of the literature. Arch Pathol Lab Med 2006;130:17221724.Google Scholar
Hamilton, D, Harris, MD, Foweraker, J, Gresham, GA. Waterhouse–Friderichsen syndrome as a result of non-meningococcal infection. J Clin Pathol 2004;57:208209.Google Scholar
Adem, PV, Montgomery, CP, Husain, AN, et al. Staphylococcus aureus sepsis and the Waterhouse–Friderichsen syndrome in children. N Engl J Med 2005;353:12451251.Google Scholar
Tachezy, M, Simon, P, Ilchmann, C, Vashist, YK, Izbicki, JR, Gawad, KA. Abscess of adrenal gland caused by disseminated subacute Nocardia farcinica pneumonia. A case report and mini-review of the literature. BMC Infect Dis 2009;9:194.Google Scholar
Atkinson, GO, Kodroff, MB, Gay, BB, Ricketts, RR. Adrenal abscess in the neonate. Radiology 1985;155:101104.Google Scholar
Favara, BE, Akers, DR, Franciosi, RA. Adrenal abscess in a neonate. J Pediatr 1970;77:682685.Google Scholar
Benjamin, E, Fox, H. Malakoplakia of the adrenal gland. J Clin Pathol 1981;34:606611.Google Scholar
Francque, SM, Schwagten, VM, Ysebaert, DK, Van Marck, EA, Beaucourt, LA. Bilateral adrenal haemorrhage and acute adrenal insufficiency in a blunt abdominal trauma: a case-report and literature review. Eur J Emerg Med 2004;11:164167.Google Scholar
Potter, EL, Barnes, SL, Chunilal, SD. Acute adrenal failure due to bilateral adrenal haemorrhage associated with lupus anticoagulant antibodies. Intern Med J 2015;45:119120.Google Scholar
Presotto, F, Fornasini, F, Betterle, C, Federspil, G, Rossato, M. Acute adrenal failure as the heralding symptom of primary antiphospholipid syndrome: report of a case and review of the literature. Eur J Endocrinol 2005;153:507514.Google Scholar
Ansari, AA. Clinical features and pathobiology of Ebolavirus infection. J Autoimmun 2014;55:19.Google Scholar
Gelisse, E, Gratia, E, Just, B, Mateu, P. Catastrophic antiphospholipid syndrome and heparin-induced thrombocytopenia presenting with adrenal insufficiency caused by bilateral hemorrhagic adrenal infarction during sepsis. Ann Fr Anesth Reanim 2014;33:e8384.Google Scholar
Sandal, G, Arıkan, E, Kuybulu, AE, Ormecı, AR. Unilateral Renal vein thrombosis and adrenal hemorrhage in a newborn with homozygous factor V Leiden and heterozygous of MTHFR-677T, MTHFR-1298C gene mutations. Indian J Hematol Blood Transfus 2014;30(suppl 1):294298.Google Scholar
Tattersall, TL, Thangasamy, IA, Reynolds, J. Bilateral adrenal haemorrhage associated with heparin-induced thrombocytopaenia during treatment of Fournier gangrene. Br Med J Case Rep 2014;2014. pii: bcr2014206070.Google Scholar
Ito, C, Akimoto, T, Kusano, E, Nagata, D. Microscopic polyangiitis with unilateral adrenal hemorrhage. Intern Med 2014;53:20232024.Google Scholar
Wang, J, Packer, CD. Acute abdominal pain after intercourse: adrenal hemorrhage as the first sign of metastatic lung cancer. Case Rep Med 2014;2014:612036.Google Scholar
Li, A, Wu, B, Zhou, W, Yu, W, Li, L, Yuan, H, Wu, M. Post-hepatectomy haemorrhage: a single-centre experience. HPB (Oxford) 2014;16:965971.Google Scholar
Kornbluth, AA, Salomon, P, Sachar, DB, Subramani, K, Kramer, A, Gray, CE, Present, DH, Chapman, ML. ACTH-induced adrenal hemorrhage: a complication of therapy masquerading as an acute abdomen. J Clin Gastroenterol 1990;12:371377.Google Scholar
Sonavane, A, Baradkar, V, Salunkhe, P, Kumar, S. Waterhouse–Friderichsen syndrome in an adult patient with meningococcal meningitis. Indian J Dermatol 2011;56:326328.Google Scholar
Belmore, DJ, Walters, DN. Bilateral adrenal hemorrhage following laparoscopic cholecystectomy. Surg Endosc 1995;9:919920.Google Scholar
Wright, JE, Bear, JW. Adrenal haemorrhage presenting as an abdominal mass in the newborn. Aust Paediatr J 1987;23:305307.Google Scholar
Liao, CH, Lin, KJ, Fu, CY, Wang, SY, Yang, SJ, Ouyang, CH. Adrenal gland trauma:is extravasation an absolute indication for intervention? World J Surg 2015;39:13121319.Google Scholar
McGowan-Smyth, S. Bilateral adrenal haemorrhage leading to adrenal crisis. Br Med J Case Rep 2014;pii: bcr2014:204225.Google Scholar
Zhuang, B, Lv, DK, Gao, SJ, Meng, JJ. Differential diagnosis of CT images in children with neuroblastomas and ganglioneuroblastomas. Asian Pac J Cancer Prev 2014;15:1050910512.Google Scholar
Kenney, PJ, Stanley, RJ. Calcified adrenal masses. Urol Radiol 1987;9:915.Google Scholar
Okamoto, T, Suzuki, Y, Sugiyama, N, Kudo, S, Yoneyama, T, Hashimoto, Y, Koie, T, Kamimura, N, Oyama, C. [Ganglioneuroma with calcification mimicking adrenal tumor: a case report.] Hinyokika Kiyo 2010;56:621623.Google Scholar
Porto, AF. Lysosomal acid lipase deficiency: diagnosis and treatment of Wolman and cholesteryl ester storage diseases. Pediatr Endocrinol Rev 2014;12(suppl 1):125132.Google Scholar
Nada, R, Gupta, K, Lal, SB, Vasishta, RK. An autopsy case of infantile GM1 gangliosidosis with adrenal calcification. Metab Brain Dis 2011;26:307310.Google Scholar
Sandhoff, K, Harzer, K. Gangliosides and gangliosidoses: principles of molecular and metabolic pathogenesis. J Neurosci 2013;33:1019510208.Google Scholar
Bautista, DV, Asch, M, Kovacs, K, Murray, D. Adrenal myelolipomatous nodules mimicking adrenal neoplasms: report of three cases. Can J Surg 1989;32:5155.Google Scholar
Xiong, Y, Wang, Y, Lin, Y. Primary myelolipoma in posterior mediastinum. J Thorac Dis 2014;6:E181E187.Google Scholar
Hakim, A, Rozeik, C. Adrenal and extra-adrenal myelolipomas: a comparative case report. J Radiol Case Rep 2014;8:112.Google Scholar
Ghaouti, M, Znati, K, Jahid, A, Zouaidia, F, Bernoussi, Z, Mahassini, N. Renal myelolipoma: a rare extra-adrenal tumor in a rare site: a case report and review of the literature. J Med Case Rep 2013;7:92.Google Scholar
Gagliardo, C, Falanga, G, Sutera, R, La Tona, G, Lo Casto, A, Midiri, M, Lagalla, R. Presacral myelolipoma. A case report and literature review. Neuroradiol J 2014;27:764769.Google Scholar
Suárez-Peñaranda, JM, Bermúdez Naveira, A, Fraga, M, Aliste-Santos, C, Cordeiro, C, Muñoz-Barús, JI. Unusual forms of adrenal and extra-adrenal myelolipomas. Int J Surg Pathol 2014;22:473477.Google Scholar
Shastri, C, Rana, C, Kumari, N, Agarwal, G, Krishnani, N. Bilateral adrenocortical oncocytoma with bilateral myelolipomatous metaplasia. Endocr Pathol 2012;23:112114.Google Scholar
Al-Bahri, S, Tariq, A, Lowentritt, B, Nasrallah, DV. Giant bilateral adrenal myelolipoma with congenital adrenal hyperplasia. Case Rep Surg 2014;2014:728198.Google Scholar
Timonera, ER, Paiva, ME, Lopes, JM, Eloy, C, van der Kwast, T, Asa, SL. Composite adenomatoid tumor and myelolipoma of adrenal gland: report of 2 cases. Arch Pathol Lab Med 2008;132:265267.Google Scholar
McGeoch, SC, Olson, S, Krukowski, ZH, Bevan, JS. Giant bilateral myelolipomas in a man with congenital adrenal hyperplasia. J Clin Endocrinol Metab 2012;97:343344.Google Scholar
Ketelsen, D, von Weyhern, CH, Horger, M. Diagnosis of bilateral giant adrenal myelolipoma. J Clin Oncol 2010;28:e678679.Google Scholar
Cha, JS, Shin, YS, Kim, MK, Kim, HJ. Myelolipomas of both adrenal glands. Korean J Urol 2011;52:582585.Google Scholar
Segura Martín, M, Lorenzo Romero, JG, Salinas Sánchez, AA, Hernández Millán, I, Cañamares Pabolaza, L, Virseda Rodriguez, JA. Bilateral adrenal myelolipoma. Urol Int 1999;62:226228.Google Scholar
Giorgadze, TA, Roy, S, Fraker, DL, Brooks, JS, Livolsi, VA. Pathologic quiz case: a 49-year-old woman with an adrenal mass. Pancreatic tissue with nesidiodysplasia, adrenocortical adenoma, and ovarian thecal metaplasia in the adrenal gland. Arch Pathol Lab Med 2004;128:12941296.Google Scholar
Wong, TW, Warner, NE. Ovarian thecal metaplasia in adrenal gland. Arch Pathol 1971;92:319328.Google Scholar
Fidler, WJ. Ovarian thecal metaplasia in adrenal glands, Am J Clin Pathol 1977;67:318323.Google Scholar
Romberger, CF, Wong, TW. Thecal metaplasia in the adrenal gland of a man with acquired bilateral testicular atrophy. Arch Pathol Lab Med 1989;113:10711075.Google Scholar
Mete, O, Raphael, S, Pirzada, A, Asa, SL. Is adrenal ovarian thecal metaplasia a misnomer? Report of three cases of radial scar-like spindle cell myofibroblastic nodule of the adrenal gland. Endocr Pathol 2011;22:222225.Google Scholar
Lau, SK, Weiss, LM. Calcifying fibrous tumor of the adrenal gland. Human Pathol 2007;38:656659.Google Scholar
Eftekhari, F, Alter, JL, Ayala, AG, Czerniak, BA. Calcifying fibrous pseudotumor of the adrenal gland. Br J Radiol 2001;74:452454.Google Scholar
Attili, SV, Chandra, CR, Hemant, DK, Bapsy, PP, RamaRao, C, Anupama, G. Retroperitoneal inflammatory myofibroblastic tumor. World J Surg Oncol 2005;3:66.Google Scholar
Chan, JK, Cheuk, W, Shimizu, M. Anaplastic lymphoma kinase expression in inflammatory pseudotumors. Am J Surg Pathol 2001;25:761768.Google Scholar
Cook, JR, Dehner, LP, Collins, MH, Ma, Z, Morris, SW, Coffin, CM, Hill, DA. Anaplastic lymphoma kinase (ALK) expression in the inflammatory myofibroblastic tumor: a comparative immunohistochemical study. Am J Surg Pathol 2001;25:13641371.Google Scholar
Sebastiano, C, Zhao, X, Deng, FM, Das, K. Cystic lesions of the adrenal gland: our experience over the last 20 years. Hum Pathol 2013;44:17971803.Google Scholar
Erbil, Y, Salmaslioğlu, A, Barbaros, U, Bozbora, A, Mete, O, Aral, F, Ozarmağan, S. Clinical and radiological features of adrenal cysts. Urol Int 2008;80:3136.Google Scholar
Major, P, Pędziwiatr, M, Matłok, M, Ostachowski, M, Winiarski, M, Rembiasz, K, Budzyński, A. Cystic adrenal lesions: analysis of indications and results of treatment. Pol Przegl Chir 2012;84:184189.Google Scholar
Passoni, S, Regusci, L, Peloni, G, Brenna, M, Fasolini, F. A giant adrenal pseudocyst mimicking an adrenal cancer: case report and review of the literature. Urol Int 2013;91:245248.Google Scholar
Bovio, S, Porpiglia, F, Bollito, E, Allasino, B, Reimondo, G, Rovero, E, Perazzolo, L, Angeli, A, Papotti, M, Terzolo, M. Adrenal pseudocyst mimicking cancer: a case report. J Endocrinol Invest 2007;30:256258.Google Scholar
Darwish, A, Nagaraj, V, Mustafa, MB, Al Ansari, A. Adrenal cyst presenting as hepatic hydatid cyst. Case Rep Surg 2013;2013:150457.Google Scholar
Morse, MO, Schwartz, FL, Zynger, DL. First report of adrenal cortical endothelial (vascular) cyst mimicking phaeochromocytoma (pseudophaeochromocytoma). Pathology 2014;46:364365.Google Scholar
Cao, DH, Zheng, S, Lv, X, Yin, R, Liu, LR, Yang, L, Huang, Y, Wei, Q. Multilocular bronchogenic cyst of the bilateral adrenal: report of a rare case and review of literature. Int J Clin Exp Pathol 2014;7:34183422.Google Scholar
Bellantone, R, Ferrante, A, Raffaelli, M, Boscherini, M, Lombardi, CP, Crucitti, F. Adrenal cystic lesions: report of 12 surgically treated cases and review of the literature. J Endocrinol Invest 1998;21:109114.Google Scholar
Fernández-Vega, I, Camacho-Urkaray, E, Guerra-Merino, I. Huge adrenal hemorrhagic endothelial cyst secondary to an adrenal arteriovenous malformation and mimicking a malignant lesion. Endocr Pathol 2014;25:443445.Google Scholar
Cavallaro, G, Crocetti, D, Paliotta, A, De Gori, A, Tarallo, MR, Letizia, C, De Toma, G. Cystic adrenal lesions: clinical and surgical management. The experience of a referral centre. Int J Surg 2014;13C:2326.Google Scholar
Furihata, M, Iida, Y, Furihata, T, Ito, E. A giant lymphatic cyst of the adrenal gland: report of a rare case and review of the literature. Int Surg 2015;100:28.Google Scholar
Shuno, Y, Kobayashi, T, Morita, K, Shimizu, S, Nishio, Y, Ito, A, Kobayashi, K, Kawahara, M, Teruya, M. Ectopic thyroid in the adrenal gland presenting as cystic lesion. Surgery 2006;139:580582.Google Scholar
Tsujimura, A, Takaha, M, Takayama, H, Sugao, H, Takeda, M, Kurata, A. Ectopic thyroid tissue in a cystic adrenal mass. Br J Urol 1996;77:605606.Google Scholar
Hayashi, T, Gucer, H, Mete, O. A mimic of sarcomatoid adrenal cortical carcinoma:epithelioid angiosarcoma occurring in adrenal cortical adenoma. Endocr Pathol 2014;25:404409.Google Scholar
Merrot, T, Walz, J, Anastasescu, R, Chaumoître, K, D’Ercole, C. Prenatally detected cystic adrenal mass associated with Beckwith–Wiedemann syndrome. Fetal Diagn Ther 2004;19:465469.Google Scholar
Gocmen, R, Basaran, C, Karcaaltincaba, M, Cinar, A, Yurdakok, M, Akata, D, Haliloglu, M. Bilateral hemorrhagic adrenal cysts in an incomplete form of Beckwith–Wiedemann syndrome: MRI and prenatal US findings. Abdom Imaging 2005;30:786789.Google Scholar
Petit, T, de Lagausie, P, El Ghoneimi, A, Garel, C, Aigrain, Y. Postnatal management of cystic neuroblastoma. Eur J Pediatr Surg 2001;11:411414.Google Scholar
Tanaka, S, Tajiri, T, Noguchi, S, Ogita, K, Takahashi, Y, Tsuneyoshi, M, Suita, S. Prenatally diagnosed cystic neuroblastoma: a report of two cases. Asian J Surg 2003;26:225227.Google Scholar
Menon, P, Bansal, D, Lyngdoh, S, Gupta, K, Sodhi, K. Bilateral hemorrhagic cystic adrenal neuroblastoma with liver and lymph nodal metastases in an infant. J Indian Assoc Pediatr Surg 2012;17:171173.Google Scholar

References

Lack, EE. Atlas of Tumor Pathology, 4th Series, Fascicle 8: Tumors of the Adrenal Glands and Extraadrenal Paraganglia. Bethesda, MD: ARP Press, 2007.Google Scholar
Lattin, GE, Sturgill, ED, Tujo, CA, et al. From the radiologic pathology archives: adrenal tumors and tumor-like conditions in the adult: radiologic-pathologic correlation. Radiographics 2014;34:805829.Google Scholar
McNicol, AM. Lesions of the adrenal cortex. Arch Pathol Lab Med 2008;132:12631271.Google Scholar
Schteingart, DE. The clinical spectrum of adrenocortical hyperplasia. Curr Opin Endocrinol Diabetes Obes 2012;19:176182.Google Scholar
Mete, O, Asa, SL. Precursor lesions of endocrine system neoplasms. Pathology 2013;45:316330.Google Scholar
De Venanzi, A, Alencar, GA, Bourdeau, I, Fragoso, MC, Lacroix, A. Primary bilateral macronodular adrenal hyperplasia. Curr Opin Endocrinol Diabetes Obes 2014;21:177184.Google Scholar
Berthon, A, Stratakis, CA. From β-catenin to ARM-repeat proteins in adrenocortical disorders. Horm Metab Res 2014;46:889896.Google Scholar
Gagliardi, L, Schreiber, AW, Hahn, CN, et al. ARMC5 mutations are common in familial bilateral macronodular adrenal hyperplasia. J Clin Endocrinol Metab 2014;:jc20141265.Google Scholar
Alencar, GA, Lerario, AM, Nishi, MY, et al. ARMC5 mutations are a frequent cause of primary macronodular adrenal hyperplasia. J Clin Endocrinol Metab 2014;99:E15011509.Google Scholar
Faucz, FR, Zilbermint, M, Lodish, MB, et al. Macronodular adrenal hyperplasia due to mutations in an armadillo repeat containing 5 (ARMC5) gene: a clinical and genetic investigation. J Clin Endocrinol Metab 2014;99:E1113E1119.Google Scholar
Assié, G, Libé, R, Espiard, S, et al. ARMC5 mutations in macronodular adrenal hyperplasia with Cushing’s syndrome. N Engl J Med 2013;369:21052114.Google Scholar
Lacroix, A. Heredity and cortisol regulation in bilateral macronodular adrenal hyperplasia. N Engl J Med 2013;369:21472149.Google Scholar
Horvath, A, Stratakis, CA. Unravelling the molecular basis of micronodular adrenal hyperplasia. Curr Opin Endocrinol Diabetes Obes 2008;15:227233.Google Scholar
Duan, K, Gomez Hernandez, K, Mete, O. Clinicopathological correlates of adrenal Cushing’s syndrome. J Clin Pathol 2015;68:175186.Google Scholar
Mcnicol, AM. A diagnostic approach to adrenal cortical lesions. Endocr Pathol 2008;19:241251.Google Scholar
Sasano, H: The adrenal cortex. In Stefaneanu, L, Sasano, H, Kovacs, K, eds. Molecular and Cellular Endocrine Pathology. London: Arnold, 2000:221252.Google Scholar
Duan, K, Mete, O. Clinicopathologic correlates of primary aldosteronism. Arch Pathol Lab Med 2015;139:948954.Google Scholar
Tang, YZ, Bharwani, N, Micco, M, Akker, S, Rockall, AG, Sahdev, A. The prevalence of incidentally detected adrenal enlargement on CT. Clin Radiol 2014;69:e3742.Google Scholar
Young, WF. Clinical practice. The incidentally discovered adrenal mass. N Engl J Med 2007;356:601610.Google Scholar
Nieman, LK. Approach to the patient with an adrenal incidentaloma. J Clin Endocrinol Metab 2010;95:41064113.Google Scholar
Zeiger, MA, Thompson, GB, Duh, QY, et al. American Association of Clinical Endocrinologists and American Association of Endocrine Surgeons medical guidelines for the management of adrenal incidentalomas: executive summary of recommendations. Endocr Pract 2009;15:450453.Google Scholar
Kannan, S, Remer, EM, Hamrahian, AH. Evaluation of patients with adrenal incidentalomas. Curr Opin Endocrinol Diabetes Obes 2013;20:161169.Google Scholar
Arnaldi, G, Boscaro, M. Adrenal incidentaloma. Best Pract Res Clin Endocrinol Metab 2012;26:405419.Google Scholar
Fassnacht, M, Kroiss, M, Allolio, B. Update in adrenocortical carcinoma. J Clin Endocrinol Metab 2013;98:45514564.Google Scholar
Erickson, LA, Rivera, M, Zhang, J. Adrenocortical carcinoma: review and update. Adv Anat Pathol 2014;21:151159.Google Scholar
Stowasser, M. Update in primary aldosteronism. J Clin Endocrinol Metab 2015;100:110.Google Scholar
Funder, J, Carey, R, Fardella, C, et al. Case detection, diagnosis, and treatment of patients with primary aldosteronism: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2008;93:32663281.Google Scholar
Funder, JW. Genetics of primary aldosteronism. Front Horm Res 2014;43:7078.Google Scholar
Young, WF. Primary aldosteronism: renaissance of a syndrome. Clin Endocrinol (Oxf) 2007;66:607618.Google Scholar
Mattsson, C, Young, WF. Primary aldosteronism: diagnostic and treatment strategies. Nat Clin Pract Nephrol 2006;2:198208.Google Scholar
Schirpenbach, C, Reincke, M. Primary aldosteronism: current knowledge and controversies in Conn’s syndrome. Nat Clin Pract Endocrinol Metab 2007;3:220227.Google Scholar
Choi, M, Scholl, UI, Yue, P, et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science 2011;331:768772.Google Scholar
Mulatero, P, Monticone, S, Rainey, WE, Veglio, F, Williams, TA. Role of KCNJ5 in familial and sporadic primary aldosteronism. Nat Rev Endocrinol 2013;9:104112.Google Scholar
Barlev, A, Annes, JP. Genetics of adrenocortical disease: an update. Curr Opin Endocrinol Diabetes Obes 2012;19:159167.Google Scholar
Zennaro, MC, Rickard, AJ, Boulkroun, S. Genetics of mineralocorticoid excess: an update for clinicians. Eur J Endocrinol 2013;169:R1525.Google Scholar
Gomez-Sanchez, CE, Oki, K. Minireview: potassium channels and aldosterone dysregulation. Is primary aldosteronism a potassium channelopathy? Endocrinology 2014;155:4755.Google Scholar
Scholl, UI, Lifton, RP. New insights into aldosterone-producing adenomas and hereditary aldosteronism: mutations in the K+ channel KCNJ5. Curr Opin Nephrol Hypertens 2013;22:141147.Google Scholar
Nieman, LK, Biller, BM, Findling, JW, et al. The diagnosis of Cushing’s syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2008;93:15261540.Google Scholar
Bertagna, X, Guignat, L, Groussin, L, Bertherat, J. Cushing’s disease. Best Pract Res Clin Endocrinol Metab 2009;23:607623.Google Scholar
Hatipoglu, BA. Cushing’s syndrome. J Surg Oncol 2012;106:565571.Google Scholar
Newell-Price, J, Bertagna, X, Grossman, AB, Nieman, LK. Cushing’s syndrome. Lancet 2006;367:16051617.Google Scholar
Tabarin, A, Perez, P. Pros and cons of screening for occult Cushing syndrome. Nat Rev Endocrinol 2011;7:445455.Google Scholar
Stratakis, CA. Cushing syndrome in pediatrics. Endocrinol Metab Clin North Am 2012;41:793803.Google Scholar
Carroll, TB, Findling, JW. Cushing’s syndrome of nonpituitary causes. Curr Opin Endocrinol Diabetes Obes 2009;16:308315.Google Scholar
Bourdeau, I, Lampron, A, Costa, MH, Tadjine, M, Lacroix, A. Adrenocorticotropic hormone-independent Cushing’s syndrome. Curr Opin Endocrinol Diabetes Obes 2007;14:219225.Google Scholar
Stratakis, CA. Cushing syndrome caused by adrenocortical tumors and hyperplasias (corticotropin-independent Cushing syndrome). Endocr Dev 2008;13:117132.Google Scholar
Stratakis, CA, Boikos, SA. Genetics of adrenal tumors associated with Cushing’s syndrome: a new classification for bilateral adrenocortical hyperplasias. Nat Clin Pract Endocrinol Metab 2007;3:748757.Google Scholar
Else, T, Williams, AR, Sabolch, A, Jolly, S, Miller, BS, Hammer, GD. Adjuvant therapies and patient and tumor characteristics associated with survival of adult patients with adrenocortical carcinoma. J Clin Endocrinol Metab 2014;99:455461.Google Scholar
Ghayee, HK, Rege, J, Watumull, LM, et al. Clinical, biochemical, and molecular characterization of macronodular adrenocortical hyperplasia of the zona reticularis: a new syndrome. J Clin Endocrinol Metab 2011;96:E243250.Google Scholar
Speiser, PW, Azziz, R, Baskin, LS, et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2010;95:41334160.Google Scholar
Clayton, PE, Miller, WL, Oberfield, SE, the ESPE/ LWPES CAH Working Group. Consensus statement on 21-hydroxylase deficiency from the Lawson Wilkins Pediatric Endocrine Society and the European Society for Paediatric Endocrinology. J Clin Endocrinol Metab 2002;87:40484053.Google Scholar
Merke, DP, Bornstein, SR. Congenital adrenal hyperplasia. Lancet 2005;365:21252136.Google Scholar
Speiser, PW, White, PC. Congenital adrenal hyperplasia. N Engl J Med 2003;349:776788.Google Scholar
Hughes, IA. Congenital adrenal hyperplasia–a continuum of disorders. Lancet 1998;352:752754.Google Scholar
Witchel, SF, Azziz, R. Congenital adrenal hyperplasia. J Pediatr Adolesc Gynecol 2011;24:116126.Google Scholar
Krone, N, Arlt, W. Genetics of congenital adrenal hyperplasia. Best Pract Res Clin Endocrinol Metab 2009;23:181192.Google Scholar
Auchus, RJ, Arlt, W. Approach to the patient: the adult with congenital adrenal hyperplasia. J Clin Endocrinol Metab 2013;98:26452655.Google Scholar
Witchel, SF. Nonclassic congenital adrenal hyperplasia. Curr Opin Endocrinol Diabetes Obes 2012;19:151158.Google Scholar
Merke, DP. Approach to the adult with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab 2008;93:653660.Google Scholar
Han, TS, Walker, BR, Arlt, W, Ross, RJ. Treatment and health outcomes in adults with congenital adrenal hyperplasia. Nat Rev Endocrinol 2014;10:115124.Google Scholar
Reisch, N, Högler, W, Parajes, S et al. A diagnosis not to be missed: nonclassic steroid 11β-hydroxylase deficiency presenting with premature adrenarche and hirsutism. J Clin Endocrinol Metab 2013;98:E1620E1625.Google Scholar
Nimkarn, S, New, MI. Steroid 11 beta-hydroxylase deficiency congenital adrenal hyperplasia. Trends Endocrinol Metab 2008;19:9699.Google Scholar
Bose, HS, Sugawara, T, Strauss, JF, Miller, WL. The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. N Engl J Med 1996;335:18701878.Google Scholar
Ganguly, A. Primary aldosteronism. N Engl J Med 1998;339:18281834.Google Scholar
Louiset, E, Stratakis, CA, Perraudin, V, et al. The paradoxical increase in cortisol secretion induced by dexamethasone in primary pigmented nodular adrenocortical disease involves a glucocorticoid receptor-mediated effect of dexamethasone on protein kinase A catalytic subunits. J Clin Endocrinol Metab 2009;94:24062413.Google Scholar
Mitchell, ML, Hsu, HW, Sahai, I. Changing perspectives in screening for congenital hypothyroidism and congenital adrenal hyperplasia. Curr Opin Endocrinol Diabetes Obes 2014;21:3944.Google Scholar
Ilias, I, Sahdev, A, Reznek, RH, Grossman, AB, Pacak, K. The optimal imaging of adrenal tumours: a comparison of different methods. Endocr Relat Cancer 2007;14:587599.Google Scholar
Sacks, BA, Brook, OR, Brennan, IM. Adrenal venous sampling: promises and pitfalls. Curr Opin Endocrinol Diabetes Obes 2013;20:180185.Google Scholar
Miller, BS, Doherty, GM. Surgical management of adrenocortical tumours. Nat Rev Endocrinol 2014;10:282292.Google Scholar
Rockall, AG, Babar, SA, Sohaib, SA, et al. CT and MR imaging of the adrenal glands in ACTH-independent Cushing syndrome. Radiographics 2004;24:435452.Google Scholar
Powell, AC, Stratakis, CA, Patronas, NJ, et al. Operative management of Cushing syndrome secondary to micronodular adrenal hyperplasia. Surgery 2008;143:750758.Google Scholar
Courcoutsakis, N, Prassopoulos, P, Stratakis, CA. CT findings of primary pigmented nodular adrenocortical disease: rare cause of ACTH-independent Cushing syndrome. AJR Am J Roentgenol 2010;194:W541.Google Scholar
Vincent, JM, Morrison, ID, Armstrong, P, Reznek, RH. The size of normal adrenal glands on computed tomography. Clin Radiol 1994;49:453455.Google Scholar
Tritos, NA, Biller, BM, Swearingen, B. Management of Cushing disease. Nat Rev Endocrinol 2011;7:279289.Google Scholar
Boscaro, M, Arnaldi, G. Approach to the patient with possible Cushing’s syndrome. J Clin Endocrinol Metab 2009;94:31213131.Google Scholar
Lacroix, A. ACTH-independent macronodular adrenal hyperplasia. Best Pract Res Clin Endocrinol Metab 2009;23:245259.Google Scholar
Daneman, D, Daneman, A. Diagnostic imaging of the thyroid and adrenal glands in childhood. Endocrinol Metab Clin North Am 2005;34:745768, xi.Google Scholar
Al-Alwan, I, Navarro, O, Daneman, D, Daneman, A. Clinical utility of adrenal ultrasonography in the diagnosis of congenital adrenal hyperplasia. J Pediatr 1999;135:7175.Google Scholar
White, PC, Speiser, PW. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr Rev 2000;21:245291.Google Scholar
Hernanz-Schulman, M, Brock, JW, Russell, W. Sonographic findings in infants with congenital adrenal hyperplasia. Pediatr Radiol 2002;32:130137.Google Scholar
Velarde-Miranda, C, Gomez-Sanchez, EP, Gomez-Sanchez, CE. Regulation of aldosterone biosynthesis by the Kir3.4 (KCNJ5) potassium channel. Clin Exp Pharmacol Physiol 2013;40:895901.Google Scholar
Scholl, UI, Goh, G, Stölting, G, et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet 2013;45:10501054.Google Scholar
Fernandes-Rosa, FL, Williams, TA, Riester, A, et al. Genetic spectrum and clinical correlates of somatic mutations in aldosterone-producing adenoma. Hypertension 2014;64:354361.Google Scholar
Monticone, S, Bandulik, S, Stindl, J, et al. A case of severe hyperaldosteronism caused by a de novo mutation affecting a critical ‘salt bridge’ Kir3.4 residue. J Clin Endocrinol Metab 2014;:jc20143636.Google Scholar
Lenzini, L, Caroccia, B, Campos, AG, et al. Lower expression of the TWIK-related acid-sensitive K+ channel 2 (TASK-2) gene is a hallmark of aldosterone-producing adenoma causing human primary aldosteronism. J Clin Endocrinol Metab 2014;99:E674E682.Google Scholar
Gomez-Sanchez, CE. Channels and pumps in aldosterone-producing adenomas. J Clin Endocrinol Metab 2014;99:11521156.Google Scholar
Azizan, EA, Poulsen, H, Tuluc, P, et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat Genet 2013;45:10551060.Google Scholar
Beuschlein, F, Boulkroun, S, Osswald, A, et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat Genet 2013;45:440444.Google Scholar
Dekkers, T, Ter Meer, M, Lenders, JW, et al. Adrenal nodularity and somatic mutations in primary aldosteronism: one node is the culprit? J Clin Endocrinol Metab 2014;99:E13411351.Google Scholar
Goh, G, Scholl, UI, Healy, JM, et al. Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors. Nat Genet 2014;46:613617.Google Scholar
Espiard, S, Ragazzon, B, Bertherat, J. Protein kinase A alterations in adrenocortical tumors. Horm Metab Res 2014;46:869875.Google Scholar
Di Dalmazi, G, Kisker, C, Calebiro, D, et al. Novel somatic mutations in the catalytic subunit of the protein kinase A as a cause of adrenal Cushing’s syndrome: a European multicentric study. J Clin Endocrinol Metab 2014;99:E2093E2100.Google Scholar
Sato, Y, Maekawa, S, Ishii, R, et al. Recurrent somatic mutations underlie corticotropin-independent Cushing’s syndrome. Science 2014;344:917920.Google Scholar
Cao, Y, He, M, Gao, Z, et al. Activating hotspot L205R mutation in PRKACA and adrenal Cushing’s syndrome. Science 2014;344:913917.Google Scholar
Beuschlein, F, Fassnacht, M, Assié, G, et al. Constitutive activation of PKA catalytic subunit in adrenal Cushing’s syndrome. N Engl J Med 2014;370:10191028.Google Scholar
Kirschner, LS. Medicine. A unified cause for adrenal Cushing’s syndrome. Science 2014;344:804805.Google Scholar
De Joussineau, C, Sahut-Barnola, I, Levy, I, et al. The cAMP pathway and the control of adrenocortical development and growth. Mol Cell Endocrinol 2012;351:2836.Google Scholar
Giordano, TJ. Genetics: pinpointing a hotspot in adrenal Cushing syndrome. Nat Rev Endocrinol 2014;10:447448.Google Scholar
Yu, B, Ragazzon, B, Rizk-Rabin, M, Bertherat, J. Protein kinase A alterations in endocrine tumors. Horm Metab Res 2012;44:741748.Google Scholar
Azevedo, MF, Faucz, FR, Bimpaki, E, et al. Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr Rev 2014;35:195233.Google Scholar
Vezzosi, D, Libé, R, Baudry, C, et al. Phosphodiesterase 11A (PDE11A) gene defects in patients with ACTH-independent macronodular adrenal hyperplasia (AIMAH): functioning variants may contribute to genetic susceptibility of bilateral adrenal tumors. J Clin Endocrinol Metab 2012;97:E2063E2069.Google Scholar
Horvath, A, Boikos, S, Giatzakis, C, et al. A genome-wide scan identifies mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia. Nat Genet 2006;38:794800.Google Scholar
Carney, JA, Libé, R, Bertherat, J, Young, WF. Primary pigmented nodular adrenocortical disease: the original 4 cases revisited after 30 years for follow-up, new investigations, and molecular genetic findings. Am J Surg Pathol 2014;38:12661273.Google Scholar
Almeida, MQ, Stratakis, CA. Carney complex and other conditions associated with micronodular adrenal hyperplasias. Best Pract Res Clin Endocrinol Metab 2010;24:907914.Google Scholar
Papotti, M, Duregon, E, Volante, M, Mcnicol, AM. Pathology of the adrenal cortex: a reappraisal of the past 25 years focusing on adrenal cortical tumors. Endocr Pathol 2014;25:3548.Google Scholar
Lacroix, A, Bourdeau, I, Lampron, A, Mazzuco, TL, Tremblay, J, Hamet, P. Aberrant G-protein coupled receptor expression in relation to adrenocortical overfunction. Clin Endocrinol (Oxf) 2010;73:115.Google Scholar
Louiset, E, Duparc, C, Young, J, et al. Intraadrenal corticotropin in bilateral macronodular adrenal hyperplasia. N Engl J Med 2013;369:21152125.Google Scholar
Nishikawa, T, Iwata, M, Sasano, H. Intraadrenal corticotropin in bilateral macronodular adrenal hyperplasia. N Engl J Med 2014;370:1071.Google Scholar
Lefebvre, H, Duparc, C, Chartrel, N, et al. Intraadrenal adrenocorticotropin production in a case of bilateral macronodular adrenal hyperplasia causing Cushing’s syndrome. J Clin Endocrinol Metab 2003;88:30353042.Google Scholar
Elbelt, U, Trovato, A, Kloth, M, et al. Molecular and clinical evidence for an ARMC5 tumor syndrome: concurrent inactivating germline and somatic mutations are associated with both primary macronodular adrenal hyperplasia and meningioma. J Clin Endocrinol Metab 2015;100:E119E128.Google Scholar
Berthon, A, Sahut-Barnola, I, Lambert-Langlais, S, et al. Constitutive beta-catenin activation induces adrenal hyperplasia and promotes adrenal cancer development. Hum Mol Genet 2010;19:15611576.Google Scholar
Berthon, A, Drelon, C, Ragazzon, B, et al. WNT/β-catenin signaling is activated in aldosterone-producing adenomas and controls aldosterone production. Hum Mol Genet 2014;23:889905.Google Scholar
Berthon, A, Martinez, A, Bertherat, J, Val, P. Wnt/β-catenin signalling in adrenal physiology and tumour development. Mol Cell Endocrinol 2012;351:8795.Google Scholar
Lerario, AM, Moraitis, A, Hammer, GD. Genetics and epigenetics of adrenocortical tumors. Mol Cell Endocrinol 2014;386:6784.Google Scholar
Stratakis, CA. Adrenal cancer in 2013: time to individualize treatment for adrenocortical cancer? Nat Rev Endocrinol 2014;10:7678.Google Scholar
Bonnet, S, Gaujoux, S, Launay, P, et al. Wnt/β-catenin pathway activation in adrenocortical adenomas is frequently due to somatic CTNNB1-activating mutations, which are associated with larger and nonsecreting tumors: a study in cortisol-secreting and-nonsecreting tumors. J Clin Endocrinol Metab 2011;96:E419E426.Google Scholar
Assié, G, Letouzé, E, Fassnacht, M, et al. Integrated genomic characterization of adrenocortical carcinoma. Nat Genet 2014;46:607612.Google Scholar
Assié, G, Jouinot, A, Bertherat, J. The “omics” of adrenocortical tumours for personalized medicine. Nat Rev Endocrinol 2014;10:215228.Google Scholar
Drelon, C, Berthon, A, Val, P. Adrenocortical cancer and IGF2: is the game over or our experimental models limited? J Clin Endocrinol Metab 2013;98:505507.Google Scholar
Morin, E, Mete, O, Wasserman, JD, Joshua, AM, Asa, SL, Ezzat, S. Carney complex with adrenal cortical carcinoma. J Clin Endocrinol Metab 2012;97:E202206.Google Scholar
Hunt, JL. Syndromes associated with abnormalities in the adrenal cortex. Diagn Histopathol 2009;15: 6978.Google Scholar
Rothenbuhler, A, Stratakis, CA. Clinical and molecular genetics of Carney complex. Best Pract Res Clin Endocrinol Metab 2010;24:389399.Google Scholar
Ribeiro, RC, Pinto, EM, Zambetti, GP. Familial predisposition to adrenocortical tumors: clinical and biological features and management strategies. Best Pract Res Clin Endocrinol Metab 2010;24:477490.Google Scholar
Anselmo, J, Medeiros, S, Carneiro, V, et al. A large family with Carney complex caused by the S147G PRKAR1A mutation shows a unique spectrum of disease including adrenocortical cancer. J Clin Endocrinol Metab 2012;97:351359.Google Scholar
Heaton, JH, Wood, MA, Kim, AC, et al. Progression to adrenocortical tumorigenesis in mice and humans through insulin-like growth factor 2 and β-catenin. Am J Pathol 2012;181:10171033.Google Scholar
Tissier, F, Cavard, C, Groussin, L, et al. Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. Cancer Res 2005;65:76227627.Google Scholar
Miller, WL, Auchus, RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 2011;32:81151.Google Scholar
Koppens, PF, Hoogenboezem, T, Degenhart, HJ. Duplication of the CYP21A2 gene complicates mutation analysis of steroid 21-hydroxylase deficiency: characteristics of three unusual haplotypes. Hum Genet 2002;111:405410.Google Scholar
Varan, A, Unal, S, Ruacan, S, Vidinlisan, S. Adrenocortical carcinoma associated with adrenogenital syndrome in a child. Med Pediatr Oncol 2000;35:8890.Google Scholar
Robinson, MJ, Pardo, V, Rywlin, AM. Pigmented nodules (black adenomas) of the adrenal. An autopsy study of incidence, morphology, and function. Hum Pathol 1972;3:317325.Google Scholar
Kameyama, K, Takami, H. Pigmented granules in functional black adenoma of the adrenal gland: a histochemical and ultrastructural study. Endocr Pathol 1999;10:353357.Google Scholar
Kovacs, K, Horvath, E, Feldman, PS. Pigmented adenoma of adrenal cortex associated with Cushing’s syndrome: light and electron microscopic study. Urology 1976;7:641645.Google Scholar
Ishigami, K, Stolpen, AH, Sato, Y, Dahmoush, L, Winfield, HN, Fajardo, LL. Adrenal adenoma with organizing hematoma: diagnostic dilemma at MRI. Magn Reson Imaging 2004;22:11571159.Google Scholar
Feldberg, E, Guy, M, Eisenkraft, S, Czernobilsky, B. Adrenal cortical adenoma with extensive fat cell metaplasia. Pathol Res Pract 1996;192:6265.Google Scholar
Al-Brahim, N, Asa, S. Myelolipoma with adrenocortical adenoma: an unusual combination that can resemble carcinoma. Endocr Pathol 2007;18:103105.Google Scholar
Mcdonnell, WV. Myelolipoma of adrenal. AMA Arch Pathol 1956;61:416419.Google Scholar
Lam, KY, Lo, CY. Adrenal lipomatous tumours: a 30 year clinicopathological experience at a single institution. J Clin Pathol 2001;54:707712.Google Scholar
Else, T, Kim, AC, Sabolch, A, et al. Adrenocortical carcinoma. Endocr Rev 2014;35:282326.Google Scholar
Ronchi, CL, Sbiera, S, Leich, E, et al. Single nucleotide polymorphism array profiling of adrenocortical tumors–evidence for an adenoma carcinoma sequence? PLOS ONE 2013;8:e73959.Google Scholar
Mete, O, Asa, SL. Morphological distinction of cortisol-producing and aldosterone-producing adrenal cortical adenomas: not only possible but a critical clinical responsibility. Histopathology 2012;60:10151016.Google Scholar
Mete, O, Asa, SL. Clinicopathological correlations in pituitary adenomas. Brain Pathol 2012;22:443453.Google Scholar
Mete, O, Asa, SL. Aldosterone-producing adrenal cortical adenoma with oncocytic change and cytoplasmic eosinophilic globular inclusions. Endocr Pathol 2009;20:182185.Google Scholar
Patel, KA, Calomeni, EP, Nadasdy, T, Zynger, DL. Adrenal gland inclusions in patients treated with aldosterone antagonists (spironolactone/eplerenone): incidence, morphology, and ultrastructural findings. Diagn Pathol 2014;9:147.Google Scholar
Merke, DP, Chrousos, GP, Eisenhofer, G, et al. Adrenomedullary dysplasia and hypofunction in patients with classic 21-hydroxylase deficiency. N Engl J Med 2000;343:13621368.Google Scholar
Duregon, E, Fassina, A, Volante, M, et al. The reticulin algorithm for adrenocortical tumor diagnosis: a multicentric validation study on 245 unpublished cases. Am J Surg Pathol 2013;37:14331440.Google Scholar
Papotti, M, Libè, R, Duregon, E, Volante, M, Bertherat, J, Tissier, F. The Weiss score and beyond: histopathology for adrenocortical carcinoma. Horm Cancer 2011;2:333340.Google Scholar
Volante, M, Bollito, E, Sperone, P, et al. Clinicopathological study of a series of 92 adrenocortical carcinomas: from a proposal of simplified diagnostic algorithm to prognostic stratification. Histopathology 2009;55:535543.Google Scholar
Duregon, E, Volante, M, Cappia, S, et al. Oncocytic adrenocortical tumors: diagnostic algorithm and mitochondrial DNA profile in 27 cases. Am J Surg Pathol 2011;35:18821893.Google Scholar
Giordano, TJ. The argument for mitotic rate-based grading for the prognostication of adrenocortical carcinoma. Am J Surg Pathol 2011;35:471473.Google Scholar
Weiss, LM. Comparative histologic study of 43 metastasizing and nonmetastasizing adrenocortical tumors. Am J Surg Pathol 1984;8:163169.Google Scholar
Mete, O, Asa, SL. Pathological definition and clinical significance of vascular invasion in thyroid carcinomas of follicular epithelial derivation. Mod Pathol 2011;24:15451552.Google Scholar
Hough, AJ, Hollifield, JW, Page, DL, Hartmann, WH. Prognostic factors in adrenal cortical tumors. A mathematical analysis of clinical and morphologic data. Am J Clin Pathol 1979;72:390399.Google Scholar
Van Slooten, H, Schaberg, A, Smeenk, D, Moolenaar, AJ. Morphologic characteristics of benign and malignant adrenocortical tumors. Cancer 1985;55:766773.Google Scholar
DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004.Google Scholar
Tissier, F, Aubert, S, Leteurtre, E, et al. Adrenocortical tumors: improving the practice of the Weiss system through virtual microscopy: a national program of the French network INCa-COMETE. Am J Surg Pathol 2012;36:11941201.Google Scholar
Mcnicol, AM. Diagnostic and molecular aspects of adrenal cortical tumors. Semin Diagn Pathol 2013;30:197206.Google Scholar
Nanba, K, Tsuiki, M, Sawai, K, et al. Histopathological diagnosis of primary aldosteronism using CYP11B2 immunohistochemistry. J Clin Endocrinol Metab 2013;98:15671574.Google Scholar
Volpe, C, Höög, A, Ogishima, T, et al. Immunohistochemistry improves histopathologic diagnosis in primary aldosteronism. J Clin Pathol 2013;66:351354.Google Scholar
Doi, M, Satoh, F, Maekawa, T, et al. Isoform-specific monoclonal antibodies against 3β-hydroxysteroid dehydrogenase/isomerase family provide markers for subclassification of human primary aldosteronism. J Clin Endocrinol Metab 2014;99:E257262.Google Scholar
Beuschlein, F, Weigel, J, Saeger, W, et al. Major prognostic role of Ki-67 in localized adrenocortical carcinoma after complete resection. J Clin Endocrinol Metab 2015;100:841849.Google Scholar
Morimoto, R, Satoh, F, Murakami, O, et al. Immunohistochemistry of a proliferation marker Ki67/MIB1 in adrenocortical carcinomas: Ki67/MIB1 labeling index is a predictor for recurrence of adrenocortical carcinomas. Endocr J 2008;55:4955.Google Scholar
Erickson, LA, Jin, L, Sebo, TJ, et al. Pathologic features and expression of insulin-like growth factor-2 in adrenocortical neoplasms. Endocr Pathol 2001;12:429435.Google Scholar
Soon, PS, Gill, AJ, Benn, DE, et al. Microarray gene expression and immunohistochemistry analyses of adrenocortical tumors identify IGF2 and Ki-67 as useful in differentiating carcinomas from adenomas. Endocr Relat Cancer 2009;16:573583.Google Scholar
Schmitt, A, Saremaslani, P, Schmid, S, et al. IGFII and MIB1 immunohistochemistry is helpful for the differentiation of benign from malignant adrenocortical tumours. Histopathology 2006;49:298307.Google Scholar
Giordano, TJ. Classification of adrenal cortical tumors: promise of the “molecular” approach. Best Pract Res Clin Endocrinol Metab 2010;24:887892.Google Scholar
Giordano, TJ. Adrenocortical tumors: an integrated clinical, pathologic, and molecular approach at the University of Michigan. Arch Pathol Lab Med 2010;134:14401443.Google Scholar
Giordano, TJ, Kuick, R, Else, T, et al. Molecular classification and prognostication of adrenocortical tumors by transcriptome profiling. Clin Cancer Res 2009;15:668676.Google Scholar
Else, T, Giordano, TJ, Hammer, GD. Evaluation of telomere length maintenance mechanisms in adrenocortical carcinoma. J Clin Endocrinol Metab 2008;93:14421449.Google Scholar
Giordano, TJ. Molecular pathology of adrenal cortical tumors: separating adenomas from carcinomas. Endocr Pathol 2006;17:355363.Google Scholar
Giordano, TJ, Thomas, DG, Kuick, R, et al. Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis. Am J Pathol 2003;162:521531.Google Scholar
Barreau, O, De Reynies, A, Wilmot-Roussel, H, et al. Clinical and pathophysiological implications of chromosomal alterations in adrenocortical tumors: an integrated genomic approach. J Clin Endocrinol Metab 2012;97:E301311.Google Scholar
Assié, G, Guillaud-Bataille, M, Ragazzon, B, Bertagna, X, Bertherat, J, Clauser, E. The pathophysiology, diagnosis and prognosis of adrenocortical tumors revisited by transcriptome analyses. Trends Endocrinol Metab 2010;21:325334.Google Scholar
Barreau, O, Assié, G, Wilmot-Roussel, H, et al. Identification of a CpG island methylator phenotype in adrenocortical carcinomas. J Clin Endocrinol Metab 2013;98:E174184.Google Scholar
Assié, G, Giordano, TJ, Bertherat, J. Gene expression profiling in adrenocortical neoplasia. Mol Cell Endocrinol 2012;351:111117.Google Scholar
Ragazzon, B, Libé, R, Gaujoux, S, et al. Transcriptome analysis reveals that p53 and β-catenin alterations occur in a group of aggressive adrenocortical cancers. Cancer Res 2010;70:82768281.Google Scholar
Waldmann, J, Patsalis, N, Fendrich, V, et al. Clinical impact of TP53 alterations in adrenocortical carcinomas. Langenbecks Arch Surg 2012;397:209216.Google Scholar
Takehara, K, Sakai, H, Shono, T, Irie, J, Kanetake, H. Proliferative activity and genetic changes in adrenal cortical tumors examined by flow cytometry, fluorescence in situ hybridization and immunohistochemistry. Int J Urol 2005;12:121127.Google Scholar
Stojadinovic, A, Brennan, MF, Hoos, A, et al. Adrenocortical adenoma and carcinoma: histopathological and molecular comparative analysis. Mod Pathol 2003;16:742751.Google Scholar
Herrmann, LJ, Heinze, B, Fassnacht, M, et al. TP53 germline mutations in adult patients with adrenocortical carcinoma. J Clin Endocrinol Metab 2012;97:E476485.Google Scholar
Bertherat, J, Bertagna, X. Pathogenesis of adrenocortical cancer. Best Pract Res Clin Endocrinol Metab 2009;23:261271.Google Scholar
Gaujoux, S, Grabar, S, Fassnacht, M, et al. β-Catenin activation is associated with specific clinical and pathologic characteristics and a poor outcome in adrenocortical carcinoma. Clin Cancer Res 2011;17:328336.Google Scholar
Terzolo, M, Zaggia, B, Allasino, B, De Francia, S. Practical treatment using mitotane for adrenocortical carcinoma. Curr Opin Endocrinol Diabetes Obes 2014;21:159165.Google Scholar
Terzolo, M, Daffara, F, Ardito, A, et al. Management of adrenal cancer: a 2013 update. J Endocrinol Invest 2014;37:207217.Google Scholar
Bourdeau, I, Mackenzie-Feder, J, Lacroix, A. Recent advances in adrenocortical carcinoma in adults. Curr Opin Endocrinol Diabetes Obes 2013;20:192197.Google Scholar
Berruti, A, Fassnacht, M, Baudin, E, et al. Adjuvant therapy in patients with adrenocortical carcinoma: a position of an international panel. J Clin Oncol 2010;28:e401e402.Google Scholar
De Reyniès, A, Assié, G, Rickman, DS, et al. Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival. J Clin Oncol 2009;27:11081115.Google Scholar
Fragoso, MC, Almeida, MQ, Mazzuco, TL, et al. Combined expression of BUB1B, DLGAP5, and PINK1 as predictors of poor outcome in adrenocortical tumors: validation in a Brazilian cohort of adult and pediatric patients. Eur J Endocrinol 2012;166:6167.Google Scholar
Germano, A, Rapa, I, Volante, M, et al. RRM1 modulates mitotane activity in adrenal cancer cells interfering with its metabolization. Mol Cell Endocrinol 2014;401C:105110.Google Scholar
Ronchi, CL, Sbiera, S, Volante, M, et al. CYP2W1 is highly expressed in adrenal glands and is positively associated with the response to mitotane in adrenocortical carcinoma. PLOS ONE 2014;9:e105855.Google Scholar
Raymond, VM, Everett, JN, Furtado, LV, et al. Adrenocortical carcinoma is a lynch syndrome-associated cancer. J Clin Oncol 2013;31:30123018.Google Scholar
Azizan, EA, Lam, BY, Newhouse, SJ, et al. Microarray, qPCR, and KCNJ5 sequencing of aldosterone-producing adenomas reveal differences in genotype and phenotype between zona glomerulosa- and zona fasciculata-like tumors. J Clin Endocrinol Metab 2012;97:E819829.Google Scholar
Speiser, PW, Dupont, J, Zhu, D, et al. Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Invest 1992;90:584595.Google Scholar
Wedell, A, Thilén, A, Ritzén, EM, Stengler, B, Luthman, H. Mutational spectrum of the steroid 21-hydroxylase gene in Sweden: implications for genetic diagnosis and association with disease manifestation. J Clin Endocrinol Metab 1994;78:11451152.Google Scholar
Charmandari, E, Eisenhofer, G, Mehlinger, SL, et al. Adrenomedullary function may predict phenotype and genotype in classic 21-hydroxylase deficiency. J Clin Endocrinol Metab 2002;87:30313037.Google Scholar
Krone, N, Braun, A, Roscher, AA, Knorr, D, Schwarz, HP. Predicting phenotype in steroid 21-hydroxylase deficiency? Comprehensive genotyping in 155 unrelated, well defined patients from southern Germany. J Clin Endocrinol Metab 2000;85:10591065.Google Scholar
New, MI, Abraham, M, Gonzalez, B, et al. Genotype–phenotype correlation in 1507 families with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency. Proc Natl Acad Sci USA 2013;110:26112616.Google Scholar
Krone, N, Rose, IT, Willis, DS, et al. Genotype–phenotype correlation in 153 adult patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency: analysis of the United Kingdom Congenital adrenal Hyperplasia Adult Study Executive (CaHASE) cohort. J Clin Endocrinol Metab 2013;98:E346354.Google Scholar
Wilson, C. Adrenal function: Adult CAH–does genotype correlate with phenotype? Nat Rev Endocrinol 2013;9:187.Google Scholar
Hayashi, T, Gucer, H, Mete, O. A mimic of sarcomatoid adrenal cortical carcinoma: epithelioid angiosarcoma occurring in adrenal cortical adenoma. Endocr Pathol 2014;25:404409.Google Scholar
Mete, O, Kapran, Y, Güllüoğlu, MG, et al. Anti-CD10 (56C6) is expressed variably in adrenocortical tumors and cannot be used to discriminate clear cell renal cell carcinomas. Virchows Arch 2010;456:515521.Google Scholar
Mete, O, Van der Kwast, TH. Epithelioid angiomyolipoma: a morphologically distinct variant that mimics a variety of intra-abdominal neoplasms. Arch Pathol Lab Med 2011;135:665670.Google Scholar
Tissier, F. Classification of adrenal cortical tumors: what limits for the pathological approach? Best Pract Res Clin Endocrinol Metab 2010;24:877885.Google Scholar
Clayton, RN, Raskauskiene, D, Reulen, RC, Jones, PW. Mortality and morbidity in Cushing’s disease over 50 years in Stoke-on-Trent, UK: audit and meta-analysis of literature. J Clin Endocrinol Metab 2011;96:632642.Google Scholar
Biller, BM, Grossman, AB, Stewart, PM, et al. Treatment of adrenocorticotropin-dependent Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 2008;93:24542462.Google Scholar
Lila, AR, Gopal, RA, Acharya, SV, et al. Efficacy of cabergoline in uncured (persistent or recurrent) Cushing disease after pituitary surgical treatment with or without radiotherapy. Endocr Pract 2010;16:968976.Google Scholar
Colao, A, Petersenn, S, Newell-Price, J, et al. A 12-month phase 3 study of pasireotide in Cushing’s disease. N Engl J Med 2012;366:914924.Google Scholar
Fleseriu, M, Biller, BM, Findling, JW, et al. Mifepristone, a glucocorticoid receptor antagonist, produces clinical and metabolic benefits in patients with Cushing’s syndrome. J Clin Endocrinol Metab 2012;97:20392049.Google Scholar
Tinat, J, Bougeard, G, Baert-Desurmont, S, et al. 2009 version of the Chompret criteria for Li Fraumeni syndrome. J Clin Oncol 2009;27:e108109.Google Scholar

References

Crowder, R.. The development of the adrenal gland in man, with special reference to origin and ultimate location of cell types and evidence in favour of the “cell migration” theory. Contrib Embryol 1957;36:242251.Google Scholar
Cooper, M.J., Hutchins, G.M., Israel, M.A.. Histogenesis of the human adrenal medulla. An evaluation of the ontogeny of chromaffin and nonchromaffin lineages. Am J Pathol 1990;137:605615.Google Scholar
Magro, G., Grasso, S.. Immunohistochemical identification and comparison of glial cell lineage in foetal, neonatal, adult and neoplastic human adrenal medulla. Histochem J 1997;29:293299.Google Scholar
Mills, S.E.. Histology for Pathologists, 3rd edn. Philadelphia PA: Lippincott Williams & Wilkins, 2007.Google Scholar
Coupland, R.. The Natural History of the Chromaffin Cell. London: Longmans Green, 1965.Google Scholar
Zuckerkandl, E.. The development of the chromaffin organs and of the suprarenal glands. In Keibel, F, Mall, FP, eds. Manual of Human Embryology. Philadelphia, PA: JB Lippincott, 1912:157159.Google Scholar
Anderson, D.J.. Cellular “neoteny”: a possible developmental basis for chromaffin cell plasticity. Trends Genet 1989;5:174178.Google Scholar
Renard, J., Clerici, T., Licker, M., et al. Pheochromocytoma and abdominal paraganglioma. J Visc Surg 2011;148:e409416.Google Scholar
Lack, E.E.. Atlas of Tumor Pathology, 4th Series, Fascicle 8: Tumors of the Adrenal Glands and Extraadrenal Paraganglia.Bethesda, MD: ARP Press, 2007.Google Scholar
Hervonen, A., Vaalasti, A., Partanen, M., et al. Effects of ageing on the histochemically demonstrable catecholamines and acetylcholinesterase of human sympathetic ganglia. J Neurocytol 1978;7:1123.Google Scholar
Hervonen, A., Partanen, S., Vaalasti, A., et al. The distribution and endocrine nature of the abdominal paraganglia of adult man. Am J Anat 1978;153:563572.Google Scholar
Baljet, B., Boekelaar, A.B., Groen, G.J.. Retroperitoneal paraganglia and the peripheral autonomic nervous system in the human fetus. Acta Morphol Neerl Scand 1985;23:137149.Google Scholar
Guild, S.R.. The glomus jugulare, a nonchromaffin paraganglion, in man. Ann Otol Rhinol Laryngol 1953;62:10451071.Google Scholar
Zak, F.G., Lawson, F.Z.W. The Paraganglionic Chemoreceptor System: Physiology, Pathology and Clinical Medicine. New York: Springer-Verlag, 1982.Google Scholar
Subramanian, A., Maker, V.K.. Organs of Zuckerkandl: their surgical significance and a review of a century of literature. Am J Surg 2006;192:224234.Google Scholar
Tanaka, T., Yoshimi, N., Iwata, H., et al. Fine-needle aspiration cytology of pheochromocytoma–ganglioneuroma of the organ of Zuckerkandl. Diagn Cytopathol 1989;5:6468.Google Scholar
Kreiner, E.. Weight and shape of the human adrenal medulla in various age groups. Virchows Arch A Pathol Anat Histopathol 1982;397:715.Google Scholar
Schinner, S., Bornstein, S.R.. Cortical-chromaffin cell interactions in the adrenal gland. Endocr Pathol 2005;16:9198.Google Scholar
Colombo-Benkmann, M., Klimaschewski, L., Heym, C.. Immunohistochemical heterogeneity of nerve cells in the human adrenal gland with special reference to substance P. J Histochem Cytochem 1996;44:369375.Google Scholar
Lack, E.E.. Pathology of Adrenal and Extra-adrenal Paraganglia. Philadelphia PA: WB Saunders, 1994:232245.Google Scholar
Nakajima, T., Watanabe, S., Sato, Y., et al. An immunoperoxidase study of S-100 protein distribution in normal and neoplastic tissues. Am J Surg Pathol 1982;6:715727.Google Scholar
Kohn, A.. Die chromaffinen Zellen des sympathicus. Anat Anz 1898;15:399400.Google Scholar
Pick, L.. Das Ganglioma embryonale sympathicum (Sympathoma embryonale), eine typische bösartige geschwuestform des sympathischen nervensystems. Berl Klin Wochenschr 1912;49:1622.Google Scholar
Tannenbaum, M.. Ultrastructural pathology of adrenal medullary tumors. Pathol Annu 1970;5:145171.Google Scholar
Coupland, R.E., Hopwood, D.. The mechanism of the differential staining reaction for adrenaline- and noreadrenaline-storing granules in tissues fixed in glutaraldehyde. J Anat 1966;100:227243.Google Scholar
Lundberg, J.M., Hamberger, B., Schultzberg, M., et al. Enkephalin- and somatostatin-like immunoreactivities in human adrenal medulla and pheochromocytoma. Proc Natl Acad Sci USA 1979;76:40794083.Google Scholar
Hervonen, A.. Development of catecholamine-storing cells in human fetal paraganglia and adrenal medulla. A histochemical and electron microscopical study. Acta Physiol Scand Suppl 1971;368:194.Google Scholar
Verna, A.. Ultrastructure of the carotid body in the mammals. Int Rev Cytol 1979;60:271330.Google Scholar
Unsicker, K., Huber, K., Schober, A., et al. Resolved and open issues in chromaffin cell development. Mech Dev 2013;130:324329.Google Scholar
Moriguchi, T., Takako, N., Hamada, M., et al. Gata3 participates in a complex transcriptional feedback network to regulate sympathoadrenal differentiation. Development 2006;133:38713881.Google Scholar
Pachnis, V., Mankoo, B., Costantini, F.. Expression of the c-ret proto-oncogene during mouse embryogenesis. Development 1993;119:10051017.Google Scholar
Allmendinger, A., Stoeckel, E., Saarma, M., et al. Development of adrenal chromaffin cells is largely normal in mice lacking the receptor tyrosine kinase c-Ret. Mech Dev 2003;120:299304.Google Scholar
Powers, J.F., Brachold, J.M., Tischler, A.S.. Ret protein expression in adrenal medullary hyperplasia and pheochromocytoma. Endocr Pathol 2003;14:351361.Google Scholar
Tischler, A.S., DeLellis, R.A., Biales, B., et al. Nerve growth factor-induced neurite outgrowth from normal human chromaffin cells. Lab Invest 1980;43:399409.Google Scholar
Tischler, A.S., Lee, Y.C., Perlman, R.L., et al. Production of “ectopic” vasoactive intestinal peptide-like immunoreactivity in normal human chromaffin cell cultures. Life Sci 1985;37:18811886.Google Scholar
Powers, J.F., Picard, K.L., Tischler, A.S.. RET expression and neuron-like differentiation of pheochromocytoma and normal chromaffin cells. Horm Metab Res 2009;41:710714.Google Scholar
Tischler, A.S., DeLellis, R.A., Slayton, V.W., et al. Enkephalin-like immunoreactivity in human adrenal medullary cultures. Lab Invest 1983;48:1318.Google Scholar
Chung, K.F., Sicard, F., Vukicevic, V., et al. Isolation of neural crest derived chromaffin progenitors from adult adrenal medulla. Stem Cells 2009;27:26022613.Google Scholar
Santana, M.M., Chung, K.F., Vukicevic, V., et al. Isolation, characterization, and differentiation of progenitor cells from human adult adrenal medulla. Stem Cells Transl Med 2012;1:783791.Google Scholar
Tian, H., Hammer, R.E., Matsumoto, A.M., et al. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev 1998;12:33203324.Google Scholar
Steele, R.H., Hinterberger, H.. Catecholamines and 5-hydroxytryptamine in the carotid body in vascular, respiratory, and other diseases. J Lab Clin Med 1972;80:6370.Google Scholar
Dixon, J.S., Jen, P.Y., Gosling, J.A.. Immunohistochemical characteristics of human paraganglion cells and sensory corpuscles associated with the urinary bladder. A developmental study in the male fetus, neonate and infant. J Anat 1998;192:407415.Google Scholar
Tischler, A.S., Semple, J.. Adrenal medullary nodules in Beckwith–Wiedemann syndrome resemble extra-adrenal paraganglia. Endocr Pathol 1996;7:265272.Google Scholar
Smith-Hicks, C.L., Sizer, K.C., Powers, J.F., et al. C-cell hyperplasia, pheochromocytoma and sympathoadrenal malformation in a mouse model of multiple endocrine neoplasia type 2B. EMBO J 2000;19:612622.Google Scholar
Nosé, V., Asa, S.L., Erickson, L.A., et al. Diagnostic Pathology: Endocrine. New York: Lippincott Williams & Wilkins (Amirsys), 2012.Google Scholar
Grogan, R.H., Pacak, K., Pasche, L., et al. Bilateral adrenal medullary hyperplasia associated with an SDHB mutation. J Clin Oncol 2011;29:e200e202.Google Scholar
Rudy, F.R., Bates, R.D., Cimorelli, A.J., et al. Adrenal medullary hyperplasia: a clinicopathologic study of four cases. Hum Pathol 1980;11:650657.Google Scholar
Arias-Stella, J., Valcarcel, J.. The human carotid body at high altitudes. Pathol Microbiol (Basel) 1973;39:292297.Google Scholar
Heath, D., Smith, P., Jago, R.. Hyperplasia of the carotid body. J Pathol 1982;138:115127.Google Scholar
Lack, E.E.. Carotid body hypertrophy in patients with cystic fibrosis and cyanotic congenital heart disease. Hum Pathol 1977;8:3951.Google Scholar
Qupty, G., Ishay, A., Peretz, H., et al. Pheochromocytoma due to unilateral adrenal medullary hyperplasia. Clin Endocrinol (Oxf) 1997;47:613617.Google Scholar
Jansson, S., Khorram-Manesh, A., Nilsson, O., et al. Treatment of bilateral pheochromocytoma and adrenal medullary hyperplasia. Ann N Y Acad Sci 2006;1073:429435.Google Scholar
Fitch, R., Smith, P., Heath, D.. Nerve axons in carotid body hyperplasia. A quantitative study. Arch Pathol Lab Med 1985;109:234237.Google Scholar
DeLellis, R.A., Philipp, U., Heitz, P., Eng, C., eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004.Google Scholar
Harding, J.L., Yeh, M.W., Robinson, B.G., et al. Potential pitfalls in the diagnosis of phaeochromocytoma. Med J Aust 2005;182:637640.Google Scholar
Beltsevich, D.G., Kuznetsov, N.S., Kazaryan, A.M., et al. Pheochromocytoma surgery: epidemiologic peculiarities in children. World J Surg 2004;28:592596.Google Scholar
Waguespack, S.G., Rich, T., Grubbs, E., et al. A current review of the etiology, diagnosis, and treatment of pediatric pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 2010;95:20232037.Google Scholar
Neumann, H.P., Bausch, B., McWhinney, S.R., et al. Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med 2002;346:14591466.Google Scholar
Kaltsas, G.A., Papadogias, D., Grossman, A.B.. The clinical presentation (symptoms and signs) of sporadic and familial chromaffin cell tumours (phaeochromocytomas and paragangliomas). Front Horm Res 2004;31:6175.Google Scholar
Thompson, L.D.. Foundations in Diagnostic Pathology: Endocrine Pathology. Philadelphia, PA: Elsevier, 2006.Google Scholar
Manger, W.M.. The protean manifestations of pheochromocytoma. Horm Metab Res 2009;41:658663.Google Scholar
Bravo, E.L.. Pheochromocytoma: new concepts and future trends. Kidney Int 1991;40:544556.Google Scholar
Eisenhofer, G., Tischler, A.S., de Krijger, R.R.. Diagnostic tests and biomarkers for pheochromocytoma and extra-adrenal paraganglioma: from routine laboratory methods to disease stratification. Endocr Pathol 2012;23:414.Google Scholar
Ballav, C., Naziat, A., Mihai, R., et al. Mini-review: pheochromocytomas causing the ectopic ACTH syndrome. Endocrine 2012;42:6973.Google Scholar
Yi, D.W., Kim, S.Y., Shin, D.H., et al. Pheochromocytoma crisis after a dexamethasone suppression test for adrenal incidentaloma. Endocrine 2010;37:213219.Google Scholar
Jalil, N.D., Pattou, F.N., Combemale, F., et al. Effectiveness and limits of preoperative imaging studies for the localisation of pheochromocytomas and paragangliomas: a review of 282 cases. French Association of Surgery (AFC), and The French Association of Endocrine Surgeons (AFCE). Eur J Surg 1998;164:2328.Google Scholar
Lumachi, F., Tregnaghi, A., Zucchetta, P., et al. Sensitivity and positive predictive value of CT, MRI and 123I-MIBG scintigraphy in localizing pheochromocytomas: a prospective study. Nucl Med Commun 2006;27:583587.Google Scholar
Sahdev, A., Sohaib, A., Monson, J.P., et al. CT and MR imaging of unusual locations of extra-adrenal paragangliomas (pheochromocytomas). Eur Radiol 2005;15:8592.Google Scholar
Welch, T.J., Sheedy, P.F., 2nd, J.A. van Heerden, , et al. Pheochromocytoma: value of computed tomography. Radiology 1983;148:501503.Google Scholar
Baid, S.K., Lai, E.W., Wesley, R.A., et al. Brief communication: radiographic contrast infusion and catecholamine release in patients with pheochromocytoma. Ann Intern Med 2009;150:2732.Google Scholar
Mukherjee, J.J., Peppercorn, P.D., Reznek, R.H., et al. Pheochromocytoma: effect of nonionic contrast medium in CT on circulating catecholamine levels. Radiology 1997;202:227231.Google Scholar
Mannelli, M., Colagrande, S., Valeri, A., et al. Incidental and metastatic adrenal masses. Semin Oncol 2010;37:649661.Google Scholar
Eisenhofer, G., Rivers, G., Rosas, A.L., et al. Adverse drug reactions in patients with phaeochromocytoma: incidence, prevention and management. Drug Saf 2007;30:10311062.Google Scholar
Fiebrich, H.B., Brouwers, A.H., Kerstens, M.N., et al. 6-[F-18]Fluoro-l-dihydroxyphenylalanine positron emission tomography is superior to conventional imaging with (123)I-metaiodobenzylguanidine scintigraphy, computer tomography, and magnetic resonance imaging in localizing tumors causing catecholamine excess. J Clin Endocrinol Metab 2009;94:39223930.Google Scholar
Furuta, N., Kiyota, H., Yoshigoe, F., et al. Diagnosis of pheochromocytoma using [123I]-compared with [131I]-metaiodobenzylguanidine scintigraphy. Int J Urol 1999;6:119124.Google Scholar
Ilias, I., Chen, C.C., Carrasquillo, J.A., et al. Comparison of 6-18F-fluorodopamine PET with 123I-metaiodobenzylguanidine and 111in-pentetreotide scintigraphy in localization of nonmetastatic and metastatic pheochromocytoma. J Nucl Med 2008;49:16131619.Google Scholar
Milardovic, R., Corssmit, E.P., Stokkel, M.. Value of 123I-MIBG scintigraphy in paraganglioma. Neuroendocrinology 2010;91:94100.Google Scholar
Timmers, H.J., Chen, C.C., Carrasquillo, J.A., et al. Comparison of 18F-fluorolDOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 2009;94:47574767.Google Scholar
Timmers, H.J., Taieb, D., Pacak, K.. Current and future anatomical and functional imaging approaches to pheochromocytoma and paraganglioma. Horm Metab Res 2012;44:367372.Google Scholar
Wiseman, G.A., Pacak, K., O’Dorisio, M.S., et al. Usefulness of 123I-MIBG scintigraphy in the evaluation of patients with known or suspected primary or metastatic pheochromocytoma or paraganglioma: results from a prospective multicenter trial. J Nucl Med 2009;50:14481454.Google Scholar
Timmers, H.J., Chen, C.C., Carrasquillo, J.A., et al. Staging and functional characterization of pheochromocytoma and paraganglioma by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography. J Natl Cancer Inst 2012;104:700708.Google Scholar
Ilias, I., Yu, J., Carrasquillo, J.A., et al. Superiority of 6-[18F]-fluorodopamine positron emission tomography versus [131I]-metaiodobenzylguanidine scintigraphy in the localization of metastatic pheochromocytoma. J Clin Endocrinol Metab 2003;88:40834087.Google Scholar
Timmers, H.J., Eisenhofer, G., Carrasquillo, J.A., et al. Use of 6-[18F]-fluorodopamine positron emission tomography (PET) as first-line investigation for the diagnosis and localization of non-metastatic and metastatic phaeochromocytoma (PHEO). Clin Endocrinol (Oxf) 2009;71:1117.Google Scholar
Rufini, V., Treglia, G., Castaldi, P., et al. Comparison of 123I-MIBG SPECT-CT and 18F-DOPA PET-CT in the evaluation of patients with known or suspected recurrent paraganglioma. Nucl Med Commun 2011;32:575582.Google Scholar
Taieb, D., Timmers, H.J., Hindie, E., et al. EANM 2012 guidelines for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging 2012;39:19771995.Google Scholar
Gimenez-Roqueplo, A.P., Dahia, P.L., Robledo, M.. An update on the genetics of paraganglioma, pheochromocytoma, and associated hereditary syndromes. Horm Metab Res 2012;44:328333.Google Scholar
Lorenzo, F.R., Yang, C., Ng Tang Fui, M., et al. A novel EPAS1/HIF2A germline mutation in a congenital polycythemia with paraganglioma. J Mol Med (Berl) 2013;91:507512.Google Scholar
Zhuang, Z., Yang, C., Lorenzo, F., et al. Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. N Engl J Med 2012;367:922930.Google Scholar
Letouze, E., Martinelli, C., Loriot, C., et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 2013;23:739752.Google Scholar
Jamilloux, Y., Favier, J., Pertuit, M., et al. A MEN1 syndrome with a paraganglioma. Eur J Hum Genet 2014;22:283285.Google Scholar
Burnichon, N., Buffet, A., Parfait, B., et al. Somatic NF1 inactivation is a frequent event in sporadic pheochromocytoma. Hum Mol Genet 2012;21:53975405.Google Scholar
Crona, J., Delgado Verdugo, A., Maharjan, R., et al. Somatic mutations in HRAS in sporadic pheochromocytoma and paraganglioma identified by exome sequencing. J Clin Endocrinol Metab 2013;98:E1266E1271.Google Scholar
Lee, S., Nakamura, E., Yang, H., et al. Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell 2005;8:155167.Google Scholar
Jimenez-Heffernan, J.A., Vicandi, B., Lopez-Ferrer, P., et al. Cytologic features of pheochromocytoma and retroperitoneal paraganglioma: a morphologic and immunohistochemical study of 13 cases. Acta Cytol 2006;50:372378.Google Scholar
Linnoila, R.I., Keiser, H.R., Steinberg, S.M., et al. Histopathology of benign versus malignant sympathoadrenal paragangliomas: clinicopathologic study of 120 cases including unusual histologic features. Hum Pathol 1990;21:11681180.Google Scholar
Strong, V.E., Kennedy, T., Al-Ahmadie, H., et al. Prognostic indicators of malignancy in adrenal pheochromocytomas: clinical, histopathologic, and cell cycle/apoptosis gene expression analysis. Surgery 2008;143:759768.Google Scholar
Koch, C.A., Mauro, D., Walther, M.M., et al. Pheochromocytoma in von Hippel–Lindau disease: distinct histopathologic phenotype compared to pheochromocytoma in multiple endocrine neoplasia type 2. Endocr Pathol 2002;13:1727.Google Scholar
Wieneke, J.A., Thompson, L.D., Heffess, C.S.. Corticomedullary mixed tumor of the adrenal gland. Ann Diagn Pathol 2001;5:304308.Google Scholar
Feldman, S.A., Eiden, L.E.. The chromogranins: their roles in secretion from neuroendocrine cells and as markers for neuroendocrine neoplasia. Endocr Pathol 2003;14:323.Google Scholar
Haak, H.R., Fleuren, G.J.. Neuroendocrine differentiation of adrenocortical tumors. Cancer 1995;75:860864.Google Scholar
Lloyd, R.V., Sisson, J.C., Shapiro, B., et al. Immunohistochemical localization of epinephrine, norepinephrine, catecholamine-synthesizing enzymes, and chromogranin in neuroendocrine cells and tumors. Am J Pathol 1986;125:4554.Google Scholar
Lloyd, R.V., Blaivas, M., Wilson, B.S.. Distribution of chromogranin and S100 protein in normal and abnormal adrenal medullary tissues. Arch Pathol Lab Med 1985;109:633635.Google Scholar
Korpershoek, E., Favier, J., Gaal, J., et al. SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas. J Clin Endocrinol Metab 2011;96:E1472-6.Google Scholar
van Nederveen, F.H., Gaal, J., Favier, J., et al. An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis. Lancet Oncol 2009;10:764771.Google Scholar
Papathomas, T.G., Oudijk, L., Persu, A., et al. SDHB/SDHA immunohistochemistry in pheochromocytomas and paragangliomas: a multicenter interobserver variation analysis using virtual microscopy: a Multinational Study of the European Network for the Study of Adrenal Tumors (ENS@T). Mod Pathol 2015;28:807821.Google Scholar
Menara, M., Oudijk, L., Badoual, C., et al. SDHD immunohistochemistry: a new tool to validate SDHx mutations in pheochromocytoma/paraganglioma. J Clin Endocrinol Metab 2015;100:E287E291.Google Scholar
Comino-Mendez, I., Gracia-Aznarez, F.J., Schiavi, F., et al. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet 2011;43:663667.Google Scholar
Edstrom, E., Mahlamaki, E., Nord, B., et al. Comparative genomic hybridization reveals frequent losses of chromosomes 1p and 3q in pheochromocytomas and abdominal paragangliomas, suggesting a common genetic etiology. Am J Pathol 2000;156:651659.Google Scholar
de Krijger, R.R., van Nederveen, F.H.. Benign and malignant pheochromocytomas and paragangliomas. In Hunt, J., ed. Molecular Pathology of Endocrine Diseases. New York: Springer, 2010:205212.Google Scholar
Gimenez-Roqueplo, A.P., Tischler, A.S.. Pheochromocytoma and paraganglioma: progress on all fronts. Endocr Pathol 2012;23:13.Google Scholar
Shankavaram, U., Fliedner, S.M., Elkahloun, A.G., et al. Genotype and tumor locus determine expression profile of pseudohypoxic pheochromocytomas and paragangliomas. Neoplasia 2013;15:435447.Google Scholar
Eisenhofer, G., Bornstein, S.R., Brouwers, F.M., et al. Malignant pheochromocytoma: current status and initiatives for future progress. Endocr Relat Cancer 2004;11:423436.Google Scholar
Raue, F., Frank-Raue, K.. Genotype–phenotype correlation in multiple endocrine neoplasia type 2. Clinics (Sao Paulo) 2012;67(suppl 1):6975.Google Scholar
Frank-Raue, K., Rondot, S., Schulze, E., et al. Change in the spectrum of RET mutations diagnosed between 1994 and 2006. Clin Lab 2007;53:273282.Google Scholar
Webb, T.A., Sheps, S.G., Carney, J.A.. Differences between sporadic pheochromocytoma and pheochromocytoma in multiple endocrime neoplasia, type 2. Am J Surg Pathol 1980;4:121126.Google Scholar
Welander, J., Söderkvist, P., Gimm, O.. Genetics and clinical characteristics of hereditary pheochromocytomas and paragangliomas. Endocr Relat Cancer 2011;18:R253276.Google Scholar
Leung, K., Stamm, M., Raja, A., et al. Pheochromocytoma: the range of appearances on ultrasound, CT, MRI, and functional imaging. AJR Am J Roentgenol 2013;200:370378.Google Scholar
Lenders, J.W., Eisenhofer, G., Mannelli, M., et al. Phaeochromocytoma. Lancet 2005;366:665675.Google Scholar
Barontini, M., Dahia, P.L.. VHL disease. Best Pract Res Clin Endocrinol Metab 2010;24:401413.Google Scholar
Ricketts, C.J., Shuch, B., Vocke, C.D., et al. Succinate dehydrogenase kidney cancer: an aggressive example of the Warburg effect in cancer. J Urol 2012;188:20632071.Google Scholar
Carney, J.A., Sheps, S.G., Go, V.L., et al. The triad of gastric leiomyosarcoma, functioning extra-adrenal paraganglioma and pulmonary chondroma. N Engl J Med 1977;296:15171518.Google Scholar
Carney, J.A.. Gastric stromal sarcoma, pulmonary chondroma, and extra-adrenal paraganglioma (Carney triad): natural history, adrenocortical component, and possible familial occurrence. Mayo Clin Proc 1999;74:543552.Google Scholar
Carney, J.A.. Carney triad: a syndrome featuring paraganglionic, adrenocortical, and possibly other endocrine tumors. J Clin Endocrinol Metab 2009;94: 36563662.Google Scholar
Haller, F., Moskalev, E.A., Faucz, F.R., et al. Aberrant DNA hypermethylation of SDHC: a novel mechanism of tumor development in Carney triad. Endocr Relat Cancer 2014;21:567577.Google Scholar
Carney, J.A., Stratakis, C.A.. Familial paraganglioma and gastric stromal sarcoma: a new syndrome distinct from the Carney triad. Am J Med Genet 2002;108:132139.Google Scholar
Baysal, B.E., Ferrell, R.E., Willett-Brozick, J.E., et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 2000;287:848851.Google Scholar
Hensen, E.F., Bayley, J.P.. Recent advances in the genetics of SDH-related paraganglioma and pheochromocytoma. Fam Cancer 2011;10:355363.Google Scholar
Niemann, S., Muller, U.. Mutations in SDHC cause autosomal dominant paraganglioma. Nat Genet 2000;26:141150.Google Scholar
Astuti, D., Latif, F., Dallol, A., et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 2001;69:4954.Google Scholar
Hao, H.X., Khalimonchuk, O., Schraders, M., et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 2009;325:11391142.Google Scholar
Bayley, J.P., Kunst, H.P., Cascon, A., et al. SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol 2010;11:366372.Google Scholar
Parfait, B., Chretien, D., Rotig, A., et al. Compound heterozygous mutations in the flavoprotein gene of the respiratory chain complex II in a patient with Leigh syndrome. Hum Genet 2000;106:236243.Google Scholar
Burnichon, N., Briere, J.J., Libe, R., et al. SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet 2010;19:30113020.Google Scholar
Dwight, T., Mann, K., Benn, D.E., et al. Familial SDHA mutation associated with pituitary adenoma and pheochromocytoma/paraganglioma. J Clin Endocrinol Metab 2013;98:E1103E1108.Google Scholar
Xekouki, P., Pacak, K., Almeida, M., et al. Succinate dehydrogenase (SDH) D subunit (SDHD) inactivation in a growth-hormone-producing pituitary tumor: a new association for SDH? J Clin Endocrinol Metab 2012;97:E357366.Google Scholar
Lopez-Jimenez, E., de Campos, J.M., Kusak, E.M., et al. SDHC mutation in an elderly patient without familial antecedents. Clin Endocrinol (Oxf) 2008;69:906910.Google Scholar
Qin, Y., Yao, L., King, E.E., et al. Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nat Genet 2010;42:229233.Google Scholar
Neumann, H.P., Sullivan, M., Winter, A., et al. Germline mutations of the TMEM127 gene in patients with paraganglioma of head and neck and extraadrenal abdominal sites. J Clin Endocrinol Metab 2011;96:E12791282.Google Scholar
Yao, L., Schiavi, F., Cascon, A., et al. Spectrum and prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas. JAMA 2010;304:26112619.Google Scholar
Burnichon, N., Cascon, A., Schiavi, F., et al. MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma. Clin Cancer Res 2012;18:28282837.Google Scholar
Schlisio, S., Kenchappa, R.S., Vredeveld, L.C., et al. The kinesin KIF1Bbeta acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor. Genes Dev 2008;22:884893.Google Scholar
Yeh, I.T., Lenci, R.E., Qin, Y., et al. A germline mutation of the KIF1B beta gene on 1p36 in a family with neural and nonneural tumors. Hum Genet 2008;124:279285.Google Scholar
Ladroue, C., Carcenac, R., Leporrier, M., et al. PHD2 mutation and congenital erythrocytosis with paraganglioma. N Engl J Med 2008;359:26852692.Google Scholar
Comino-Mendez, I., de Cubas, A.A., Bernal, C., et al. Tumoral EPAS1 (HIF2A) mutations explain sporadic pheochromocytoma and paraganglioma in the absence of erythrocytosis. Hum Mol Genet 2013;22:21692176.Google Scholar
Favier, J., Buffet, A., Gimenez-Roqueplo, A.P.. HIF2A mutations in paraganglioma with polycythemia. N Engl J Med 2012;367:2161; author reply 2162.Google Scholar
Pacak, K., Jochmanova, I., Prodanov, T., et al. New syndrome of paraganglioma and somatostatinoma associated with polycythemia. J Clin Oncol 2013;31:16901698.Google Scholar
Tomlinson, I.P., Alam, N.A., Rowan, A.J., et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 2002;30:406410.Google Scholar
Castro-Vega, L.J., Buffet, A., De Cubas, A.A., et al. Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum Mol Genet. 2014;23:24402446.Google Scholar
Clark, G.R., Sciacovelli, M., Gaude, E., et al. Germline FH mutations presenting with pheochromocytoma. J Clin Endocrinol Metab 2014;99:E2046e2050.Google Scholar
Yang, C., Zhuang, Z., Fliedner, S.M., et al. Germ-line PHD1 and PHD2 mutations detected in patients with pheochromocytoma/paraganglioma-polycythemia. J Mol Med (Berl) 2015;93:93104.Google Scholar
Cascon, A., Comino-Mendez, I., Curras-Freixes, M., et al. Whole-exome sequencing identifies MDH2 as a new familial paraganglioma gene. J Natl Cancer Inst 2015;107:pii: djv053.Google Scholar
Young, W.F. Jr. Clinical practice. The incidentally discovered adrenal mass. N Engl J Med 2007;356:601610.Google Scholar
Lau, W.K., Zincke, H., Lohse, C.M., et al. Contralateral adrenal metastasis of renal cell carcinoma: treatment, outcome and a review. BJU Int 2003;91:775779.Google Scholar
Nambirajan, T., Leeb, K., Neumann, H.P., et al. Laparoscopic adrenal surgery for recurrent tumours in patients with hereditary phaeochromocytoma. Eur Urol 2005;47:622626.Google Scholar
Neumann, H.P., Bender, B.U., Reincke, M., et al. Adrenal-sparing surgery for phaeochromocytoma. Br J Surg 1999;86:9497.Google Scholar
Ilias, I., Pacak, K.. Diagnosis and management of tumors of the adrenal medulla. Horm Metab Res 2005;37:717721.Google Scholar
Amar, L., Servais, A., Gimenez-Roqueplo, A.P., et al. Year of diagnosis, features at presentation, and risk of recurrence in patients with pheochromocytoma or secreting paraganglioma. J Clin Endocrinol Metab 2005;90:21102116.Google Scholar
Fries, C.J. , JG. Extra-adrenal pheochromocytoma: literature review and report of a cervical pheochromocytoma. Surgery 1968;63:268279.Google Scholar
Timmers, H.J., Pacak, K., Huynh, T.T., et al. Biochemically silent abdominal paragangliomas in patients with mutations in the succinate dehydrogenase subunit B gene. J Clin Endocrinol Metab 2008;93:48264832.Google Scholar
Lack, E.E., Cubilla, A.L., Woodruff, J.M., et al. Extra-adrenal paragangliomas of the retroperitoneum: a clinicopathologic study of 12 tumors. Am J Surg Pathol 1980;4:109120.Google Scholar
Ilias, I., Pacak, K.. Current approaches and recommended algorithm for the diagnostic localization of pheochromocytoma. J Clin Endocrinol Metab 2004;89:479491.Google Scholar
Kaji, P., Carrasquillo, J.A., Linehan, W.M., et al. The role of 6-[18F]fluorodopamine positron emission tomography in the localization of adrenal pheochromocytoma associated with von Hippel–Lindau syndrome. Eur J Endocrinol 2007;156:483487.Google Scholar
Fonte, J.S., Robles, J.F., Chen, C.C., et al. False-negative (123)I-MIBG SPECT is most commonly found in SDHB-related pheochromocytoma or paraganglioma with high frequency to develop metastatic disease. Endocr Relat Cancer 2012;19:8393.Google Scholar
Gimenez-Roqueplo, A.P., Caumont-Prim, A., Houzard, C., et al. Imaging work-up for screening of paraganglioma and pheochromocytoma in SDHx mutation carriers: a multicenter prospective study from the PGL.EVA Investigators. J Clin Endocrinol Metab 2013;98:E162173.Google Scholar
Maurice, J.B., Troke, R., Win, Z., et al. A comparison of the performance of (68)Ga-DOTATATE PET/CT and (123)I-MIBG SPECT in the diagnosis and follow-up of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging 2012;39:12661270.Google Scholar
Naswa, N., Sharma, P., Nazar, A.H., et al. Prospective evaluation of (68)Ga-DOTA-NOC PET-CT in phaeochromocytoma and paraganglioma: preliminary results from a single centre study. Eur Radiol 2012;22:710719.Google Scholar
Hartung-Knemeyer, V., Rosenbaum-Krumme, S., Buchbender, C., et al. Malignant pheochromocytoma imaging with [124I]mIBG PET/MR. J Clin Endocrinol Metab 2012;97:38333834.Google Scholar
Mayerhoefer, M.E., Ba-Ssalamah, A., Weber, M., et al. Gadoxetate-enhanced versus diffusion-weighted MRI for fused Ga-68-DOTANOC PET/MRI in patients with neuroendocrine tumours of the upper abdomen. Eur Radiol 2013;23:19781985.Google Scholar
Timmers, H.J., Gimenez-Roqueplo, A.P., Mannelli, M., et al. Clinical aspects of SDHx-related pheochromocytoma and paraganglioma. Endocr Relat Cancer 2009;16:391400.Google Scholar
Wohllk, N., Schweizer, H., Erlic, Z., et al. Multiple endocrine neoplasia type 2. Best Pract Res Clin Endocrinol Metab 2010;24:371387.Google Scholar
Gimenez-Roqueplo, A.P., Favier, J., Rustin, P., et al. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res 2003;63:56155621.Google Scholar
Vora, A.A., Lai, C.K., Rao, J.Y., et al. Paraganglioma with unusual presentation in parotid gland: a diagnostic dilemma in fine needle aspiration. Cytojournal 2012;9:26.Google Scholar
Aubertine, C.L., Flieder, D.B.. Primary paraganglioma of the lung. Ann Diagn Pathol 2004;8:237241.Google Scholar
Rodriguez-Cuevas, S., Lopez-Garza, J., Labastida-Almendaro, S.. Carotid body tumors in inhabitants of altitudes higher than 2000 meters above sea level. Head Neck 1998;20:374378.Google Scholar
Balcombe, J., Torigian, D.A., Kim, W., et al. Cross-sectional imaging of paragangliomas of the aortic body and other thoracic branchiomeric paraganglia. AJR Am J Roentgenol 2007;188:10541058.Google Scholar
Gabriel, S., Blanchet, E.M., Sebag, F., et al. Functional characterization of nonmetastatic paraganglioma and pheochromocytoma by F-FDOPA PET: focus on missed lesions. Clin Endocrinol (Oxf) 2013;79:170177.Google Scholar
Hoegerle, S., Ghanem, N., Altehoefer, C., et al. 18F-DOPA positron emission tomography for the detection of glomus tumours. Eur J Nucl Med Mol Imaging 2003;30:689694.Google Scholar
King, K.S., Chen, C.C., Alexopoulos, D.K., et al. Functional imaging of SDHx-related head and neck paragangliomas: comparison of 18F-fluorodihydroxyphenylalanine, 18F-fluorodopamine, 18F-fluoro-2-deoxydglucose PET, 123I-metaiodobenzylguanidine scintigraphy, and 111In-pentetreotide scintigraphy. J Clin Endocrinol Metab 2011;96:27792785.Google Scholar
Saldana, M.J., Salem, L.E., Travezan, R.. High altitude hypoxia and chemodectomas. Hum Pathol 1973;4:251263.Google Scholar
Astrom, K., Cohen, J.E., Willett-Brozick, J.E., et al. Altitude is a phenotypic modifier in hereditary paraganglioma type 1: evidence for an oxygen-sensing defect. Hum Genet 2003;113:228237.Google Scholar
Cerecer-Gil, N.Y., Figuera, L.E., Llamas, F.J., et al. Mutation of SDHB is a cause of hypoxia-related high-altitude paraganglioma. Clin Cancer Res 2010;16:41484154.Google Scholar
Jech, M., Alvarado-Cabrero, I., Albores-Saavedra, J., et al. Genetic analysis of high altitude paragangliomas. Endocr Pathol 2006;17:201202.Google Scholar
Branco-Price, C., Zhang, N., Schnelle, M., et al. Endothelial cell HIF-1alpha and HIF-2alpha differentially regulate metastatic success. Cancer Cell 2012;21:5265.Google Scholar
Shamblin, W.R., ReMine, W.H., Sheps, S.G., et al. Carotid body tumor (chemodectoma). Clinicopathologic analysis of ninety cases. Am J Surg 1971;122:732739.Google Scholar
Naniwadekar, M.R., Jagtap, S.V., Kshirsagar, A.Y., et al. Fine needle aspiration diagnosis of carotid body tumor in a case of multiple paragangliomas presenting with facial palsy: a case report. Acta Cytol 2010;54:635639.Google Scholar
Tischler, A.S.. Pheochromocytoma and extra-adrenal paraganglioma: updates. Arch Pathol Lab Med 2008;132:12721284.Google Scholar
Labrousse, L.M., Leboutet, MJ, Petit, B , B, et al. Cytokeratins expression in paragangliomas of the cauda equina. Clin Neuropathol 1999;18:208213.Google Scholar
Schmid, K.W., Schroder, S., Dockhorn-Dworniczak, B., et al. Immunohistochemical demonstration of chromogranin A, chromogranin B, and secretogranin II in extra-adrenal paragangliomas. Mod Pathol 1994;7:347353.Google Scholar
Min, K.W.. Two different types of carcinoid tumors of the lung: immunohistochemical and ultrastructural investigation and their histogenetic consideration. Ultrastruct Pathol 2013;37:2335.Google Scholar
Meijer, W.G., Copray, S.C., Hollema, H., et al. Catecholamine-synthesizing enzymes in carcinoid tumors and pheochromocytomas. Clin Chem 2003;49:586593.Google Scholar
Chetty, R., Pillay, P., Jaichand, V.. Cytokeratin expression in adrenal phaeochromocytomas and extra-adrenal paragangliomas. J Clin Pathol 1998;51:477478.Google Scholar
DeAngelis, L.M., Kelleher, M.B., Post, K.D., et al. Multiple paragangliomas in neurofibromatosis: a new neuroendocrine neoplasia. Neurology 1987;37:129133.Google Scholar
Boedeker, C.C., Erlic, Z., Richard, S., et al. Head and neck paragangliomas in von Hippel–Lindau disease and multiple endocrine neoplasia type 2. J Clin Endocrinol Metab 2009;94:19381944.Google Scholar
Taschner, P.E., Jansen, J.C., Baysal, B.E., et al. Nearly all hereditary paragangliomas in the Netherlands are caused by two founder mutations in the SDHD gene. Genes Chromosomes Cancer 2001;31:274281.Google Scholar
Hensen, E.F., van Duinen, N., Jansen, J.C., et al. High prevalence of founder mutations of the succinate dehydrogenase genes in the Netherlands. Clin Genet 2012;81:284288.Google Scholar
Myssiorek, D., Rinaldo, A., Barnes, L., et al. Laryngeal paraganglioma: an updated critical review. Acta Otolaryngol 2004;124:995999.Google Scholar
Shibahara, J., Goto, A., Niki, T., et al. Primary pulmonary paraganglioma: report of a functioning case with immunohistochemical and ultrastructural study. Am J Surg Pathol 2004;28:825829.Google Scholar
Martinelli, O., Irace, L., Massa, R., et al. Carotid body tumors: radioguided surgical approach. J Exp Clin Cancer Res 2009;28:148.Google Scholar
Kollert, M., Minovi, A.A., Draf, W., et al. Cervical paragangliomas-tumor control and long-term functional results after surgery. Skull Base 2006;16:185191.Google Scholar
Tischler, A.S.. Pheochromocytoma: time to stamp out “malignancy”? Endocr Pathol 2008;19:207208.Google Scholar
Taieb, D., Sebag, F., Barlier, A., et al. 18F-FDG avidity of pheochromocytomas and paragangliomas: a new molecular imaging signature? J Nucl Med 2009;50:711717.Google Scholar
Eisenhofer, G., Lenders, J.W., Pacak, K.. Biochemical diagnosis of pheochromocytoma. Front Horm Res 2004;31:76106.Google Scholar
Harari, A., Inabnet, W.B. 3rd. Malignant pheochromocytoma: a review. Am J Surg 2011;201:700708.Google Scholar
Oberg, K.E.. The management of neuroendocrine tumours: current and future medical therapy options. Clin Oncol 2012;24:282293.Google Scholar
Voo, S., Bucerius, J., Mottaghy, F.M.. I-131-MIBG therapies. Methods 2011;55:238245.Google Scholar
John, H., Ziegler, W.H., Hauri, D., et al. Pheochromocytomas: can malignant potential be predicted? Urology 1999;53:679683.Google Scholar
Thompson, L.D.. Pheochromocytoma of the Adrenal gland Scaled Score (PASS) to separate benign from malignant neoplasms: a clinicopathologic and immunophenotypic study of 100 cases. Am J Surg Pathol 2002;26:551566.Google Scholar
Wu, D., Tischler, A.S., Lloyd, R.V., et al. Observer variation in the application of the Pheochromocytoma of the Adrenal Gland Scaled Score. Am J Surg Pathol 2009;33:599608.Google Scholar
Kimura, N., Watanabe, T., Noshiro, T., et al. Histological grading of adrenal and extra-adrenal pheochromocytomas and relationship to prognosis: a clinicopathological analysis of 116 adrenal pheochromocytomas and 30 extra-adrenal sympathetic paragangliomas including 38 malignant tumors. Endocr Pathol 2005;16:2332.Google Scholar
Favier, J., Plouin, P.F., Corvol, P., et al. Angiogenesis and vascular architecture in pheochromocytomas: distinctive traits in malignant tumors. Am J Pathol 2002;161:12351246.Google Scholar
Brouwers, F.M., Elkahloun, A.G., Munson, P.J., et al. Gene expression profiling of benign and malignant pheochromocytoma. Ann N Y Acad Sci 2006;1073:541556.Google Scholar
Suh, I., Shibru, D., Eisenhofer, G., et al. Candidate genes associated with malignant pheochromocytomas by genome-wide expression profiling. Ann Surg 2009;250:983990.Google Scholar
Thouennon, E., Elkahloun, A.G., Guillemot, J., et al. Identification of potential gene markers and insights into the pathophysiology of pheochromocytoma malignancy. J Clin Endocrinol Metab 2007;92:48654872.Google Scholar
Waldmann, J., Fendrich, V., Holler, J., et al. Microarray analysis reveals differential expression of benign and malignant pheochromocytoma. Endocr Relat Cancer 2010;17:743756.Google Scholar
Meyer-Rochow, G.Y., Jackson, N.E., Conaglen, J.V., et al. MicroRNA profiling of benign and malignant pheochromocytomas identifies novel diagnostic and therapeutic targets. Endocr Relat Cancer 2010;17:835846.Google Scholar
Tombol, Z., Eder, K., Kovacs, A., et al. MicroRNA expression profiling in benign (sporadic and hereditary) and recurring adrenal pheochromocytomas. Mod Pathol 2010;23:15831595.Google Scholar
Neumann, H.P., Pawlu, C., Peczkowska, M., et al. Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA 2004;292:943951.Google Scholar
Kaltsas, G.A., Besser, G.M., Grossman, A.B.. The diagnosis and medical management of advanced neuroendocrine tumors. Endocr Rev 2004;25:458511.Google Scholar
Lee, J.H., Barich, F., Karnell, L.H., et al. National Cancer Data Base report on malignant paragangliomas of the head and neck. Cancer 2002;94:730737.Google Scholar
Naswa, N., Kumar, A., Sharma, P., et al. Imaging carotid body chemodectomas with (68)Ga-DOTA-NOC PET-CT. Br J Radiol 2012;85:11401145.Google Scholar
Lack, E.E., Cubilla, A.L., Woodruff, J.M.. Paragangliomas of the head and neck region. A pathologic study of tumors from 71 patients. Hum Pathol 1979;10:191218.Google Scholar
Moskovic, D.J., Smolarz, J.R., Stanley, D., et al. Malignant head and neck paragangliomas: is there an optimal treatment strategy? Head Neck Oncol 2010;2:23.Google Scholar
Gupta, K., Bansal, A.. Congenital neuroblastoma: an autopsy report. Fetal Pediatr Pathol 2012;31:331335.Google Scholar
Davidoff, A.M.. Neuroblastoma. Semin Pediatr Surg 2012;21:214.Google Scholar
Hiyama, E., Iehara, T., Sugimoto, T., et al. Effectiveness of screening for neuroblastoma at 6 months of age: a retrospective population-based cohort study. Lancet 2008;371:11731180.Google Scholar
Toma, P., Lucigrai, G., Marzoli, A., et al. Prenatal diagnosis of metastatic adrenal neuroblastoma with sonography and MR imaging. AJR Am J Roentgenol 1994;162:11831184.Google Scholar
van Noesel, M.M.. Neuroblastoma stage 4S: a multifocal stem-cell disease of the developing neural crest. Lancet Oncol 2012;13:229230.Google Scholar
Krona, C., Caren, H., Sjoberg, R.M., et al. Analysis of neuroblastoma tumour progression; loss of PHOX2B on 4p13 and 17q gain are early events in neuroblastoma tumourigenesis. Int J Oncol 2008;32:575583.Google Scholar
Yu, A.L., Gilman, A.L., Ozkaynak, M.F., et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 2010;363:13241334.Google Scholar
McLean, K., Lilienfeld, H., Caracciolo, J.T., et al. Management of isolated adrenal lesions in cancer patients. Cancer Control 2011;18:113126.Google Scholar
Ohsie, S.J., Sarantopoulos, G.P., Cochran, A.J., et al. Immunohistochemical characteristics of melanoma. J Cutan Pathol 2008;35:433444.Google Scholar
Mete, O., Tischler, A.S., de Krijger, R., et al. Protocol for the examination of specimens from patients with pheochromocytomas and extra-adrenal paragangliomas. Arch Pathol Lab Med 2014;138:182188.Google Scholar

References

Rehfeld, J.F. 1998. The new biology of gastrointestinal hormones. Physiol Rev 78:10871108.Google Scholar
Pearse, A.G. 1969. The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept. J Histochem Cytochem 17:303313.Google Scholar
Andrew, A., Kramer, B., et al. 1998. The origin of gut and pancreatic neuroendocrine (APUD) cells–the last word? J Pathol 186:117118.Google Scholar
Karam, S.M., Li, Q., et al. 1997. Gastric epithelial morphogenesis in normal and transgenic mice. Am J Physiol 272:G1209G1220.Google Scholar
Karam, S.M., Leblond, C.P. 1993. Dynamics of epithelial cells in the corpus of the mouse stomach. I. Identification of proliferative cell types and pinpointing of the stem cell. Anat Rec 236:259279.Google Scholar
Gordon, J.I., Schmidt, G.H., et al. 1992. Studies of intestinal stem cells using normal, chimeric, and transgenic mice. Faseb J 6:30393050.Google Scholar
Booth, C., Potten, C.S. 2000. Gut instincts: thoughts on intestinal epithelial stem cells. J Clin Invest 105:14931499.Google Scholar
Marshman, E., Booth, C., et al. 2002. The intestinal epithelial stem cell. Bioessays 24:9198.Google Scholar
Skipper, M., Lewis, J. 2000. Getting to the guts of enteroendocrine differentiation. Nat Genet 24:34.Google Scholar
Solcia, E., Vanoli, A. 2014. Histogenesis and natural history of gut neuroendocrine tumors: present status. Endocr Pathol 25:165170.Google Scholar
Murphy, K.G., Bloom, S.R. 2006. Gut hormones and the regulation of energy homeostasis. Nature 444: 854859.Google Scholar
Kellum, J.M., Albuquerque, F.C., et al. 1999. Stroking human jejunal mucosa induces 5-HT release and Cl-secretion via afferent neurons and 5-HT4 receptors. Am J Physiol 277: G515520.Google Scholar
Fukumoto, S., Tatewaki, M., et al. 2003. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am J Physiol Regul Integr Comp Physiol 284:R12691276.Google Scholar
Challacombe, D.N., Wheeler, E.E. 1983. Possible neural projections from enterochromaffin cells. Lancet ii: 1502.Google Scholar
Wiedenmann, B., John, M., et al. 1998. Molecular and cell biological aspects of neuroendocrine tumors of the gastroenteropancreatic system. J Mol Med (Berl) 76:637647.Google Scholar
Feldman, S.A., Eiden, L.E. 2003. The chromogranins: their roles in secretion from neuroendocrine cells and as markers for neuroendocrine neoplasia. Endocr Pathol 14:323.Google Scholar
Cetin, Y., Kuhn, M., et al. 1994. Enterochromaffin cells of the digestive system: cellular source of guanylin, a guanylate cyclase-activating peptide. Proc Natl Acad Sci USA 91:29352939.Google Scholar
Modlin, I.M., Kidd, M., et al. 2006. The functional characterization of normal and neoplastic human enterochromaffin cells. J Clin Endocrinol Metab 91:23402348.Google Scholar
Bosman, F.T., Carneiro, F., et al. WHO Classification of Tumours of the Digestive System. Lyon: International Agency for Research on Cancer, 2010.Google Scholar
Klimstra, D.S., Modlin, I.R., et al. 2010. The pathologic classification of neuroendocrine tumors: a review of nomenclature, grading, and staging systems. Pancreas 39:707712.Google Scholar
Rindi, G., Kloppel, G., et al. 2006. TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch 449:395401.Google Scholar
Rindi, G., Kloppel, G., et al. 2007. TNM staging of midgut and hindgut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch 451:757762.Google Scholar
Sorbye, H., Welin, S., et al. 2013. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann Oncol 24:152160.Google Scholar
Velayoudom-Cephise, F.L., Duvillard, P., et al. 2013. Are G3 ENETS neuroendocrine neoplasms heterogeneous? Endocr Relat Cancer 20:649657.Google Scholar
van Velthuysen, M.L., Groen, E.J., et al. 2014. Reliability of proliferation assessment by Ki-67 expression in neuroendocrine neoplasms: eyeballing or image analysis? Neuroendocrinology 100:288292.Google Scholar
Kaltsas, G.A., Besser, G.M., et al. 2004. The diagnosis and medical management of advanced neuroendocrine tumors. Endocr Rev 25:458511.Google Scholar
Stridsberg, M., Oberg, K., et al. 1995. Measurements of chromogranin A, chromogranin B (secretogranin I), chromogranin C (secretogranin II) and pancreastatin in plasma and urine from patients with carcinoid tumours and endocrine pancreatic tumours. J Endocrinol 144:4959.Google Scholar
Sciarra, A., Monti, S., et al. 2005. Chromogranin A expression in familial versus sporadic prostate cancer. Urology 66:10101014.Google Scholar
Rorstad, O. 2005. Prognostic indicators for carcinoid neuroendocrine tumors of the gastrointestinal tract. J Surg Oncol 89:151160.Google Scholar
Berna, M.J., Hoffmann, K.M., et al. 2006. Serum gastrin in Zollinger–Ellison syndrome: II. Prospective study of gastrin provocative testing in 293 patients from the National Institutes of Health and comparison with 537 cases from the literature. evaluation of diagnostic criteria, proposal of new criteria, and correlations with clinical and tumoral features. Medicine (Baltimore) 85:331364.Google Scholar
Eriksson, B., Oberg, K., et al. 2000. Tumor markers in neuroendocrine tumors. Digestion 62(suppl 1):3338.Google Scholar
Kwekkeboom, D.J., Krenning, E.P. 1996. Somatostatin receptor scintigraphy in patients with carcinoid tumors. World J Surg 20:157161.Google Scholar
Gibril, F., Jensen, R.T. 2004. Diagnostic uses of radiolabelled somatostatin receptor analogues in gastroenteropancreatic endocrine tumours. Dig Liver Dis 36(suppl 1):S106S120.Google Scholar
Gibril, F., Reynolds, J.C., et al. 1996. Somatostatin receptor scintigraphy: its sensitivity compared with that of other imaging methods in detecting primary and metastatic gastrinomas. A prospective study. Ann Intern Med 125:2634.Google Scholar
Montravers, F., Grahek, D., et al. 2006. Can fluorodihydroxyphenylalanine PET replace somatostatin receptor scintigraphy in patients with digestive endocrine tumors? J Nucl Med 47:14551462.Google Scholar
van Essen, M., Sundin, A., et al. 2014. Neuroendocrine tumours: the role of imaging for diagnosis and therapy. Nat Rev Endocrinol 10:102114.Google Scholar
D’Onofrio, M., Martone, E., et al. 2006. Focal liver lesions: sinusoidal phase of CEUS. Abdom Imaging 31:529536.Google Scholar
Hyslop, W.B., Semelka, R.C. 2005. Future directions in body magnetic resonance imaging. Top Magn Reson Imaging 16:314.Google Scholar
Funovics, M.A., Kapeller, B., et al. 2004. MR imaging of the Her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. Magn Reson Imaging 22:843850.Google Scholar
van Tuyl, S.A., van Noorden, J.T., et al. 2006. Detection of small-bowel neuroendocrine tumors by video capsule endoscopy. Gastrointest Endosc 64:6672.Google Scholar
La Rosa, S., Marando, A., et al. 2012. Mixed adenoneuroendocrine carcinomas (MANECs) of the gastrointestinal tract: an update. Cancers (Basel) 4:1130.Google Scholar
Adhikari, D., Conte, C., et al. 2002. Combined adenocarcinoma and carcinoid tumor in atrophic gastritis. Ann Clin Lab Sci 32: 422–7.Google Scholar
Caruso, M.L., Pilato, F.P., et al. 1989. Composite carcinoid-adenocarcinoma of the stomach associated with multiple gastric carcinoids and nonantral gastric atrophy. Cancer 64:15341539.Google Scholar
Auber, F., Gambiez, L., et al. 1998. Mixed adenocarcinoid tumor and Crohn’s disease. J Clin Gastroenterol 26:353354.Google Scholar
Hock, Y.L., Scott, K.W., et al. 1993. Mixed adenocarcinoma/carcinoid tumour of large bowel in a patient with Crohn’s disease. J Clin Pathol 46:183185.Google Scholar
Cary, N.R., Barron, D.J., et al. 1993. Combined oesophageal adenocarcinoma and carcinoid in Barrett’s oesophagitis: potential role of enterochromaffin-like cells in oesophageal malignancy. Thorax 48:404405.Google Scholar
Tahara, E., Ito, H., et al. 1982. Scirrhous argyrophil cell carcinoma of the stomach with multiple production of polypeptide hormones, amine, CEA, lysozyme, and HCG. Cancer 49:19041915.Google Scholar
Yang, G.C., Rotterdam, H. 1991. Mixed (composite) glandular-endocrine cell carcinoma of the stomach. Report of a case and review of literature. Am J Surg Pathol 15:592598.Google Scholar
Serra, S., Chetty, R. 2014. Amphicrine (mixed adenoneuroendocrine carcinoma) of the duodenum and coexistent metastatic well differentiated neuroendocrine tumour. Diagn Histopathol 20:297300.Google Scholar
Modlin, I.M., Kidd, M., et al. 2005. Current status of gastrointestinal carcinoids. Gastroenterology 128:17171751.Google Scholar
Norton, J.A. 2005. Endocrine tumours of the gastrointestinal tract. Surgical treatment of neuroendocrine metastases. Best Pract Res Clin Gastroenterol 19:577583.Google Scholar
Lee, E., Pachter, H.L., et al. 2012. Hepatic arterial embolization for the treatment of metastatic neuroendocrine tumors. Int J Hepatol 2012;471203.Google Scholar
Walter, T., Brixi-Benmansour, H., et al. 2012. New treatment strategies in advanced neuroendocrine tumours. Dig Liver Dis 44:95105.Google Scholar
Kolby, L., Persson, G., et al. 2003. Randomized clinical trial of the effect of interferon alpha on survival in patients with disseminated midgut carcinoid tumours. Br J Surg 90:687693.Google Scholar
Oberg, K.E. 2012. The management of neuroendocrine tumours: current and future medical therapy options. Clin Oncol (R Coll Radiol) 24:282293.Google Scholar
Gulenchyn, K.Y., Yao, X., et al. Radionuclide therapy in neuroendocrine tumours: a systematic review. Clin Oncol (R Coll Radiol) 24:294308.Google Scholar
Mills, SE. 2007. Histology for Pathologists, 3rd edn. Philadelphia PA: Lippincott Williams & Wilkins, 2007Google Scholar
Tateishi, R., Taniguchi, K., et al. 1976. Argyrophil cell carcinoma (apudoma) of the esophagus. A histopathologic entity. Virchows Arch A Pathol Anat Histopathol 371:283294.Google Scholar
Modlin, I.M., Sandor, A. 1997. An analysis of 8305 cases of carcinoid tumors. Cancer 79:813829.Google Scholar
Maru, D.M., Khurana, H., et al. 2008. Retrospective study of clinicopathologic features and prognosis of high-grade neuroendocrine carcinoma of the esophagus. Am J Surg Pathol 32:14041411.Google Scholar
Briggs, J.C., Ibrahim, N.B. 1983. Oat cell carcinomas of the oesophagus: a clinico-pathological study of 23 cases. Histopathology 7:261277.Google Scholar
Chong, F.K., Graham, J.H., et al. 1979. Mucin-producing carcinoid (composite tumor) of upper third of esophagus: a variant of carcinoid tumor. Cancer 44:18531859.Google Scholar
Attar, B.M., Levendoglu, H., et al. 1990. Small cell carcinoma of the esophagus. Report of three cases and review of the literature. Dig Dis Sci 35:145152.Google Scholar
Kloppel, G., Rindi, G., et al. 2007. Site-specific biology and pathology of gastroenteropancreatic neuroendocrine tumors. Virchows Arch 451(suppl 1):S9S27.Google Scholar
Huncharek, M., Muscat, J. 1995. Small cell carcinoma of the esophagus. The Massachusetts General Hospital experience, 1978 to 1993. Chest 107:179181.Google Scholar
Modlin, I.M., Shapiro, M.D., et al. 2005. An analysis of rare carcinoid tumors: clarifying these clinical conundrums. World J Surg 29:92101.Google Scholar
Siegal, A., Swartz, A. 1986. Malignant carcinoid of oesophagus. Histopathology 10:761765.Google Scholar
Nawroz, I.M. 1987. Malignant carcinoid tumour of oesophagus. Histopathology 11:879880.Google Scholar
Takubo, K., Nakamura, K., et al. 1999. Primary undifferentiated small cell carcinoma of the esophagus. Hum Pathol 30:216221.Google Scholar
Yun, J.P., Zhang, M.F., et al. 2007. Primary small cell carcinoma of the esophagus: clinicopathological and immunohistochemical features of 21 cases. BMC Cancer 7: 38.Google Scholar
Yamamoto, J., Ohshima, K., et al. 2003. Primary esophageal small cell carcinoma with concomitant invasive squamous cell carcinoma or carcinoma in situ. Hum Pathol 34:11081115.Google Scholar
Mori, M., Matsukuma, A., et al. 1989. Small cell carcinoma of the esophagus. Cancer 63:564573.Google Scholar
Imai, T., Sannohe, Y., et al. 1978. Oat cell carcinoma (apudoma) of the esophagus: a case report. Cancer 41:358364.Google Scholar
Ready, A.R., Soul, J.O., et al. 1989. Malignant carcinoid tumour of the oesophagus. Thorax 44:594596.Google Scholar
Edge, SB, Byrd, D.R., et al. AJCC Cancer Staging Manual. New York: Springer, 2010.Google Scholar
Sobin, LH, G.M., Wittekind, C 2009. TMN Classification of Malignant Tumours. Oxford: Wiley-Blackwell.Google Scholar
Law, S.Y., Fok, M., et al. 1994. Small cell carcinoma of the esophagus. Cancer 73:28942899.Google Scholar
Rindi, G., Inzani, F., et al. Pathology of gastrointestinal disorders. Endocrinol Metab Clin North Am 39:713727.Google Scholar
Debelenko, L.V., Emmert-Buck, M.R., et al. 1997. The multiple endocrine neoplasia type I gene locus is involved in the pathogenesis of type II gastric carcinoids. Gastroenterology 113:773781.Google Scholar
Capella, C., Solcia, E., et al. 2010. Endocrine tumours of the stomach. In Bosnan, FTCF, Hruban, RH, et al., eds. WHO Classification of Tumors of the Digestive System. Lyon: International Agency for Research on Cancer, 2010:5357.Google Scholar
Ihamaki, T., Kekki, M., et al. 1985. The sequelae and course of chronic gastritis during a 30- to 34-year bioptic follow-up study. Scand J Gastroenterol 20:485491.Google Scholar
Lehy, T., Cadiot, G., et al. 1992. Influence of multiple endocrine neoplasia type 1 on gastric endocrine cells in patients with the Zollinger–Ellison syndrome. Gut 33:12751279.Google Scholar
Berna, M.J., Annibale, B., et al. 2008. A prospective study of gastric carcinoids and enterochromaffin-like cell changes in multiple endocrine neoplasia type 1 and Zollinger–Ellison syndrome: identification of risk factors. J Clin Endocrinol Metab 93:15821591.Google Scholar
Modlin, I.M., Lye, K.D., et al. 2003. A 5-decade analysis of 13 715 carcinoid tumors. Cancer 97:934959.Google Scholar
Sjoblom, S.M. 1988. Clinical presentation and prognosis of gastrointestinal carcinoid tumours. Scand J Gastroenterol 23:779787.Google Scholar
Hauso, O., Gustafsson, B.I., et al. 2008. Neuroendocrine tumor epidemiology: contrasting Norway and North America. Cancer 113:26552664.Google Scholar
Rindi, G., Azzoni, C., et al. 1999. ECL cell tumor and poorly differentiated endocrine carcinoma of the stomach: prognostic evaluation by pathological analysis. Gastroenterology 116:532542.Google Scholar
Rindi, G., Luinetti, O., et al. 1993. Three subtypes of gastric argyrophil carcinoid and the gastric neuroendocrine carcinoma: a clinicopathologic study. Gastroenterology 104:9941006.Google Scholar
Ooi, A., Ota, M., et al. 1995. An unusual case of multiple gastric carcinoids associated with diffuse endocrine cell hyperplasia and parietal cell hypertrophy. Endocr Pathol 6:229237.Google Scholar
Abraham, S.C., Carney, J.A., et al. 2005. Achlorhydria, parietal cell hyperplasia, and multiple gastric carcinoids: a new disorder. Am J Surg Pathol 29: 969–75.Google Scholar
Hou, W., Schubert, M.L. 2007. Treatment of gastric carcinoids. Curr Treat Options Gastroenterol 10:123133.Google Scholar
Rindi, G., Bordi, C., et al. 1996. Gastric carcinoids and neuroendocrine carcinomas: pathogenesis, pathology, and behavior. World J Surg 20:168172.Google Scholar
Solcia, E., Capella, C., et al. 1990. Gastric argyrophil carcinoidosis in patients with Zollinger–Ellison syndrome due to type 1 multiple endocrine neoplasia. A newly recognized association. Am J Surg Pathol 14:503513.Google Scholar
Oates, J.A., Sjoerdsma, A. 1962. A unique syndrome associated with secretion of 5-hydroxytryptophan by metastatic gastric carcinoids. Am J Med 32: 333342.Google Scholar
Roberts, L.J., 2nd, Bloomgarden, Z.T., et al. 1983. Histamine release from a gastric carcinoid: provocation by pentagastrin and inhibition by somatostatin. Gastroenterology 84:272275.Google Scholar
Tsolakis, A.V., Portela-Gomes, G.M., et al. 2004. Malignant gastric ghrelinoma with hyperghrelinemia. J Clin Endocrinol Metab 89:37393744.Google Scholar
Christodoulopoulos, J.B., Klotz, A.P. 1961. Carcinoid syndrome with primary carcinoid tumor of the stomach. Gastroenterology 40: 429440.Google Scholar
Kloppel, G., Clemens, A. 1996. The biological relevance of gastric neuroendocrine tumors. Yale J Biol Med 69:6974.Google Scholar
Delle Fave, G., Capurso, G., et al. 2005. Endocrine tumours of the stomach. Best Pract Res Clin Gastroenterol 19:659673.Google Scholar
Norton, J.A., Melcher, M.L., et al. 2004. Gastric carcinoid tumors in multiple endocrine neoplasia-1 patients with Zollinger–Ellison syndrome can be symptomatic, demonstrate aggressive growth, and require surgical treatment. Surgery 136:12671274.Google Scholar
Chejfec, G., Gould, V.E. 1977. Malignant gastric neuroendogrinomas. Ultrastructural and biochemical characterization of their secretory activity. Hum Pathol 8:433440.Google Scholar
Jiang, S.X., Mikami, T., et al. 2006. Gastric large cell neuroendocrine carcinomas: a distinct clinicopathologic entity. Am J Surg Pathol 30:945953.Google Scholar
Kim, K.M., Kim, M.J., et al. 2002. Genetic evidence for the multi-step progression of mixed glandular-neuroendocrine gastric carcinomas. Virchows Arch 440:8593.Google Scholar
Furlan, D., Cerutti, R., et al. 2003. Microallelotyping defines the monoclonal or the polyclonal origin of mixed and collision endocrine-exocrine tumors of the gut. Lab Invest 83:963971.Google Scholar
Capella, C., Polak, J.M., et al. 1980. Gastric carcinoids of argyrophil ECL cells. Ultrastruct Pathol 1:411418.Google Scholar
Rindi, G., Paolotti, D., et al. 2000. Vesicular monoamine transporter 2 as a marker of gastric enterochromaffin-like cell tumors. Virchows Arch 436:217223.Google Scholar
Higham, A.D., Bishop, L.A., et al. 1999. Mutations of RegIalpha are associated with enterochromaffin-like cell tumor development in patients with hypergastrinemia. Gastroenterology 116:13101318.Google Scholar
D’Adda, T., Candidus, S., et al. 1999. Gastric neuroendocrine neoplasms: tumour clonality and malignancy-associated large X-chromosomal deletions. J Pathol 189:394401.Google Scholar
Pizzi, S., Azzoni, C., et al. 2003. Genetic alterations in poorly differentiated endocrine carcinomas of the gastrointestinal tract. Cancer 98:12731282.Google Scholar
Furlan, D., Cerutti, R., et al. 2004. Different molecular profiles characterize well-differentiated endocrine tumors and poorly differentiated endocrine carcinomas of the gastroenteropancreatic tract. Clin Cancer Res 10:947957.Google Scholar
Kulke, M.H., Anthony, L.B., et al. 2010. NANETS treatment guidelines: well-differentiated neuroendocrine tumors of the stomach and pancreas. Pancreas 39:735752.Google Scholar
Matsui, K., Jin, X.M., et al. 1998. Clinicopathologic features of neuroendocrine carcinomas of the stomach: appraisal of small cell and large cell variants. Arch Pathol Lab Med 122:10101017.Google Scholar
Pape, U.F., Jann, H., et al. 2008. Prognostic relevance of a novel TNM classification system for upper gastroenteropancreatic neuroendocrine tumors. Cancer 113:256265.Google Scholar
Carlson, B.M. 2014. Embryology Human and Developmental Biology, 5th edn. Philadelphia, PA: Elsevier-Saunders.Google Scholar
Sjolund, K., Sanden, G., et al. 1983. Endocrine cells in human intestine: an immunocytochemical study. Gastroenterology 85:11201130.Google Scholar
Walsh, J.H. 1993. Gastrointestinal hormones: past, present, and future. Gastroenterology 105:653657.Google Scholar
Bosshard, A., Chery-Croze, S., et al. 1989. Immunocytochemical study of peptidergic structures in Brunner’s glands. Gastroenterology 97:13821388.Google Scholar
Silverman, L., Waugh, J.M., et al. 1961. Large adenomatous polyp of Brunner’s glands. Am J Clin Pathol 36: 438443.Google Scholar
Anlauf, M., Perren, A., et al. 2005. Precursor lesions in patients with multiple endocrine neoplasia type 1-associated duodenal gastrinomas. Gastroenterology 128:11871198.Google Scholar
Godwin, J.D., 2nd 1975. Carcinoid tumors. An analysis of 2837 cases. Cancer 36:560569.Google Scholar
Vinik, A.I., Thompson, N., et al. 1989. Clinical features of carcinoid syndrome and the use of somatostatin analogue in its management. Acta Oncol 28:389402.Google Scholar
Soga, J. 2003. Endocrinocarcinomas (carcinoids and their variants) of the duodenum. An evaluation of 927 cases. J Exp Clin Cancer Res 22:349363.Google Scholar
Donow, C., Pipeleers-Marichal, M., et al. 1991. Surgical pathology of gastrinoma. Site, size, multicentricity, association with multiple endocrine neoplasia type 1, and malignancy. Cancer 68:13291334.Google Scholar
Anlauf, M., Garbrecht, N., et al. 2006. Sporadic versus hereditary gastrinomas of the duodenum and pancreas: distinct clinico-pathological and epidemiological features. World J Gastroenterol 12:54405446.Google Scholar
Burke, A.P., Thomas, R.M., et al. 1997. Carcinoids of the jejunum and ileum: an immunohistochemical and clinicopathologic study of 167 cases. Cancer 79:10861093.Google Scholar
Garbrecht, N., Anlauf, M., et al. 2008. Somatostatin-producing neuroendocrine tumors of the duodenum and pancreas: incidence, types, biological behavior, association with inherited syndromes, and functional activity. Endocr Relat Cancer 15:229241.Google Scholar
Merchant, S.H., VanderJagt, T., et al. 2006. Sporadic duodenal bulb gastrin-cell tumors: association with Helicobacter pylori gastritis and long-term use of proton pump inhibitors. Am J Surg Pathol 30:15811587.Google Scholar
Sata, N., Tsukahara, M., et al. 2004. Primary small-cell neuroendocrine carcinoma of the duodenum: a case report and review of literature. World J Surg Oncol 2: 28.Google Scholar
Miura, S., Yoshidome, H., et al. 2008. Clinical implications of unusual NeuroD and mASH1 expression in a patient with primary large-cell neuroendocrine carcinoma of the duodenum: report of a case. Surg Today 38:857861.Google Scholar
Burke, A.P., Sobin, L.H., et al. 1990. Carcinoid tumors of the duodenum. A clinicopathologic study of 99 cases. Arch Pathol Lab Med 114:700704.Google Scholar
Capella, C., Rindi, R.C., et al. 1991. Histopathology, hormone, products and clinicopathologic profile of endocrine tumors of the upper small intestine. A study of 44 cases. Endocr Pathol:92–110.Google Scholar
Burke, A.P., Sobin, L.H., et al. 1990. Somatostatin-producing duodenal carcinoids in patients with von Recklinghausen’s neurofibromatosis. A predilection for black patients. Cancer 65:15911595.Google Scholar
Bornstein-Quevedo, L., Gamboa-Dominguez, A. 2001. Carcinoid tumors of the duodenum and ampulla of vater: a clinicomorphologic, immunohistochemical, and cell kinetic comparison. Hum Pathol 32:12521256.Google Scholar
Swanson, P.E., Dykoski, D., et al. 1986. Primary duodenal small-cell neuroendocrine carcinoma with production of vasoactive intestinal polypeptide. Arch Pathol Lab Med 110:317320.Google Scholar
Zamboni, G., Franzin, G., et al. 1990. Small-cell neuroendocrine carcinoma of the ampullary region. A clinicopathologic, immunohistochemical, and ultrastructural study of three cases. Am J Surg Pathol 14:703713.Google Scholar
Makhlouf, H.R., Burke, A.P., et al. 1999. Carcinoid tumors of the ampulla of Vater: a comparison with duodenal carcinoid tumors. Cancer 85:12411249.Google Scholar
Gucer, H., Mete, O. 2014. Endobronchial gangliocytic paraganglioma: not all keratin-positive endobronchial neuroendocrine neoplasms are pulmonary carcinoids. Endocr Pathol 25:356358.Google Scholar
Nassar, H., Albores-Saavedra, J., et al. 2005. High-grade neuroendocrine carcinoma of the ampulla of vater: a clinicopathologic and immunohistochemical analysis of 14 cases. Am J Surg Pathol 29:588594.Google Scholar
La Rosa, S., Rigoli, E., et al. 2004. CDX2 as a marker of intestinal EC-cells and related well-differentiated endocrine tumors. Virchows Arch 445:248254.Google Scholar
Watanabe, K., Hasegawa, H., et al. 1995. Two cases of duodenal gangliocytic paraganglioma: immunocytochemical characteristics. Fukushima J Med Sci 41:141152.Google Scholar
Perrone, T., Sibley, R.K., et al. 1985. Duodenal gangliocytic paraganglioma. An immunohistochemical and ultrastructural study and a hypothesis concerning its origin. Am J Surg Pathol 9:3141.Google Scholar
Pipeleers-Marichal, M., Somers, G., et al. 1990. Gastrinomas in the duodenums of patients with multiple endocrine neoplasia type 1 and the Zollinger–Ellison syndrome. N Engl J Med 322:723727.Google Scholar
Lubensky, I.A., Debelenko, L.V., et al. 1996. Allelic deletions on chromosome 11q13 in multiple tumors from individual MEN1 patients. Cancer Res 56:52725278.Google Scholar
Debelenko, L.V., Zhuang, Z., et al. 1997. Allelic deletions on chromosome 11q13 in multiple endocrine neoplasia type 1-associated and sporadic gastrinomas and pancreatic endocrine tumors. Cancer Res 57:22382243.Google Scholar
Anlauf, M., Perren, A., et al. 2007. Allelic deletion of the MEN1 gene in duodenal gastrin and somatostatin cell neoplasms and their precursor lesions. Gut 56:637644.Google Scholar
Yu, F., Jensen, R.T., et al. 2000. Survey of genetic alterations in gastrinomas. Cancer Res 60:55365542.Google Scholar
Goebel, S.U., Heppner, C., et al. 2000. Genotype/phenotype correlation of multiple endocrine neoplasia type 1 gene mutations in sporadic gastrinomas. J Clin Endocrinol Metab 85:116123.Google Scholar
Fujimori, M., Ikeda, S., et al. 2001. Accumulation of beta-catenin protein and mutations in exon 3 of beta-catenin gene in gastrointestinal carcinoid tumor. Cancer Res 61:66566659.Google Scholar
Pizzi, S., Azzoni, C., et al. 2008. Adenomatous polyposis coli alteration in digestive endocrine tumours: correlation with nuclear translocation of beta-catenin and chromosomal instability. Endocr Relat Cancer 15:10131024.Google Scholar
Karasawa, Y., Sakaguchi, M., et al. 2001. Duodenal somatostatinoma and erythrocytosis in a patient with von Hippel–Lindau disease type 2A. Intern Med 40:3843.Google Scholar
Norton, J.A., Jensen, R.T. 2004. Resolved and unresolved controversies in the surgical management of patients with Zollinger–Ellison syndrome. Ann Surg 240:757773.Google Scholar
Thompson, J.C., Lewis, B.G., et al. 1983. The role of surgery in the Zollinger–Ellison syndrome. Ann Surg 197:594607.Google Scholar
Weber, H.C., Venzon, D.J., et al. 1995. Determinants of metastatic rate and survival in patients with Zollinger–Ellison syndrome: a prospective long-term study. Gastroenterology 108:16371649.Google Scholar
Hwang, S., Lee, S.G., et al. 2008. Radical surgical resection for carcinoid tumors of the ampulla. J Gastrointest Surg 12:713717.Google Scholar
Senda, E., Fujimoto, K., et al. 2009. Minute ampullary carcinoid tumor with lymph node metastases: a case report and review of literature. World J Surg Oncol 7:9.Google Scholar
Inai, K., Kobuke, T., et al. 1989. Duodenal gangliocytic paraganglioma with lymph node metastasis in a 17-year-old boy. Cancer 63:25402545.Google Scholar
Modlin, I.M., Champaneria, M.C., et al. 2007. A three-decade analysis of 3911 small intestinal neuroendocrine tumors: the rapid pace of no progress. Am J Gastroenterol 102:14641473.Google Scholar
US National Cancer Institute 2007. The US National Cancer Institute, Surveillance Epidemiology and End Results (SEER) data base, 1973–2004. Bethesda, MD: US National Cancer Institute http://seer.cancer.gov/, accessed 15 September 2015).Google Scholar
Boudreaux, J.P., Klimstra, D.S., et al. 2010. The NANETS consensus guideline for the diagnosis and management of neuroendocrine tumors: well-differentiated neuroendocrine tumors of the jejunum, ileum, appendix, and cecum. Pancreas 39:753766.Google Scholar
Sherman, S.P., Li, C.Y., et al. 1979. Microproliferation of enterochromaffin cells and the origin of carcinoid tumors of the ileum: a light microscopic and immunocytochemical study. Arch Pathol Lab Med 103:639641.Google Scholar
Lundqvist, M., Wilander, E. 1987. A study of the histopathogenesis of carcinoid tumors of the small intestine and appendix. Cancer 60:201206.Google Scholar
Moyana, T.N., Satkunam, N. 1992. A comparative immunohistochemical study of jejunoileal and appendiceal carcinoids. Implications for histogenesis and pathogenesis. Cancer 70:10811088.Google Scholar
deVries, H., Wijffels, R.T., et al. 2005. Abdominal angina in patients with a midgut carcinoid, a sign of severe pathology. World J Surg 29:11391142.Google Scholar
Moertel, C.G., Sauer, W.G., et al. 1961. Life history of the carcinoid tumor of the small intestine. Cancer 14: 901912.Google Scholar
Richter, G., Stockmann, F., et al. 1986. Serotonin release into blood after food and pentagastrin. Studies in healthy subjects and in patients with metastatic carcinoid tumors. Gastroenterology 91:612618.Google Scholar
Cai, Y.C., Barnard, G., et al. 1997. Florid angiogenesis in mucosa surrounding an ileal carcinoid tumor expressing transforming growth factor-alpha. Am J Surg Pathol 21:13731377.Google Scholar
Papotti, M., Bongiovanni, M., et al. 2002. Expression of somatostatin receptor types 1–5 in 81 cases of gastrointestinal and pancreatic endocrine tumors. A correlative immunohistochemical and reverse-transcriptase polymerase chain reaction analysis. Virchows Arch 440:461475.Google Scholar
Zhao, J., de Krijger, R.R., et al. 2000. Genomic alterations in well-differentiated gastrointestinal and bronchial neuroendocrine tumors (carcinoids): marked differences indicating diversity in molecular pathogenesis. Am J Pathol 157:14311438.Google Scholar
Tonnies, H., Toliat, M.R., et al. 2001. Analysis of sporadic neuroendocrine tumours of the enteropancreatic system by comparative genomic hybridisation. Gut 48:536541.Google Scholar
Kim do, H., Nagano, Y., et al. 2008. Allelic alterations in well-differentiated neuroendocrine tumors (carcinoid tumors) identified by genome-wide single nucleotide polymorphism analysis and comparison with pancreatic endocrine tumors. Genes Chromosomes Cancer 47:8492.Google Scholar
Lollgen, R.M., Hessman, O., et al. 2001. Chromosome 18 deletions are common events in classical midgut carcinoid tumors. Int J Cancer 92:812815.Google Scholar
Francis, J.M., Kiezun, A., et al. 2013. Somatic mutation of CDKN1B in small intestine neuroendocrine tumors. Nat Genet 45:14831486.Google Scholar
Crona, J., Gustavsson, T., et al. 2015. Somatic mutations and genetic heterogeneity at the CDKN1B locus in small intestinal neuroendocrine tumors. Ann Surg Oncol PMID: 25586243 [Epub ahead of print].Google Scholar
Gledhill, A., Hall, P.A., et al. 1986. Enteroendocrine cell hyperplasia, carcinoid tumours and adenocarcinoma in long-standing ulcerative colitis. Histopathology 10:501508.Google Scholar
Greenstein, A.J., Balasubramanian, S., et al. 1997. Carcinoid tumor and inflammatory bowel disease: a study of eleven cases and review of the literature. Am J Gastroenterol 92:682685.Google Scholar
Sigel, J.E., Goldblum, J.R. 1998. Neuroendocrine neoplasms arising in inflammatory bowel disease: a report of 14 cases. Mod Pathol 11:537542.Google Scholar
McNeely, B., Owen, D.A., et al. 1992. Multiple microcarcinoids arising in chronic ulcerative colitis. Am J Clin Pathol 98:112116.Google Scholar
Lyda, M.H., Noffsinger, A., et al. 1998. Multifocal neoplasia involving the colon and appendix in ulcerative colitis: pathological and molecular features. Gastroenterology 115:15661573.Google Scholar
Lyda, M.H., Fenoglio-Preiser, C.M. 1998. Adenoma-carcinoid tumors of the colon. Arch Pathol Lab Med 122:262265.Google Scholar
Yao, J.C., Phan, A.T., et al. 2008. Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: results of a phase II study. J Clin Oncol 26:43114318.Google Scholar
Yao, J.C., Hassan, M., et al. 2008. One hundred years after carcinoid: epidemiology of and prognostic factors for neuroendocrine tumors in 35 825 cases in the United States. J Clin Oncol 26:30633072.Google Scholar
Yang, R., Cheung, M.C., et al. 2008. Primary solid tumors of the colon and rectum in the pediatric patient: a review of 270 cases. J Surg Res 161:209216.Google Scholar
Bernick, P.E., Klimstra, D.S., et al. 2004. Neuroendocrine carcinomas of the colon and rectum. Dis Colon Rectum 47:163169.Google Scholar
Stinner, B., Kisker, O., et al. 1996. Surgical management for carcinoid tumors of small bowel, appendix, colon, and rectum. World J Surg 20:183188.Google Scholar
Rosenberg, J.M., Welch, J.P. 1985. Carcinoid tumors of the colon. A study of 72 patients. Am J Surg 149:775779.Google Scholar
Jetmore, A.B., Ray, J.E., et al. 1992. Rectal carcinoids: the most frequent carcinoid tumor. Dis Colon Rectum 35:717725.Google Scholar
Anthony, L.B., Strosberg, J.R., et al. 2010. The NANETS consensus guidelines for the diagnosis and management of gastrointestinal neuroendocrine tumors (NETs): well-differentiated NETs of the distal colon and rectum. Pancreas 39:767774.Google Scholar
Berardi, R.S. 1972. Carcinoid tumors of the colon (exclusive of the rectum): review of the literature. Dis Colon Rectum 15:383391.Google Scholar
Caldarola, V.T., Jackman, R.J., et al. 1964. Carcinoid tumors of the rectum. Am J Surg 107: 844849.Google Scholar
Soga, J., Tazawa, K. 1971. Pathologic analysis of carcinoids. Histologic reevaluation of 62 cases. Cancer 28:990998.Google Scholar
Shia, J., Tang, L.H., et al. 2008. Is nonsmall cell type high-grade neuroendocrine carcinoma of the tubular gastrointestinal tract a distinct disease entity? Am J Surg Pathol 32:719731.Google Scholar
Federspiel, B.H., Burke, A.P., et al. 1990. Rectal and colonic carcinoids. A clinicopathologic study of 84 cases. Cancer 65:135140.Google Scholar
Srivastava, A., Hornick, J.L. 2009. Immunohistochemical staining for CDX-2, PDX-1, NESP-55, and TTF-1 can help distinguish gastrointestinal carcinoid tumors from pancreatic endocrine and pulmonary carcinoid tumors. Am J Surg Pathol 33:626632.Google Scholar
Chetritt, J., Sagan, C., et al. 1996. [Immunohistochemical study of 17 cases of rectal neuroendocrine tumors.] Ann Pathol 16:98103.Google Scholar
Konishi, T., Watanabe, T., et al. 2007. Prognosis and risk factors of metastasis in colorectal carcinoids: results of a nationwide registry over 15 years. Gut 56:863868.Google Scholar
Soga, J. 2005. Early-stage carcinoids of the gastrointestinal tract: an analysis of 1914 reported cases. Cancer 103:15871595.Google Scholar
Moertel, C.G., Dockerty, M.B., et al. 1968. Carcinoid tumors of the vermiform appendix. Cancer 21:270278.Google Scholar
Tchana-Sato, V., Detry, O., et al. 2006. Carcinoid tumor of the appendix: a consecutive series from 1237 appendectomies. World J Gastroenterol 12:66996701.Google Scholar
In’t Hof, K.H., van der Wal, H.C., et al. 2008. Carcinoid tumour of the appendix: an analysis of 1485 consecutive emergency appendectomies. J Gastrointest Surg 12:14361438.Google Scholar
Carr, N.J., Sobin, L.H. 2004. Neuroendocrine tumors of the appendix. Semin Diagn Pathol 21:108119.Google Scholar
Tang, L.H., Shia, J., et al. 2008. Pathologic classification and clinical behavior of the spectrum of goblet cell carcinoid tumors of the appendix. Am J Surg Pathol 32:14291443.Google Scholar
Pham, T.H., Wolff, B., et al. 2006. Surgical and chemotherapy treatment outcomes of goblet cell carcinoid: a tertiary cancer center experience. Ann Surg Oncol 13:370376.Google Scholar
Roy, P., Chetty, R. 2010. Goblet cell carcinoid tumors of the appendix: an overview. World J Gastrointest Oncol 2:251258.Google Scholar
Matsukuma, K.E., Montgomery, E.A. 2012. Tubular carcinoids of the appendix: the CK7/CK20 immunophenotype can be a diagnostic pitfall. J Clin Pathol 65:666668.Google Scholar
van Eeden, S., Offerhaus, G.J., et al. 2007. Goblet cell carcinoid of the appendix: a specific type of carcinoma. Histopathology 51:763773.Google Scholar
Chetty, R., Serra, S. 2010. Lipid-rich and clear cell neuroendocrine tumors (carcinoids) of the appendix: potential confusion with goblet cell carcinoid. Am J Surg Pathol 34:401404.Google Scholar
Stinner, B., Rothmund, M. 2005. Neuroendocrine tumours (carcinoids) of the appendix. Best Pract Res Clin Gastroenterol 19:729738.Google Scholar
Warner, R.R., O’Dorisio, M.,T 2002. Radiolabeled peptides in diagnosis and tumor imaging: clinical overview. Semin Nucl Med 32:7983.Google Scholar
Moertel, C.G., Weiland, L.H., et al. 1987. Carcinoid tumor of the appendix: treatment and prognosis. N Engl J Med 317:16991701.Google Scholar
Ando, H. 2010. Embryology of the biliary tract. Dig Surg 27:8789.Google Scholar
Nishihara, K., Nagai, E., et al. 1994. Small-cell carcinoma combined with adenocarcinoma of the gallbladder. A case report with immunohistochemical and flow cytometric studies. Arch Pathol Lab Med 118:177181.Google Scholar
Pitt, H.A., Dooley, W.C., et al. 1995. Malignancies of the biliary tree. Curr Probl Surg 32:190.Google Scholar
Kim, D.H., Song, M.H., et al. 2006. Malignant carcinoid tumor of the common bile duct: report of a case. Surg Today 36:485489.Google Scholar
Parwani, A.V., Geradts, J., et al. 2003. Immunohistochemical and genetic analysis of non-small cell and small cell gallbladder carcinoma and their precursor lesions. Mod Pathol 16:299308.Google Scholar
Albores-Saavedra, J., Soriano, J., et al. 1984. Oat cell carcinoma of the gallbladder. Hum Pathol 15: 639646.Google Scholar
McLean, C.A., Pedersen, J.S. 1991. Endocrine cell carcinoma of the gallbladder. Histopathology 19:173176.Google Scholar
Nishigami, T., Yamada, M., et al. 1996. Carcinoid tumor of the gall bladder. Intern Med 35:953956.Google Scholar
El Rassi, Z.S., Mohsine, R.M., et al. 2004. Endocrine tumors of the extrahepatic bile ducts. Pathological and clinical aspects, surgical management and outcome. Hepatogastroenterology 51:12951300.Google Scholar
Fujii, H., Aotake, T., et al. 2001. Small cell carcinoma of the gallbladder: a case report and review of 53 cases in the literature. Hepatogastroenterology 48:15881593.Google Scholar

References

Croliss, CE. Patten’s Human Embryology: Elements of Clinical Development. New York: McGraw-Hill, 1976.Google Scholar
Edlund, H. Pancreas: how to get there from the gut? Curr Opin Cell Biol 1999;11:663668.Google Scholar
Pan, FC, Wright, C. Pancreas organogenesis: from bud to plexus to gland. Dev Dyn 2011;240:530565.Google Scholar
Yee, NS, Lorent, K, Pack, M. Exocrine pancreas development in zebrafish. Dev Biol 2005;284:84101.Google Scholar
Herrera, PL. Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development 2000;127:23172322.Google Scholar
Rovira, M, Scott, SG, Liss, AS, Jensen, J, Thayer, SP, Leach, SD. Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas. Proc Natl Acad Sci USA 2010;107:7580.Google Scholar
Carlson, BM. Human Embryology and Developmental Biology, 5th ed. Philadelphia PA: Elsevier-Saunders, 2014.Google Scholar
Klimstra, DS, Hruban, RH, Pitman, MB. Pancreas. In Mills, SE, ed. Histology for Pathologists, 3rd edn. Philadelphia PA: Lippincott Williams & Wilkins, 2007:723760.Google Scholar
Moore, KL. Clinically Oriented Anatomy. Baltimore, MD: Williams & Wilkins, 1980.Google Scholar
Pansky, B. Anatomy of the pancreas. Emphasis on blood supply and lymphatic drainage. Int J Pancreatol 1990;7:101108.Google Scholar
Cubilla, AL, Fortner, J, Fitzgerald, PJ. Lymph node involvement in carcinoma of the head of the pancreas area. Cancer 1978;41:880887.Google Scholar
Heitz, PU, Beglinger, C, Gyr, K. Anatomy and physiology of the exocrine pancreas. In Kloeppel, G, Heitz, PU, eds. Pancreatic Pathology. New York: Churchill-Livingstone, 1984:321.Google Scholar
Stamm, BH. Incidence and diagnostic significance of minor pathologic changes in the adult pancreas at autopsy: a systematic study of 112 autopsies in patients without known pancreatic disease. Hum Pathol 1984;15:677683.Google Scholar
Birnstingl, MA. A study of pancreaticography. Br J Surg 1959;47:128139.Google Scholar
Williams, JA, Goldfine, ID. The insulin–acinar relationship. In Go, VL, Brooks, FP, DiMagno, EP, Gardner, JD, Lebenthal, E, Scheele, GA, eds. The Exocrine Pancreas: Biology, Pathobiology, and Diseases. New York: Raven Press, 1986:347360.Google Scholar
Rahier, J, Wallon, J, Henquin, JC. Cell populations in the endocrine pancreas of human neonates and infants. Diabetologia 1981;20:540546.Google Scholar
Wittingen, J, Frey, CF. Islet concentration in the head, body, tail and uncinate process of the pancreas. Ann Surg 1974;179:412414.Google Scholar
Stefan, Y, Grasso, S, Perrelet, A, Orci, L. A quantitative immunofluorescent study of the endocrine cell populations in the developing human pancreas. Diabetes 1983;32:293301.Google Scholar
Grube, D, Bohn, R. The microanatomy of human islets of Langerhans, with special reference to somatostatin (D-) cells. Arch Histol Jpn 1983;46:327353.Google Scholar
Ehrie, MG, Swartz, FJ. Diploid, tetraploid and octaploid beta cells in the islets of Langerhans of the normal human pancreas. Diabetes 1974;23:583588.Google Scholar
Malaisse-Lagae, F, Stefan, Y, Cox, J, Perrelet, A, Orci, L. Identification of a lobe in the adult human pancreas rich in pancreatic polypeptide. Diabetologia 1979;17:361365.Google Scholar
Stefan, Y, Grasso, S, Perrelet, A, Orci, L. The pancreatic polypeptide-rich lobe of the human pancreas: definitive identification of its derivation from the ventral pancreatic primordium. Diabetologia 1982;23:141142.Google Scholar
Pelletier, G. Identification of four cell types in the human endocrine pancreas by immunoelectron microscopy. Diabetes 1977;26:749756.Google Scholar
Kloppel, G, Lenzen, S. Anatomy and physiology of the endocrine pancreas. In Kloppel, G, Heitz, PU, eds. Pancreatic Pathology. New York: Churchill-Livingstone, 1984:133153.Google Scholar
Orci, L, Baetens, D, Ravazzola, M, Stefan, Y, Malaisse-Lagae, F. Pancreatic polypeptide and glucagon: non-random distribution in pancreatic islets. Life Sci 1976;19:18111815.Google Scholar
Orci, L, Malaisse-Lagae, F, Baetens, D, Perrelet, A. Pancreatic-polypeptide-rich regions in human pancreas. Lancet 1978;2:12001201.Google Scholar
Rindi, G, Buffa, R, Sessa, F, Tortora, O, Solcia, E. Chromogranin A, B and C immunoreactivities of mammalian endocrine cells. Distribution, distinction from costored hormones/prohormones and relationship with the argyrophil component of secretory granules. Histochemistry 1986;85:1928.Google Scholar
Weidner, N, Tjoe, J. Immunohistochemical profile of monoclonal antibody O13: antibody that recognizes glycoprotein p30/32MIC2 and is useful in diagnosing Ewing’s sarcoma and peripheral neuroepithelioma. Am J Surg Pathol 1994;18:486494.Google Scholar
Hochwald, SN, Zee, S, Conlon, KC, Colleoni, R, Louie, O, Brennan, MF, et al. Prognostic factors in pancreatic endocrine neoplasms: an analysis of 136 cases with a proposal for low-grade and intermediate-grade groups. J Clin Oncol 2002;20:26332642.Google Scholar
Fellinger, EJ, Garin-Chesa, P, Triche, TJ, Huvos, AG, Rettig, WJ. Immunohistochemical analysis of Ewing’s sarcoma cell surface antigen p30/32MIC2. Am J Pathol 1991;139:317325.Google Scholar
Solcia, E, Capella, C, Kloppel, G. Atlas of Tumor Pathology, 3rd Series, Fascicle 20: Tumors of the Pancreas. Washington, DC: Armed Forces Institute of Pathology, 1997.Google Scholar
Chen, J, Baithun, SI, Pollock, DJ, Berry, CL. Argyrophilic and hormone immunoreactive cells in normal and hyperplastic pancreatic ducts and exocrine pancreatic carcinoma. Virchows Arch A Pathol Anat Histopathol 1988;413:399405.Google Scholar
Adsay, NV, Basturk, O, Saka, B, Bagci, P, Ozdemir, D, Balci, S, et al. Whipple made simple for surgical pathologists: orientation, dissection, and sampling of pancreaticoduodenectomy specimens for a more practical and accurate evaluation of pancreatic, distal common bile duct, and ampullary tumors. Am J Surg Pathol. 2014;38:480–93.Google Scholar
Hruban, RH, Pitman, MB, Klimstra, DS. Atlas of Tumor Pathology, 4th Series, Fascicle 6: Tumors of the pancreas. Bethesda, MD: ARP Press, 2007.Google Scholar
Klimstra, DS, Modlin, IR, Coppola, D, Lloyd, RV, Suster, S. The pathologic classification of neuroendocrine tumors: a review of nomenclature, grading, and staging systems. Pancreas 2010;39:707712.Google Scholar
Klimstra, DS, Modlin, IR, Adsay, NV, Chetty, R, Deshpande, V, Gonen, M, et al. Pathology reporting of neuroendocrine tumors: application of the Delphic consensus process to the development of a minimum pathology data set. Am J Surg Pathol 2010;34:300313.Google Scholar
Klimstra, DS. Pathology reporting of neuroendocrine tumors: essential elements for accurate diagnosis, classification, and staging. Semin Oncol 2013;40:2336.Google Scholar
In’t Veld, P. Insulitis in human type 1 diabetes: the quest for an elusive lesion. Islets 2011;3:131138.Google Scholar
Gianani, R, Campbell-Thompson, M, Sarkar, SA, Wasserfall, C, Pugliese, A, Solis, JM, et al. Dimorphic histopathology of long-standing childhood-onset diabetes. Diabetologia 2010;53:690698.Google Scholar
Itoh, N, Hanafusa, T, Miyazaki, A, Miyagawa, J, Yamagata, K, Yamamoto, K, et al. Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin-dependent diabetes mellitus patients. J Clin Invest 1993;92:23132322.Google Scholar
Butler, AE, Galasso, R, Meier, JJ, Basu, R, Rizza, RA, Butler, PC. Modestly increased beta cell apoptosis but no increased beta cell replication in recent-onset type 1 diabetic patients who died of diabetic ketoacidosis. Diabetologia 2007;50:23232331.Google Scholar
Clark, A, de Koning, EJ, Hattersley, AT, Hansen, BC, Yajnik, CS, Poulton, J. Pancreatic pathology in non-insulin dependent diabetes (NIDDM). Diabetes Res Clin Pract 1995;28(suppl):S39S47.Google Scholar
Rindi, G, Solcia, E. Endocrine hyperplasia and dysplasia in the pathogenesis of gastrointestinal and pancreatic endocrine tumors. Gastroenterol Clin North Am 2007;36:851865, vi.Google Scholar
Weidenheim, KM, Hinchey, WW, Campbell, WG Jr. Hyperinsulinemic hypoglycemia in adults with islet-cell hyperplasia and degranulation of exocrine cells of the pancreas. Am J Clin Pathol 1983;79:1424.Google Scholar
Ueda, Y, Kurihara, K, Kondoh, T, Okanoue, T, Chiba, T. Islet-cell hyperplasia causing hyperinsulinemic hypoglycemia in an adult. J Gastroenterol 1998;33:125128.Google Scholar
Kim, YW, Park, YK, Park, JH, Lee, SM, Lee, J, Ko, SW, et al. Islet cell hyperplasia of the pancreas presenting as hyperinsulinemic hypoglycemia in an adult. Yonsei Med J 2000;41:426429.Google Scholar
Starke, A, Saddig, C, Kirch, B, Tschahargane, C, Goretzki, P. Islet hyperplasia in adults: challenge to preoperatively diagnose non-insulinoma pancreatogenic hypoglycemia syndrome. World J Surg 2006;30:670679.Google Scholar
Asa, SL. Pancreatic endocrine tumors. Modern Pathol 2011;24(Suppl 2):S66S77.Google Scholar
Chetty, R, Kennedy, M, Ezzat, S, Asa, SL. Pancreatic endocrine pathology in von Hippel–Lindau disease: an expanding spectrum of lesions. Endocr Pathol 2004; 15:141148.Google Scholar
Anlauf, M, Schlenger, R, Perren, A, Bauersfeld, J, Koch, CA, Dralle, H, et al. Microadenomatosis of the endocrine pancreas in patients with and without the multiple endocrine neoplasia type 1 syndrome. Am J Surg Pathol 2006;30:560574.Google Scholar
Perigny, M, Hammel, P, Corcos, O, Larochelle, O, Giraud, S, Richard, S, et al. Pancreatic endocrine microadenomatosis in patients with von Hippel–Lindau disease: characterization by VHL/HIF pathway proteins expression. Am J Surg Pathol 2009;33:739748.Google Scholar
Laidlaw, GF. Nesidioblastoma, the islet tumor of the pancreas. Am J Pathol 1938;14:125134.Google Scholar
Ouyang, D, Dhall, D, Yu, R. Pathologic pancreatic endocrine cell hyperplasia. World J Gastroenterol 2011;17:137143.Google Scholar
Shah, JH, Maguire, DJ, Brown, D, Cotterill, A. The role of ATP sensitive channels in insulin secretion and the implications in persistent hyperinsulinemic hypoglycaemia of infancy (PHHI). Adv Exp Med Biol 2007;599:133138.Google Scholar
Kapoor, RR, James, C, Hussain, K. Hyperinsulinism in developmental syndromes. Endocr Dev 2009;14:95113.Google Scholar
Paloyan, E, Lawrence, AM, Straus, FH 2nd, Paloyan, D, Harper, PV, Cummings, D. Alpha cell hyperplasia in calcific pancreatitis associated with hyperparathyroidism. JAMA 1967;200:757761.Google Scholar
Henopp, T, Anlauf, M, Schmitt, A, Schlenger, R, Zalatnai, A, Couvelard, A, et al. Glucagon cell adenomatosis: a newly recognized disease of the endocrine pancreas. J Clin Endocrinol Metab 2009;94:213217.Google Scholar
Zhou, C, Dhall, D, Nissen, NN, Chen, CR, Yu, R. Homozygous P86S mutation of the human glucagon receptor is associated with hyperglucagonemia, alpha cell hyperplasia, and islet cell tumor. Pancreas 2009;38:941946.Google Scholar
Yu, R, Nissen, NN, Dhall, D, Heaney, AP. Nesidioblastosis and hyperplasia of alpha cells, microglucagonoma, and nonfunctioning islet cell tumor of the pancreas: review of the literature. Pancreas 2008;36:428431.Google Scholar
Mansour, JC, Chen, H. Pancreatic endocrine tumors. J Surg Res 2004;120:139161.Google Scholar
Rindi, G, Falconi, M, Klersy, C, Albarello, L, Boninsegna, L, Buchler, MW, et al. TNM staging of neoplasms of the endocrine pancreas: results from a large international cohort study. J Natl Cancer Inst 2012;104:764777.Google Scholar
Ellison, TA, Wolfgang, CL, Shi, C, Cameron, JL, Murakami, P, Mun, LJ, et al. A single institution’s 26-year experience with nonfunctional pancreatic neuroendocrine tumors: a validation of current staging systems and a new prognostic nomogram. Ann Surg 2014;259:204212.Google Scholar
Klimstra, DS, Arnold, R, Capella, C, Klöppel, G, Komminoth, P, Solcia, E, et al. Neuroendocrine neoplasms of the pancreas. In Bosman, F, Carneiro, F, eds. World Health Organization Classification of Tumours, Pathology and Genetics of Tumours of the Digestive System. Lyon: International Agency for Research on Cancer, 2010:322330.Google Scholar
Rindi, G, Arnold, R, Capella, C, Klimstra, DS, Klöppel, G, Komminoth, P, et al. Nomenclature and classification of digestive neuroendocrine tumours. In Bosman, F, Carneiro, F, eds. World Health Organization Classification of Tumours, Pathology and Genetics of Tumours of the Digestive System. Lyon: International Agency for Research on Cancer, 2010:1012.Google Scholar
Bosman, F, Carneiro, F. World Health Organization Classification of Tumours, Pathology and Genetics of Tumours of the Digestive System. Lyon: International Agency for Research on Cancer, 2010.Google Scholar
Rindi, G, Leiter, AB, Kopin, AS, Bordi, C, Solcia, E. The “normal” endocrine cell of the gut: changing concepts and new evidences. Ann N Y Acad Sci 2004;1014:112.Google Scholar
Rindi, G, Wiedenmann, B. Neuroendocrine neoplasms of the gut and pancreas: new insights. Nature reviews. Endocrinology 2012;8:5464.Google Scholar
Falconi, M, Bartsch, DK, Eriksson, B, Kloppel, G, Lopes, JM, O’Connor, JM, et al. ENETS Consensus Guidelines for the management of patients with digestive neuroendocrine neoplasms of the digestive system: well-differentiated pancreatic non-functioning tumors. Neuroendocrinology 2012;95:120134.Google Scholar
Rindi, G, Kloppel, G, Alhman, H, Caplin, M, Couvelard, A, de Herder, WW, et al. TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch 2006;449:395401.Google Scholar
Goodell, PP, Krasinskas, AM, Davison, JM, Hartman, DJ. Comparison of methods for proliferative index analysis for grading pancreatic well-differentiated neuroendocrine tumors. Am J Clin Pathol 2012;137:576582.Google Scholar
McCall, CM, Shi, C, Cornish, TC, Klimstra, DS, Tang, LH, Basturk, O, et al. Grading of well-differentiated pancreatic neuroendocrine tumors is improved by the inclusion of both Ki67 proliferative index and mitotic rate. Am J Surg Pathol 2013;37:16711677.Google Scholar
Couvelard, A, Deschamps, L, Ravaud, P, Baron, G, Sauvanet, A, Hentic, O, et al. Heterogeneity of tumor prognostic markers: a reproducibility study applied to liver metastases of pancreatic endocrine tumors. Mod Pathol 2009;22:273281.Google Scholar
Yang, Z, Tang, LH, Klimstra, DS. Effect of tumor heterogeneity on the assessment of Ki67 labeling index in well-differentiated neuroendocrine tumors metastatic to the liver: implications for prognostic stratification. Am J Surg Pathol 2011;35:853860.Google Scholar
Sobin, L, Gospodarowicz, M, Wittekind, C. TNM Classification of Malignant Tumours, 7th edn. Bognor Regis, UK: Wiley Blackwell, 2009.Google Scholar
Edge, SB, Byrd, DR, Compton, CC, Fritz, AG, Greene, FL, Trotti, A. AJCC Cancer Staging Manual. New York: Springer, 2010.Google Scholar
Franko, J, Feng, W, Yip, L, Genovese, E, Moser, AJ. Non-functional neuroendocrine carcinoma of the pancreas: incidence, tumor biology, and outcomes in 2158 patients. J Gastrointest Surg 2010;14:541548.Google Scholar
Basturk, O, Tang, L, Hruban, RH, Adsay, V, Yang, Z, Krasinskas, AM, et al. Poorly differentiated neuroendocrine carcinomas of the pancreas: a clinicopathologic analysis of 44 cases. Am J Surg Pathol 2014;38:437447.Google Scholar
Morohoshi, T, Held, G, Kloppel, G. Exocrine pancreatic tumours and their histological classification. A study based on 167 autopsy and 97 surgical cases. Histopathology 1983;7:645661.Google Scholar
O’Connor, TP, Wade, TP, Sunwoo, YC, Reimers, HJ, Palmer, DC, Silverberg, AB, et al. Small cell undifferentiated carcinoma of the pancreas. Report of a patient with tumor marker studies. Cancer 1992;70:15141519.Google Scholar
Fischer, L, Kleeff, J, Esposito, I, Hinz, U, Zimmermann, A, Friess, H, et al. Clinical outcome and long-term survival in 118 consecutive patients with neuroendocrine tumours of the pancreas. Br J Surg 2008;95:627635.Google Scholar
Pape, UF, Jann, H, Muller-Nordhorn, J, Bockelbrink, A, Berndt, U, Willich, SN, et al. Prognostic relevance of a novel TNM classification system for upper gastroenteropancreatic neuroendocrine tumors. Cancer 2008;113:256265.Google Scholar
Scarpa, A, Mantovani, W, Capelli, P, Beghelli, S, Boninsegna, L, Bettini, R, et al. Pancreatic endocrine tumors: improved TNM staging and histopathological grading permit a clinically efficient prognostic stratification of patients. Mod Pathol 2010;23:824833.Google Scholar
de Herder, WW, Niederle, B, Scoazec, JY, Pauwels, S, Kloppel, G, Falconi, M, et al. Well-differentiated pancreatic tumor/carcinoma: insulinoma. Neuroendocrinology 2006;84:183188.Google Scholar
Mathur, A, Gorden, P, Libutti, SK. Insulinoma. Surg Clin North Am 2009;89:11051121.Google Scholar
Oberg, K. Pancreatic endocrine tumors. Semin Oncol 2010;37:594618.Google Scholar
Vanderveen, K, Grant, C. Insulinoma. Cancer Treat Res 2010;153:235252.Google Scholar
Jensen, RT. Pancreatic endocrine tumors: recent advances. Ann Oncol 1999;10(suppl 4):170176.Google Scholar
Kent, RB 3rd, van Heerden, JA, Weiland, LH. Nonfunctioning islet cell tumors. Ann Surg 1981;193:185190.Google Scholar
Debas, HT, Mulvihill, SJ. Neuroendocrine gut neoplasms. Important lessons from uncommon tumors. Arch Surg 1994;129:965–71; discussion 71–72.Google Scholar
Caudill, JL, Humphrey, SK, Salomao, DR. Islet cell tumor of the pancreas: increasing diagnosis after instituting ultrasonography-guided fine needle aspiration. Acta Cytol 2008;52:4551.Google Scholar
Chatzipantelis, P, Salla, C, Konstantinou, P, Karoumpalis, I, Sakellariou, S, Doumani, I. Endoscopic ultrasound-guided fine-needle aspiration cytology of pancreatic neuroendocrine tumors: a study of 48 cases. Cancer 2008;114:255262.Google Scholar
Larghi, A, Capurso, G, Carnuccio, A, Ricci, R, Alfieri, S, Galasso, D, et al. Ki-67 grading of nonfunctioning pancreatic neuroendocrine tumors on histologic samples obtained by EUS-guided fine-needle tissue acquisition: a prospective study. Gastrointest Endosc 2012;76:570577.Google Scholar
Larghi, A, Lugli, F, Sharma, V, Carnuccio, A, Anastasi, F, Fusco, A, et al. Pancreatic metastases from a bronchopulmonary carcinoid diagnosed by endoscopic ultrasonography-guided fine-needle tissue acquisition. Pancreas 2012;41:502504.Google Scholar
McLean, AM, Fairclough, PD. Endoscopic ultrasound in the localisation of pancreatic islet cell tumours. Best practice and research. Clin Endocrinol Metab 2005;19:177193.Google Scholar
Rosch, T, Lightdale, CJ, Botet, JF, Boyce, GA, Sivak, MV Jr., Yasuda, K, et al. Localization of pancreatic endocrine tumors by endoscopic ultrasonography. N Engl J Med 1992;326:17211726.Google Scholar
Sundin, A, Vullierme, MP, Kaltsas, G, Plöckinger, U, Mallorca Consensus Conference Participants, European Neuroendocrine Tumor Society. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: radiological examinations. Neuroendocrinology 2009;90:167183.Google Scholar
Quaia, E, Stacul, F, Gaiani, S, Ricci, P, Passariello, R, Curzio, D, et al. Comparison of diagnostic performance of unenhanced vs SonoVue: enhanced ultrasonography in focal liver lesions characterization. The experience of three Italian centers. Radiol Med 2004;108:7181.Google Scholar
D’Onofrio, M, Mansueto, G, Falconi, M, Procacci, C. Neuroendocrine pancreatic tumor: value of contrast enhanced ultrasonography. Abdom Imaging 2004;29:246258.Google Scholar
Ichikawa, T, Peterson, MS, Federle, MP, Baron, RL, Haradome, H, Kawamori, Y, et al. Islet cell tumor of the pancreas: biphasic CT versus MR imaging in tumor detection. Radiology 2000;216:163171.Google Scholar
Owen, NJ, Sohaib, SA, Peppercorn, PD, Monson, JP, Grossman, AB, Besser, GM, et al. MRI of pancreatic neuroendocrine tumours. Br J Radiol 2001;74:968973.Google Scholar
Ricke, J, Klose, KJ. Imaging procedures in neuroendocrine tumours. Digestion 2000;62(suppl 1):3944.Google Scholar
Koukouraki, S, Strauss, LG, Georgoulias, V, Eisenhut, M, Haberkorn, U, Dimitrakopoulou-Strauss, A. Comparison of the pharmacokinetics of 68Ga-DOTATOC and [18F]FDG in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC therapy. Eur J Nucl Med Mol Imaging 2006;33:11151122.Google Scholar
al-Kaisi, N, Weaver, MG, Abdul-Karim, FW, Siegler, E. Fine needle aspiration cytology of neuroendocrine tumors of the pancreas. A cytologic, immunocytochemical and electron microscopic study. Acta Cytol 1992;36:655660.Google Scholar
Bell, DA. Cytologic features of islet-cell tumors. Acta Cytol 1987;31:485492.Google Scholar
Collins, BT, Cramer, HM. Fine-needle aspiration cytology of islet cell tumors. Diagn Cytopathol 1996;15:3745.Google Scholar
Koss, LG, Melamed, MR. Koss’ Diagnostic Cytology and its Histopathologic Bases. Philadelphia, PA: Lippincott Williams & Wilkins, 2006.Google Scholar
Carstens, PH, Cressman, FK Jr. Malignant oncocytic carcinoid of the pancreas. Ultrastruct Pathol 1989;13:6975.Google Scholar
Gotchall, J, Traweek, ST, Stenzel, P. Benign oncocytic endocrine tumor of the pancreas in a patient with polyarteritis nodosa. Hum Pathol 1987;18:967969.Google Scholar
Hoang, MP, Hruban, RH, Albores-Saavedra, J. Clear cell endocrine pancreatic tumor mimicking renal cell carcinoma: a distinctive neoplasm of von Hippel–Lindau disease. Am J Surg Pathol 2001;25:602609.Google Scholar
Perez-Montiel, MD, Frankel, WL, Suster, S. Neuroendocrine carcinomas of the pancreas with “rhabdoid” features. Am J Surg Pathol 2003;27:642649.Google Scholar
Scoazec, JY, Couvelard, A, Monges, G, Leteurtre, E, Belleanee, G, Guyetant, S, et al. Well-differentiated grade 3 digestive neuroendocrine tumors: myth or reality? The PRONET study group. J Clin Oncol 2012;30:(suppl):abstract 4129.Google Scholar
Hijioka, S, Hosoda, W, Mizuno, N, Hara, K, Imaoka, H, Bhatia, V, et al. Does the WHO 2010 classification of pancreatic neuroendocrine neoplasms accurately characterize pancreatic neuroendocrine carcinomas? J Gastroenterol 2014;50:564572.Google Scholar
Rindi, G, Petrone, G, Inzani, F. The 2010 WHO classification of digestive neuroendocrine neoplasms: a critical appraisal four years after its introduction. Endocr Pathol 2014;25:186192.Google Scholar
Lloyd, RV, Mervak, T, Schmidt, K, Warner, TF, Wilson, BS. Immunohistochemical detection of chromogranin and neuron-specific enolase in pancreatic endocrine neoplasms. Am J Surg Pathol 1984;8:607614.Google Scholar
Mukai, K, Grotting, JC, Greider, MH, Rosai, J. Retrospective study of 77 pancreatic endocrine tumors using the immunoperoxidase method. Am J Surg Pathol 1982;6:387399.Google Scholar
Rindi, G, Bordi, C, La Rosa, S, Solcia, E, Delle Fave, G, Gruppo Italiano Patologi Apparato Digerente, et al. Gastroenteropancreatic (neuro)endocrine neoplasms: the histology report. Digest Liver Dis 2011;43(suppl 4):S356S360.Google Scholar
Larsson, LI, Grimelius, L, Hakanson, R, Rehfeld, JF, Stadil, F, Holst, J, et al. Mixed endocrine pancreatic tumors producing several peptide hormones. Am J Pathol 1975;79:271284.Google Scholar
Volante, M, Brizzi, MP, Faggiano, A, La Rosa, S, Rapa, I, Ferrero, A, et al. Somatostatin receptor type 2A immunohistochemistry in neuroendocrine tumors: a proposal of scoring system correlated with somatostatin receptor scintigraphy. Mod Pathol 2007;20:11721182.Google Scholar
Agaimy, A, Erlenbach-Wunsch, K, Konukiewitz, B, Schmitt, AM, Rieker, RJ, Vieth, M, et al. ISL1 expression is not restricted to pancreatic well-differentiated neuroendocrine neoplasms, but is also commonly found in well and poorly differentiated neuroendocrine neoplasms of extrapancreatic origin. Mod Pathol 2013;26:9951003.Google Scholar
Hermann, G, Konukiewitz, B, Schmitt, A, Perren, A, Kloppel, G. Hormonally defined pancreatic and duodenal neuroendocrine tumors differ in their transcription factor signatures: expression of ISL1, PDX1, NGN3, and CDX2. Virchows Arch 2011;459:147154.Google Scholar
Koo, J, Mertens, RB, Mirocha, JM, Wang, HL, Dhall, D. Value of Islet 1 and PAX8 in identifying metastatic neuroendocrine tumors of pancreatic origin. Mod Pathol 2012;25:893901.Google Scholar
Schmitt, AM, Riniker, F, Anlauf, M, Schmid, S, Soltermann, A, Moch, H, et al. Islet 1 (Isl1) expression is a reliable marker for pancreatic endocrine tumors and their metastases. Am J Surg Pathol 2008;32:420425.Google Scholar
Chandrasekharappa, SC, Guru, SC, Manickam, P, Olufemi, SE, Collins, FS, Emmert-Buck, MR, et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 1997;276:404407.Google Scholar
Verhoef, S, van Diemen-Steenvoorde, R, Akkersdijk, WL, Bax, NM, Ariyurek, Y, Hermans, CJ, et al. Malignant pancreatic tumour within the spectrum of tuberous sclerosis complex in childhood. Eur J Pediatr 1999;158:284287.Google Scholar
Latif, F, Tory, K, Gnarra, J, Yao, M, Duh, FM, Orcutt, ML, et al. Identification of the von Hippel–Lindau disease tumor suppressor gene. Science 1993;260:13171320.Google Scholar
Francalanci, P, Diomedi-Camassei, F, Purificato, C, Santorelli, FM, Giannotti, A, Dominici, C, et al. Malignant pancreatic endocrine tumor in a child with tuberous sclerosis. Am J Surg Pathol 2003;27:13861389.Google Scholar
Cupisti, K, Hoppner, W, Dotzenrath, C, Simon, D, Berndt, I, Roher, HD, et al. Lack of MEN1 gene mutations in 27 sporadic insulinomas. Eur J Clin Invest 2000;30:325329.Google Scholar
D’Adda, T, Pizzi, S, Azzoni, C, Bottarelli, L, Crafa, P, Pasquali, C, et al. Different patterns of 11q allelic losses in digestive endocrine tumors. Hum Pathol 2002;33:322329.Google Scholar
Gortz, B, Roth, J, Krahenmann, A, de Krijger, RR, Muletta-Feurer, S, Rutimann, K, et al. Mutations and allelic deletions of the MEN1 gene are associated with a subset of sporadic endocrine pancreatic and neuroendocrine tumors and not restricted to foregut neoplasms. Am J Pathol 1999;154:429436.Google Scholar
Hessman, O, Lindberg, D, Einarsson, A, Lillhager, P, Carling, T, Grimelius, L, et al. Genetic alterations on 3p, 11q13, and 18q in nonfamilial and MEN 1-associated pancreatic endocrine tumors. Genes Chromosomes Cancer 1999;26:258264.Google Scholar
Moore, PS, Missiaglia, E, Antonello, D, Zamo, A, Zamboni, G, Corleto, V, et al. Role of disease-causing genes in sporadic pancreatic endocrine tumors: MEN1 and VHL. Genes Chromosomes Cancer 2001;32:177181.Google Scholar
Jiao, Y, Shi, C, Edil, BH, de Wilde, RF, Klimstra, DS, Maitra, A, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 2011;331:11991203.Google Scholar
Corbo, V, Dalai, I, Scardoni, M, Barbi, S, Beghelli, S, Bersani, S, et al. MEN1 in pancreatic endocrine tumors: analysis of gene and protein status in 169 sporadic neoplasms reveals alterations in the vast majority of cases. Endocr Relat Cancer 2010;17:771783.Google Scholar
Chung, DC, Smith, AP, Louis, DN, Graeme-Cook, F, Warshaw, AL, Arnold, A. A novel pancreatic endocrine tumor suppressor gene locus on chromosome 3p with clinical prognostic implications. J Clin Invest 1997;100:404410.Google Scholar
Hruban, RH, Iacobuzio-Donahue, C, Wilentz, RE, Goggins, M, Kern, SE. Molecular pathology of pancreatic cancer. Cancer J 2001;7:251258.Google Scholar
Perren, A, Komminoth, P, Saremaslani, P, Matter, C, Feurer, S, Lees, JA, et al. Mutation and expression analyses reveal differential subcellular compartmentalization of PTEN in endocrine pancreatic tumors compared to normal islet cells. Am J Pathol 2000;157:10971103.Google Scholar
Roldo, C, Missiaglia, E, Hagan, JP, Falconi, M, Capelli, P, Bersani, S, et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol 2006;24:46774684.Google Scholar
Serrano, J, Goebel, SU, Peghini, PL, Lubensky, IA, Gibril, F, Jensen, RT. Alterations in the p16INK4a/CDKN2A tumor suppressor gene in gastrinomas. J Clin Endocrinol Metab 2000;85:41464156.Google Scholar
Yachida, S, Vakiani, E, White, CM, Zhong, Y, Saunders, T, Morgan, R, et al. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am J Surg Pathol 2012;36:173184.Google Scholar
Furlan, D, Cerutti, R, Uccella, S, La Rosa, S, Rigoli, E, Genasetti, A, et al. Different molecular profiles characterize well-differentiated endocrine tumors and poorly differentiated endocrine carcinomas of the gastroenteropancreatic tract. Clin Cancer Res 2004;10:947957.Google Scholar
Jonkers, YM, Claessen, SM, Perren, A, Schmitt, AM, Hofland, LJ, de Herder, W, et al. DNA copy number status is a powerful predictor of poor survival in endocrine pancreatic tumor patients. Endocr Relat Cancer 2007;14:769779.Google Scholar
Pizzi, S, Azzoni, C, Bassi, D, Bottarelli, L, Milione, M, Bordi, C. Genetic alterations in poorly differentiated endocrine carcinomas of the gastrointestinal tract. Cancer 2003;98:12731282.Google Scholar
Rigaud, G, Missiaglia, E, Moore, PS, Zamboni, G, Falconi, M, Talamini, G, et al. High resolution allelotype of nonfunctional pancreatic endocrine tumors: identification of two molecular subgroups with clinical implications. Cancer Res 2001;61:285292.Google Scholar
Missiaglia, E, Dalai, I, Barbi, S, Beghelli, S, Falconi, M, della Peruta, M, et al. Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway. J Clin Oncol 2010;28:245255.Google Scholar
de Wilde, RF, Heaphy, CM, Maitra, A, Meeker, AK, Edil, BH, Wolfgang, CL, et al. Loss of ATRX or DAXX expression and concomitant acquisition of the alternative lengthening of telomeres phenotype are late events in a small subset of MEN-1 syndrome pancreatic neuroendocrine tumors. Mod Pathol 2012;25:10331039.Google Scholar
Corbo, V, Beghelli, S, Bersani, S, Antonello, D, Talamini, G, Brunelli, M, et al. Pancreatic endocrine tumours: mutational and immunohistochemical survey of protein kinases reveals alterations in targetable kinases in cancer cell lines and rare primaries. Ann Oncol 2012;23:127134.Google Scholar
Marinoni, I, Kurrer, AS, Vassella, E, Dettmer, M, Rudolph, T, Banz, V, et al. Loss of DAXX and ATRX are associated with chromosome instability and reduced survival of patients with pancreatic neuroendocrine tumors. Gastroenterology 2014;146:453460 e5.Google Scholar
Malpeli, G, Amato, E, Dandrea, M, Fumagalli, C, Debattisti, V, Boninsegna, L, et al. Methylation-associated down-regulation of RASSF1A and up-regulation of RASSF1C in pancreatic endocrine tumors. BMC Cancer 2011;11:351.Google Scholar
Stefanoli, M, La Rosa, S, Sahnane, N, Romualdi, C, Pastorino, R, Marando, A, et al. Prognostic relevance of aberrant DNA methylation in G1 and G2 pancreatic neuroendocrine tumors. Neuroendocrinology 2014;100:2634.Google Scholar
Jensen, RT, Cadiot, G, Brandi, ML, de Herder, WW, Kaltsas, G, Komminoth, P, et al. ENETS consensus guidelines for the management of patients with digestive neuroendocrine neoplasms: functional pancreatic endocrine tumor syndromes. Neuroendocrinology 2012;95:98119.Google Scholar
Kulke, MH, Anthony, LB, Bushnell, DL, de Herder, WW, Goldsmith, SJ, Klimstra, DS, et al. NANETS treatment guidelines: well-differentiated neuroendocrine tumors of the stomach and pancreas. Pancreas 2010;39:735752.Google Scholar
Oberg, K, Knigge, U, Kwekkeboom, D, Perren, A. Neuroendocrine gastro-entero-pancreatic tumors: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2012;23(suppl 7):vii124130.Google Scholar
Yao, JC, Shah, MH, Tetsuhide, I, Lombard Bohas, C, Wolin, EM, Van Cutsem, E, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 2011;364:514523.Google Scholar
Raymond, E, Dahan, L, Raoul, JL, Bang, YJ, Borbath, I, Lombard-Bohas, C, et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med 2011;364:501513.Google Scholar
Caplin, ME, Pavel, M, Cwikla, JB, Phan, AT, Raderer, M, Sedlackova, E, et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med 2014;371:224233.Google Scholar
Caplin, ME, Pavel, M, Ruszniewski, P. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N Engl J Med 2014;371:15561557.Google Scholar
Rinke, A, Muller, HH, Schade-Brittinger, C, Klose, KJ, Barth, P, Wied, M, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol 2009;27:46564663.Google Scholar
Ekeblad, S, Skogseid, B, Dunder, K, Oberg, K, Eriksson, B. Prognostic factors and survival in 324 patients with pancreatic endocrine tumor treated at a single institution. Clin Cancer Res 2008;14:77987803.Google Scholar
Ferrone, CR, Tang, LH, Tomlinson, J, Gonen, M, Hochwald, SN, Brennan, MF, et al. Determining prognosis in patients with pancreatic endocrine neoplasms: can the WHO classification system be simplified? J Clin Oncol 2007;25:56095615.Google Scholar
La Rosa, S, Klersy, C, Uccella, S, Dainese, L, Albarello, L, Sonzogni, A, et al. Improved histologic and clinicopathologic criteria for prognostic evaluation of pancreatic endocrine tumors. Hum Pathol 2009;40:3040.Google Scholar
Schmitt, AM, Anlauf, M, Rousson, V, Schmid, S, Kofler, A, Riniker, F, et al. WHO 2004 criteria and CK19 are reliable prognostic markers in pancreatic endocrine tumors. Am J Surg Pathol 2007;31:16771682.Google Scholar
Reyes, CV, Wang, T. Undifferentiated small cell carcinoma of the pancreas: a report of five cases. Cancer 1981;47:25002502.Google Scholar
Morant, R, Bruckner, HW. Complete remission of refractory small cell carcinoma of the pancreas with cisplatin and etoposide. Cancer 1989;64:20072009.Google Scholar
Rindi, G, Klersy, C, Inzani, F, Fellegara, G, Ampollini, L, Ardizzoni, A, et al. Grading the neuroendocrine tumors of the lung: an evidence-based proposal. Endocr Relat Cancer 2014;21:116.Google Scholar
Travis, WD, Rush, W, Flieder, DB, Falk, R, Fleming, MV, Gal, AA, et al. Survival analysis of 200 pulmonary neuroendocrine tumors with clarification of criteria for atypical carcinoid and its separation from typical carcinoid. Am J Surg Pathol 1998;22:934944.Google Scholar
Righi, L, Volante, M, Tavaglione, V, Bille, A, Daniele, L, Angusti, T, et al. Somatostatin receptor tissue distribution in lung neuroendocrine tumours: a clinicopathologic and immunohistochemical study of 218 “clinically aggressive” cases. Ann Oncol 2010;21:548555.Google Scholar
den Bakker, MA, Willemsen, S, Grunberg, K, Noorduijn, LA, van Oosterhout, MF, van Suylen, RJ, et al. Small cell carcinoma of the lung and large cell neuroendocrine carcinoma interobserver variability. Histopathology 2010;56:356363.Google Scholar
Ha, SY, Han, J, Kim, WS, Suh, BS, Roh, MS. Interobserver variability in diagnosing high-grade neuroendocrine carcinoma of the lung and comparing it with the morphometric analysis. Korean J Pathol 2012;46:4247.Google Scholar
Sorbye, H, Welin, S, Langer, SW, Vestermark, LW, Holt, N, Osterlund, P, et al. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann Oncol 2013;24:152160.Google Scholar
Velayoudom-Cephise, FL, Duvillard, P, Foucan, L, Hadoux, J, Chougnet, CN, Leboulleux, S, et al. Are G3 ENETS neuroendocrine neoplasms heterogeneous? Endocr Relat Cancer 2013;20:649657.Google Scholar
Falconi, M, Plöckinger, U, Kwekkeboom, DJ, Manfredi, R, Korner, M, Kvols, L, et al. Well-differentiated pancreatic nonfunctioning tumors/carcinoma. Neuroendocrinology 2006;84:196211.Google Scholar
Guettier, JM, Gorden, P. Insulin secretion and insulin-producing tumors. Exp Rev Endocrinol Metab 2010;5:217227.Google Scholar
Metz, DC, Jensen, RT. Gastrointestinal neuroendocrine tumors: pancreatic endocrine tumors. Gastroenterology 2008;135:14691492.Google Scholar
Pelosi, G, Bresaola, E, Bogina, G, Pasini, F, Rodella, S, Castelli, P, et al. Endocrine tumors of the pancreas: Ki-67 immunoreactivity on paraffin sections is an independent predictor for malignancy. A comparative study with proliferating-cell nuclear antigen and progesterone receptor protein immunostaining, mitotic index, and other clinicopathologic variables. Hum Pathol 1996;27:11241134.Google Scholar
La Rosa, S, Rigoli, E, Uccella, S, Novario, R, Capella, C. Prognostic and biological significance of cytokeratin 19 in pancreatic endocrine tumours. Histopathology 2007;50:597606.Google Scholar
Chaudhry, A, Gobl, A, Eriksson, B, Skogseid, B, Oberg, K. Different splice variants of CD44 are expressed in gastrinomas but not in other subtypes of endocrine pancreatic tumors. Cancer Res 1994;54:981986.Google Scholar
Rahman, A, Maitra, A, Ashfaq, R, Yeo, CJ, Cameron, JL, Hansel, DE. Loss of p27 nuclear expression in a prognostically favorable subset of well-differentiated pancreatic endocrine neoplasms. Am J Clin Pathol 2003;120:685690.Google Scholar

References

Rahimi, RS, Landaverde, C. Nonalcoholic fatty liver disease and the metabolic syndrome: clinical implications and treatment. Nutr Clin Pract 2013;28:4051.Google Scholar
Charlton, MR, Burns, JM, Pedersen, RA, Watt, KD, Heimbach, JK, Dierkhising, RA. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology 2011;141:12491253.Google Scholar
Eibl, N, Gschwantler, M, Ferenci, P, Eibl, MM, Weiss, W, Schernthaner, G. Development of insulin-dependent diabetes mellitus in a patient with chronic hepatitis C during therapy with interferon-alpha. Eur J Gastroenterol Hepatol 2001;13:295298.Google Scholar
Nonchev, BI. Cases of interferon-alpha and interferon-beta-induced thyroiditis. Folia Med (Plovdiv) 2010;52:512.Google Scholar
Andrade, LJ, Atta, AM, D'Almeida Junior, A, Parana, R. Thyroid dysfunction in hepatitis C individuals treated with interferon-alpha and ribavirin: a review. Braz J Infect Dis 2008;12:144148.Google Scholar
Crawford, J. Anatomy,pathophysiology and basic mechanisms of disease. In Burt, AD, Portmann, BC, Ferrell, L, eds. Macsween's Pathology of the Liver, 5th edn. Edinburgh: Churchill Livingstone-Elsevier, 2012:79100.Google Scholar
Collardeau-Frachon, S, Scoazec, JY. Vascular development and differentiation during human liver organogenesis. Anat Rec (Hoboken) 2008;291:614627.Google Scholar
Roskams, T, Desmet, V. Embryology of extra- and intrahepatic bile ducts, the ductal plate. Anat Rec (Hoboken) 2008;291:628635.Google Scholar
Lade, AG, Monga, SP. Beta-catenin signaling in hepatic development and progenitors: which way does the WNT blow? Dev Dyn 2010;240:486500.Google Scholar
Le Lay, J, Kaestner, KH. The Fox genes in the liver: from organogenesis to functional integration. Physiol Rev 2010;90:122.Google Scholar
Zong, Y, Stanger, BZ. Molecular mechanisms of bile duct development. Int J Biochem Cell Biol 2011;43:257264.Google Scholar
Crawford, J. The liver and biliary tract. In Kumar, V, Abbas, AK, Fausto, N, Aster, JC, eds. Robbins and Cotran Pathologic Basis of Disease, 8th edn. Philadelphia PA: Elsevier-Saunders, 2010:833890.Google Scholar
Ferrell, LD, Greenberg, MS. Special stains can distinguish hepatic necrosis with regenerative nodules from cirrhosis. Liver Int 2007;27:681686.Google Scholar
Thiese, ND. Hepatocellular carcinoma. In Bosnan, FT, Carneiro, F, Hruban, RH, Theise, ND, eds. WHO Classification of Tumors of the Digestive System. Lyon: International Agency for Research on Cancer, 2010:205216.Google Scholar
Corless, JK, Middleton, HM, 3rd. Normal liver function. A basis for understanding hepatic disease. Arch Intern Med 1983;143:22912294.Google Scholar
Li, H, Oldenburg, B, Chamberlain, C, O'Neil, A, Xue, B, Jolley, D, et al. Diabetes prevalence and determinants in adults in China mainland from 2000 to 2010: a systematic review. Diabetes Res Clin Pract 2012;98:226235.Google Scholar
Clark, JM. The epidemiology of nonalcoholic fatty liver disease in adults. J Clin Gastroenterol 2006;40(suppl 1):S5S10.Google Scholar
Alberti, KG, Eckel, RH, Grundy, SM, Zimmet, PZ, Cleeman, JI, Donato, KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009;120:16401645.Google Scholar
Lazo, M, Clark, JM. The epidemiology of nonalcoholic fatty liver disease: a global perspective. Semin Liver Dis 2008;28:339350.Google Scholar
Kneeman, JM, Misdraji, J, Corey, KE. Secondary causes of nonalcoholic fatty liver disease. Ther Adv Gastroenterol 2012;5:199207.Google Scholar
Pais, R, Charlotte, F, Fedchuk, L, Bedossa, P, Lebray, P, Poynard, T, et al. A systematic review of follow-up biopsies reveals disease progression in patients with non-alcoholic fatty liver. J Hepatol 2013;59:550556.Google Scholar
Bellentani, S, Scaglioni, F, Marino, M, Bedogni, G. Epidemiology of non-alcoholic fatty liver disease. Dig Dis 2010;28:155161.Google Scholar
Mavrogiannaki, AN, Migdalis, IN. Nonalcoholic fatty liver disease, diabetes mellitus and cardiovascular disease: newer data. Int J Endocrinol 2013;2013:450639.Google Scholar
Larrain, S, Rinella, ME. A myriad of pathways to NASH. Clin Liver Dis 2012;16:525548.Google Scholar
Dongiovanni, P, Anstee, QM, Valenti, L. Genetic predisposition in NAFLD and NASH: impact on severity of liver disease and response to treatment. Curr Pharm Des 2013;19:52195238.Google Scholar
Giorgio, V, Prono, F, Graziano, F, Nobili, V. Pediatric non alcoholic fatty liver disease: old and new concepts on development, progression, metabolic insight and potential treatment targets. BMC Pediatr 2013;13:40.Google Scholar
Day, CP, James, OF. Steatohepatitis: a tale of two “hits”? Gastroenterology 1998;114:842845.Google Scholar
Neuschwander-Tetri, BA. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology 2010;52:774788.Google Scholar
Farrell, GC, van Rooyen, D, Gan, L, Chitturi, S. NASH is an inflammatory disorder: pathogenic, prognostic and therapeutic implications. Gut Liver 2012;6:149171.Google Scholar
Bohinc, BN, Diehl, AM. Mechanisms of disease progression in NASH: new paradigms. Clin Liver Dis 2012;16:549565.Google Scholar
Bian, Z, Ma, X. Liver fibrogenesis in non-alcoholic steatohepatitis. Front Physiol 2012;3:248.Google Scholar
Puri, K, Nobili, V, Melville, K, Corte, CD, Sartorelli, MR, Lopez, R, et al. Serum bilirubin level is inversely associated with nonalcoholic steatohepatitis in children. J Pediatr Gastroenterol Nutr 2013;57:114118.Google Scholar
Saadeh, S, Younossi, ZM, Remer, EM, Gramlich, T, Ong, JP, Hurley, M, et al. The utility of radiological imaging in nonalcoholic fatty liver disease. Gastroenterology 2002;123:745750.Google Scholar
Reeder, SB, Cruite, I, Hamilton, G, Sirlin, CB. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 2011;34:729749.Google Scholar
Mottin, CC, Moretto, M, Padoin, AV, Swarowsky, AM, Toneto, MG, Glock, L, et al. The role of ultrasound in the diagnosis of hepatic steatosis in morbidly obese patients. Obes Surg 2004;14:635637.Google Scholar
Kocabay, G, Telci, A, Tutuncu, Y, Tiryaki, B, Ozel, S, Cevikbas, U, et al. Alkaline phosphatase: can it be considered as an indicator of liver fibrosis in non-alcoholic steatohepatitis with type 2 diabetes? Bratisl Lek Listy 2011;112:626629.Google Scholar
Kleiner, DE, Brunt, EM, Van Natta, M, Behling, C, Contos, MJ, Cummings, OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005;41:13131321.Google Scholar
Schwimmer, JB, Behling, C, Newbury, R, Deutsch, R, Nievergelt, C, Schork, NJ, et al. Histopathology of pediatric nonalcoholic fatty liver disease. Hepatology 2005;42:641649.Google Scholar
Caldwell, SH, Lee, VD, Kleiner, DE, Al-Osaimi, AM, Argo, CK, Northup, PG, et al. NASH and cryptogenic cirrhosis: a histological analysis. Ann Hepatol 2009;8:346352.Google Scholar
Ludwig, J, Hashimoto, E, Porayko, MK, Moyer, TP, Baldus, WP. Hemosiderosis in cirrhosis: a study of 447 native livers. Gastroenterology 1997;112:882888.Google Scholar
Schuppan, D, Schattenberg, JM. Non-alcoholic steatohepatitis: pathogenesis and novel therapeutic approaches. J Gastroenterol Hepatol 2013;28(suppl 1):6876.Google Scholar
Mauriac, P. Gros ventre, hepatomegalie, troubles de croissance chez les enfants diabetiques traites depuis plusiers annee par l'insuline. Gaz Hebd Med Bordeaux 1930;26:402410.Google Scholar
Torbenson, M, Chen, YY, Brunt, E, Cummings, OW, Gottfried, M, Jakate, S, et al. Glycogenic hepatopathy: an underrecognized hepatic complication of diabetes mellitus. Am J Surg Pathol 2006;30:508513.Google Scholar
van den Brand, M, Elving, LD, Drenth, JP, van Krieken, JH. Glycogenic hepatopathy: a rare cause of elevated serum transaminases in diabetes mellitus. Neth J Med 2009;67:394396.Google Scholar
Lee, PJ, Leonard, JV. The hepatic glycogen storage diseases: problems beyond childhood. J Inherit Metab Dis 1995;18:462472.Google Scholar
Chatila, R, West, AB. Hepatomegaly and abnormal liver tests due to glycogenosis in adults with diabetes. Medicine (Baltimore) 1996;75:327333.Google Scholar
Saadi, T. Glycogenic hepatopathy: a rare disease that can appear and resolve rapidly in parallel with glycemic control. Isr Med Assoc J 2012;14:269270.Google Scholar
Rake, JP, Visser, G, Labrune, P, Leonard, JV, Ullrich, K, Smit, GP. Glycogen storage disease type I: diagnosis, management, clinical course and outcome. Results of the European Study on Glycogen Storage Disease type I (ESGSD I). Eur J Pediatr 2002;161(suppl 1):S20S34.Google Scholar
Schaeffer, DF, Laiq, S, Jang, HJ, John, R, Adeyi, OA. Abernethy malformation type II with nephrotic syndrome and other multisystemic presentation: an illustrative case for understanding pathogenesis of extrahepatic complication of congenital portosystemic shunt. Hum Pathol 2012;44:432437.Google Scholar
Reznik, Y, Dao, T, Coutant, R, Chiche, L, Jeannot, E, Clauin, S, et al. Hepatocyte nuclear factor-1 alpha gene inactivation: cosegregation between liver adenomatosis and diabetes phenotypes in two maturity-onset diabetes of the young (MODY)3 families. J Clin Endocrinol Metab 2004;89:14761480.Google Scholar
Frayling, TM, Evans, JC, Bulman, MP, Pearson, E, Allen, L, Owen, K, et al. Beta-cell genes and diabetes: molecular and clinical characterization of mutations in transcription factors. Diabetes 2001;50 (suppl 1):S94S100.Google Scholar
Foster, JH, Donohue, TA, Berman, MM. Familial liver-cell adenomas and diabetes mellitus. N Engl J Med 1978;299:239241.Google Scholar
Bioulac-Sage, P, Balabaud, C, Zucman-Rossi, J. Subtype classification of hepatocellular adenoma. Dig Surg 2010;27:3945.Google Scholar
Bioulac-Sage, P, Rebouissou, S, Thomas, C, Blanc, JF, Saric, J, Sa Cunha, A, et al. Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry. Hepatology 2007;46:740748.Google Scholar
Bluteau, O, Jeannot, E, Bioulac-Sage, P, Marques, JM, Blanc, JF, Bui, H, et al. Bi-allelic inactivation of TCF1 in hepatic adenomas. Nat Genet 2002;32:312315.Google Scholar
Zucman-Rossi, J, Jeannot, E, Nhieu, JT, Scoazec, JY, Guettier, C, Rebouissou, S, et al. Genotype–phenotype correlation in hepatocellular adenoma: new classification and relationship with HCC. Hepatology 2006;43:515524.Google Scholar
Manichon, AF, Bancel, B, Durieux-Millon, M, Ducerf, C, Mabrut, JY, Lepogam, MA, et al. Hepatocellular adenoma: evaluation with contrast-enhanced ultrasound and MRI and correlation with pathologic and phenotypic classification in 26 lesions. HPB Surg 2012:418745.Google Scholar
Di Sandro, S, Slim, AO, Lauterio, A, Giacomoni, A, Mangoni, I, Aseni, P, et al. Liver adenomatosis: a rare indication for living donor liver transplantation. Transplant Proc 2009;41:13751377.Google Scholar
Barthelmes, L, Tait, IS. Liver cell adenoma and liver cell adenomatosis. HPB (Oxford) 2005;7:186196.Google Scholar
Yunta, PJ, Moya, A, San-Juan, F, Lopez-Andujar, R, De Juan, M, Orbis, F, et al. [A new case of hepatic adenomatosis treated with orthotopic liver transplantation.] Ann Chir 2001;126:672674.Google Scholar
Boulton, R, Hamilton, MI, Dhillon, AP, Kinloch, JD, Burroughs, AK. Subclinical Addison's disease: a cause of persistent abnormalities in transaminase values. Gastroenterology 1995;109:13241327.Google Scholar
Olsson, RG, Lindgren, A, Zettergren, L. Liver involvement in Addison's disease. Am J Gastroenterol 1990;85:435438.Google Scholar
Burra, P. Liver abnormalities and endocrine diseases. Best Pract Res Clin Gastroenterol;27:553563.Google Scholar
Maheshwari, A, Thuluvath, PJ. Endocrine diseases and the liver. Clin Liver Dis;15:5567.Google Scholar
van der Woerd, WL, van Mil, SW, Stapelbroek, JM, Klomp, LW, van de Graaf, SF, Houwen, RH. Familial cholestasis: progressive familial intrahepatic cholestasis, benign recurrent intrahepatic cholestasis and intrahepatic cholestasis of pregnancy. Best Pract Res Clin Gastroenterol 2010;24:541553.Google Scholar
Gershwin, ME, Selmi, C, Worman, HJ, Gold, EB, Watnik, M, Utts, J, et al. Risk factors and comorbidities in primary biliary cirrhosis: a controlled interview-based study of 1032 patients. Hepatology 2005;42:11941202.Google Scholar
Ahmed, KT, Almashhrawi, AA, Rahman, RN, Hammoud, GM, Ibdah, JA. Liver diseases in pregnancy: diseases unique to pregnancy. World J Gastroenterol 2013;19:76397646.Google Scholar
Francavilla, A, Polimeno, L, DiLeo, A, Barone, M, Ove, P, Coetzee, M, et al. The effect of estrogen and tamoxifen on hepatocyte proliferation in vivo and in vitro. Hepatology 1989;9:614620.Google Scholar
Li, JJ, Li, SA. High incidence of hepatocellular carcinomas after synthetic estrogen administration in Syrian golden hamsters fed alpha-naphthoflavone: a new tumor model. J Natl Cancer Inst 1984;73:543547.Google Scholar
Elias, RM, Dean, DS, Barsness, GW. Hepatic dysfunction in hospitalized patients with acute thyrotoxicosis: a decade of experience. ISRN Endocrinol 2012;325092.Google Scholar
Sola, J, Pardo-Mindan, FJ, Zozaya, J, Quiroga, J, Sangro, B, Prieto, J. Liver changes in patients with hyperthyroidism. Liver 1991;11:193197.Google Scholar
Bioulac-Sage, P, Sempoux, C, Possenti, L, Frulio, N, Laumonier, H, Laurent, C, et al. Pathological Diagnosis of Hepatocellular Cellular Adenoma according to the Clinical Context. Int J Hepatol;2013:2013:253261.Google Scholar
Benz, EJ, Baggenstoss, AH. Focal cirrhosis of the liver: its relation to the so-called hamartoma (adenoma, benign hepatoma). Cancer 1953;6:743755.Google Scholar
Bioulac-Sage, P, Taouji, S, Possenti, L, Balabaud, C. Hepatocellular adenoma subtypes: the impact of overweight and obesity. Liver Int 2012;32:12171221.Google Scholar
Cote, C. Regression of focal nodular hyperplasia of the liver after oral contraceptive discontinuation. Clin Nucl Med 1997;22:587590.Google Scholar
Joyner, BL Jr., Levin, TL, Goyal, RK, Newman, B. Focal nodular hyperplasia of the liver: a sequela of tumor therapy. Pediatr Radiol 2005;35:12341239.Google Scholar
Luciani, A, Kobeiter, H, Maison, P, Cherqui, D, Zafrani, ES, Dhumeaux, D, et al. Focal nodular hyperplasia of the liver in men: is presentation the same in men and women? Gut 2002;50:877880.Google Scholar
Mathieu, D, Kobeiter, H, Maison, P, Rahmouni, A, Cherqui, D, Zafrani, ES, et al. Oral contraceptive use and focal nodular hyperplasia of the liver. Gastroenterology 2000;118:560564.Google Scholar
van den Esschert, JW, van Gulik, TM, Phoa, SS. Imaging modalities for focal nodular hyperplasia and hepatocellular adenoma. Dig Surg 2010;27:4655.Google Scholar
Hussain, SM, van den Bos, IC, Dwarkasing, RS, Kuiper, JW, den Hollander, J. Hepatocellular adenoma: findings at state-of-the-art magnetic resonance imaging, ultrasound, computed tomography and pathologic analysis. Eur Radiol 2006;16:18731886.Google Scholar
Carlson, SK, Johnson, CD, Bender, CE, Welch, TJ. CT of focal nodular hyperplasia of the liver. AJR Am J Roentgenol 2000;174:705712.Google Scholar
Choi, JY, Lee, HC, Yim, JH, Shim, JH, Lim, YS, Shin, YM, et al. Focal nodular hyperplasia or focal nodular hyperplasia-like lesions of the liver: a special emphasis on diagnosis. J Gastroenterol Hepatol 2011;26:10041009.Google Scholar
Bagheri, SA, Boyer, JL. Peliosis hepatis associated with androgenic-anabolic steroid therapy. A severe form of hepatic injury. Ann Intern Med 1974;81:610618.Google Scholar
Tsirigotis, P, Sella, T, Shapira, MY, Bitan, M, Bloom, A, Kiselgoff, D, et al. Peliosis hepatis following treatment with androgen-steroids in patients with bone marrow failure syndromes. Haematologica 2007;92:e106110.Google Scholar
Hytiroglou, P, Snover, DC, Alves, V, Balabaud, C, Bhathal, PS, Bioulac-Sage, P, et al. Beyond “cirrhosis”: a proposal from the International Liver Pathology Study Group. Am J Clin Pathol 2012;137:59.Google Scholar
Pinzani, M, Rosselli, M, Zuckermann, M. Liver cirrhosis. Best Pract Res Clin Gastroenterol 2011;25:281290.Google Scholar
Schuppan, D, Afdhal, NH. Liver cirrhosis. Lancet 2008;371:838851.Google Scholar
Malik, R, Hodgson, H. The relationship between the thyroid gland and the liver. Q J Med 2002;95:559569.Google Scholar
Fede, G, Spadaro, L, Tomaselli, T, Privitera, G, Germani, G, Tsochatzis, E, et al. Adrenocortical dysfunction in liver disease: a systematic review. Hepatology 2012;55:12821291.Google Scholar
Karagiannis, A, Harsoulis, F. Gonadal dysfunction in systemic diseases. Eur J Endocrinol 2005;152:501513.Google Scholar
Terasaki, T, Nowlin, DM, Pardridge, WM. Differential binding of testosterone and estradiol to isoforms of sex hormone-binding globulin: selective alteration of estradiol binding in cirrhosis. J Clin Endocrinol Metab 1988;67:639643.Google Scholar
Sporea, I, Popescu, A, Sirli, R. Why, who and how should perform liver biopsy in chronic liver diseases. World J Gastroenterol 2008;14:33963402.Google Scholar
Wanless, ICJ. Cirrhosis. In Odze, RD, Goldblum, JR, eds. Surgical Pathology of the Gastrointestinal Tract, Liver, Biliary Tract, and Pancreas. Philadelphia, PA: Elsevier-Saunders, 2009:11151146.Google Scholar
Wanless, IR, Nakashima, E, Sherman, M. Regression of human cirrhosis. Morphologic features and the genesis of incomplete septal cirrhosis. Arch Pathol Lab Med 2000;124:15991607.Google Scholar
Cochat, PRM. Primary oxalurias. In Fernandes, JSJ, van der Berghe, G, Walter, eds. Inborn Metabolic Diseases. Heidelberg: Springer, 2006:539545.Google Scholar
Nair, P, Al-Otaibi, T, Nampoory, N, Al-Qabandi, W, Said, T, Halim, MA, et al. Combined liver and kidney transplantation in primary hyperoxaluria: a report of three cases and review of the literature. Saudi J Kidney Dis Transpl 2013;24:969975.Google Scholar
Cochat, P, Pichault, V, Bacchetta, J, Dubourg, L, Sabot, JF, Saban, C, et al. Nephrolithiasis related to inborn metabolic diseases. Pediatr Nephrol 2009;25:415424.Google Scholar
Cochat, P, Fargue, S, Mestrallet, G, Jungraithmayr, T, Koch-Nogueira, P, Ranchin, B, et al. Disease recurrence in paediatric renal transplantation. Pediatr Nephrol 2009;24:20972108.Google Scholar
Heilberg, IP, Schor, N. Renal stone disease: causes, evaluation and medical treatment. Arq Bras Endocrinol Metabol 2006;50:823831.Google Scholar
Danpure, CJ. Molecular etiology of primary hyperoxaluria type 1: new directions for treatment. Am J Nephrol 2005;25:303310.Google Scholar
Belostotsky, R, Seboun, E, Idelson, GH, Milliner, DS, Becker-Cohen, R, Rinat, C, et al. Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am J Hum Genet 2010;87:392399.Google Scholar
Monico, CG, Rossetti, S, Belostotsky, R, Cogal, AG, Herges, RM, Seide, BM, et al. Primary hyperoxaluria type III gene HOGA1 (formerly DHDPSL) as a possible risk factor for idiopathic calcium oxalate urolithiasis. Clin J Am Soc Nephrol 2011;6:22892295.Google Scholar
Riedel, TJ, Johnson, LC, Knight, J, Hantgan, RR, Holmes, RP, Lowther, WT. Structural and biochemical studies of human 4-hydroxy-2-oxoglutarate aldolase: implications for hydroxyproline metabolism in primary hyperoxaluria. PLOS ONE 2011;6:e26021.Google Scholar
Salas, P, Pinto, V, Rodriguez, J, Zambrano, MJ, Mericq, V. Growth retardation in children with kidney disease. Int J Endocrinol;2013;14:16801690.Google Scholar
Dispenzieri, A. POEMS syndrome. Hematology Am Soc Hematol Educ Program 2005:360–367.Google Scholar
Dispenzieri, A. POEMS syndrome: update on diagnosis, risk-stratification, and management. Am J Hematol 2011;87:804814.Google Scholar
Chee, CE, Dispenzieri, A, Gertz, MA. Amyloidosis and POEMS syndrome. Exp Opin Pharmacother 2010;11:15011514.Google Scholar
Takai, K, Nikkuni, K, Momoi, A, Nagai, K, Igarashi, N, Saeki, T. Thrombocytopenia with reticulin fibrosis accompanied by fever, anasarca and hepatosplenomegaly: a clinical report of five cases. J Clin Exp Hematop 2013;53:6368.Google Scholar
Wemeau, JL, Proust-Lemoine, E, Ryndak, A, Vanhove, L. Thyroid autoimmunity and polyglandular endocrine syndromes. Hormones (Athens) 2013;12:3945.Google Scholar
Zea-Mendoza, AC, Alonso-Ruiz, A, Garcia-Vadillo, A, Moreno-Caparros, A, Beltran-Gutierrez, J. POEMS syndrome with neuroarthropathy and nodular regenerative hyperplasia of the liver. Arthritis Rheum 1984;27:10531057.Google Scholar
Manns, MP, Vogel, A. Autoimmune hepatitis, from mechanisms to therapy. Hepatology 2006;43 (suppl 1):S132S144.Google Scholar
Roberts, EA. Autoimmune hepatitis from the paediatric perspective. Liver Int 2011;31:14241431.Google Scholar
Weiler, FG, Dias da Silva, MR, Lazaretti-Castro, M. Autoimmune polyendocrine syndrome type 1: case report and review of literature. Arq Bras Endocrinol Metabol 2012;56:5466.Google Scholar
Vogel, A MM. Mimics of autoimmune hepatitis: drug induced and immune mediated liver disease. In Hirschfield, GM, Heathcote, EJ, eds. Autoimmune Hepatitis A Guide for Practicing Clinicians. New York: Humana Press, 2011:102122.Google Scholar
Obermayer-Straub, P, Perheentupa, J, Braun, S, Kayser, A, Barut, A, Loges, S, et al. Hepatic autoantigens in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Gastroenterology 2001;121:668677.Google Scholar
Meloni, A, Willcox, N, Meager, A, Atzeni, M, Wolff, AS, Husebye, ES, et al. Autoimmune polyendocrine syndrome type 1: an extensive longitudinal study in Sardinian patients. J Clin Endocrinol Metab 2012;97:11141124.Google Scholar
Vierling, J. The pathogenesis of autoimmune hepatitis. In Hirschfield, GM, Heathcote, EJ, eds. Autoimmune Hepatitis A Guide for Practicing Clinicians. New York: Humana Press, 2011:1460.Google Scholar
Ahonen, P, Myllarniemi, S, Sipila, I, Perheentupa, J. Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med 1990;322:18291836.Google Scholar
Betterle, C, Greggio, NA, Volpato, M. Clinical review 93: autoimmune polyglandular syndrome type 1. J Clin Endocrinol Metab 1998;83:10491055.Google Scholar
Husebye, ES, Anderson, MS. Autoimmune polyendocrine syndromes: clues to type 1 diabetes pathogenesis. Immunity 2010;32:479487.Google Scholar
Portmann, BC, Roberts, EA. Developmental abnormalities and liver disease in childhood. In Burt, AD, Portmann, BC, Ferrell, L, eds. Macsween's Pathology of the Liver, 5th edn. Edinburgh: Churchill Livingstone-Elsevier, 2012:101156.Google Scholar
Brink, DS. Transient leukemia (transient myeloproliferative disorder, transient abnormal myelopoiesis) of Down syndrome. Adv Anat Pathol 2006;13:256262.Google Scholar
Roy, A, Roberts, I, Vyas, P. Biology and management of transient abnormal myelopoiesis (TAM) in children with Down syndrome. Semin Fetal Neonatal Med 2012;17:196201.Google Scholar
Gamis, AS, Smith, FO. Transient myeloproliferative disorder in children with Down syndrome: clarity to this enigmatic disorder. Br J Haematol 2012;159:277287.Google Scholar
Hitzler, JK. Acute megakaryoblastic leukemia in Down syndrome. Pediatr Blood Cancer 2007;49 (suppl):10661069.Google Scholar
Colombo, C. Liver disease in cystic fibrosis. Curr Opin Pulm Med 2007;13:529536.Google Scholar
Moyer, K, Balistreri, W. Hepatobiliary disease in patients with cystic fibrosis. Curr Opin Gastroenterol 2009;25:272278.Google Scholar
Rowland, M, Bourke, B. Liver disease in cystic fibrosis. Curr Opin Pulm Med 2011;17:461466.Google Scholar
Thompson, RJPB, Roberts, EA. Genetic and metabolic liver disease. In Burt, AD, Portmann, BC, Ferrell, L, eds. Macsween's Pathology of the Liver, 5th edn. Edinburgh: Churchill Livingstone-Elsevier, 2012:157259.Google Scholar
Herrmann, U, Dockter, G, Lammert, F. Cystic fibrosis-associated liver disease. Best Pract Res Clin Gastroenterol 2010;24:585592.Google Scholar
Batts, K. Autoimmune and chronic cholestatic disorders of the liver. In Odze, RD, Goldblum, JR, eds. Surgical Pathology of the Gastrointestinal Tract, Liver, Biliary Tract, and Pancreas. Philadelphia, PA: Elsevier-Saunders, 2009:10351058.Google Scholar
Corpechot, C, Chretien, Y, Chazouilleres, O, Poupon, R. Demographic, lifestyle, medical and familial factors associated with primary biliary cirrhosis. J Hepatol 2010;53:162169.Google Scholar
Efe, C, Wahlin, S, Ozaslan, E, Berlot, AH, Purnak, T, Muratori, L, et al. Autoimmune hepatitis/primary biliary cirrhosis overlap syndrome and associated extrahepatic autoimmune diseases. Eur J Gastroenterol Hepatol 2012;24:531534.Google Scholar
Inoue, K, Okajima, T, Tanaka, E, Ando, B, Takeshita, M, Masuda, A, et al. A case of Graves' disease associated with autoimmune hepatitis and mixed connective tissue disease. Endocr J 1999;46:173177.Google Scholar
Teufel, A, Weinmann, A, Kahaly, GJ, Centner, C, Piendl, A, Worns, M, et al. Concurrent autoimmune diseases in patients with autoimmune hepatitis. J Clin Gastroenterol 2010;44:208213.Google Scholar
Quaglia, A BA, Ferrell, LD, Portmann, BC. Systemic disease. In Burt, AD, Portmann, BC, Ferrell, L, eds. Macsween's Pathology of the Liver, 5th edn. Edinburgh: Churchill Livingstone-Elsevier, 2012:79100.Google Scholar
Pathak, S, Dash, I, Taylor, MR, Poston, GJ. The surgical management of neuroendocrine tumour hepatic metastases. Eur J Surg Oncol 2013;39:224228.Google Scholar
Saxena, A, Chua, TC, Perera, M, Chu, F, Morris, DL. Surgical resection of hepatic metastases from neuroendocrine neoplasms: a systematic review. Surg Oncol 2012;21:e131e141.Google Scholar
Pathak, S, Dash, I, Taylor, MR, Poston, GJ. An overview of the surgical management of hepatic neuroendocrine metastases. Indian J Surg Oncol 2012;3:2025.Google Scholar
Iacobuzio-Donahue, CFL. Secondary tumors of the liver. In Bosnan, FT, Carneiro, F, Hruban, RH, Theise, ND, eds WHO Classification of Tumors of the Digestive System. Lyon: International Agency for Research on Cancer, 2010:252253.Google Scholar
Fischer, SE. Recurrent and de novo malignancies following liver transplantation. Diagn Histopathol 2012;18:290296.Google Scholar
Gedaly, R, Daily, MF, Davenport, D, McHugh, PP, Koch, A, Angulo, P, et al. Liver transplantation for the treatment of liver metastases from neuroendocrine tumors: an analysis of the UNOS database. Arch Surg 2011;146:953958.Google Scholar

References

Linnoila, R.I.. Functional facets of the pulmonary neuroendocrine system. Lab Invest 2006;86:425444.Google Scholar
Feyrter, F.. Uber die these von den peripheren endokrinen drusen. Wien Z Innere Med Grenzgeb 1946;10:936.Google Scholar
Axiotis, C.A.. The neuroendocrine lung. In LiVolsi, V.A., Asa, S.L. eds. Endocrine Pathology. New York, Churchill Livingstone, 2002:261296.Google Scholar
McGovern, S., Pan, J., Oliver, G., Cutz, E., Yeger, H.. The role of hypoxia and neurogenic genes (Mash1 and Prox1) in the developmental programming and maturation of pulmonary neuroendocrine cells in fetal mouse lung. Lab Invest 2010;90:180195.Google Scholar
Li, Y., Linnoila, R.I.. Multidirectional differentiation of achaete-scute homologue-1-defined progenitors in lung development and injury repair. Am J Respir Cell Mol Biol 2012;47:768775.Google Scholar
Morimoto, M., Nishinakamura, R., Saga, Y., Kopan, R.. Different assemblies of Notch receptors coordinate the distribution of the major bronchial Clara, ciliated and neuroendocrine cells. Development 2012;139:43654373.Google Scholar
Wang, X.Y., Jensen-Taubman, S.M., Keefe, K.M., Yang, D., Linnoila, R.I.. Achaete-scute complex homolog-1 promotes DNA repair in the lung carcinogenesis through matrix metalloproteinase-7 and O-methylguanine-DNA methyl transferase. PLOS ONE 2012;7:e52832.Google Scholar
Neptune, E.R., Podowski, M., Calvi, C., et al. Targeted disruption of NeuroD, a proneural basic helix-loop-helix factor, impairs distal lung formation and neuroendocrine morphology in the neonatal lung. J Biol Chem 2008;283:2116021169.Google Scholar
Miki, M., Ball, D.W., Linnoila, R.I.. Insights into the achaete-scute homolog-1 gene (hASH1) in normal and neoplastic human lung. Lung Cancer 2012;75:5865.Google Scholar
Volante, M., Fulcheri, E., Allìa, E., et al. Ghrelin expression in fetal, infant, and adult human lung. J Histochem Cytochem 2002;50:10131021.Google Scholar
Volante, M., Rosas, R., Ceppi, P., et al. Obestatin in human neuroendocrine tissues and tumours: expression and effect on tumour growth. J Pathol 2009;218:458466.Google Scholar
Sturm, N., Rossi, G., Lantuéjoul, S., et al. 34BetaE12 expression along the whole spectrum of neuroendocrine proliferations of the lung, from neuroendocrine cell hyperplasia to small cell carcinoma. Histopathology 2003;42:156166.Google Scholar
Swarts, A.D.R., Speel, E.J.M.. Molecular and cellular biology of neuroendocrine lung tumors: evidence for separate biological entities. Biochem Biophys Acta 2012;1826:32553271.Google Scholar
Gosney, J.R., Sissons, M.C., Allibone, R.O.. Neuroendocrine cell populations in normal human lungs: a quantitative study. Thorax 1988;43:878882.Google Scholar
Brouns, I., Van Genechten, J., Hayashi, H., et al. Dual sensory innervation of pulmonary neuroepithelial bodies. Am J Respir Cell Mol Biol 2003;28:275285.Google Scholar
Gould, V.E., Linnoila, R.I., Memoli, V.A., Warren, W.H.. Neuroendocrine components of the bronchopulmonary tract: hyperplasias, dysplasias, and neoplasms. Lab Invest 1983;49:519537.Google Scholar
La Rosa, S., Chiaravalli, A.M., Placidi, C., et al. TTF1 expression in normal lung neuroendocrine cells and related tumors: immunohistochemical study comparing two different monoclonal antibodies. Virchows Arch 2010;457:497507.Google Scholar
Lauweryns, J.M., Peuskens, J.C.. Neuro-epithelial bodies (neuroreceptor or secretory organs?) in human infant bronchial and bronchiolar epithelium. Anat Rec 1972;172:471481.Google Scholar
Hackett, N.R., Butler, M.W., Shaykhiev, R., et al. RNA-Seq quantification of the human small airway epithelium transcriptome. BMC Genomics 2012;13:131.Google Scholar
Franks, T.J., Colby, T.V., Travis, W.D., et al. Resident cellular components of the human lung: current knowledge and goals for research on cell phenotyping and function. Proc Am Thorac Soc 2008;5:763766.Google Scholar
Lauweryns, J.M., Cokelaere, M., Lerut, T., et al. Crosscirculation studies on the influence of hypoxia and hypoxaemia on neuro-epithelial bodies in young rabbits. Cell Tissue Res 1978;193:373386.Google Scholar
Youngson, C., Nurse, C., Yeger, H., et al. Oxygen sensing in airway chemoreceptors. Nature 1993;365:153155.Google Scholar
Min, K.W.. Two different types of carcinoid tumors of the lung: immunohistochemical and ultrastructural investigation and their histogenetic consideration. Ultrastruct Pathol 2013;37:2335.Google Scholar
Domnik, N.J., Cutz, E.. Pulmonary neuroepithelial bodies as airway sensors: putative role in the generation of dyspnea. Curr Opin Pharmacol 2011;11:211217.Google Scholar
Kaufmann, O., Dietel, M.. Expression of thyroid transcription factor-1 in pulmonary and extrapulmonary small cell carcinomas and other neuroendocrine carcinomas of various primary sites. Histopathology 2000;36;415420.Google Scholar
Righi, L., Volante, M., Rapa, I., Scagliotti, G.V., Papotti, M.. Neuroendocrine tumours of the lung. A review of relevant pathological and molecular data. Virch Arch 2007;451S1:S5159.Google Scholar
Gosney, J.R., Williams, I.J., Dodson, A.R., Foster, C.S.. Morphology and antigen expression profile of pulmonary neuroendocrine cells in reactive proliferations and diffuse idiopathic pulmonary neuroendocrine cell hyperplasia (DIPNECH). Histopathology 2011;59:751762.Google Scholar
Lukkarinen, H., Pelkonen, A., Lohi, J., et al. Neuroendocrine cell hyperplasia of infancy: a prospective follow-up of nine children. Arch Dis Child 2013;98:141144.Google Scholar
Popler, J., Gower, W.A., Mogayzel, P.J. Jr., et al. Familial neuroendocrine cell hyperplasia of infancy. Pediatr Pulmonol 2010;45:749755.Google Scholar
Song, H., Yao, E., Lin, C., et al. Functional characterization of pulmonary neuroendocrine cells in lung development, injury, and tumorigenesis. Proc Natl Acad Sci USA 2012;109:1753117536.Google Scholar
Aguayo, S.M., Miller, Y.E., Waldron, J.A. Jr., et al. Idiopathic diffuse hyperplasia of pulmonary neuroendocrine cells and airways disease. N Engl J Med 1992;327:12851288.Google Scholar
Gosney, J.R., Sissons, M.C.J., Allibone, R.O., et al. Pulmonary endocrine cells in chronic bronchitis and emphysema. J Pathol 1989;157:127133.Google Scholar
Corrin, B.. Neuroendocrine neoplasms of the lung. Curr Diagn Pathol 1997;4:239250.Google Scholar
Travis, W.D., Brambilla, E., Muller-Hermelink, H.K., Harris, C.C., eds. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of the Lung, Pleura, Thymus and Heart. Lyon: International Agency for Research on Cancer, 2004.Google Scholar
Nassar, A.A., Jaroszewski, D.E., Helmers, R.A., et al. Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia: a systematic overview. Am J Respir Crit Care Med 2011;184:816.Google Scholar
Davies, S.J., Gosney, J.R., Hansell, D.M., et al. Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia: an under-recognized spectrum of disease. Thorax 2007;62:248252.Google Scholar
Lee, J.S., Brown, K.K., Cool, C., Lynch, D.A.. Diffuse pulmonary neuroendocrine cell hyperplasia: radiologic and clinical features. J Comput Assist Tomogr 2002;26:180184.Google Scholar
Aubry, M.C., Thomas, C.F.J., Jett, J.R., et al. Significance of multiple carcinoid tumors and tumorlets in surgical lung specimens: analysis of 28 patients. Chest 2007;131:16351643.Google Scholar
Miller, R.R., Muller, L.L.. Neuroendocrine hyperplasia and obliterative bronchiolitis in patients with peripheral carcinoid tumours. Am J Surg Pathol 1995;19:653658.Google Scholar
Rossi, G., Cavazza, A., Graziano, P., M. Papotti. mTOR/p70S6K in diffuse idiopathic pulmonary neuroendocrine cell hyperplasia. Am J Respir Crit Care Med 2012;185:341.Google Scholar
Gorshtein, A., Gross, D.J., Barak, D., et al. Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia and the associated lung neuroendocrine tumors. Cancer 2012;118:612619.Google Scholar
Travis, W.D.. Advances in neuroendocrine lung tumors. Ann Oncol 2010;21(suppl 7):vii65vii71.Google Scholar
Zhou, S., Potts, E.N., Cuttitta, F., Foster, W.M., Sunday, M.E.. Gastrin-releasing peptide blockade as a broad-spectrum anti-inflammatory therapy for asthma. Proc Natl Acad Sci USA 2011;108:21002105.Google Scholar
Sternberg, S.S.. Histology for Pathologists. 2nd edn. Philadelphia, PA: Lippincott-Raven, 1997.Google Scholar
Rizvi, S.M., Goodwill, J., Lim, E., et al. The frequency of neuroendocrine cell hyperplasia in patients with pulmonary neuroendocrine tumours and non-neuroendocrine cell carcinomas. Histopathology 2009;55:332337.Google Scholar
Bertino, E.M., Confer, P.D., Colonna, J.E., et al. Pulmonary neuroendocrine/carcinoid tumors. a review article. cancer 2009;115:44344441.Google Scholar
Gatta, G., Ciccolallo, L., Kunkler, I., et al. for the EUROCARE Working Group: survival from rare cancer in adults. Lancet Oncol 2006;7:132140.Google Scholar
Modlin, I.M., Sandor, A.. An analysis of 8305 cases of carcinoid tumors. Cancer 1997;79:813829.Google Scholar
Warren, W.H., Gould, V.E.. Neuroendocrine tumors of the bronchopulmonary tract: a reappraisal of their classification after 20 years. Surg Clin North Am 2002;82:525540.Google Scholar
Morandi, U., Casali, C., Rossi, G.. Bronchial typical carcinoid tumors. Thorac Cardiovasc Surg 2006;18:191198.Google Scholar
Fink, G., Krelbaum, T., Yellin, A., et al. Pulmonary carcinoid: presentation, diagnosis, and outcome in 142 cases in Israel and review of 640 cases from the literature. Chest 2001;119:16471651.Google Scholar
Deb, S.J., Nichols, F.C., Allen, M.S., et al. Pulmonary carcinoid tumors with Cushing’s syndrome: an aggressive variant or not? Ann Thoracic Surg 2005;79:11321136.Google Scholar
Athanassiadi, K., Exarcos, D., Tsagarakis, S., et al. Acromegaly caused by ectopic growth hormone-releasing hormone secretion by a carcinoid bronchial tumor: a rare entity. J Thoracic Cardiovasc Surg 2004;128:631632.Google Scholar
Sachitanandan, N., Harle, R.A., Burgess, J.R.. Bronchopulmonary carcinoid in multiple neuroendocrine neoplasia type 1. Cancer 2005;103:509515.Google Scholar
Chong, S., Lee, K.S., Kim, B.T., et al. Integrated PET/CT of pulmonary neuroendocrine tumors: diagnostic and prognostic implications. Am J Roentgenol 2007:188:12231231.Google Scholar
Krenning, E.P., Kwekkeboom, D.J., Bakker, W.H., et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1] and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nuclear Med 1993;20:716731.Google Scholar
Renshaw, A.A., Haja, J., Lozano, R.L., Wilbur, D.C.. Distinguishing carcinoid tumor from small cell carcinoma of the lung. Arch Pathol Lab Med 2005;129:614618.Google Scholar
Pelosi, G., Rodriguez, J., Viale, G., Rosai, J.. Typical and atypical pulmonary carcinoid tumor overdiagnosed as small-cell carcinoma on biopsy specimens: a major pitfall in the management of lung cancer patients. Am J Surg Pathol 2005;29;179187.Google Scholar
Stoll, L.M., Johnson, M.W., Burroughs, F., Kay, Q.. Cytologic diagnosis and differential diagnosis of lung carcinoid tumors a retrospective study of 63 cases with histologic correlation. Cancer (Cancer Cytopathol) 2010;118:457467.Google Scholar
Travis, W.D., Rush, V., Flieder, D.B., et al. Survival analysis of 200 pulmonary neuroendocrine tumors with clarification of criteria for atypical carcinoid and its separation from typical carcinoid. Am J Surg Pathol 1998;22:934944.Google Scholar
Beasley, M.B.. Immunohistochemistry of pulmonary and pleural neoplasia. Arch Pathol Lab Med 2008;132:10621072.Google Scholar
Moran, C.A., Suster, S., Coppola, D., Wick, M.R.. Neuroendocrine carcinomas of the lung. A critical analysis. Am J Clin Pathol 2009;131:206221.Google Scholar
Hasleton, P., Flieder, D.B., eds. Spencer’s Pathology of the Lung. Cambridge, UK: Cambridge University Press, 2013.Google Scholar
Gaffey, M.J., Mills, S.E., Frierson, H.F. Jr., et al. Pulmonary clear cell carcinoid tumor: another entity in the differential diagnosis of pulmonary clear cell neoplasia. Am J Surg Pathol 1998;22:10201025.Google Scholar
Gal, A.A., Kornstein, M.J., Cohen, C., et al. Neuroendocrine tumors of the thymus: a clinicopathologic and prognostic study. Ann Thorac Surg 2001;72:11791182.Google Scholar
Sklar, J.L., Churg, A., Bensch, K.G.. Oncocytic carcinoid tumor of the lung. Am J Surg Pathol 1980;4:287292.Google Scholar
Nannini, N., Bertolini, F., Cavazza, A., et al. Atypical carcinoid with prominent mucinous stroma: a hitherto unreported variant of pulmonary neuroendocrine tumor. Endocr Pathol 2010;21:120124.Google Scholar
Sheppard, M.N.. Nuclear pleomorphism in typical carcinoid tumour of the lung: problems in frozen section interpretation. Histopathology 1997;30:478480.Google Scholar
Gupta, R., Dastane, A., Mckenna, R.J. Jr., Marchevsky, A.M.. What can we learn from the errors in the frozen section diagnosis of pulmonary carcinoid tumors? An evidence-based approach. Hum Pathol 2009;40:19.Google Scholar
Cavazza, A., Toffanetti, R., Ferrari, G., et al. Combined neoplasia of the lung: description of a case of adenocarcinoma mixed with typical carcinoid. Pathologica 2001;93:216220.Google Scholar
Owens, C.L., Fraire, A.E.. Combined tumors of lung: combined carcinoid tumor and squamous cell carcinoma of lung: expanding the spectrum. Int J Surg Pathol 2011;19:273275.Google Scholar
Wang, B.Y., Gil, J., Burstein, D.E., et al. p63 in pulmonary epithelium, pulmonary squamous neoplasms and other pulmonary tumors. Hum Pathol 2002;33:921926.Google Scholar
Sturm, N., Lantuéjoul, S., Laverriere, M.H., et al. Thyroid transcription factor 1 and cytokeratins 1, 5, 10, 14 (34βE12) expression in basaloid and large-cell neuroendocrine carcinomas of the lung. Hum Pathol 2001;32:918925.Google Scholar
Pelosi, G., Rossi, G., Cavazza, A., et al. Np63 (p40) distribution inside lung cancer: a driver biomarker approach to tumor characterization. Int J Surg Pathol 2013:21:229239.Google Scholar
Barbareschi, M., Frigo, B., Mosca, L., Carboni, N.. Bronchial carcinoids with S-100 positive substentacular cells: a comparative study with gastrointestinal carcinoids, pheochromocytomas and paragangliomas. Pathol Res Pract 1990;186:212222.Google Scholar
Oliveira, A.M., Tazelaar, H.D., Myers, J.L., et al. Thyroid transcription factor-1 distinguishes metastatic pulmonary from well-differentiated neuroendocrine tumors of other sites. Am J Surg Pathol 2001;25: 815819.Google Scholar
Du, E.Z., Goldstraw, P., Zacharias, J., et al. TTF-1 expression is specific for lung primary in typical and atypical carcinoids: TTF-1-positive carcinoids are predominantly in peripheral location. Hum Pathol 2004;35:825831.Google Scholar
Sturm, N., Rossi, G., Lantuéjoul, S., et al. Expression of thyroid transcription factor-1 in the spectrum of neuroendocrine cell proliferations with special interest in carcinoids. Hum Pathol 2002;33:175182.Google Scholar
Arbiser, Z.K., Arbiser, J.L., Cohen, C., Gal, A.A.. Neuroendocrine lung tumors: grade correlates with proliferation but not angiogenesis. Mod Pathol 2001;14:11951199.Google Scholar
Rekhtman, N.. Neuroendocrine tumors of the lung. An update. Arch Pathol Lab Med 2010;134:16281638.Google Scholar
Song, J., Li, M., Tretiakova, M., et al. Expression patterns of PAX5, c-MET, and paxillin in neuroendocrine tumors of the lung. Arch Pathol Lab Med 2010;134:17021705.Google Scholar
Sica, G., Wagner, P.L., Altorki, N., et al. Immunohistochemical expression of estrogen and progesterone receptors in primary pulmonary neuroendocrine tumors. Arch Pathol Lab Med 2008;132:18891895.Google Scholar
Khoor, A., Stahlman, M.T., Johnson, M.J., et al. Forkhead box A2 transcription factor is expressed in all types of neuroendocrine lung tumors. Hum Pathol 2004;35:560564.Google Scholar
Alì, G., Boldrini, L., Fontanini, G.. Expression of p-AKT and p-mTOR in a large series of bronchopulmonary neuroendocrine tumors. Exp Therap Med 2011;2:787792.Google Scholar
Righi, L., Volante, M., Rapa, I., et al. Mammalian target of rapamycin signaling activation patterns in neuroendocrine tumors of the lung. Endocr Relat Cancer 2010;17:977987.Google Scholar
Righi, L., Volante, M., Tavaglione, V., et al. Somatostatin receptor tissue distribution in lung neuroendocrine tumours: a clinicopathologic and immunohistochemical study of 218 “clinically aggressive” cases. Ann Oncol 2010;21:548555.Google Scholar
Michelland, S., Gazzeri, S., Brambilla, E., Robert-Nicoud, M.. Comparison of chromosomal imbalances in neuroendocrine and non-small-cell lung carcinomas. Cancer Genet Cytogenet 1999;114:2230.Google Scholar
Onuki, N., Wistubai, I.I., Travis, W.D., et al. Genetic changes in the spectrum of neuroendocrine lung tumors. Cancer 1999;85:600607.Google Scholar
Debelenko, L.V., Swalwell, J.I., Kelley, M.J., et al. MEN1 gene mutation analysis of high-grade neuroendocrine lung carcinoma. Genes Chromosomes Cancer 2000;28:5865.Google Scholar
D’Adda, T., Pelosi, G., Lagrasta, C., et al. Genetic alterations in combined neuroendocrine neoplasms of the lung. Mod Pathol 2008;21:414422.Google Scholar
Beasley, M.B., Lantuéjoul, S., Abbondanzo, S., et al. The p16/cyclin D1/Rb pathway in neuroendocrine tumors of the lung. Hum Pathol 2003;34:136142.Google Scholar
Brambilla, E., Gazzeri, S., Lantuéjoul, S., et al. p53 mutant immunophenotype and deregulation of p53 transcription pathway (BCL-2, Bax, and Waf1) in precursor bronchial lesions of lung cancer. Clin Cancer Res 1998:4:16091618.Google Scholar
Gouyer, V., Gazzeri, S., Bolon, I., et al. Mechanism of retinoblastoma gene inactivation in the spectrum of neuroendocrine lung tumors. Am J Respir Cell Mol Biol 1998;18:188196.Google Scholar
Zaffaroni, N., De Pollo, D., Villa, R., et al. Differential expression of telomerase activity in neuroendocrine lung tumours: correlation with gene product immunophenotyping. J Pathol 2003;201:127133.Google Scholar
Jones, M.H., Virtanen, C., Honjoh, D., et al. Two prognostically significant subtypes of high-grade lung neuroendocrine tumours independent of small-cell and large cell neuroendocrine carcinomas identified by gene expression profiles. Lancet 2004;363:775781.Google Scholar
Sartori, G., Cavazza, A., Sgambato, A., et al. EGFR and K-RAS mutations along the spectrum of pulmonary epithelial tumors of the lung and elaboration of a combined clinicopathologic and molecular scoring system to predict clinical responsiveness to EGFR inhibitors. Am J Clin Pathol 2009;131:478489.Google Scholar
Nakamura, H., Tsuta, K., Yoshida, A., et al. Aberrant anaplastic lymphoma kinase expression in high-grade pulmonary neuroendocrine carcinoma. J Clin Pathol 2013;66:705707.Google Scholar
Zahel, T., Krysa, S., Herpel, E., et al. Phenotyping of pulmonary carcinoids and a Ki-67 grading approach. Virchows Arch 2012;460:299308.Google Scholar
Pelosi, G., Pasini, F., Fraggetta, F., et al. Independent value of fascin immunoreactivity for predicting lymph node metastases in typical and atypical pulmonary carcinoids. Lung Cancer 2003;42;203213.Google Scholar
Swarts, D., Henfling, M., Van Neste, L., et al. CD44 and OTP are strong prognostic markers for pulmonary carcinoids. Clin Cancer Res 2013;19:21972207.Google Scholar
Oberg, K., Hellman, P., Ferolla, P., et al. for the ESMO Guidelines Working Group. Neuroendocrine bronchial and thymic tumors: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2012;23(suppl 7):vii120vii123.Google Scholar
Fox, M., Van Berkel, V., Bousamra, M. II, et al. Surgical management of pulmonary carcinoid tumors: sublobar resection versus lobectomy. Am J Surg 2013;205:200208.Google Scholar
Gramberg, D., Erikson, B., Wilander, E., et al. Experience in treatment of metastatic pulmonary carcinoid tumor. Ann Oncol 2001;12:13831391.Google Scholar
Travis, W.D., Giroux, D.J., Chansky, K., et al. The IASLC Lung Cancer Staging Project: proposals for the inclusion of broncho-pulmonary carcinoid tumors in the forthcoming (seventh) edition of the TNM Classification for Lung Cancer. J Thorac Oncol 2008;3:12131223.Google Scholar
Beasley, M.B., Thunnissen, F.B., Brambilla, E., et al. Pulmonary atypical carcinoid: predictors of survival in 106 cases. Hum Pathol 2000;31:12551265.Google Scholar
Oliaro, A., Filosso, P.L., Donati, G., Ruffini, E.. Atypical bronchial carcinoid: review of 46 patients. J Cardiovasc Surg 2000;41:131135.Google ScholarPubMed
Rosado de Christenson, M.L., Abbott, G.F., Kirejczyk, W.M., et al. Thoracic carcinoids: radiologic-pathologic correlation. Radiographics 1999;19:707736.Google Scholar
Arrigoni, M.G., Woolner, L.B., Bernatz, P.E.. Atypical carcinoid tumors of the lung. J Thorac Cardiovasc Surg 1972;64:413421.Google Scholar
Travis, W.D., Linnoila, R.I., Tsokos, M.G., et al. Neuroendocrine tumors of the lung with proposed criteria for large-cell neuroendocrine carcinoma: an ultrastructural, immunohistochemical, and flow cytometric study of 35 cases. Am J Surg Pathol 1991;15:529553.CrossRefGoogle ScholarPubMed
Tsuta, K., Rasob, M.G., Kalhora, N., et al. Histologic features of low- and intermediate-grade neuroendocrine carcinoma (typical and atypical carcinoid tumors) of the lung. Lung Cancer 2011;71:3441.Google Scholar
Huang, Q., Muzitansky, A., Mark, E.J.. Pulmonary neuroendocrine carcinomas. a review of 234 cases and a statistical analysis of 50 cases treated at one institution using a simple clinicopathologic classification. Arch Pathol Lab Med 2002;126:545553.Google Scholar
Rugge, M., Fassan, M., Clemente, R., et al. Bronchopulmonary carcinoid: phenotype and long-term outcome in a single-institution series of Italian patients. Clin Cancer Res 2008;14:149154.Google Scholar
Bishop, J.A., Sharma, R., Illei, P.B.. Napsin A and thyroid transcription factor-1 expression in carcinomas of the lung, breast, pancreas, colon, kidney, thyroid, and malignant mesothelioma. Hum Pathol 2010;41:2022.Google Scholar
Pelosi, G., Leon, M.E., Veronesi, G., et al. Decreased immunoreactivity of CD99 is an independent predictor of regional lymph node metastases in pulmonary carcinoid tumors. J Thorac Oncol 2006;1:468477.Google Scholar
Travis, W.D., Gal, A.A., Colby, T.V., et al. Reproducibility of neuroendocrine lung tumor classification. Hum Pathol 1998;29:272279.Google Scholar
Travis, W.D.. Pathology of lung cancer. Clin Chest Med 2011;32:669692.Google Scholar
Johnson, R., Trocha, S., McLawhorn, M., et al. Histology, not lymph node involvement, predicts long-term survival in bronchopulmonary carcinoids. Am Surg 2011;77:16691674.Google Scholar
Travis, W.D., Colby, T.V., Corrin, B., et al. World Health Organization International Histological Classification of Tumors: Histological Typing of Lung and Pleural Tumors, 3rd edn, Berlin: Springer, 1999.CrossRefGoogle Scholar
Iyoda, A., Hiroshima, K., Baba, M., et al. Pulmonary large cell carcinomas with neuroendocrine features are high-grade neuroendocrine tumors. Ann Thorac Surg 2002;73:10491054.Google Scholar
Nasgashio, R., Sato, Y., Matsumoto, T., et al. The balance between the expressions of hASH1 and HES1 differs between large cell neuroendocrine carcinoma and small cell carcinoma of the lung. Lung Cancer 2011;74:405410.Google Scholar
Rossi, G., Bertolini, F., Sartori, G., et al. Primary mixed adenocarcinoma and small cell carcinoma of the appendix: a clinicopathologic, immunohistochemical, and molecular study of a hitherto unreported tumor. Am J Surg Pathol 2004;28:12331239.Google Scholar
Brambilla, E., Lantuéjoul, S., Sturm, N.. Divergent differentiation in neuroendocrine lung tumors. Semin Diagn Pathol 2000;17:138148.Google Scholar
Maleki, Z. Diagnostic issues with cytopathologic interpretation of lung neoplasms displaying high-grade basaloid or neuroendocrine morphology. Diagn Cytopathol 2011;39:159167.Google Scholar
Takei, H., Asamura, H., Maeshima, A., et al. Large cell neuroendocrine carcinoma of the lung: a clinicopathologic study of eighty-seven cases. J Thorac Cardiovasc Surg 2002;124: 285292.Google Scholar
Hiroshima, K., Iyoda, A., Shida, T., et al. Distinction of pulmonary large cell neuroendocrine carcinoma from small cell lung carcinoma: a morphological, immunohistochemical, and molecular analysis. Mod Pathol 2006;19:13581368.Google Scholar
Agoff, S.N., Lamps, L.W., Philip, A.T., et al. Thyroid transcription factor-1 is expressed in extrapulmonary small cell carcinomas but not in other extrapulmonary neuroendocrine tumors. Mod Pathol 2000;13: 238242.Google Scholar
Findeis-Hosey, J.J., Huang, J., Li, F., et al. High-grade neuroendocrine carcinomas of the lung highly express enhancer of zeste homolog 2, but carcinoids do not. Hum Pathol 2011;42:867872.Google Scholar
Sun, L., Sakurai, S., Sano, T., et al. High-grade neuroendocrine carcinoma of the lung: comparative clinicopathological study of large cell neuroendocrine carcinoma and small cell lung carcinoma. Pathol Int 2009;59:522529.Google Scholar
Okubo, C., Minami, Y., Tanaka, R., et al. Analysis of differentially expressed genes in neuroendocrine carcinomas of the lung. J Thorac Oncol 2006;1:780786.CrossRefGoogle ScholarPubMed
Jackson-York, G.L., Davis, B.H., Warren, W.H., et al. Flow cytometric DNA content analysis in neuroendocrine carcinoma of the lung. Correlation with survival and histologic subtype. Cancer 1991;68:374379.Google Scholar
Takeuchi, T., Minami, Y., Iijima, T., et al. Characteristics of loss of heterozygosity in large cell neuroendocrine carcinomas of the lung and small cell lung carcinomas. Pathol Int 2006;56:434439.Google Scholar
Shin, J.H., Kang, S.M., Kim, Y.S., et al. Identification of tumor suppressor loci on the long arm of chromosome 5 in pulmonary large cell neuroendocrine carcinoma. Chest 2005;128:29993003.Google Scholar
Hiroshima, K., Iyoda, A., Shibuya, K., et al. Genetic alterations in early-stage pulmonary large cell neuroendocrine carcinoma. Cancer 2004;100:11901198.Google Scholar
Iyoda, A., Travis, W.D., Sarkaria, I.S., et al. Expression profiling and identification of potential molecular targets for therapy in pulmonary large-cell neuroendocrine carcinoma. Exp Ther Med 2011;2:10411045.Google Scholar
Pelosi, G., Scarpa, A., Veronesi, G., et al. A subset of high-grade pulmonary neuroendocrine carcinomas shows up-regulation of matrix metalloproteinase-7 associated with nuclear beta-catenin immunoreactivity, independent of EGFR and HER2 gene amplification or expression. Virchows Arch 2005;447:969977.Google Scholar
Amin, R.M., Hiroshima, K., Iyoda, A., et al. LKB1 protein expression in neuroendocrine tumors of the lung. Pathol Int 2008;58:8488.Google Scholar
Bago-Horvath, Z., Sieghart, W., Grusch, M., et al. Synergistic effects of erlotinib and everolimus on bronchial carcinoids and large-cell neuroendocrine carcinomas with activated EGFR/AKT/mTOR pathway. Neuroendocrinology 2012;96:228237.Google Scholar
Kaira, K., Ohde, Y., Endo, M., et al. Expression of 4F2hc (CD98) in pulmonary neuroendocrine tumors. Oncol Rep 2011;26:931937.Google ScholarPubMed
Marchetti, A., Felicioni, L., Pelosi, G., et al. Frequent mutations in the neurotrophic tyrosine receptor kinase gene family in large cell neuroendocrine carcinoma of the lung. Hum Mutat 2008;29:609616.Google Scholar
Przygodzki, R.M., Finkelstein, S.D., Langer, J.C., et al. Analysis of p53, K-ras-2, and C-raf-1 in pulmonary neuroendocrine tumors. Correlation with histologic subtype and clinical outcome. Am J Pathol 1996;148:15311541.Google Scholar
Brambilla, E., Negoescu, A., Gazzeri, S., et al. Apoptosis-related factors p53, Bcl2, and Bax in neuroendocrine lung tumors. Am J Pathol 1996;149: 19411952.Google Scholar
Skov, B.G., Holm, B., Erreboe, A., et al. ERCC1 and Ki67 in small cell lung carcinoma and other neuroendocrine tumors of the lung: distribution and impact on survival. J Thorac Oncol 2010;5:453459.Google Scholar
Abedallaa, N., Tremblay, L., Baey, C., et al. Effect of chemotherapy in patients with resected small-cell or large-cell neuroendocrine carcinoma. J Thorac Oncol 2012;7:11791183.Google Scholar
Sarkaria, I.S., Iyoda, A., Roh, M.S., et al. Neoadjuvant and adjuvant chemotherapy in resected pulmonary large cell neuroendocrine carcinomas: a single institution experience. Ann Thorac Surg 2011;92:11801186.Google Scholar
Rossi, G., Cavazza, A., Marchioni, A., et al. Role of chemotherapy and the receptor tyrosine kinases KIT, PDGFRalpha, PDGFRbeta, and Met in large-cell neuroendocrine carcinoma of the lung. J Clin Oncol 2005;23:87748785.CrossRefGoogle Scholar
Le Treut, J., Sault, M.C., Lena, H., et al. Multicentre phase II study of cisplatin-etoposide chemotherapy for advanced large-cell neuroendocrine lung carcinoma: the GFPC 0302 study. Ann Oncol 2013;24:15481552.Google Scholar
Sun, J.M., Ahn, M.J., Ahn, J.S., et al. Chemotherapy for pulmonary large cell neuroendocrine carcinoma: similar to that for small cell lung cancer or non-small cell lung cancer? Lung Cancer 2012;77:365370.Google Scholar
Kenmotsu, Y., Oshita, F., Sugiura, M., et al. Nedaplatin and irinotecan in patients with large-cell neuroendocrine carcinoma of the lung. Anticancer Res 2012;32:14531456.Google Scholar
Shimada, Y., Niho, S., Ishii, G., et al. Clinical features of unresectable high-grade lung neuroendocrine carcinoma diagnosed using biopsy specimens. Lung Cancer 2012;75:368373.Google Scholar
Iyoda, A., Hiroshima, K., Nakatani, Y., Fujisawa, T.. Pulmonary large cell neuroendocrine carcinoma: its place in the spectrum of pulmonary carcinoma. Ann Thorac Surg 2007;84:702707.Google Scholar
Goldstraw, P., ed. Staging Manual in Thoracic Oncology. Denver, CO: International Association for the Study of Lung Cancer, 2009.Google Scholar
Ryuge, S., Sato, Y., Jiang, S.X., et al. Prognostic impact of nestin expression in resected large cell neuroendocrine carcinoma of the lung. Lung Cancer 2012;77:415420.Google Scholar
Usuda, J., Ichinose, S., Ishizumi, T., et al. Klotho is a novel biomarker for good survival in resected large cell neuroendocrine carcinoma of the lung. Lung Cancer 2011;72:355359.Google Scholar
Odate, S., Nakamura, K., Onishi, H., et al. TrkB/BDNF signaling pathway is a potential therapeutic target for pulmonary large cell neuroendocrine carcinoma. Lung Cancer 2013;79:205214.Google Scholar
Krug, L.M., Pietanza, M.C., Kris, M.G., et al. Small cell and other neuroendocrine tumors of the lung. In DeVita, L.T., Rosenberg, S.A., eds. Hellman and Rosenberg’s Cancer, Principle and Practice of Oncology, 9th edn. Philadelphia, PA: Lippincott Williams & Wilkins, 2011:848870.Google Scholar
Siegel, R., Ward, E., Brawley, O., Jemal, A.. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 2011;61:212236.Google Scholar
Berg, J.W., Percy, C., Horn, J.W.. Recent change in the pattern of occurrence of oat cell carcinoma of the lung. In Magnus, K., ed. Trends in Cancer Incidence: Causes and Practical Implications. New York: Hemisphere, 1982:215.Google Scholar
Bensch, K.G., Corrin, B., Pariente, R., Spencer, H.. Oat-cell carcinoma of the lung. Its origin and relationship to bronchial carcinoid. Cancer 1968;22:11631172.Google Scholar
Sutherland, K.D., Proost, N., Brouns, I., et al. Cell of origin of small cell lung cancer: inactivation of Trp53 and Rb1 in distinct cell types of adult mouse lung. Cancer Cell 2011;19:754764.Google Scholar
Calbo, J., van Montfort, E., Proost, N., et al. A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell 2011:19:244256.Google Scholar
Nicholson, S.A., Beasley, M.B., Brambilla, E., et al. Small cell lung carcinoma (SCLC): a clinicopathologic study of 100 cases with surgical specimens. Am J Surg Pathol 2002;26:11841197.Google Scholar
Hirsch, F.R., Matthews, M.J., Aisner, S., et al. Histopathologic classification of small cell lung cancer. Changing concepts and terminology. Cancer 1988;62:973977.Google Scholar
Larsen, J.E., Cascone, T., Gerber, D.E., et al. Targeted therapies for lung cancer: clinical experience and novel agents. Cancer J 2011;17:512527.Google Scholar
Rudin, C.M., Durinck, S., Stawiski, E.W., et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet 2012;44:11111116.Google Scholar
Sequist, L.V., Heist, R.S., Shaw, A.T., et al. Implementing multiplexed genotyping of non-small-cell lung cancers into routine clinical practice. Ann Oncol 2011;22:26162624.Google Scholar
Tatematsu, A., Shimizu, J., Murakami, Y., et al. Epidermal growth factor receptor mutations in small cell lung cancer. Clin Cancer Res 2008;14:60926096.Google Scholar
Song, J., Li, M., Tretiakova, M., et al. Expression patterns of PAX5, c-MET, and paxillin in neuroendocrine tumors of the lung. Arch Pathol Lab Med 2010;134:17021705.Google Scholar
den Bakker, M.A., Willemsen, S., Grunberg, K., et al. Small cell carcinoma of the lung and large cell neuroendocrine carcinoma interobserver variability. Histopathology 2010;56:356363.Google Scholar
Asamura, H., Kameya, T., Matsuno, Y., et al. Neuroendocrine neoplasms of the lung: a prognostic spectrum. J Clin Oncol 2006;24:7076.CrossRefGoogle Scholar
Matsumoto, T., Ryuge, S., Kobayashi, M., et al. Anti-HuC and -HuD autoantibodies are differential sero-diagnostic markers for small cell carcinoma from large cell neuroendocrine carcinoma of the lung. Int J Oncol 2012;40:19571962.Google Scholar
Pelosi, G., Pasini, F., Sonzogni, A., et al. Prognostic implications of neuroendocrine differentiation and hormone production in patients with stage I non-small cell lung carcinoma. Cancer 2003;97:24872497.Google Scholar
Wang, D.Y., Chang, D.B., Kuo, S.H., et al. Carcinoid tumours of the thymus. Thorax 1994;49:357360.Google Scholar
Ruffini, E., Oliaro, A., Novero, D., et al. Neuroendocrine tumors of the thymus. Thorac Surg Clin 2011;21:1323.Google Scholar
Teh, B.T.. Thymic carcinoids in multiple endocrine neoplasia type 1. J Intern Med 1998;43:501504.Google Scholar
Rosai, J., Levine, G., Weber, W.R., Higa, E.. Carcinoid tumors and oat cell carcinomas of the thymus. Pathol Annu 1976;11:201226.Google Scholar
Fukai, I., Masaoka, A., Fujii, Y., et al. Thymic neuroendocrine tumor (thymic carcinoid): a clinicopathologic study in 15 patients. Ann Thorac Surg 1999;67:208211.Google Scholar
Klemm, K.M., Moran, C.A.. Primary neuroendocrine carcinomas of the thymus. Semin Diagn Pathol 1999;16:3241.Google Scholar
Moran, C.A., Suster, S.. Neuroendocrine carcinomas (carcinoid tumor) of the thymus. A clinicopathologic analysis of 80 cases. Am J Clin Pathol 2000;114:100110.Google Scholar
Moran, C.A.. Primary neuroendocrine carcinomas of the mediastinum: review of current criteria for histopathologic diagnosis and classification. Semin Diagn Pathol 2005;22:223229.Google Scholar
Cardillo, G., Rea, F., Lucchi, M., et al. Primary neuroendocrine tumors of the thymus: a multicentric experience of 35 patients. Ann Thorac Surg 2012;94:241246.Google Scholar
Crona, J., Bjorklund, P., Welin, S., et al. Treatment, prognostic markers and survival in thymic neuroendocrine tumors. A study from a single tertiary referral centre. Lung Cancer 2013;79:289293.Google Scholar
Tiffet, O., Nicholson, A.G., Ladas, G., et al. A clinicopathologic study of 12 neuroendocrine tumors arising in the thymus. Chest 2003;124:141146.Google Scholar
Bi, Y., Liu, R., Ye, L., et al. Gene expression profiles of thymic neuroendocrine tumors (carcinoids) with ectopic ACTH syndrome reveal novel molecular mechanism. Endocrine Related Cancer 2009;16:12731282.Google Scholar
Nishino, M., Ashiku, S.K., Kocher, O.N., et al. The thymus: a comprehensive review. Radiographics 2006;26:335348.Google Scholar
Lastoria, S., Vergara, E., Palmieri, G., et al. In vivo detection of malignant thymic masses by indium-III-DTPA-d-Phe1-octreotide scintigraphy. J Nucl Med 1998;39:634639.Google Scholar
Moll, U.M., Lane, B.L., Robert, F., et al. The neuroendocrine thymus. Abundant occurrence of oxytocin-, vasopressin-, and neurophysin-like peptides in epithelial cells. Histochemistry 1988;89:385390.Google Scholar
Rosai, J., Higa, E.. Mediastinal endocrine neoplasm of probable thymic origin related to carcinoid tumor: clinicopathologic study of 8 cases. Cancer 1972;29:10611074.Google Scholar
Moran, C.A., Suster, S.. Thymic neuroendocrine carcinomas with combined features ranging from well-differentiated (carcinoid) to small cell carcinoma. A clinicopathologic and immunohistochemical study of 11 cases. Am J Clin Pathol 2000;113:345350.CrossRefGoogle ScholarPubMed
Goto, K., Kodama, T., Matsuno, Y., et al. Clinicopathologic and DNA cytometric analysis of carcinoid tumors of the thymus. Mod Pathol 2001;14:985994.Google Scholar
Rieker, R.J., Aulmann, S., Penzel, R., et al. Chromosomal imbalances in sporadic neuroendocrine tumours of the thymus. Cancer Letters 2005;223 169174.Google Scholar
Srirajaskanthan, R., Toubanakis, C., Dusmet, M., Caplin, M.E.. A review of thymic tumours. Lung Cancer 2008;60:413.Google Scholar
Wick, M.R., Scheithauer, B.W., Weiland, L.H., Bernatz, P.E.. Primary thymic carcinomas. Am J Surg Pathol 1982:6:613630.Google Scholar
Shoji, T., Fushimi, H., Takeda, S., Tanio, Y.. Thymic large-cell neuroendocrine carcinoma: a disease neglected in the ESMO guideline? Ann Oncol 2011;22:2535.Google Scholar
Hekimgil, M., Hamulu, F., Cagirici, U., et al. Small cell neuroendocrine carcinoma of the thymus complicated by Cushing’s syndrome. Report of a 58-year-old woman with a 3-year history of hypertension. Pathol Res Pract 2001;197:129133.Google Scholar
Truong, L.D., Mody, D.R., Cagle, P.T., et al. Thymic carcinoma. a clinicopathologic study of 13 cases. Am J Surg Pathol 1990;14:151166.Google Scholar
Sensaki, K., Aida, S., Takagi, K., et al. Coexisting undifferentiated thymic carcinoma and thymic carcinoid tumor. Respiration 1993;60:247249.Google Scholar
Pan, C.C., Chen, P.C., Chiang, H.. KIT (CD117) is frequently overexpressed in thymic carcinomas but is absent in thymomas. J Pathol 2004;202:375381.Google Scholar
Wakely, P.E. Jr. Fine needle aspiration in the diagnosis of thymic epithelial neoplasms. Hematol Oncol Clin North Am 2008;22:433442.Google Scholar
Cheuk, W., Kwan, M.Y., Suster, S., Chan, J.K.. Immunostaining for thyroid transcription factor 1 and cytokeratin 20 aids the distinction of small cell carcinoma from Merkel cell carcinoma, but not pulmonary from extrapulmonary small cell carcinomas. Arch Pathol Lab Med 2001;125:228231.Google Scholar

References

Kambham, N, Markowiz, GS, Valeri, AM, Lin, J, D'Agati, VD. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int 2001;59:14981509.Google Scholar
World Health Organization. Global Health Observatory (GHO) data. Obesity. Geneva: World Health Organization, 2014 (http://www.who.int/gho/ncd/risk_factors/obesity_text/en/, accessed 29 September 2015).Google Scholar
Weisinger, JR, Kempson, RL, Eldridge, FL, Swenson, RS. The nephrotic syndrome: a complication of massive obesity. Ann Intern Med 1974;81:440447.Google Scholar
Hsu, CY, McCulloch, CE, Iribarren, C, Darbinian, J, Go, AS. Body mass index and risk for end-stage renal disease. Ann Intern Med 2006;144: 2128.Google Scholar
Vivante, A, Golan, E, Tzur, D, Leiba, A, Tirosh, A, Skorecki, K, et al. Body mass index in 1.2 million adolescents and risk for end-stage renal disease. Arch Intern Med 2012;172:16441650.Google Scholar
Kastarinen, M, Juutilainen, A, Kastarinen, H, Salomaa, V, Karhapää, P, Tuomilehto, J, et al. Risk factors for end-stage renal disease in a community-based population: 26-year follow-up of 25 821 men and women in eastern Finland. J Intern Med 2010;267:612620.Google Scholar
Darouich, S, Goucha, R, Jaafoura, MH, Zekri, S, Ben Maiz, H, Kheder, A. Clinicopathological characteristics of obesity-associated focal segmental glomerulosclerosis. Ultrastruct Pathol 2011;35:176182.Google Scholar
Danilewicz, M, Wagrowska-Danielwicz, M. Morphometric and immunohistochemical insight into focal segmental glomerulosclerosis in obese and non-obese patients. Nefrologia 2009;29:3541.Google Scholar
Chagnac, A, Weinstein, T, Korzets, A, Ramadan, E, Hirsch, J, Gafter, U. Glomerular hemodynamics in severe obesity. Am J Physiol 2000;278:F817F822.Google Scholar
Helal, I, Fick-Brosnahan, GM, Reed-Gitomer, B, Schrier, RW. Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev Nephrol 2012;8:293300.Google Scholar
Durvasula, RV, Shankland, SJ. The renin–angiotensin system in glomerular podocytes: mediator of glomerulosclerosis and link to hypertensive nephropathy. Curr Hypertens Rep 2006;8:132138.Google Scholar
Sharma, AM, Engeli, S, Pischon, T. New developments in mechanisms of obesity-induced hypertension: role of adipose tissue. Curr Hypertens Rep 2001;3:152156.Google Scholar
Gill, PS, Wilcox, CS. NADPH oxidases in the kidney. Antioxid Redox Signal 2006;8:15971607.Google Scholar
Benigni, A, Gagliardini, E, Remuzzi, G. Changes in glomerular perm-selectivity induced by angiotensin II imply podocyte dysfunction and slit diaphragm protein rearrangement. Semin Nephrol 2004;24:131140.Google Scholar
Miceli, I, Burt, D, Tarabra, E, Camussi, G, Perin, PC, Gruden, G. Stretch reduces nephrin expression via an angiotensin II-AT 1-dependent mechanism in human podocytes: effect of rosiglitazone. Am J Physiol Renal Physiol 2009;298:F381390.Google Scholar
Dessapt, C, Baradez, MO, Hayward, A, Dei Cas, A, Thomas, SM, Viberti, G, et al. Mechanical forces and TGFbeta1 reduce podocyte adhesion through alpha3-beta1 integrin downregulation. Nephrol Dial Transplant 2009;24: 26452655.Google Scholar
Chen, S, Lee, JS, Iglesias-de la Cruz, MC, Wang, A, Izquierdo-Lahuerta, A, Gandhi, NK, et al. Angiotensin II stimulates alpha3(IV) collagen production in mouse podocytes via TGF-beta and VEGF signalling: implications for diabetic glomerulopathy. Nephrol Dial Transplant 2005;20:13201328.Google Scholar
Yoshida, S, Nagase, M, Shibata, S, Fujita, T. Podocyte injury induced by albumin overload in vivo and in vitro: Involvement of TGF-beta and p38 MAPK. Nephron Exp Nephrol 2008;108:e57e68.Google Scholar
Nolan, E, O'Meara, YM, Godson, C. Lipid mediators of inflammation in obesity-related glomerulopathy. Nephrol Dial Transplant 2013;28(suppl 4):2229.Google Scholar
Ehrhart-Bornstein, M, Lamounier-Zepter, V, Schraven, A, Langenbach, J, Willenberg, HS, Barthel, A, et al. Human adipocytes secrete mineralcorticoid-releasing factors. Proc Natl Acad Sci USA 2003;100:1421114216.Google Scholar
Shibata, S, Nagase, M, Yoshida, S, Kawachi, H, Fujita, T. Podocyte as the target for aldosterone: roles of oxidative stress and Sgk1. Hypertension 2007;49:355364.Google Scholar
Praga, M, Hernández, E, Herrero, JC, Morales, E, Revilla, Y, Díaz-González, R, et al. Influence of obesity on the appearance of proteinuria and renal insufficiency after unilateral nephrectomy. Kidney Int 2000;58:21112118.Google Scholar
Praga, M, Hernandez, E, Morales, E, Campos, AP, Valero, MA, Martinez, MA, et al. Clinical features and long-term outcome of obesity-associated focal segmental glomerulosclerosis. Nephrol Dial Transplant 2001;16:17901798.Google Scholar
González, E, Gutiérrez, E, Morales, E, Hernández, E, Andres, A, Bello, I, et al. Factors influencing the progression of renal damage in patients with unilateral renal agenesis and remnant kidney. Kidney Int 2005;68:263270.Google Scholar
Tsuboi, N, Utsunomiya, Y, Kanzaki, G, Koike, K, Ikegami, M, Kawamura, T, et al. Low glomerular density with glomerulomegaly in obesity-related glomerulopathy. Clin J Am Soc Nephrol 2012;7:735741.Google Scholar
Silverwood, RJ, Pierce, M, Hardy, R, Sattar, N, Whincup, P, Ferro, C, et al. Low birth weight, later renal function, and the roles of adulthood blood pressure, diabetes, and obesity in a British birth cohort. Kidney Int 2013;84:12621270.Google Scholar
Gurusinghe, S, Brown, RD, Cai, X, Samuel, CS, Ricardo, SD, Thomas, MC, et al. Does a nephron deficit exacerbate the renal and cardiovascular effects of obesity? PLOS ONE 2013;8:e73095.Google Scholar
Goumenous, DS, Kawar, B, El Nahas, M, Conti, S, Wangner, B, Spyropoulos, C, et al. Early histological changes in the kidney of people with morbid obesity. Nephrol Dial Transplant 2009;24:37323738.Google Scholar
Kasiske, BL, Napier, J. Glomerular sclerosis in patients with massive obesity. Am J Nephrol 1985;5:4550.Google Scholar
Cohen, AH. Massive obesity and the kidney. A morphologic and statistical study. Am J Pathol 1975;81:117130.Google Scholar
Chen, HM, Liu, ZH, Zeng, CH, Li, SJ, Wang, QW, Li, LS. Podocyte lesions in patients with obesity-related glomerulopathy. Am J Kidney Dis 2006;48:772779.Google Scholar
Bolignano, D, Zoccali, C. Effects of weight loss on renal function in obese CKD patients: a systematic review. Nephrol Dial Transplant 2013;28(suppl 4):8298.Google Scholar
Weir, MA, Beyea, MM, Gomes, T, Juurlink, DN, Mamdani, M, Blake, PG, et al. Orlistat and acute kidney injury: an analysis of 953 patients. Arch Intern Med 2011;171:703704.Google Scholar
Coutinho, AK, Glancey, GR. Orlistat, an under-recognised cause of progressive renal impairment. Nephrol Dial Transplant 2013;28(suppl 4):172174.Google Scholar
Troxell, ML, Houghton, DC, Hawkey, M, Batiuk, TD, Bennett, WM. Enteric oxalate nephropathy in the renal allograft: an underrecognized complication of bariatric surgery. Am J Transplant 2013;13:501509.Google Scholar
Bonnet, F, Deprele, C, Sassolas, A, Moulin, P, Berthezene, F, Berthoux, F. Excessive body weight as a new independent risk factor for clinical and pathological progression in primary IgA nephritis. Am J Kidney Dis 2001;37:720727.Google Scholar
Griffin, B, Lightstone, L. Renoprotective strategies in lupus nephritis: beyond immunosuppression. Lupus 2013;22:12671273.Google Scholar
Chan, W, Bosch, JA, Jones, D, McTernan, PG, Phillips, AC, Borrows, R. Obesity in kidney transplantation. J Ren Nutr 2014;24:112.Google Scholar
American Diabetes Association. Standards of medical care in diabetes: 2013. Diabetes Care 2013;36:S11S66.Google Scholar
International Diabetes Federation. IDF Diabetes Atlas, 6th edn. Brussels: International Diabetes Federation, 2013 (http://www.idf.org/diabetesatlas, accessed 29 September 2015).Google Scholar
U.S. Renal Data System. USRDS 2013 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2013.Google Scholar
Perkins, BA, Ficociello, LH, Silva, KH, Finkelstein, DM, Warram, JH, Krolewski, AS. Regression of microalbuminuria in type 1 diabetes. N Engl J Med 2003;348:22852293.Google Scholar
Caramori, ML, Fioretto, P, Mauer, M. The need for early predictors of diabetic nephropathy risk: is albumin excretion rate sufficient? Diabetes 2000;49:13991408.Google Scholar
Adler, A, Stevens, R, Manley, S, Bilous, R, Cull, C, Holman, R, UKPDS group. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int 2003;63:225232.Google Scholar
Chronic Kidney Disease Prognosis Consortium, Matsushita, K, van der Velde, M, Astor, BC, Woodward, M, Levey, AS, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 2010;375:20732081.Google Scholar
Drummond, K, Mauer, M. The early natural history of nephropathy in type 1 diabetes. II. Early renal structural changes in type 1 diabetes. Diabetes 2002;51:15801587.Google Scholar
Mac-Moune, LF, Szeto, CC, Choi, PC, Ho, KK, Tang, NL, Chow, KM, et al. Isolated diffuse thickening of glomerular capillary basement membrane: a renal lesion in prediabetes? Mod Pathol 2004;17:15061512.Google Scholar
Amann, K, Benz, K. Structural renal changes in obesity and diabetes. Semin Nephrol 2013;33:2333.Google Scholar
Tervaert, TWC, Mooyaart, AL, Amann, K, Cohen, AH, Cook, HT, Drachenberg, CB, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol 2010;21:556563.Google Scholar
Rossing, P, Hougaard, P, Parving, HH. Risk factors for development of incipient and overt diabetic nephropathy in type 1 diabetic patients: A 10-year prospective observational study. Diabetes Care 2002;25:859.Google Scholar
Najafian, B, Alpers, CE, Fogo, AB. Pathology of human diabetic nephropathy. Contrib Nephrol 2011;170:3647.Google Scholar
Alpers, CE, Hudkins, KL. Mouse models of diabetic nephropathy. Curr Opin Nephrol Hypertens 2011;20:278284.Google Scholar
Kanwar, YS. Sun, L, Xie, P, Liu, FY, Chen, S. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol 2011;6:395423.Google Scholar
Mogensen, CE, Christensen, CK, Vittinghus, E. The stages in diabetic renal disease: with emphasis on the stage of incipient diabetic nephropathy. Diabetes 1983;32(suppl 2):64.Google Scholar
Raparia, K, Usman, I, Kanwar, YS. Renal morphologic lesions reminiscent of diabetic nephropathy. Arch Pathol Lab Med 2013;137:351359.Google Scholar
Olson, JL, Laszik, ZG. Diabetic nephropathy. In Jennette, JC, Olson, JL, Silva, FG, D'Agati, VD, eds. Heptinstall's Pathology of the Kidney, 7th edn. Lippincott Williams & Wilkins, 2015:897950.Google Scholar
Bagby, SP. Diabetic nephropathy and proximal tubule ROS: challenging our glomerulocentricity. Kidney Int 2007;71:11991202.Google Scholar
Hickey, FB, Martin, F. Diabetic kidney disease and immune modulation. Curr Opin Pharmacol 2013;13:602612.Google Scholar
Stout, LC, Kumar, S, Whorton, EB. Insudative lesions: their pathogenesis and association with glomerular obsolescence in diabetes: a dynamic hypothesis based on single views of advancing human diabetic nephropathy. Hum Pathol 1994;25:12131227.Google Scholar
Toyoda, M, Najafian, B, Kim, Y, Caramori, ML, Mauer, M. Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy. Diabetes 2007;56:21552160.Google Scholar
Brito, PL, Fioretto, P, Drummond, K, Kim, Y, Steffes, MW, Basgen, JM, et al. Proximal tubular basement membrane width in insulin-dependent diabetes mellitus. Kidney Int 1998;53:754761.Google Scholar
Bangstad, HJ, Osterby, R, Dahl-Jorgensen, K, Berg, KJ, Hartmann, A, Hanssen, KF. Improvement of blood glucose control in IDDM patients retards the progression of morphological changes in early diabetic nephropathy. Diabetologia 1994;37: 483490.Google Scholar
Schwartz, MM, Lewis, EJ, Leonard-Martin, T, Lewis, JB, Batlle, D. Renal pathology patterns in type II diabetes mellitus: relationship with retinopathy. The Collaborative Study Group. Nephrol Dial Transplant 1998;13:25472552.Google Scholar
Meyer, TW, Bennett, PH, Nelson, RG. Podocyte number predicts long-term urinary albumin excretion in Pima Indians with type II diabetes and microalbuminuria. Diabetologia 1999;42:13411344.Google Scholar
Alsaad, KO, Herzenberg, AM. Distinguishing diabetic nephropathy from other causes of glomerulosclerosis: an update. J Clin Pathol 2007;60:1826.Google Scholar
Iksander, SS, Herrera, GA. Glomerular diseases with organized deposits. In Jennette, JC, Olson, JL, Silva, FG, D'Agati, VD, eds. Heptinstall's Pathology of the Kidney, 7th edn. Lippincott Williams & Wilkins, 2015:10151038.Google Scholar
Gaede, P, Lund-Andersen, H, Parving, HH, Pedersen, O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 2008;358:580591.Google Scholar
Chobanian, AV, Bakris, GL, Black, HR, Cushman, WC, Green, LA, Izzo, JL Jr., et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 2003;289:25602572.Google Scholar
ACE Inhibitors in Diabetic Nephropathy Trialist Group. Should all patients with type 1 diabetes mellitus and microalbuminuria receive angiotensin-converting enzyme inhibitors? A meta-analysis of individual patient data. Ann Intern Med 2001;134:370379.Google Scholar
Lindholm, LH, Ibsen, H, Dahlof, B, Devereux, RB, Beevers, G, de Faire, U, et al. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint Reduction in Hypertension study (LIFE): a randomised trial against atenolol Lancet 2003;359:10041010.Google Scholar
Mauer, M, Zinman, B, Gardiner, R, Suissa, S, Sinaiko, A, Strand, T, et al. Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med 2009;361:4051.Google Scholar
Lewis, EJ, Hunsicker, LG, Clarke, WR, Berl, T, Pohl, MA, Lewis, JB, et al. Renoprotective effect of the angiotensin receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001;345:851860.Google Scholar
Viberti, G, Wheeldon, NM. Microalbuminuria reduction with valsartan in patients with type 2 diabetes mellitus: a blood pressure-independent effect. Circulation 2002;106:672678.Google Scholar
Mogensen, CE. Microalbuminuria and hypertension with focus on type 1 and type 2 diabetes. J Intern Med 2003;254:4566.Google Scholar
Diabetes Control and Complications (DCCT) Research Group. Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial. Kidney Int 1995;47:17031717.Google Scholar
UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998;352:854865.Google Scholar
UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837853.Google Scholar
Grundy, SM, Cleeman, JI, Merz, CN, Brewer, HB Jr., Clark, LT, Hunninghake, DB, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 2004;110:227239.Google Scholar
Fried, LF, Orchard, TJ, Kasiske, BL. Effect of lipid reduction on the progression of renal disease: a meta-analysis. Kidney Int 2001;59:260269.Google Scholar
Kearney, PM, Blackwell, L, Collins, R, Keech, A, Simes, J, Peto, R, Armitage, J, et al. Efficacy of cholesterol lowering therapy in 18 686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 2008;371:117125.Google Scholar
Burney, BO, Kalaitzidis, RG, Bakris, GL. Novel therapies of diabetic nephropathy. Curr Opin Nephrol Hypertens 2009;18:107111.Google Scholar
Gambaro, G, Kinalska, I, Oksa, A, Pont'uch, P, Hertlová, M, Olsovsky, J, et al. Oral sulodexide reduces albuminuria in microalbuminuric and macroalbuminuric type 1 and type 2 diabetic patients: the Di.N.A.S. randomized trial. J Am Soc Nephrol 2002;13:16151625.Google Scholar
Heerspink, HL, Greene, T, Lewis, JB, Raz, I, Rohde, RD, Hunsicker, LG, et al. Effects of sulodexide in patients with type 2 diabetes and persistent albuminuria. Nephrol Dial Transplant 2008;23:19461954.Google Scholar
Tuttle, KR, Bakris, GL, Toto, RD, McGill, JB, Hu, K, Anderson, PW. The effect of ruboxistaurin on nephropathy in type 2 diabetes. Diabetes Care 2005;28:26862690.Google Scholar
Williams, ME, Bolton, WK, Khalifah, RG, Degenhardt, TP, Schotzinger, RJ, McGill, JB. Effects of pyridoxamine in combined phase 2 studies of patients with type 1 and type 2 diabetes and overt nephropathy. Am J Nephrol 2007;27:605614.Google Scholar
Perrin, NE, Torbjornsdotter, TB, Jaremko, GA, Berg, UB. The course of diabetic glomerulopathy in patients with type I diabetes: a 6-year follow-up with serial biopsies. Kidney Int 2006;69:699705.Google Scholar
Heaf, JG, Lokkegaard, H, Larsen, S. The relative prognosis of nodular and diffuse diabetic nephropathy. Scand J Urol Nephrol 2001;35: 233238.Google Scholar
Oh, SW, Kim, S, Na, KY, Chae, DW, Kim, S, Jin, DC, et al. Clinical implications of pathologic diagnosis and classification for diabetic nephropathy. Diabetes Res Clin Pract 2012;97: 418424.Google Scholar
Mise, K, Hoshino, J, Ubara, Y, Sumida, K, Hiramatsu, R, Hasegawa, E, et al. Renal prognosis a long time after renal biopsy on patients with diabetic nephropathy. Nephrol Dial Transplant 2013;0: 110.Google Scholar

References

Bostwick, DG, Cheng, L, eds. Urologic Surgical Pathology, 3rd edn. Philadelphia PA: Elsevier, 2014.Google Scholar
Amin, MB, Grignon, DJ, Srigley, JR, Eble, JN. Urological Pathology. Philadelphia PA: Lippincott Williams & Wilkins, 2013.Google Scholar
Zhou, M, Magi-Galluzzi, C,eds. Genitourinary Pathology, 2nd edn. Philadelphia, PA: Elsevier-Saunders, 2015.Google Scholar
Eble, JN, Sauter, G, Epstein, JI, Sesterhenn, IA, eds. World Health Organization Classification of Tumours of the Urinary System and Male Genital Organs. Lyon: International Agency for Research on Cancer, 2004.Google Scholar
Snell, RS. Clinical Anatomy by Regions, 9th edn. Philadelphia PA: Lippincott Williams & Watkins, 2012.Google Scholar
Sosnik, H. Studies of the participation of the tunica albuginea and rete testis (TA and RT) in the quantitative structure of human testis. Gegenbaurs Morphol Jahrb 1985;131:347356.Google Scholar
Trainer, TD. Histology of the normal testis. Am J Surg Pathol 1987;11:797809.Google Scholar
Lovell-Badge, R, Robertson, E. XY female mice resulting from a heritable mutation in the primary testis determining gene, Tdy. Development 1990;109:635646.Google Scholar
Gubbay, J, Collignon, J, Koopman, P, Capel, B, Economou, A, Munsterberg, A, Vivian, N, Goodfellow, P, Lovell-Badge, R. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of the novel family of embryonically expressed genes. Nature 1990;346:245250.Google Scholar
Josso, N, Rey, R, Picard, JY. Testicular anti-Müllerian hormine: clinical applications in DSD. Semin Reprod Med 2012;30:364373.Google Scholar
McClelland, K, Bowles, J, Koopman, P. Male sex determination: insights into molecular mechanisms. Asian J Androl 2012;14:164171.Google Scholar
Sadler, TW. Langmans Essential Medical Embryology, 12th edn. Philadelphia PA: Lippincott-Williams, 2004.Google Scholar
Nistal, M, Paniagua, R, Gonzalez-Peramato, P. Nonneoplastic diseases of the testis. In Bostwick, DG, Cheng, L, eds. Urologic Surgical Pathology, 3rd edn. Philadelphia PA: Elsevier, 2014:560735.Google Scholar
O'Shaughnessy, PJ, Baker, PJ, Johnston, H. The foetal Leydig cell: differentiation, function and regulation. Int J Androl 2006;29:9095.Google Scholar
Capel, B, Albrecht, KH, Washburn, LL, Eicher, EM. Migration of mesonephric cells into the mammalian gonad depends on Sry. Mech Dev 1999;84:127131.Google Scholar
Bostwick, DG, Pacelli, A. The male reproductive system. In Kalman, K, Asa, SL, eds. Functional Endocrine Pathology, 2nd edn. Oxford: Blackwell, 1998:637663.Google Scholar
Rey, RA, Grinspon, RP. Normal male sexual differentiation and aetiology of disorders of sexual development. Best Pract Res Clin Endocrinol Metab 2011;25: 221238.Google Scholar
Catlin, EA, Powell, SM, Manganaro, TF. Sex specific fetal lung development and mullerian inhibiting substance. Am Rev Respir Dis 1990;141:466470.Google Scholar
Josso, N, Belville, C, di Clemente, N, Picard, JY. AMH and AMH receptor defects in persistent müllerian duct syndrome. Hum Reprod Update 2005;11:351356.Google Scholar
Foresta, C, Zuccarello, D, Garoll, A, Ferlin, A. Role of hormones, genes and environment in human cryptorchidism. Endocr Rev 2008;29:560580.Google Scholar
Orth, JM. The role of follicle stimulating hormone in controlling Sertoli cell proliferation in testes of fetal rats. Endocrinology 1984;115:12481255.Google Scholar
Woodhouse, CR. Undescended testes. In Woodhouse, CR, ed. Longterm Pediatric Urology. Oxford: Blackwell Scientific, 1991:167175.Google Scholar
Bay, K, Main, KM, Toppari, J, Skakkebaek, NE. Testicular decent: INSL3, testosterone, genes and the intrauterine milieu. Nat Rev Urol 2011;8:187196.Google Scholar
Hughes, IA, Acerini, CL. Factors controlling testis descent. Eur J Endocrinol 2008;159(suppl 1):S75S82.Google Scholar
Svechnikov, Izzo, G, Landreh, L, Weisser, J, Soder, O. Endocrine disruptors and Leydig cell function. J Biomed Biotechnol 2010;pii:684504.Google Scholar
Waters, BL, Trainer, TD. Development of the human fetal testis. Pediatr Pathol Lab Med 1996;16:923.Google Scholar
Lennox, B, Ahmad, RN, Mack, WS. A method for determining the relative total length of the tubules in the testis. J Pathol 1970;102:229238.Google Scholar
Chemes, HE, Dym, M, Raj, HG. Hormonal regulation of Sertoli cell differentiation. Biol Reprod 1979;21:251262.CrossRefGoogle ScholarPubMed
Pelletier, RM. The blood–testis barrier: the junctional permeability, the proteins and the lipids. Prog Histochem Cytochem 2011;46:49127.Google Scholar
Josso, N, Picard, JY, Rey, R, Clemente, N. Testicular anti-Mullerian hormone: history, genetics, regulation and clinical applications. Pediatr Endocrinol Rev 2006;3:347358.Google ScholarPubMed
Hotaling, JM, Patel, Z. Male endocrine dysfunction. Urol Clin North Am 2014;41:3953.Google Scholar
Trainer, TD. Testis and excretory duct system. In Sternberg, S, ed. Histology for Pathologists, 2nd edn. Philadelphia: Lippincott-Raven, 1997:10191033.Google Scholar
Johnson, L, Petty, CS, Neaves, WB. Age-related variations in seminiferous tubules in men. A stereologic evaluation. J Androl 1986;7:316322.Google Scholar
Thonneau, P, Bujan, L, Multigner, L, Mieusset, R. Occupational heat exposure and male fertility: a review. Hum Reprod 1998;13:21222125.Google Scholar
Dinges, HP, Zatloukal, K, Schmid, C, Mair, S, Wirnsberger, G. Co-expression of cytokeratin and vimentin filaments in rete testis and epididymis: an immunohistochemical study. Virchows Arch A Pathol Anat Histopathol 1991;418:119127.Google Scholar
Hinton, BT, Galdamez, MM, Sutherland, A, Bomgardner, D, Xu, B, Abdel-Fattah, R, Yang, L. How do you get six meters of epididymis inside a human scrotum? J Androl 2011;32:558564.Google Scholar
Berkowitz, GS, Lapinski, RH, Dolgin, SE, Gazella, JG, Bodian, CA, Holzman, IR. Prevalence and natural history of cryptorchidism. Pediatrics 1993;92:44.Google Scholar
Gill, B, Kogan, S. Cryptorchidism: current concepts. Pediatr Clin North Am 1997;44:12111227.Google Scholar
Lip, SZ, Murchison, LE, Cullis, PS, Govan, L, Carachi, R. A meta-analysis of the risk of boys with isolated cryptorchidism developing testicular cancer in later life. Arch Dis Child 2013;98:2026.Google Scholar
Lee, PA, O'Leary, LA, Songer, NJ, Coughlin, MT, Bellinger, MF, LaPorte, RE. Paternity after bilateral cryptorchidism: a controlled study. Arch Pediatr Adolesc Med 1997;151:260263.Google Scholar
Lee, PA, O'Leary, LA, Songer, N, Coughlin, MT, Bellinger, MF, LaPorte, RE. Paternity after unilateral cryptorchidism. Pediatrics 1996;98:676679.Google Scholar
Kollin, C, Stukenborg, JB, Nurmio, M, Sundqvist, E, Gustafsson, T, Soder, O, Toppari, J, Norderskjold, A, Ritzen, EM. Boys with undescended testes: endocrine, volumetric and morphometric studies on testicular function before and after orchidopexy at nine months or three years of age. J Clin Endocrinol Metab 2012;97:45884595.Google Scholar
Rey, RA. Early orchiopexy to prevent germ cell loss during infancy in congenital cryptorchidism. J Clin Endocrinol Metab 2012;97:43584361.Google Scholar
Kraft, KH, Canning, DA, Snyder, HM 3rd, Kolon, TF. Undescended testis histology correlation with adult hormone levels and semen analysis. J Urol 2012;188(suppl):14291435.Google Scholar
Magi-Galluzzi, C, Levin, HS. Non-neoplastic diseases of the testis. In Zhou, M, Magi-Galluzzi, C, eds. Genitourinary Pathology, 2nd edn. Philadelphia, PA: Elsevier-Saunders, 2015:550559.Google Scholar
Olana Grasa, I, Llarena Ibarguren, R, Garcia-Olaverri Rodriguez, J, et al. Polyorchidism. Arch Esp Urol 2009;62:5962.Google Scholar
Konig, MP. Findings: small testicles. Schweiz Med Wochenschr 1987;117:731735.Google Scholar
Nistal, M, Gonzalez-Peramato, P, Paniagua, R. Congenital Leydig cell hyperplasia. Histopathology 1988;12:307317.Google Scholar
Turner, G, Eastman, C, Casey, J, McLeay, A, Procopis, P, Turner, B. X-linked mental retardation linked with macro orchidism. J Med Genet 1975;12:367371.Google Scholar
Ruvalcaba, RHA, Myhre, SA, Roosen-Runge, EC, Beckwith, JB. X-linked mental deficiency megalotestes syndrome. JAMA 1977;238:16461650.Google Scholar
Pirgon, O, Dundar, BN. Vanishing testes: a literature review. J Clin Res Pediatr Endocrinol 2012;4:116120.Google Scholar
Lee, PA, Houk, CP, Faisal Ahmed, S, Hughes, IA. Consensus statement on management of intersex disorders. Pediatrics 2006, 118:e488.Google Scholar
Sohval, AR. Hermaphroditism with atypical or mixed gonadal dysgenesis. Am J Med 1964;36:281292.Google Scholar
Swyer, GIM, Phil, D. Male pseudohermaphroditism: a hitherto undescribed form. Br Med J 1955;2:709712.Google Scholar
Hawkins, JR. Mutational analysis of SRY in XY females. Hum Mutat 1993;2:347350.Google Scholar
Rajfer, J, Mendelsohn, G, Arnheim, J, Jeffs, RD, Walsh, PC. Dysgenetic male pseudohermaphroditism. J Urol 1978;119:525527.Google Scholar
Looijenga, LH, Hersmus, R, de Leeuw, BH, Stoop, H, Cools, M, Oosterhuis, JW, Drop, SL, Wolffenbuttel, KP. Gonadal tumours and DSD. Best Pract Res Clin Endocrinol Metab 2010;24:291310.Google Scholar
Kersemaekers AM Honecker, F, Stoop, H, Cools, M, Molier, M, Wolffenbuttel, K, Bokemeyer, C, Li, Y, Lau, YF, Oosterhuis, JW, Looijenga, LH. Identification of germ cells at risk for neoplastic transformation in gonadoblastoma: an immunohistochemical study for OCT3/4 and TSPY. Hum Pathol 2005;36:512521.Google Scholar
Palma, I, Garibay, N, Pena-Yolanda, R, Contreras, A, Raya, A, Dominguez, C, Romero, M, Aristi, G, Queipo, G. Utility of OCT 3/4, TSPY and β-catenin as biological markers for gonadoblastoma formation and malignant germ cell tumour development in dysgenetic gonads. Dis Markers 2013;34:419424.Google Scholar
Van Niekirk, WA, Retief, RA. The gonads of human true hermaphrodites. Hum Genet 1981;58:117122.Google Scholar
Krob, G, Braun, A, Kuhnle, U. True hermaphroditism: geographical distribution, clinical findings, chromosomes and gonadal histology. Eur J Pediatr 1994;153:210.Google Scholar
Matsui, F, Shimada, K, Matsumoto, F, Itesako, T, Nara, K, Ida, S, Nakayama, M. Long-term outcome of ovotesticular disorder of sex development: A single center experience. Int J Urol 2011;18:231236.Google Scholar
Verkauscas, G, Jaubert, F, Lortat-Jacob, S, Malan, V, Thibaud, E, Nihoul-Fekete, C. The long term followup of 33 cases of true hermaphroditism: a 40 year experience with conservative gonadal surgery. J Urol 2007;177:726731.Google Scholar
Belville, C, Marechal, JD, Pennetier, S, Carmillo, P, Masgrau, L, Messika-Zeitoun, L, Galey, J, Machado, G, Treton, D, Gonzales, J, Picard, JY, Josso, N, Cate, RL, di Clemente, N. Natural mutations of the anti- müllerian type 2 receptor found in persistent müllerian duct syndrome affect ligand binding, signal transduction and cellular transport. Hum Mol Genet 2009;18:30023013.Google Scholar
Berthezene, F, Forest, MG, Grimaud, JA, Claustrat, B, Mornex, R. Leydig cell agenesis: a cause of male pseudohermaphroditism. N Engl J Med 1976;295:969972.Google Scholar
Brown, DM, Markland, C, Dehner, LP. Leydig cell hypoplasia: a cause of male pseudohermaphroditism. J Clin Endocrinol Metab 1978;45:17.Google Scholar
Perez-Palacios, G, Scaglia, HE, Kofman Alfaro, S, Saavedra, D, Ochoa, S, Larraza, O, Perez, AE. Inherited male pseudohermaphroditism due to gonadotropin unresponsiveness. Acta Endocrinol (Copenh) 1981;98:148155.Google Scholar
Imperato-McGinley, J, Guerrero, I, Gautier, T, Peterson, RE. Steroid 5 alpha-reductase deficiency in man: an inherited form of male pseudohermaphroditism. Science 1974;186:12131215.Google Scholar
Peterson, RE, Imperato-McGinley, J, Gautier, T, Sturla, E. Male pseudohermaphroditism due to steroid 5 alpha-reductase deficiency. Am J Med 1977;62:170191.Google Scholar
Quigley, CA, De Bellis, A, Marschke, KB, el-Awady, MK, Wilson, EM, French, FS. Androgen receptor defects: historical, clinical and molecular perspectives. Endocr Rev 1995;16:271321.Google Scholar
Hughes, IA, Davies, JD, Bunch, TI, Pasterski, V, Mastroyannopoulou, K, Macdougall, J. Androgen insensitivity syndrome. Lancet 2012, 380:14191428.Google Scholar
Matias, PM, Donner, P, Coelho R Thomaz, M, Peixoto, C, Macedo, S, Otto, N, Joschko, S, Scholz, P, Wegg, A, Bäsler, S, Schäfer, M, Egner, U, Carrondo, MA. Structural evidence for ligand specificity in the binding domain of the human androgen receptor. Implications for pathogenic gene mutations. J Biol Chem 2000;275:2616426171.Google Scholar
Danilovic, DLS, Correa, PHS, Costa, EMF, Melo, KFS, Mendonca, BB, Arnhold, IJP. Height and bone mineral density in androgen insensitivity syndrome with mutations in the androgen receptor gene. Osteoporos Int 2007;18:369374.Google Scholar
Rutgers, JL, Scully, RE. The androgen insensitivity syndrome (testicular feminization): a clinicopathologic study of 43 cases. Int J Gynecol Pathol 1991;10:126144.Google Scholar
Basaria, S. Male hypogonadism. Lancet 2014;383:12501263.Google Scholar
Liu, L, Banks, SM, Barnes, KM, Sherins, RJ. Two-year comparison of peripheral responses to pulsatile gonadotropin releasing hormone and exogenous gonadotropins from the inception of therapy in men with isolated hypogonadotropic hypoganadism. J Clin Endocrinol Metab 1988;67:11401145.Google Scholar
Wikstrom, AM, Dunkel, L. Klinefelter syndrome. Best Pract Res Clin Endocrinol Metab 2011;25:239250.Google Scholar
Colaco, P. Precocious puberty. Indian J Pediatr 1997;64:165175.Google Scholar
Fuqua, JS. Treatment and outcomes of precocious puberty: an update. J Clin Endocrinol Metab 2013;98:21982207.Google Scholar
Reiter, EO, Mauras, N, McCormick, K, Kulshreshtha, B, Amrhein, J, de Luca, F, O'Brien, S, Armstrong, J, Melezinkova, H. Bicalutamide plus anastrozole for the treatment of gonadotropin-independent precocious puberty in boys with testotoxicosis: a phase 2 open label pilot study (BATT). J Pediatr Endocrinol Metab 2010;23:9991099.Google Scholar
Jungwirth, A, Giwercman, A, Tournaye, H Diemer, T, Kopa, Z, Dohle, G, Krausz, C. European association of urology guidelines on male infertility: the 2012 update. Eur Urol 2012;62:324332.Google Scholar
Bachir, BG, Jarvi, K. Infectious inflammatory and immunologic conditions resulting in male infertility. Urol Clin North Am 2014;41:6781.Google Scholar
Hotaling, JM. Genetics of male infertility. Urol Clin North Am 2014;41:117.Google Scholar
Mclaren, JF. Infertility evaluation. Obstet Gynecol Clin North Am 2012;39:453463.Google Scholar
Dohle, GR, Elzanaty, S, van Casteren, NJ. Testicular biopsy: clinical practice and interpretation. Asian J Androl 2012;14:8893.Google Scholar
Johnsen, SG. Testicular biopsy score count-a method for registration of spermatogenesis in human testis: normal values and results in 335 hypogonadal males. Hormones 1970;1:2.Google Scholar
Sesterhenn, IA, Cheville, J, Woodward, PJ, Damjanov, I, Jacobsen, GK, Nistal, M, Paniagua, R, Renshaw, AA. Sex cord/gonadal stromal tumours. In Eble, JN, Sauter, G, Epstein, JI, Sesterhenn, IA, eds. World Health Organization Classification of Tumours of the Urinary System and Male Genital Organs. Lyon: International Agency for Research on Cancer, 2004:250258.Google Scholar
Washecka, R, Dresner, MI, Honda, SA. Testicular tumours in Carney's complex. J Urol 2002;167:12991302.Google Scholar
Young, RH, Koelliker, DD, Scully, RE. Sertoli cell tumours of the testis, not otherwise specified: a clinicopathologic analysis of 60 cases. Am J Surg Pathol 1998;22:709721.Google Scholar
Garrett, JE, Cartwright, PC, Snow, BW, Coffin, CM. Cystic testicular lesions in the pediatric population. J Urol 2000;63:928936.Google Scholar
Metcalfe, PD, Farivar-Mohseni, H, Farhat W McLorie, G, Khoury, A, Bägli, DJ. Pediatric testicular tumours: contemporary incidence and efficacy of testicular preserving surgery. J Urol 2003;170:24122415.Google Scholar
Kratzer, SS, Ulbright, TM, Talerman, A, Srigley, JR, Roth, LM, Wahle, GR, Moussa, M, Stephens, JK, Millos, A, Young, RH. Large cell calcifying Sertoli cell tumor of the testis: contrasting features of six malignant and six benign tumours and a review of the literature. Am J Surg Pathol 1997;21:12711280.Google Scholar
Ye, H, Ulbright, TM. Difficult differential diagnoses in testicular pathology. Arch Pathol Lab Med 2012;136:435446.Google Scholar
Papatsoris, AG, Triantafyllidis, A, Gekas A Karamouzis, MV, Rosenbaum, T. Leydig cell tumor of the testis. New cases and review of the current literature. Tumori 2004;90:422423.Google Scholar
Kim, I, Young, RH, Scully, RE. Leydig cell tumors of the testis. A clinicopathological analysis of 40 cases and review of the literature. Am J Surg Pathol 1985;9:177192.Google Scholar
Wilson, BE, Netzloff, ML. Primary testicular abnormalities causing precocious puberty Leydig cell tumor, Leydig cell hyperplasia and adrenal rest tumor. Ann Clin Lab Sci 1983;13:315320.Google Scholar
Matoska, J, Ondrus, D, Talerman, A. Malignant granulosa cell tumor of the testis associated with gynecomastia and long survival. Cancer 1992;69:17691772.Google Scholar
Young, RH, Lawrence, WD, Scully, RE. Juvenile granulosa cell tumor-another neoplasm associated with abnormal chromosomes and ambiguous genitalia: a report of three cases. Am J Surg Pathol 1985;9:737743.Google Scholar
Hu, A, Arya, M, Muneer, A, Mushtaq, I, Sebire, NJ. Testicular and paratesticular tumours in the prepubertal population. Lancet Oncol 2010;11:476483.Google Scholar
Ulbright, TM, Amin, MB, Young, RH. Atlas of Tumor Pathology, 3rd Series, Fascicle 25: Tumors of the Testis, Adnexa, Spermatic Cord and Scrotum. Washington, DC: Armed Forces Institute of Pathology, 1999.Google Scholar
Renshaw, AA, Gordon, M, Corless, CL. Immunohistochemistry of unclassified sex cord-stromal tumors of the testis with a predominance of spindle cells. Mod Pathol 1997;10:693700.Google Scholar
Wang, WP, Guo, C, Berney, DM, Ulbright, TM, Hansel, DE, Shen, R, Ali, T, Epstein, JI. Primary carcinoid tumors of the testis: a clinicopathologic study of 29 cases. Am J Surg Pathol 2010;34:519524.Google Scholar
Hosking, DH, Bowman, DM, McMorris, SL, Ramsey, EW. Primary carcinoid of the testis with metastasis. J Urol 1981;125:255256.Google Scholar
Tripkov, K. Non-neoplastic disease of the prostate. In Zhou, M, Magi-Galluzzi, C, eds. Genitourinary Pathology, 2nd edn. Philadelphia, PA: Elsevier-Saunders, 2015:168.Google Scholar
Epstein, JI, Netto, G. Gross anatomy and normal histology. In Epstein, JI, Netto, GJ, eds. Biopsy Interpretation of the Prostate, 3rd edn. Philadelphia, PA: Lippincott-Williams, 2002:1321.Google Scholar
Ayala, AG, Ro, JY, Babaian R Troncoso, P, Grignon, DJ. The prostatic capsule: does it exist? Its importance in the staging and treatment of prostatic carcinoma. Am J Surg Pathol 1989;13:2127.Google Scholar
Sung, MT, Eble, JN, Cheng, L. Invasion of fat justifies assignment of stage pT3a in prostatic adenocarcinoma. Pathology 2006;38: 309311.Google Scholar
McNeal, JE. The zonal anatomy of the prostate. Prostate 1981;2:3549.Google Scholar
Lawrentschuk, N, Haider, MA, Daljeet, N, Evans, A, Toi, A, Finelli, A, Trachtenberg, J, Zlotta, A, Fleshner, N. Prostatic evasive anterior tumours: the role of magnetic resonance imaging. BJU Int 2010;105:12311236.Google Scholar
Bostwick, DG, Hull, D, Ma, J, Hossain, D. Nonneoplastic diseases of the prostate. In Bostwick, DG, Cheng, L, eds. Urologic Surgical Pathology, 3rd edn. Philadelphia PA: Elsevier, 2014:381442.Google Scholar
Prins, GS. Molecular signaling pathways that regulate prostate development. Differentiation 2008;76:641659.Google Scholar
Bonkhoff, H, Stein, U, Remberger, K. The proliferative function of basal cells in the normal and hyperplastic human prostate. Prostate 1994;24:114118.Google Scholar
Abrahamsson, PA. Neuroendocrine cells in tumour growth of the prostate. Endocr Relat Cancer 1999;6:503519.Google Scholar
Humphrey, PA, Vollmer, RT. Corpora amylacea in adenocarcinoma of the prostate: prevalence in 100 prostatectomies and clinicopathologic correlations. Surg Pathol 1990;3:389396.Google Scholar
Bostwick, DG. Prostate specific antigen. Current role in diagnostic pathology of prostate cancer. Am J Clin Pathol 1994;102:S31S37.Google Scholar
Epstein, JI, Kuhajda, FP, Lieberman, PH. Prostate specific acid phosphatase immunoreactivity in adenocarcinomas of the urinary bladder. Hum Pathol 1986;17:939942.Google Scholar
Kinoshita, Y, Kuratsukuri, K, Landas, S Imaida, K, Rovito, PM Jr., Wang, CY, Haas, GP. Expression of prostate specific membrane antigen in normal and malignant human tissues. World J Surg 2006;30:628636.Google Scholar
Herawi, M, Parwani, AV, Irie, J, Epstein, JI. Small glandular proliferations on needle biopsies: most common benign mimickers of prostatic adenocarcinoma sent in for expert second opinion. Am J Surg Pathol 2005;29:874880.Google Scholar
Scheble, VJ, Braun, M, Beroukhim R Mermel, CH, Ruiz, C, Wilbertz, T, Stiedl, AC, Petersen, K, Reischl, M, Kuefer, R, Schilling, D, Fend, F, Kristiansen, G, Meyerson, M, Rubin, MA, Bubendorf, L, Perner, S. ERG rearrangement is specific to prostate cancer and does not occur in any other tumour. Mod Pathol 2010;23:10611067.Google Scholar
Wang, W, Epstein, JI. Small cell carcinoma of the prostate. A morphologic and immunohistochemical study of 95 cases. Am J Surg Pathol 1998;32:6571.Google Scholar
Kalos, M, Askaa, J, Hylander, BL Repasky, EA, Cai, F, Vedvick, T, Reed, SG, Wright, GL Jr., Fanger, GR. Prostein expression is highly restricted to normal and malignant prostate tissues. Prostate 2004;60:246256.Google Scholar
Downes, MR, Torlakovic, EE, Aldaoud, N, Zlotta, AR, Evans, AJ, van der Kwast, TH. Diagnostic utility of androgen receptor expression in discriminating poorly differentiated urothelial and prostate carcinoma. J Clin Pathol 2013;66:779786.Google Scholar
Gurel, B, Ali, TZ, Montgomery, EA, Begum, S, Hicks, J, Goggins, M, Eberhart, CG, Clark, DP, Bieberich, CJ, Epstein, JI, De Marzo, AM. NKX3.1 as a marker of prostatic origin in metastatic tumours. Am J Surg Pathol 2010;34:10971105.Google Scholar
Bostwick, DG, Cheng, L, Meiers, I. Neoplasms of the prostate. In Bostwick, DG, Cheng, L, eds. Urologic Surgical Pathology, 3rd edn. Philadelphia PA: Elsevier, 2014:443580.Google Scholar
Marks, LS, Fradet, Y, Deras, IL, Blase, A, Mathis, J, Aubin, SM, Cancio, AT, Desaulniers, M, Ellis, WJ, Rittenhouse, H, Groskopf, J. PCA3 molecular urine assay for prostate cancer in men undergoing repeat biopsy. Urology 2007;69:532.Google Scholar
Ploussard, G, Haese, A, van Poppel, H, Marberger, M, Stenzl, A, Mulders, PF, Huland, H, Bastien, L, Abbou, CC, Remzi, M, Tinzl, M, Feyerabend, S, Stillebroer, AB, Van Gils, MP, Schalken, JA, de La Taille, A. The prostate cancer gene 3 (PCA3) urine test in men with previous negative biopsies: does free to total prostate specific antigen ratio influence the performance of the PCA3 score in predicting positive biopsies. BJU Int 2010;106:1143.Google Scholar
Tomlins, SA, Aubin, SM, Siddiqui, J, Lonigro, RJ, Sefton-Miller, L, Miick, S, Williamsen, S, Hodge, P, Meinke, J, Blase, A, Penabella, Y, Day, JR, Varambally, R, Han, B, Wood, D, Wang, L, Sanda, MG, Rubin, MA, Rhodes, DR, Hollenbeck, B, Sakamoto, K, Silberstein, JL, Fradet, Y, Amberson, JB, Meyers, S, Palanisamy, N, Rittenhouse, H, Wei, JT, Groskopf, J, Chinnaiyan, AM. Urine TMPRSS2:ERG fusion transcript stratifies prostate cancer risk in men with elevated serum PSA. Sci Transl Med 2011;3:94ra72.Google Scholar
Feldman, BJ, Feldman, D. The development of androgen independent prostate cancer. Nat Rev Cancer 2001;1:3445.Google Scholar
Dehm, SM, Tindall, DJ. Molecular regulation of androgen action in prostate cancer. J Cell Biochem 2006;99:333344.Google Scholar
Brinkmann, AO, Blok, LJ, de Ruiter, PE, Doesburg, P, Steketee, K, Berrevoets, CA, Trapman, J. Mechanisms of androgen receptor activation and function. J Steroid Biochem Mol Biol 1999;69:307313.Google Scholar
Ruizeveld de Winter, JA, Trapman, J, Vermey, M, Mulder, E, Zegers, ND, van der Kwast, TH. Androgen receptor expression in human tissues: an immunohistochemical study. J Histochem Cytochem 1991;39:927936.Google Scholar
Kimura, N, Mizokami, A, Onuma, T, Sasano, H, Nagura, H. Immunocytochemical localization of the androgen receptor with polyclonal antibody in paraffin embedded human tissues. J Histochem Cytochem 1993;41:671678.Google Scholar
Bianchini, D, de Bono, JS. Continued targeting of androgen receptor signalling: a rational and efficacious therapeutic strategy in metastatic castrate resistant prostate cancer. Eur J Cancer 2011;47(suppl 3):S189S194.Google Scholar
Powell, SM, Christiaens, V, Voulgaraki, D, Waxman, J, Claessens, F, Bevan, CL. Mechanisms of androgen receptor signalling via steroid receptor coactivator-1 in prostate. Endocrine related Cancer 2004;11:117130.Google Scholar
Bevan, CL, Parker, MG. the role of coactivators in steroid hormone action. Exp Cell Res 1999;253:349356.Google Scholar
Ramsay, AK, Leung, HY. Signalling pathways in prostate carcinogenesis: potentials for molecular targeted therapy. Clin Sci 2009;117:209228.Google Scholar
Lee, DK, Chang, C. Molecular communication between androgen receptor and general transcription machinery. J Steroid Biochem Mol Biol 2003;84:4149.Google Scholar
Culig, Z, Klocker, K, Bartsch, G, Steiner, H, Hobisch, A. Androgen receptors in prostate cancer. J Urol 2003;170:13631369.Google Scholar
McNeal, JE. The pathobiology of nodular hyperplasia. In Bostwick, DG, ed. Pathology of the Prostate. New York: Churchill Livingstone, 1990:3136.Google Scholar
Oelke, M, Bachmann, A, Descazeaud, A, Emberton, M, Gravas, S, Michel, MC, N'dow, J, Nordling, J, de la Rosette, JJ. EAU guidelines on the treatment and follow up of non-neurogenic lower urinary tract symptoms including benign prostatic obstruction. Eur Urol 2013;64:118140.Google Scholar
Siegel, R, Ma, J, Zou, Z, Jemal, A. Cancer statistics, 2014. CA Cancer J Clin 2014;64:929.Google Scholar
Huggins, C, Hodges, CV. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res 1941;1:293297.Google Scholar
Massard, C, Fizazi, K. Targeting continued androgen receptor signaling in prostate cancer. Clin Cancer Res 2011;17:38763883.Google Scholar
Locke, JA, Guns, ES, Lubik, AA, Adomat, HH, Hendy, SC, Wood, CA, Ettinger, SL, Gleave, ME, Nelson, CC. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res 2008;68:64076415.Google Scholar
Attard, G, Reid, AHM, Yap TA Raynaud, F, Dowsett, M, Settatree, S, Barrett, M, Parker, C, Martins, V, Folkerd, E, Clark, J, Cooper, CS, Kaye, SB, Dearnaley, D, Lee, G, de Bono, JS. Phase 1 clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration resistant prostate cancer commonly remains hormone driven. J Clin Oncol 2008;26:45634571.Google Scholar
Chen, CD, Welsbie, DS, Tran, C, Baek, SH, Chen, R, Vessella, R, Rosenfeld, MG, Sawyers, CL. Molecular determinants of resistance to antiandrogen therapy. Nat Med 2004;10:3339.Google Scholar
Hara, T, Miyazaki, J, Araki, H, Yamaoka, M, Kanzaki, N, Kusaka, M, Miyamoto, M. Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome. Cancer Res 2003;63:149153.Google Scholar
Dehm, SM, Schmidt, LJ, Heemers, HV, Vessella, RL, Tindall, DJ. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res 2008;68:54695477.Google Scholar
Guo, Z, Yang, X, Sun, F, Jiang, R, Linn, DE, Chen, H, Chen, H, Kong, X, Melamed, J, Tepper, CG, Kung, HJ, Brodie, AM, Edwards, J, Qiu, Y. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 2009;69:23052313.Google Scholar
Hu, R, Dunn, TA, Wei, S, Isharwal, S, Veltri, RW, Humphreys, E, Han, M, Partin, AW, Vessella, RL, Isaacs, WB, Bova, GS, Luo, J. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone refractory prostate cancer. Cancer Res 2009;69:1622.Google Scholar
Leibowitz-Amit, R, Joshua, AM. Targeting the androgen receptor in the management of castration-resistant prostate cancer: rationale, progress and future directions. Curr Oncol 2012;19:S2231.Google Scholar
Tran, C, Ouk, S, Clegg, NJ, Chen, Y, Watson, PA, Arora, V, Wongvipat, J, Smith-Jones, PM, Yoo, D, Kwon, A, Wasielewska, T, Welsbie, D, Chen, CD, Higano, CS, Beer, TM, Hung, DT, Scher, HI, Jung, ME, Sawyers, CL. Development of a second generation antiandrogen for treatment of advanced prostate cancer. Science 2009;324:787790.Google Scholar
Petraki, CD, Sfikas, CP. Histopathological changes induced by therapies in the benign prostate and prostate adenocarcinoma. Histol Histopathol 2007;1:107118.Google Scholar
Tetu, B. Morphological changes induce by androgen blockade in normal prostate and prostatic carcinoma. Best Prac Res Clin Endo Metab 2008;22:271283.Google Scholar
Vaillancourt, L, Tetu, B, Fradet, Y, Dupont, A, Gornez, J, Cusan, L, Suburu, ER, Diamond, P, Candas, B, Labrie, F. Effect of neoadjuvant endocrine therapy (combined androgen blockade) on normal prostate and prostatic carcinoma: a randomized study. Am J Surg Pathol 1996;20:8693.Google Scholar
Bostwick, DG, Qian, J. Effect of androgen deprivation therapy on prostatic intraepithelial neoplasia. Urology 2001;2(suppl 1):9193.Google Scholar
Evans, AJ, Ryan, P, van der Kwast, TH. Treatment effects in the prostate including those associated with traditional and emerging therapies. Adv Anat Pathol 2011;18:281293.Google Scholar
Weaver, MG, Abdul-Karim, FW, Srigley, JR, Bostwick, DG, Ro, JY, Ayala, AG. Paneth cell-like change of the prostate gland. A histological, immunohistochemical, and electron microscopic study. Am J Surg Pathol 1992;16:6268.Google Scholar
Tamas, EF, Epstein, JI. Prognostic significance of Paneth cell-like neuroendocrine differentiation in adenocarcinomas of the prostate. Am J Surg Pathol 2006;30:980985.Google Scholar
Abrahamsson, PA, Falkmer, S, Falt, K, Grimelius, L. The course of neuroendocrine differentiation in prostatic carcinomas: an immunohistochemical study testing chromogranin A as an “endocrine marker.” Path Res Pract 1989;185:373380.Google Scholar
Burchardt, T, Burchardt, M, Chen MW Cao, Y, de la Taille, A, Shabsigh, A, Hayek, O, Dorai, T, Buttyan, R. Transdifferentiation of prostate cancer cells to a neuroendocrine cell phenotype in vitro and in vivo. J Urol 1999;162:18001805.Google Scholar
Goulet-Salmon, B, Berthe, E, Franc, S, Chanel, S, Galateau-Salle, F, Kottler, M, Mahoudeau, J, Reznik, Y. Prostatic neuroendocrine tumor in multiple neuroendocrine neoplasia Type 2B. J Endocrinol Invest 2004;27:570573.Google Scholar

References

Horseman, ND. Prolactin and mammary gland development. J Mammary Gland Biol Neoplasia 1999;4:7988.Google Scholar
Fields, K, Kulig, E, Lloyd, RV. Detection of prolactin messenger RNA in mammary and other normal and neoplastic tissues by polymerase chain reaction. Lab Invest 1993;68:354360.Google Scholar
Clevenger, CV, Chang, WP, Ngo, W, et al. Expression of prolactin and prolactin receptor in human breast carcinoma. Evidence for an autocrine/paracrine loop. Am J Pathol 1995:695–705.Google Scholar
Yeh, IT, Mies, C. Application of immunohistochemistry to breast lesions. Arch Pathol Lab Med 2008;132:349358.Google Scholar
Bussolati, G, Gugliota, P, Sapino, A, Eusebi, V, Lloyd, RV. Chromogranin-reactive endocrine cells in argyrophilic carcinomas (carcinoids) and normal tissue of the breast. Am J Pathol 1985;120:186192.Google Scholar
Satake, T, Matsuyama, M. Endocrine cells in a normal and non-cancerous breast lesion. Acta Pathol Jpn 1991;41:974978.Google Scholar
Nesland, JM, Lunde, S, Holm, R, Johannessen, JV. Electron microscopy and immunostaining of the normal breast and its benign lesions. A search for neuroendocrine cells. Histol Histopathol 1987;2:7377.Google Scholar
Montuenga, LM, Guembe, L, Burrell, MA, et al. The diffuse endocrine system: from embryogenesis to carcinogenesis. Prog Histochem Cytochem 2003;38:155272.Google Scholar
Ferguson, DJ, Anderson, TJ. Distribution of dense core granules in normal, benign and malignant breast tissue. J Pathol 1985;147:5965.Google Scholar
DeLellis, RA, Dayal, Y, Wolfe, HJ. Carcinoid tumors. Changing concepts and new perspectives. Am J Surg Pathol 1984;8:295300.Google Scholar
Lakhani, SR, Ellis, IO, Schnitt, SJ, Tan, PH, van de Vijver, MJ, eds. World Health Organization Classification of Tumours of the Breast. Lyon: International Agency for Research on Cancer, 2012.Google Scholar
Tavassoli, FA, Eusebi, V. Atlas of Tumor Pathology, 4th Series, Fascicle 6: Tumors of the Mammary Gland. Bethesda, MD: ARP Press, 2009:195200.Google Scholar
Lefort, E, Groussard, O, Bouquet de la, Joliniere, J, Degott, C, Zafrani, B. Spindle cell carcinoma of the neuroendocrine differentiation. A rare entity simulating a benign tumor. Ann Pathol 1999;19:309311.Google Scholar
Di Tommaso, L, Pasquinelli, G, Portincasa, G, Santini, D. Glycogen-rich clear-cell breast carcinoma with neuroendocrine differentiation features. Pathologica 2001;93:676680.Google Scholar
Tsang, WY, Chan, JK. Endocrine ductal carcinoma in situ (E-DCIS) of the breast: a form of low-grade DCIS with distinctive clinicopathologic and biologic characteristics. Am J Surg Pathol 1996;20:921943.Google Scholar
Nassar, H, Qureshi, H, Adsay, NV, Visscher, D. Clinicopathologic analysis of solid papillary carcinoma of the breast and associated invasive carcinomas. Am J Pathol 2006;30:501507.Google Scholar
Cubilla, AL, Woodruf, JM. Primary carcinoid tumor of the breast: a report of eight cases. Am J Surg Pathol 1977;1:283292.Google Scholar
Jundt, G, Schulz, A, Heitz, PU, Osborn, M. Small cell neuroendocrine (oat cell) carcinomas of the male breast. Immunocytocemical and ultrastructural investigations. Virchows Arch A Pathol Anat Histopathol 1984;404:213221.Google Scholar
Wade, PM Jr., Mills, SE, Read, M, Cloud, W, Lambert, MJ 3rd, Smith, RE. Small cell carcinoma (oat cell) carcinoma of the breast. Cancer 1983;52:121125.Google Scholar
Fransis, A, Chatikhine, VA, Chevallier, B, et al. Neuroendocrine primary small cell carcinoma of the breast. Report of a case and review of the literature. Am J Clin Oncolo 1995;18:133138.Google Scholar
Fukunaga, M, Ushigome, S. Small cell (oat cell) carcinoma of the breast. Pathol Int 1998;48:744748.Google Scholar
Lee, AH, The histological diagnosis of metastases to the breast from extramammary malignancies. J Clin Pathol 2007;60;13331341.Google Scholar
Yamashita, T, Shimazaki, H, Aida, S, et al. Primary small cell carcinoma (oat cell) carcinoma of the breast: report of a case and review of the literature. Pathol Int 2000;50:914918.Google Scholar
Lerwill, MF. Current practical applications of diagnostic immunohistochemistry in breast pathology. Am J Surg Pathol 2004;38:10761091.Google Scholar
Kaufmann, O. Dietel, M. Expression of thyroid transcription-1 in pulmonary and extrapulmonary small cell carcinomas and other neuroendocrine carcinomas of various primary sites. Histopathology 2000;36:415420.Google Scholar
Salman, WD. Harrison, JA. Howat, AJ. Small-cell neuroendocrine carcinoma of the breast. J Clin Pathol 2006;59:888.Google Scholar
Papotti, M, Gheradi, G, Eusebi, V, Pagani, A, Bussolati, G. Primary oat cell (neuroendocrine) carcinoma of the breast. Report of four cases. Virchows Arch A Pathol Anat Histopathol 1992;420:103108.Google Scholar
Kinoshita, S, Hirano, A, Komine, K, et al. Primary small-cell neuroendocrine carcinoma of the breast: report of a case. Surg Today 2008;38:734738.Google Scholar
Bigotti, G, Coli, A, Butti, A, del Vecchio, M, Tartaglione, R, Massi, G. Primary small cell neuroendocrine carcinoma of the breast. J Exp Clin Cancer Res 2004;23:691696.Google Scholar
Shin, SJ, DeLellis, RA, Ying, L, et al. Small cell carcinoma of the breast: a clinic-pathological and immunohistochemical study of nine patients. Am J Surg Pathol 2000;24:12311239.Google Scholar
Rasmussen, BB, Rose, C, Thorpe, SM, Andersen, KW, Hou-Jesen, K. Argyrophilic cells in 202 human mucinous breast carcinomas. Relation to histopathologic and clinical factors. Am J Clin Pathol 1985;84:737740.Google Scholar
Fetisso, F, Dubois, MP, Arbeille-Brassart, B, Lansac, J, Jobard, P. Argyrophilic cells in mammary carcinoma. Hum Pathol 1983;14:127134.Google Scholar
Mecca, P, Busam, K. Primary male neuroendocrine adenocarcinoma involving the nipple simulating Merkel cell carcinoma: a diagnostic pitfall. J Cutan Pathol 2008;35:207211.Google Scholar
Coyne, JD, Dervan, PA, Barr, L, Balidam, AD. Mixed apocrine/endocrine ductal carcinoma in situ of the breast coexistent with lobular carcinoma in situ. J Clin Pathol 2001;54:7073.Google Scholar
Spino, A, Righi, L, Cassoni, P, Papotti, M, Gugliotta, P, Bussolati, G. Expression of apocrine differentiation markers in neuroendocrine breast carcinomas of aged women. Mod Pathol 2001;14:678686.Google Scholar
Yaren, A, Kelton, C, Akbulut, M, Teke, Z, Duzcan, E, Erdem, E. Primary neuroendocrine carcinoma of the breast: a case report. Tumori 2007;93:496498.Google Scholar
Hennessy, BT, Gilcreace, MZ, Kim, E, Gonzalez-Angulo, AM. Breast carcinoma with neuroendocrine differentiation and myocardial metastases. Clin Breast Cancer 2007;7:892894.Google Scholar
Nesland, JM, Holm, R, Johannssen, JV. A study different markers for neuroendocrine differentiation in breast carcinomas. Pathol Res Pract 1986;181:524530.Google Scholar
Nesland, JM, Memoli, VA, Holm, R, Gould, VE, Johannessen, JV. Breast carcinomas with neuroendocrine differentiation. Ultrastruct Pathol 1985;8:225240.Google Scholar
Tajima, S, Maeda, I, Kanemaki, Y, et al. Evaluation of CD56 and CD57 immunostainings for discrimination between endocrine ductal carcinoma in situ and intraductal papilloma. Pathol Int 2010;60:459465.Google Scholar
Kawasaki, T, Kondo, T, Nakazawa, T, et al. Is CD56 a specific and reliable neuroendocrine marker for discriminating between endocrine/neuroendocrine ductal carcinoma in situ and intraductal papilloma of the breast? Pathol Int 2011;61:4951.Google Scholar
Tse, GM, Tan, PH, Moriya, T. The role of immunohistochemistry in the differential diagnosis of papillary lesions of the breast. J Clin Pathol 2009;62:407413.Google Scholar
Capella, C, Usellini, L, Papotti, M, Macri, L, Finzi, G, Eusebi, V, Bussolati, G. Ultrastructural features of neuroendocrine differentiated carcinomas of the breast. Ultrastruct Pathol 1990;14:321334.Google Scholar
Kawasaki, T, Nakamura, S, Sakamoto, G, et al. Neuroendocrine ductal carcinoma in situ of the breast: cytological features of 32 cases. Cytopathology 2011;22:4349.Google Scholar
Ng, WK, Poon, CS, Kong, JH. Fine needle aspiration cytology of ductal breast carcinoma with neuroendocrine differentiation. Review of eight cases with histologic correlation. Acta Cytol 2002;46:325331.Google Scholar
Sapino, A, Papotti, M, Pietribiasi, F, Bussolati, G. Diagnostic cytological features of neuroendocrine differentiated carcinoma of the breast. Virchows Arch 1998;433:217222.Google Scholar
Kawasaki, T, Mochizuki, K, Yamauchi, H, et al. High prevalence of neuroendocrine carcinoma in breast lesions detected by the clinical symptom of bloody discharge. Breast 2012;21:652656.Google Scholar
Kawasaki, T, Nakamura, S, Sakamoto, G, et al. Neuroendocrine ductal carcinoma in situ (NE-DCIS) of the breast-comparative clinicopathological study of 20 NE-DCIS cases and 274 non-NE-DCIS cases. Histopathology 2008;53:288298.Google Scholar
Mclntire, M, Siziopikou, K, Patil, J, Gattuso, P. Synchronous metastases to the liver and pancreas from a primary neuroendocrine carcinoma of the breast diagnosed by fine-needle aspiration. Diagn Cytopathol 2008;36:5457.Google Scholar
Paulus, P, Paridaens, R, Mockel, J, et al. Argyropjilic breast carcinoma, single metastasis to the pituitary. Bull Cancer 1990;77:377384.Google Scholar
Ulamec, M, Tomas, D, Peric-Balja, M, Spajic, B, Hes, O, Kruslin, B. Neuroendocrine breast carcinoma metastatic to renal cell carcinoma and ipsilateral gland. Pathol Res Pract 2008;204:851855.Google Scholar
Birsak, CA, Janssen, PJ, van Vroonhoven, CC, Peterse, JL, van der Kwast, TH. Sex steroid receptor expression in “carcinoid” tumours of the breast. Breast Cancer Res Treat 1996:40:243249.Google Scholar
Scopsi, L, Adreola, S, Pilotti, S, et al. Argyrophilia and granin (chromogranin/secretogranin) expression in female breast carcinomas. Their relationship to survival and other disease parameters. Am J Pathol 1992;16:561576.Google Scholar
Makretsov, N, Gilks, CB, Coldman, AJ, Hayes, M, Huntsman, D. Tissue microarray analysis of neuroendocrine differentiation and its prognostic significance in breast cancer. Hum Pathol 2003;34:100108.Google Scholar
Sapino, A, Papotti, M, Rigi, L, Cassoni, P, Chiusa, L, Busolatti, G. Clinical significance of neuroendocrine carcinoma of the breast. Ann Oncol 2001;12:S115117.Google Scholar
Kaneko, H, Sumida, T, Sekiya, M, Toshima, M, Kobayashi, H, Naito, K. A breast carcinoid tumor with special reference to ultrastructural study. Acta Pathol Jpn 1982;32:327332.Google Scholar
Alm, P, Alumets, J, Bak-Jensen, E, Olsson, H. Neuroendocrine differentiation in male breast carcinomas. APMIS 1992;100:720726.Google Scholar
Saigo, PE, Rosen, PP. Mammary carcinoma with “choriocarcinomatous” features. Am J Surg Pathol 1981;5:773778.Google Scholar
Coombes, RC, Eastry, GC, Detre, SI, et al. Secretion of immunoreactive calcitonin by human breast carcinomas. Br Med J 1975;4:197199.Google Scholar
Kaneko, H, Hojo, H, Ishikawa, S, et al. Norepinephrine-producing tumors of bilateral breasts. A case report. Cancer 1978;41:20022007.Google Scholar
Cohle, SD, Tschen, JA, Smith, FE, Lane, M, McGavran, MH. ACTH-secreting carcinoma of the breast. Cancer 1979;43:23702376.Google Scholar
Gianotti Filho, O, Miiji, LN, Vainchenker, M, Gordan, AN. Breast cancer with choriocarcinomatous and neuroendocrine features. Sao Paulo Med J 2001;119:154155.Google Scholar
Honami, H, Sotome, K, Sakamoto, G, et al. Synchronous bilateral neuroendocrine ductal carcinoma in situ. Breast Cancer 2014;21:508513.Google Scholar
Zhang, JY, Chen, WJ. Bilateral primary breast neuroendocrine carcinoma in a young woman: report of a case. Surg Today 2011;41:15751578.Google Scholar
Kawasaki, T, Mochizuki, K, Yamauchi, H, et al. Neuroendocrine cells associated with neuroendocrine carcinoma of the breast: nature and significance. J Clin Pathol 2012;65:699703.Google Scholar
Miura, K, Nasu, H, Ogura, H. Double neuroendocrine ductal carcinomas in situ coexisting with a background of diffuse idiopathic neuroendocrine cell hyperplasia of breast: a case report and hypothesis of neuroendocrine tumor. Pathol Int 2012;62:331334.Google Scholar

References

Fox, H., Sebire, N.. Pathology of the Placenta (Major Problems in Pathology), 3rd edn. Philadelphia PA: Elsevier-Saunders, 2007.Google Scholar
Denker, H.W.. Trophoblast-endometrial interactions at embryo implantation: a cell biological paradox. Trophoblast Res 1990;4: 329.Google Scholar
Aplin, J.D.. Implantation, trophoblast differentiation and haemochorial placentation: mechanistic evidence in vivo and in vitro. J Cell Sci 1991;99: 681692.Google Scholar
Richart, R.. Studies of placental morphogenesis. 1. Radioautographic studies of human placenta utilizing tritiated thymidine. Proc Soc Exp Biol Med 1961;106: 829831.Google Scholar
Galton, M.. DNA content of placental nuclei. J Cell Biol 1962;13: 183191.Google Scholar
Weinberg, P.C., Cameron, I.L., Parmley, T., et al. Gestatonal age and placental cellular replication. Obstet Gynecol 1970;36: 692696.Google Scholar
Geier, G., Schuhmann, R., Kraus, H.. Regional unterschiedliche Zellproliferation innerhalb der Plazentone reifer menschlicher Plazenten: autoradiographische Untersuchungen. Arch Gynakol 1975;218: 3137.Google Scholar
Tedde, G., Tedde Piras, A.. Mitotic index of the Langhans cells in the normal human placenta from the early stages of pregnancy to the term. Acta Anat 1978;100: 114119.Google Scholar
Kaufmann, P., Nagl, W., Fuhrmann, B.. Die funktionelle Bedeutung der Langhanszellen der menschlichen Placenter. Anat Anz 1983;77: 435436.Google Scholar
Arnholdt, H., Meisel, F., Fandrey, K., Lohrs, U.. Proliferation of villous trophoblast of the human placenta in normal and abnormal pregnancies. Virchows Arch B Cell Pathol Incl Mol Pathol 1991;60: 365372.Google Scholar
Carter, J.E.. Morphologic evidence of syncytial formation from the cytotrophoblastic cells. Obstet Gynecol 1964;23: 647656.Google Scholar
Enders, A.C.. Formation of syncytium from cytotrophoblast in the human placenta. Obstet Gynecol 1965;25: 378386.Google Scholar
Terzakis, J.A.. The ultrastructure of normal human first trimester placenta. J Ultrastruct Res 1963;9: 268284.Google Scholar
Tighe, J.R., Garrod, P.R., Curran, R.C.. The trophoblast of the human chorionic villus. J Pathol Bacteriol 1967;93: 559567.Google Scholar
Contractor, S.F., Banks, R.W., Jones, C.J.P., et al. A possible role for placental lysosomes in the formation of villous syncytiotrophoblast. Cell Tissue Res 1977;178: 411419.Google Scholar
Hustin, J., Schaaps, J.P., Lambotte, R.. Anatomical studies of the utero-placental vascularization in the first trimester of pregnancy. Trophoblast Res 1988;3: 4960.Google Scholar
Schaaps, J.P., Hustin, J.. In vivo aspects of the materno-trophoblastic border during the first trimester of gestation. Trophoblast Res 1988;3: 3948.Google Scholar
Jauniaux, E., Jurkovic, D., Campbell, S.. Current topic: in vivo investigation of the placental circulation by Doppler echography. Placenta 1995;16: 323331.Google Scholar
Hustin, J.. Vascular physiology and pathophysiology of early pregnancy. In Bourne, T.H., Jauniaux, E., Jurkovic, D., eds. Transvaginal Colour Doppler. Berlin: Springer, 1995: 4756.Google Scholar
Jauniaux, E., Gulbis, B., Burton, G.J.. The human first trimester gestational sac limits rather than facilitates oxygen transfer to the foetus-a review. Placenta 2003;24: S86S93.Google Scholar
Burton, G.J., Hempstock, J., Jauniaux, E.. Nutrition of the human fetus during the first trimester: review. Placenta 2001;22(suppl A): S70S77.Google Scholar
Boyd, J.D., Hamilton, W.J.. The Human Placenta. Cambridge, UK: Heffer, 1970.Google Scholar
Robertson, W.B., Warner, B.. The ultrastructure of the human placental bed. J Pathol 1974;112: 203211.Google Scholar
Hamilton, W.J., Boyd, J.D.. Trophoblast in human uteroplacental arteries. Nature 1966;212: 906908.Google Scholar
Harris, J.W.S., Ramsey, E.M.. The morphology of human uteroplacental vasculature. Contrib Embryol 1966;38: 4358.Google Scholar
Robertson, W.B., Brosens, I., Dixon, G.. Uteroplacental vascular pathology. Eur J Obstet Gynecol Reprod Biol 1975;5: 4765.Google Scholar
Castellucci, M., Scheper, M., Scheffen, W.E., et al. The development of the human placental villous tree. Anat Embryol 1990;181: 117128.Google Scholar
Ramsey, E.M.. Circulation in the placenta. In Villee, C.E., ed. Gestation: Transactions of the 5th Conference. New York: Macey Foundation, 1959: 77107.Google Scholar
Wilkin, P.. Pathologie du Placenta. Paris: Masson et Cie, 1965.Google Scholar
Gruenwald, P.. Maternal blood supply to the conceptus. Eur J Obstet Gynecol Reprod Biol 1975;5: 2330.Google Scholar
Ramsey, E.M.. In discussion of P. Gruenwald. Eur J Obstet Gynecol Reprod Biol 1975;5: 31.Google Scholar
Simpson, R.A., Mayhew, T.M., Barnes, P.R.. From 13 weeks to term, the trophoblast of human placenta grows by the continuous recruitment of new proliferative units: a study of nuclear number using the dissector. Placenta 1992;13: 501512.Google Scholar
Gaunt, M., Ockleford, C.D.. Microinjection of human placenta: 2. Biological application. Placenta 1986;7: 325332.Google Scholar
Voland, J.R., Frisman, D.M., Baird, S.M.. Presence of an endothelial antigen on the syncytiotrophoblast of human chorionic villi: detection by a monoclonal antibody. Am J Reprod Immunol Microbiol 1986;11: 2430.Google Scholar
Myatt, L., Brockman, D.E., Eis, A.L., et al. Immunohistochemical localization of nitric oxide synthase in the human placenta. Placenta 1993;14: 487495.Google Scholar
Getzowa, S., Sadowsky, A.. On the structure of the human placenta with full term and immature foetus, living or dead. J Obstet Gynaecol Commonw 1950;57: 388396.Google Scholar
Panigel, M., Anh, J.N.H.. Ultrastructure des cellules de Hofbauer dans le placenta humain. CR Seances Acad Sci 1964;258: 35563558.Google Scholar
Fox, H.. The incidence and significance of Hofbauer cells in the mature placenta. J Pathol Bacteriol 1967;93: 710717.Google Scholar
Castellucci, M., Zaccheo, D., Pescetto, G.. A three dimensional study of the normal human placental villous core. we. The Hofbauer cells. Cell Tissue Res 1980;210: 235247.Google Scholar
Wetzka, B., Clark, D.E., Charnock-Jones, D.S., et al. Isolation of macrophages (Hofbauer cells) from human term placenta and their prostaglandin E2 and thromboxane production. Hum Reprod 1997;12: 847852.Google Scholar
Hauguel de Mouzon, S., Guerre-Millo, M.. The placenta cytokine network and inflammatory signals. Placenta 2006;27: 794796.Google Scholar
Gosseye, S., van der Veen, F.. HPL-positive infiltrating trophoblastic cells in normal and abnormal pregnancy. Eur J Obstet Gynecol Reprod Biol 1992;44: 8590.Google Scholar
Elliott, M.M., Kardana, A., Lustbader, J.W., et al. Carbohydrate and peptide structure of the alpha- and beta-subunits of human chorionic gonadotropin from normal and aberrant pregnancy and choriocarcinoma. Endocrine 1997;7: 1532.Google Scholar
Cole, L.A.. hCG, the wonder of today's science. Reprod Biol Endocrinol 2012;10: 24.Google Scholar
Rodway, M.R., Rao, Ch. V.. A novel perspective on the role of human chorionic gonadotropin during pregnancy and in gestational trophoblastic disease. Early Pregn Biol Med 1995;1: 176187.Google Scholar
Lacroix, M.C., Guibourdenche, J., Frendo, J.L., et al. Human placental growth hormone: a review. Placenta 2002;23(suppl A): S87S94.Google Scholar
Newbern, D., Freemark, M.. Placental hormones and the control of maternal metabolism and fetal growth. Curr Opin Endocrinol Diabetes Obes 2011;18: 409416.Google Scholar
Nielsen, P.V., Pedersen, H., Kampmann, E.M.. Absence of human placental lactogen in an otherwise uneventful pregnancy. Am J Obstet Gynecol 1979;135: 322326.Google Scholar
Borody, I.B., Carlton, M.A.. Isolated defect in human placental lactogen synthesis in a normal pregnancy. Case report. Br J Obstet Gynaecol 1981;88: 447449.Google Scholar
Alexander, I., Anthony, F., Letchworth, A.T.. Placental protein profile and glucose studies in a normal pregnancy with extremely low levels of human placental lactogen. Case report. Br J Obstet Gynaecol 1982;89: 241243.Google Scholar
Di Renzo, G.C., Angeschia, M.M., Volpe, E.. Deficiency of human placental lactogen in an otherwise normal pregnancy. J Obstet Gynaecol 1982;2: 153154.Google Scholar
Hubert, C., Descombey, D., Mondon, F., et al. Plasma human chorionic somatomammotropin deficiency in a normal pregnancy is the consequence of low concentration of messenger RNA coding for human chorionic somatomammatropin. Am J Obstet Gynecol 1983;147: 676678.Google Scholar
Sideri, M., De Virgiliis, G., Guidobono, F., et al. Immunologically undetectable human placental lactogen in a normal pregnancy. Case report. Br J Obstet Gynaecol 1983;90: 771773.Google Scholar
Wohlk, P., Nexo, E., Jorgensen, E.H., et al. Low or absent serum placental lactogen hormone in 2 normal pregnancies. Ugeskr Laeger 1984;146: 727729.Google Scholar
Barbieri, F., Botticelli, A., Consarino, R., et al. Failure of placenta to produce hPL in an otherwise uneventful pregnancy: a case report. Biol Res Pregnancy Perinatol 1986;7: 131133.Google Scholar
Simon, P., Decoster, C., Brocas, H., et al. Absence of human chorionic somatomammotropin during pregnancy associated with two types of gene deletion. Hum Genet 1986;74: 235238.Google Scholar
Trapp, M., De Wilde, R., Holzgreve, W., et al. A pregnancy without detectable human placental lactogen (hPL). Zentralbl Gynakol 1987;109: 130133.Google Scholar
Rygaard, K., Revol, A., Esquivel-Escobedo, D., et al. Absence of human placental lactogen and placental growth hormone (HGH-V) during pregnancy: PCR analysis of the deletion. Hum Genet 1998;102: 8792.Google Scholar
Riddick, D.H., Luciano, A.A., Kusmik, W.F., et al. Evidence for a nonpituitary source of amniotic fluid prolactin. Fertil Steril 1979;31: 3539.Google Scholar
Josimovich, J.B., Merisko, K., Boccella, L.. Amniotic prolactin control over amniotic and fetal extracellular fluid water and electrolytes in the rhesus monkey. Endocrinology 1977;100: 564570.Google Scholar
Demir, N., Celiloglu, M., Thomassen, P.A., et al. Prolactin and amniotic fluid electrolytes. Acta Obstet Gynecol Scand 1992;71: 197200.Google Scholar
Handwerger, S., Richards, R., Markoff, E.. Autocrine/paracrine regulation of prolactin release from human decidual cells. Ann N Y Acad Sci 1991;622: 111119.Google Scholar
Reis, F.M., Viganò, P., Arnaboldi, E., et al. Expression of prolactin-releasing peptide and its receptor in the human decidua. Mol Hum Reprod 2002;8: 356362.Google Scholar
Handwerger, S., Harman, I., Golander, A., et al. Prolactin release from perifused human decidual explants; effects of decidual prolactin-releasing factor (PRL-RF) and prolactin release-inhibitory factor (PRL-IF). Placenta 1992;13: 5562.Google Scholar
Quagliarello, J., Szlachter, N., Steinetz, B.G., et al. Serial relaxin concentrations in human pregnancy. Am J Obstet Gynecol 1979;135: 4344.Google Scholar
Petraglia, F., Imperatore, A., Challis, J.R.. Neuroendocrine mechanisms in pregnancy and parturition. Endocr Rev 2010;31: 783816.Google Scholar
Clifton, V.L., Read, M.A., Boura, A.L., et al. Adrenocorticotropin causes vasodilatation in the human fetal-placental circulation. J Clin Endocrinol Metab 1996;81: 14061410.Google Scholar
Saeed, B.O., Weightman, D.R., Self, C.H.. Characterization of corticotropin-releasing hormone binding sites in the human placenta. J Recept Signal Transduct Res 1997;17: 647666.Google Scholar
Karteris, E., Grammatopoulos, D., Randeva, H., et al. Signal transduction characteristics of the corticotropin-releasing hormone receptors in the feto-placental unit. J Clin Endocrinol Metab 2000;85: 19891996.Google Scholar
van den Brûle, F., Berndt, S., Simon, N., et al. Trophoblast invasion and placentation: molecular mechanisms and regulation. Chem Immunol Allergy 2005;88: 163180.Google Scholar
McLean, M., Bisits, A., Davies, J., et al. A placental clock controlling the length of human-pregnancy. Nat Med 1995;1: 460463.Google Scholar
Reis, F.M., Fadalti, M., Florio, P., et al. Putative role of placental corticotrophin-releasing factor in the mechanisms of human parturition. J Soc Gynecol Invest 1999;6: 109119.Google Scholar
Fadalti, M., Pezzani, I., Cobellis, L., et al. Placental corticotropin-releasing factor: an update. Ann N Y Acad Sci 2000;900: 8994.Google Scholar
Pepels, P.P.L.M., Spaanderman, M.E.A., Bulten, J., et al. Placental urocortins and CRF in late gestation. Placenta 2009;30: 483490.Google Scholar
Makino, T., Nakazawa, K., Ishii, K., et al. Detection of immunoreactive human placental oxytocin and its contractile effect on the uterine muscle. Endocrinol Jpn 1983;30 : 389395.Google Scholar
Nakazawa, K., Makino, T., Iizuka, R., et al. Immunohistochemical study on oxytocin-like substance in the human placenta. Endocrinol Jpn 1984;31: 763768.Google Scholar
Mitchell, B.F., Chibbar, R.. Synthesis and metabolism of oxytocin in late gestation in human decidua. Adv Exp Med Biol 1995;395: 365380.Google Scholar
Fuchs, A.R., Fuchs, F., Husslein, P., et al. Oxytocin receptors and human parturition: a dual role for oxytocin in the initiation of labor. Science 1982;215: 13961398.Google Scholar
Florio, P., Lombardo, M., Gallo, R., et al. Activin A, corticotropin-releasing factor and prostaglandin F2α increase immunoreactive oxytocin release from cultured human placental cells. Placenta 1996;17: 307311.Google Scholar
Nishimori, K., Young, L.J., Guo, Q., et al. Oxytocin is required for nursing but is not essential for parturition or reproductive behavior. Proc Natl Acad Sci USA 1996;93: 1169911704.Google Scholar
Bajoria, R., Babawale, M.. Ontogeny of endogenous secretion of immunoreactive-thyrotropin releasing hormone by the human placenta. J Clin Endocrinol Metab 1998;83: 41484155.Google Scholar
Ferguson, J.E. 2nd, Gorman, J.V., Bruns, D.E., et al. Abundant expression of parathyroid hormone related peptide protein in human amnion and its association with labor. Proc Natl Acad Sci USA 1992;89: 83848388.Google Scholar
Fraioli, F., Genazzani, A.R.. Human placental β-endorphin. Gynecol Obstet Invest 1980;11: 3744.Google Scholar
Margioris, A.N., Grino, M., Protos, P., et al. Corticotropin-releasing hormone and oxytocin stimulate the release of placental proopiomelanocortin peptides. J Clin Endocrinol Metab 1988;66: 922926.Google Scholar
Goland, R.S., Wardlaw, S.L., Stark, R.I., et al. Human plasma β-endorphin during pregnancy, labor, and delivery. J Clin Endocrinol Metab 1981;52: 7478.Google Scholar
Tan, L., Yu, P.H.. De novo biosynthesis of enkephalins and their homologues in the human placenta. Biochem Biophys Res Commun 1981;98: 752760.Google Scholar
Lemaire, S., Valette, A., Chouinard, L., et al. Purification and identification of multiple forms of dynorphin in human placenta. Neuropeptides 1983;3: 181191.Google Scholar
Valette, A., Desprat, R., Cros, J., et al. Immunoreactive dynorphine in maternal blood, umbilical vein and amniotic fluid. Neuropeptides 1986;7: 145151.Google Scholar
Galán Galán, F., Balbontin, F.C., Cano, R.P., et al. Is there an extrathyroidal source of calcitonin during pregnancy? Acta Endocrinol (Copenh) 1984;105: 266270.Google Scholar
Balabanova, S., Kruse, B., Wolf, A.S.. Calcitonin secretion by human placental tissue. Acta Obstet Gynecol Scand 1987;66: 323326.Google Scholar
Kovacs, C.S.. Bone development in the fetus and neonate: role of the calciotropic hormones. Curr Osteoporos Rep 2011;9: 274283.Google Scholar
Li, H.Y., Shen, J.T., Chang, S.P., et al. Calcitonin promotes outgrowth of trophoblast cells on endometrial epithelial cells: involvement of calcium mobilization and protein kinase C activation. Placenta 2008;29: 2029.Google Scholar
Tsatsaris, V., Tarrade, A., Merviel, P., et al. Calcitonin gene-related peptide (CGRP) and CGRP receptor expression at the human implantation site. J Clin Endocrinol Metab 2002;87: 43834390.Google Scholar
Dong, Y.L., Vegiraju, S., Chauhan, M., et al. Involvement of calcitonin gene-related peptide in control of human fetoplacental vascular tone. Am J Physiol Heart Circ Physiol 2004;286: H230H239.Google Scholar
Dong, Y.L., Reddy, D.M., Green, K.E.. Calcitonin gene-related peptide (CALCA) is a proangiogenic growth factor in the human placental development. Biol Reprod 2007;76: 892899.Google Scholar
Green, K.E., Thota, C., Hankins, G.D., et al. Calcitonin gene-related peptide stimulates human villous trophoblast cell differentiation in vitro. Mol Hum Reprod 2006;12: 443450.Google Scholar
Di Iorio, R., Marinoni, E., Letizia, C., et al. Adrenomedullin production is increased in normal human pregnancy. Eur J Endocrinol 1999;140: 201206.Google Scholar
Jerat, S., DiMarzo, L., Morrish, D.W., et al. Adrenomedullin-induced dilation of human placental arteries is modulated by an endothelium-derived constricting factor. Regul Pept 2008;146: 183188.Google Scholar
Zhang, X., Green, K.E., Yallampalli, C., et al. Adrenomedullin enhances invasion by trophoblast cell lines. Biol Reprod 2005;73: 619626.Google Scholar
Penchalaneni, J., Wimalawansa, S.J., Yallampalli, C.. Adrenomedullin antagonist treatment during early gestation in rats causes fetoplacental growth restriction through apoptosis. Biol Reprod 2004;71: 14751483.Google Scholar
Havemann, D., Balakrishnan, M., Borahay, M., et al. Intermedin/adrenomedullin 2 is associated with implantation and placentation via trophoblast invasion in human pregnancy. J Clin Endocrinol Metab 2013;98: 695703.Google Scholar
Chauhan, M., Yallampalli, U., Dong, Y.L., et al. Expression of adrenomedullin 2 (ADM2)/intermedin (IMD) in human placenta: role in trophoblast invasion and migration. Biol Reprod 2009;81: 777783.Google Scholar
Chauhan, M., Balakrishnan, M., Yallampalli, U., et al. Adrenomedullin 2/intermedin regulates HLA-G in human trophoblasts. Biol Reprod 2011;85: 12321239.Google Scholar
Chauhan, M., Yallampalli, U., Reed, L., et al. Adrenomedullin 2 antagonist infusion to rats during midgestation causes fetoplacental growth restriction through apoptosis. Biol Reprod 2006;75: 940947.Google Scholar
Petraglia, F., Calzà, L., Giardino, L., et al. Identification of immunoreactive neuropeptide-γ in human placenta: localization, secretion, and binding sites. Endocrinology 1989;124: 20162022.Google Scholar
Petraglia, F., Coukos, G., Battaglia, C., et al. 1989b. Plasma and amniotic fluid immunoreactive neuropeptide-Y level changes during pregnancy, labor, and at parturition. J Clin Endocrinol Metab 1989;69: 324328.Google Scholar
Robidoux, J., Simoneau, L., St-Pierre, S., et al. Human syncytiotrophoblast NPY receptors are located on BBM and activate PLC-to-PKC axis. Am J Physiol 1998;274: E502509.Google Scholar
Xiao, Q., Han, X., Arany, E., et al. Human placenta and fetal membranes contain peptide YY1–36 and peptide YY3–36. J Endocrinol 1998;156: 485492.Google Scholar
Brownbill, P., Bell, N.J., Woods, R.J., et al. Neurokinin B is a paracrine vasodilator in the human fetal placental circulation. J Clin Endocrinol Metab 2003;88: 21642170.Google Scholar
Lovell, T.M., Woods, R.J., Butlin, D.J., et al. Identification of a novel mammalian post-translational modification, phosphocholine, on placental secretory polypeptides. J Mol Endocrinol 2007;39: 189198.Google Scholar
Iliodromiti, Z., Antonakopoulos, N., Sifakis, S., et al. Endocrine, paracrine, and autocrine placental mediators in labor. Hormones 2012;11: 397409.Google Scholar
Hassink, S.G., de Lancey, F., Sheslow, D.V., et al. Placental leptin: an important growth factor in intrauterine and neonatal development. Pediatrics 1997;100: 16.Google Scholar
Pérez-Pérez, A., Maymó, J., Gambino, Y., et al. Leptin stimulates protein synthesis-activating translation machinery in human trophoblastic cells. Biol Reprod 2009;81: 826832.Google Scholar
Ge, Y.C., Li, J.N., Ni, X.T., et al. Cross talk between cAMP and p38 MAPK pathways in the induction of leptin by hCG in human placental syncytiotrophoblasts. Reproduction 2011;142: 369375.Google Scholar
Maymó, J.L., Pérez, A.P., Gambino, Y., et al. Review: leptin gene expression in the placenta–regulation of a key hormone in trophoblast proliferation and survival. Placenta 2011;32(suppl 2):S146153.Google Scholar
Fahlbusch, F.B., Ruebner, M., Volkert, G., et al. Corticotrophin-releasing hormone stimulates expression of leptin, 11beta-HSD2 and syncytin-1 in primary human trophoblasts. Reprod Biol Endocrinol 2012;10: 80.Google Scholar
Marzioni, D., Fiore, G., Giordano, A., et al. Placental expression of substance P and vasoactive intestinal peptide: evidence for a local effect on hormone release. J Clin Endocrinol Metab 2005;90: 23782383.Google Scholar
Fraccaroli, L., Alfieri, J., Larocca, L., et al. VIP modulates the pro-inflammatory maternal response, inducing tolerance to trophoblast cells. Br J Pharmacol 2009;156: 116126.Google Scholar
Mandang, S., Manuelpillai, U., Wallace, E.M. Oxidative stress increases placental and endothelial cell activin A secretion. J Endocrinol 2007;192: 485493.Google Scholar
Stoikos, C.J., Salamonsen, L.A., Hannan, N.J., et al. Activin A regulates trophoblast cell adhesive properties: implications for implantation failure in women with endometriosis-associated infertility. Hum Reprod 2010;25: 17671774.Google Scholar
Camolotto, S., Racca, A., Rena, V., et al. Expression and transcriptional regulation of individual pregnancy-specific glycoprotein genes in differentiating trophoblast cells. Placenta 2010;31: 312319.Google Scholar
Fialova, L., Malbohan, I.M.. Pregnancy-associated plasma protein A (PAPP-A): theoretical and clinical aspects. Bratisl Lek Listy 2002;103: 194205.Google Scholar
Folkersen, J., Grudzinskas, J.G., Hindersson, P., et al. Pregnancy-associated plasma protein A: circulating levels during normal pregnancy. Am J Obstet Gynecol 1981;139: 910914.Google Scholar
Palm, M., Basu, S., Larsson, A., et al. A longitudinal study of plasma levels of soluble fms-like tyrosine kinase 1 (sFlt1), placental growth factor (PlGF), sFlt1: PlGF ratio and vascular endothelial growth factor (VEGF-A) in normal pregnancy. Acta Obstet Gynecol Scand 2011;90: 12441251.Google Scholar
Romero, R., Nien, J.K., Espinoza, J., et al. A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble vascular endothelial growth factor receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small for gestational age neonate. J Matern Fetal Neonatal Med 2008;21: 923.Google Scholar
Tuckey, R.C.. Progesterone synthesis by the human placenta. Placenta 2005;26: 273281.Google Scholar
Turnbull, A.C., Patten, P.T., Flint, A.P., et al. Significant fall in progesterone and rise in oestradiol levels in human peripheral plasma before onset of labour. Lancet 1974;303: 101103.Google Scholar
Parker, R.C., Illingworth, D.R., Bissonnette, J., et al. Endocrine changes during pregnancy in a patient with familial hypobetalipoproteinemia. N Engl J Med 1986;314: 557560.Google Scholar
Norman, J.E., Shennan, A., Bennett, P., et al. Trial protocol OPPTIMUM Does progesterone prophylaxis for the prevention of preterm labour improve outcome? BMC Pregn Childbirth 2012;12: 79.Google Scholar
Leslie, K.K., Zuckerman, D.J., Schruefer, J., et al. Oestrogen modulation with parturition in the human placenta. Placenta 1994;15: 7988.Google Scholar
Albrecht, E.D., Pepe, G.J.. Central integrative role of oestrogen in modulating the communication between the placenta and fetus that results in primate fetal-placental development. Placenta 1999;20: 129139.Google Scholar
Taylor, N.F.. Review: placental sulphatase deficiency. J Inherit Metab Dis 1982;5: 164176.Google Scholar
Nakayama, T., Yanaihara, T.. Placental sulphatase deficiency. Contrib Gynecol Obstet 1982;9: 145156.Google Scholar
Bradley, L.A., Canick, J.A., Palomaki, G.E., et al. Undetectable maternal serum estriol levels in the second trimester; risk of perinatal complications associated with placental sulfatase deficiency. Am J Obstet Gynecol 1997;176: 531535.Google Scholar
Cox, P., Evans, C.. Tissue Pathway for Histopathological Examination of the Placenta. London: Royal College of Pathologists, 2011 (http://www.rcpath.org/Resources/RCPath/Migrated%20Resources/Documents/G/G108_TPplacenta_Sept11.pdf, accessed 12 September 2015).Google Scholar
Ganesan, R., Singh, N., McCluggage, W.G.. Standards and Datasets for Reporting Cancers: Dataset for Histological Reporting of Endometrial Cancer. London: Royal College of Pathologists, 2014 (https://www.rcpath.org/Resources/RCPath/Migrated%20Resources/Documents/G/G090_EndometrialDataset_Feb14.pdf, accessed 12 September 2015).Google Scholar
Ngan, H.Y.S., Chan, K.K.L., Tam, K.F.. Gestational trophoblastic disease. TNM Online 2006; DOI: 10.1002/0471463736.tnmp35.pub2.Google Scholar
Bishop, P.W.. Immunohistochemistry Vade Mecum. 2013 (http://www.e-immunohistochemistry.info/ accessed 12 September 2015).Google Scholar
Johnson, P.M., Trenchev, P., Faulk, W.P.. Immunological studies of human placentae. Binding of complexed immunoglobulin by stromal endothelial cells. Clin Exp Immunol 1975;22: 133138.Google Scholar
Honig, A., Rieger, L., Kapp, M., et al. Immunohistochemistry in human placental tissue: pitfalls of antigen detection. J Histochem Cytochem 2005;53: 1413.Google Scholar
Quemelo, P.R., Lima, D.M., da Fonseca, B.A., et al. Detection of parvovirus B19 infection in formalin-fixed and paraffin-embedded placenta and fetal tissues. Rev Inst Med Trop Sao Paulo 2007;49: 103107.Google Scholar
Chard, T.. Placental synthesis. Clin Obstet Gynaecol 1986;13: 447467.Google Scholar
Malone, F.D., Canick, J.A., Ball, R.H., et al. First-trimester or second-trimester screening, or both, for Down's syndrome. N Engl J Med 2005;353: 20012011.Google Scholar
Weinans, M.J., Sancken, U., Pandian, R., et al. Invasive trophoblast antigen (hyperglycosylated human chorionic gonadotropin) as a first-trimester serum marker for Down syndrome. Clin Chem 2005;51: 12761279.Google Scholar
Christiansen, M., Sørensen, T.L., Nørgaard-Pedersen, B.. Human placental lactogen is a first-trimester maternal serum marker of Down syndrome. Prenat Diagn 2007;27: 15.Google Scholar
Heywood, W., Wang, D., Madgett, T.E., et al. The development of a peptide SRM-based tandem mass spectrometry assay for prenatal screening of Down syndrome. J Proteomics 2012;75: 32483257.Google Scholar
Leaños-Miranda, A., Campos-Galicia, I., Ramírez-Valenzuela, K.L., et al. Circulating angiogenic factors and urinary prolactin as predictors of adverse outcomes in women with preeclampsia. Hypertension 2013;61: 11181125.Google Scholar
Smith, G.C., Shah, I., Crossley, J.A., et al. Pregnancy-associated plasma protein A and alpha-fetoprotein and prediction of adverse perinatal outcome. Obstet Gynecol 2006;107: 161166.Google Scholar
Hui, D., Okun, N., Murphy, K., et al. Combinations of maternal serum markers to predict preeclampsia, small for gestational age, and stillbirth: a systematic review. J Obstet Gynaecol Can 2012;34: 142153.Google Scholar
Conde-Agudelo, A., Papageorghiou, A.T., Kennedy, S.H., et al. Novel biomarkers for predicting intrauterine growth restriction: a systematic review and meta-analysis. BJOG 2013;120: 681694.Google Scholar
Akolekar, R., Syngelaki, A., Sarquis, R., et al. Prediction of early, intermediate and late pre-eclampsia from maternal factors, biophysical and biochemical markers at 11–13 weeks. Prenat Diagn 2011;31: 6674.Google Scholar
Poon, L.C., Syngelaki, A., Akolekar, R., et al. Combined screening for preeclampsia and small for gestational age at 11–13 weeks. Fetal Diagn Ther 2013;33: 1627.Google Scholar
Soto-Wright, V., Bernstein, M., Goldstein, D.P., et al. The changing clinical presentation of complete molar pregnancy. Obstet Gynecol 1995;86: 775779.Google Scholar
Lurain, J.R.. Gestational trophoblastic disease I: epidemiology, pathology, clinical presentation and diagnosis of gestational trophoblastic disease, and management of hydatidiform mole. Am J Obstet Gynecol 2010;203: 531539.Google Scholar
Fowler, D.J., Lindsay, I., Seckl, M.J., et al. Routine pre-evacuation ultrasound diagnosis of hydatidiform mole: experience of more than 1000 cases from a regional referral center. Ultrasound Obstet Gynecol 2006;27: 5660.Google Scholar
Hancock, B.W., Seckl, M.J., Berkowitz, R.S., Cole, L.A., eds. Gestational Trophoblastic Disease, 3rd edn. International Society for the Study of Trophoblastic Disease, 2009. (http://www.isstd.org/isstd/book.html, accessed 12 September 2015).Google Scholar
Cole, L.A.. Structurally related molecules of human chorionic gonadotrophin (hCG) in gestational trophoblastic diseases. In Hancock, B.W., Seckl, M.J., Berkowitz, R.S., Cole, L.A. et al., eds. Gestational Trophoblastic Disease, 3rd edn. 2009: 148183 (http://www.isstd.org/isstd/chapter05.html, accessed 12 September 2015).Google Scholar

References

Stranding, S, ed. Gray's Anatomy. The Anatomical Basis of Clinical Practice, 39th edn. Edinburgh: Churchill Livingstone, 2005:Google Scholar
McLean, JM, Lewis, F. Basics of vulval embryology, anatomy and physiology. In Neill, S, Lewis, F, eds. Ridley's The Vulva. New York: Churchill Livingstone, 1988:133.Google Scholar
Gittes, RF, Nakamura, RM. Female urethral syndrome. A female prostatitis? West J Med 1996;164:435438.Google Scholar
Kazakov, DV, Stewart, CJ, Kacerovska, D, Leake, R, Kreuzberg, B, Chudacek, Z, et al. Prostatic-type tissue in the lower female genital tract: a morphologic spectrum, including vaginal tubulosquamous polyp, adenomyomatous hyperplasia of paraurethral Skene glands (female prostate), and ectopic lesion in the vulva. Am J Surg Pathol 2010;34:950955.Google Scholar
Sternberg, SS, ed. Histology for Pathologists, 2nd edn. Philadelphia, PA: Lippincott-Raven, 1997.Google Scholar
Zwillenberg, LO. At 40 years of the “golden chain.” Which are the stem cells in ectocervical epithelium? Gynecol Obstet Invest 1998;46:247251.Google Scholar
Fetissof, F, Serres, G, Arbeille, B, de Muret, A, Sam-Giao, M, Lansac, J. Argyrophilic cells and ectocervical epithelium. Int J Gynecol Pathol 1991;10:177190.Google Scholar
Rosai, J. Rosai and Ackerman's Surgical Pathology, 10th edn. Edinburgh: Mosby, 2011.Google Scholar
Doss, BJ, Wanek, SM, Jacques, SM, Qureshi, F, Ramirez, NC, Lawrence, WD. Ovarian smooth muscle metaplasia: an uncommon and possibly underrecognized entity. Int J Gynecol Pathol 1999;18:5862.Google Scholar
Frazier, SR, Kaplan, PA, Loy, TS. The pathology of extrapulmonary small cell carcinoma. Semin Oncol 2007;34:3038.Google Scholar
Pearse, AG. The diffuse endocrine system and the implications of the APUD concept. Int Surg 1979;64:57.Google Scholar
Nicolaidou, E, Mikrova, A, Antoniou, C, Katsambas, AD. Advances in Merkel cell carcinoma pathogenesis and management: a recently discovered virus, a new international consensus staging system and new diagnostic codes. Br J Dermatol 2012;166:1621.Google Scholar
Calder, KB, Smoller, BR. New insights into Merkel cell carcinoma. Adv Anat Pathol 2010;17:155161.Google Scholar
Sheikh, ZA, Nair, I, Vijaykumar, DK, Jojo, A, Nandeesh, M. Neuroendocrine tumor of vulva: a case report and review of literature. J Cancer Res Ther 2010;6:365366.Google Scholar
Pawar, R, Vijayalakshmy, AR, Khan, S, al Lawati, FA. Primary neuroendocrine carcinoma (Merkel's cell carcinoma) of the vulva mimicking as a Bartholin's gland abscess. Ann Saudi Med 2005;25:161164.Google Scholar
Buck, CB, Lowy, DR. Getting stronger: the relationship between a newly identified virus and Merkel cell carcinoma. J Invest Dermatol 2009;129:911.Google Scholar
Feng, H, Shuda, M, Chang, Y, Moore, PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 2008;319:10961100.Google Scholar
Calder, KB, Coplowitz, S, Schlauder, S, Morgan, MB. A case series and immunophenotypic analysis of CK20/CK7+ primary neuroendocrine carcinoma of the skin. J Cutan Pathol 2007;34:918923.Google Scholar
Ralston, J, Chiriboga, L, Nonaka, D. MASH1: a useful marker in differentiating pulmonary small cell carcinoma from Merkel cell carcinoma. Mod Pathol 2008;21:13571362.Google Scholar
Colleran, KM, Burge, MR, Crooks, LA, Dorin, RI. Small cell carcinoma of the vagina causing Cushing's syndrome by ectopic production and secretion of ACTH: a case report. Gynecol Oncol 1997;65:526529.Google Scholar
Jin, B, Pickens, A, Shah, MB, Turrisi, A, Saleh, H. Primary large cell neuroendocrine carcinoma of the vagina: cytomorphology of previously unreported case. Diagn Cytopathol 2010;38:925928.Google Scholar
Albores-Saavedra, J, Larraza, O, Poucell, S, Rodriguez Martinez, HA. Carcinoid of the uterine cervix: additional observations on a new tumor entity. Cancer 1976;38:23282342.Google Scholar
Louka, MH, Danoff, B, Brodovsky, HS, Jahshan, AE. Carcinoid tumors of the uterine cervix: response to combination chemotherapy and radiotherapy. Am J Clin Oncol 1982;5:487493.Google Scholar
Albores-Saavedra, J, Rodriguez-Martinez, HA, Larraza-Hernandez, O. Carcinoid tumors of the cervix. Pathol Annu 1979;14:273291.Google Scholar
Hara, H, Ishii, E, Hondo, T, Nakagawa, M, Teramoto, K, Oyama, T. Cytological features of atypical carcinoid combined with adenocarcinoma of the uterine cervix. Diagn Cytopathol 2012;40:724728.Google Scholar
Koch, CA, Azumi, N, Furlong, MA, Jha, RC, Kehoe, TE, Trowbridge, CH, et al. Carcinoid syndrome caused by an atypical carcinoid of the uterine cervix. J Clin Endocrinol Metab 1999;84:42094213.Google Scholar
Yoshida, Y, Sato, K, Katayama, K, Yamaguchi, A, Imamura, Y, Kotsuji, F. Atypical metastatic carcinoid of the uterine cervix and review of the literature. J Obstet Gynaecol Res 2011;37:636640.Google Scholar
Sato, Y, Shimamoto, T, Amada, S, Asada, Y, Hayashi, T. Large cell neuroendocrine carcinoma of the uterine cervix: a clinicopathological study of six cases. Int J Gynecol Pathol 2003;22:226230.Google Scholar
Yoseph, B, Chi, M, Truskinovsky, AM, Dudek, AZ. Large-cell neuroendocrine carcinoma of the cervix. Rare tumors 2012;4:e18.Google Scholar
Gilks, CB, Young, RH, Gersell, DJ, Clement, PB. Large cell neuroendocrine [corrected] carcinoma of the uterine cervix: a clinicopathologic study of 12 cases. Am J Surg Pathol 1997;21:905914.Google Scholar
Grayson, W, Rhemtula, HA, Taylor, LF, Allard, U, Tiltman, AJ. Detection of human papillomavirus in large cell neuroendocrine carcinoma of the uterine cervix: a study of 12 cases. J Clin Pathol 2002;55:108114.Google Scholar
Tsunoda, S, Jobo, T, Arai, M, Imai, M, Kanai, T, Tamura, T, et al. Small-cell carcinoma of the uterine cervix: a clinicopathologic study of 11 cases. Int J Gynecol Cancer 2005;15:295300.Google Scholar
Chen, J, Macdonald, OK, Gaffney, DK. Incidence, mortality, and prognostic factors of small cell carcinoma of the cervix. Obstet Gynecol 2008;111:13941402.Google Scholar
Conner, MG, Richter, H, Moran, CA, Hameed, A, Albores-Saavedra, J. Small cell carcinoma of the cervix: a clinicopathologic and immunohistochemical study of 23 cases. Ann Diagn Pathol 2002;6:345348.Google Scholar
Groben, P, Reddick, R, Askin, F. The pathologic spectrum of small cell carcinoma of the cervix. Int J Gynecol Pathol 1985;4:4257.Google Scholar
Lee, SW, Nam, JH, Kim, DY, Kim, JH, Kim, KR, Kim, YM, et al. Unfavorable prognosis of small cell neuroendocrine carcinoma of the uterine cervix: a retrospective matched case–control study. Int J Gynecol Cancer 2010;20:411416.Google Scholar
Wang, Y, Mei, K, Xiang, MF, Li, JM, Xie, RM. Clinicopathological characteristics and outcome of patients with small cell neuroendocrine carcinoma of the uterine cervix: case series and literature review. Eur J Gynaecol Oncol 2013;34:307310.Google Scholar
Huang, CY, Chen, YL, Chu, TC, Cheng, WF, Hsieh, CY, Lin, MC. Prognostic factors in women with early stage small cell carcinoma of the uterine cervix. Oncol Res 2009;18:279286.Google Scholar
Kim do, Y, Yun, HJ, Lee, YS, Lee, HN, Kim, CJ. Small cell neuroendocrine carcinoma of the uterine cervix presenting with syndrome of inappropriate antidiuretic hormone secretion. Obstet Gynecol Sci 2013;56:420425.Google Scholar
Siriaunkgul, S, Utaipat, U, Settakorn, J, Sukpan, K, Srisomboon, J, Khunamornpong, S. HPV genotyping in neuroendocrine carcinoma of the uterine cervix in northern Thailand. Int J Gynaecol Obstet 2011;115:175179.Google Scholar
Stoler, MH, Mills, SE, Gersell, DJ, Walker, AN. Small-cell neuroendocrine carcinoma of the cervix. A human papillomavirus type 18-associated cancer. Am J Surg Pathol 1991;15:2832.Google Scholar
Hirahatake, K, Hareyama, H, Kure, R, Kawaguchi, I, Yamaguchi, J, Sakuragi, N, et al. Cytologic and hormonal findings in a carcinoid tumor of the uterine cervix. Acta Cytol 1990;34:119124.Google Scholar
van Nagell, JR Jr., Powell, DE, Gallion, HH, Elliott, DG, Donaldson, ES, Carpenter, AE, et al. Small cell carcinoma of the uterine cervix. Cancer 1988;62:15861593.Google Scholar
Abeler, VM, Holm, R, Nesland, JM, Kjorstad, KE. Small cell carcinoma of the cervix. A clinicopathologic study of 26 patients. Cancer 1994;73:672677.Google Scholar
Alphandery, C, Dagrada, G, Frattini, M, Perrone, F, Pilotti, S. Neuroendocrine small cell carcinoma of the cervix associated with endocervical adenocarcinoma: a case report. Acta Cytol 2007;51:589593.Google Scholar
Munakata, S, Iwai, E, Tanaka, T, Nakamura, M, Kanda, T. Malignant mullerian mixed tumor of the uterine cervix with a small cell neuroendocrine carcinoma component. Case Rep Pathol 2013;2013:630859.Google Scholar
Tsou, MH, Tan, TD, Cheng, SH, Chiou, YK. Small cell carcinoma of the uterine cervix with large cell neuroendocrine carcinoma component. Gynecol Oncol 1998;68:6972.Google Scholar
Albores-Saavedra, J, Latif, S, Carrick, KS, Alvarado-Cabrero, I, Fowler, MR. CD56 reactivity in small cell carcinoma of the uterine cervix. Int J Gynecol Pathol 2005;24:113117.Google Scholar
Holm, R, Abeler, VM, Skomedal, H, Nesland, JM. Overexpression of p53 protein and c-erbB-2 protein in small cell carcinoma of the cervix uteri. Z Pathol 1993;139:153156.Google Scholar
Gersell, DJ, Mazoujian, G, Mutch, DG, Rudloff, MA. Small-cell undifferentiated carcinoma of the cervix. A clinicopathologic, ultrastructural, and immunocytochemical study of 15 cases. Am J Surg Pathol 1988;12:684698.Google Scholar
Rekhi, B, Patil, B, Deodhar, KK, Maheshwari, A, R, AK, Gupta, S, et al. Spectrum of neuroendocrine carcinomas of the uterine cervix, including histopathologic features, terminology, immunohistochemical profile, and clinical outcomes in a series of 50 cases from a single institution in India. Ann Diagn Pathol 2013;17:19.Google Scholar
Sitthinamsuwan, P, Angkathunyakul, N, Chuangsuwanich, T, Inthasorn, P. Neuroendocrine carcinomas of the uterine cervix: A clinicopathological study. J Med Assoc Thailand 2013;96:8390.Google Scholar
Chetty, R, Clark, SP, Bhathal, PS. Carcinoid tumour of the uterine corpus. Virchows Arch A Pathol Anat Histopathol 1993;422:9395.Google Scholar
Gonzalez-Bosquet, E, Gonzalez-Bosquet, J, Garcia Jimenez, A, Gil, A, Xercavins, J. Carcinoid tumor of the uterine corpus. A case report. J Reprod Med 1998;43:844846.Google Scholar
Ju, W, Park, IA, Kim, SH, Lee, SE, Kim, SC. Small cell carcinoma of the uterine corpus manifesting with visual dysfunction. Gynecol Oncol 2005;99:504506.Google Scholar
Albores-Saavedra, J, Martinez-Benitez, B, Luevano, E. Small cell carcinomas and large cell neuroendocrine carcinomas of the endometrium and cervix: polypoid tumors and those arising in polyps may have a favorable prognosis. Int J Gynecol Pathol 2008;27:333339.Google Scholar
Bahig, H, Portelance, L, Legler, C, Gilbert, L, Souhami, L. Small cell carcinoma of the endometrium: report of a case and review of the literature. Minerva Ginecol 2009;61:365369.Google Scholar
Crowder, S, Tuller, E. Small cell carcinoma of the female genital tract. Semin Oncol 2007;34:5763.Google Scholar
Huntsman, DG, Clement, PB, Gilks, CB, Scully, RE. Small-cell carcinoma of the endometrium. A clinicopathological study of sixteen cases. Am J Surg Pathol 1994;18:364375.Google Scholar
Tafe, LJ, Garg, K, Chew, I, Tornos, C, Soslow, RA. Endometrial and ovarian carcinomas with undifferentiated components: clinically aggressive and frequently underrecognized neoplasms. Mod Pathol 2010;23:781789.Google Scholar
Roth, LM, Talerman, A. The enigma of struma ovarii. Pathology 2007;39:139146.Google Scholar
Szyfelbein, WM, Young, RH, Scully, RE. Cystic struma ovarii: a frequently unrecognized tumor. A report of 20 cases. Am J Surg Pathol 1994;18:785788.Google Scholar
Szyfelbein, WM, Young, RH, Scully, RE. Struma ovarii simulating ovarian tumors of other types. A report of 30 cases. Am J Surg Pathol 1995;19:2129.Google Scholar
Roth, LM, Miller, AW, 3rd, Talerman, A. Typical thyroid-type carcinoma arising in struma ovarii: a report of 4 cases and review of the literature. Int J Gynecol Pathol 2008;27:496506.Google Scholar
Soga, J, Osaka, M, Yakuwa, Y. Carcinoids of the ovary: an analysis of 329 reported cases. J Exp Clin Cancer Res 2000;19:271280.Google Scholar
Robboy, SJ, Norris, HJ, Scully, RE. Insular carcinoid primary in the ovary. A clinicopathologic analysis of 48 cases. Cancer 1975;36:404418.Google Scholar
Rabban, JT, Lerwill, MF, McCluggage, WG, Grenert, JP, Zaloudek, CJ. Primary ovarian carcinoid tumors may express CDX-2: a potential pitfall in distinction from metastatic intestinal carcinoid tumors involving the ovary. Int J Gynecol Pathol 2009;28:4148.Google Scholar
Robboy, SJ, Scully, RE, Norris, HJ. Primary trabecular carcinoid of the ovary. Obstet Gynecol 1977;49:202207.Google Scholar
Talerman, A, Evans, MI. Primary trabecular carcinoid tumor of the ovary. Cancer 1982;50:14031407.Google Scholar
Robboy, SJ, Scully, RE. Strumal carcinoid of the ovary: an analysis of 50 cases of a distinctive tumor composed of thyroid tissue and carcinoid. Cancer 1980;46:20192034.Google Scholar
Ashton, MA. Strumal carcinoid of the ovary associated with hyperinsulinaemic hypoglycaemia and cutaneous melanosis. Histopathology 1995;27:463467.Google Scholar
Brunaud, L, Antunes, L, Sebbag, H, Bresler, L, Villemot, JP, Boissel, P. Ovarian strumal carcinoid tumor responsible for carcinoid heart disease. Eur J Obstet Gynecol Reprod Biol 2001;98:124126.Google Scholar
Kurabayashi, T, Minamikawa, T, Nishijima, S, Tsuneki, I, Tamura, M, Yanase, T, et al. Primary strumal carcinoid tumor of the ovary with multiple bone and breast metastases. J Obstet Gynaecol Res 2010;36:567571.Google Scholar
Alenghat, E, Okagaki, T, Talerman, A. Primary mucinous carcinoid tumor of the ovary. Cancer 1986;58:777783.Google Scholar
Baker, PM, Oliva, E, Young, RH, Talerman, A, Scully, RE. Ovarian mucinous carcinoids including some with a carcinomatous component: a report of 17 cases. Am J Surg Pathol 2001;25:557568.Google Scholar
Carlson, JW, Nucci, MR, Brodsky, J, Crum, CP, Hirsch, MS. Biomarker-assisted diagnosis of ovarian, cervical and pulmonary small cell carcinomas: the role of TTF-1, WT-1 and HPV analysis. Histopathology 2007;51:305312.Google Scholar
Eichhorn, JH, Young, RH, Scully, RE. Primary ovarian small cell carcinoma of pulmonary type. A clinicopathologic, immunohistologic, and flow cytometric analysis of 11 cases. Am J Surg Pathol 1992;16:926938.Google Scholar
Grandjean, M, Legrand, L, Waterkeyn, M, Baurain, JF, Jadoul, P, Donnez, J, et al. Small cell carcinoma of pulmonary type inside a microinvasive mucinous cystadenocarcinoma of the ovary: a case report. Int J Gynecol Pathol 2007;26:426431.Google Scholar
Mebis, J, De Raeve, H, Baekelandt, M, Tjalma, WA, Vermorken, JB. Primary ovarian small cell carcinoma of the pulmonary type: a case report and review of the literature. Eur J Gynaecol Oncol 2004;25:239241.Google Scholar
Rund, CR, Fischer, EG. Perinuclear dot-like cytokeratin 20 staining in small cell neuroendocrine carcinoma of the ovary (pulmonary-type). Appl Immunohistochem Mol Morphol 2006;14:244248.Google Scholar
Chen, KT. Composite Large-Cell Neuroendocrine Carcinoma and Surface Epithelial-Stromal Neoplasm of the Ovary. Int J Surg Pathol 2000;8:169174.Google Scholar
Collins, RJ, Cheung, A, Ngan, HY, Wong, LC, Chan, SY, Ma, HK. Primary mixed neuroendocrine and mucinous carcinoma of the ovary. Arch Gynecol Obstet 1991;248:139143.Google Scholar
Eichhorn, JH, Lawrence, WD, Young, RH, Scully, RE. Ovarian neuroendocrine carcinomas of non-small-cell type associated with surface epithelial adenocarcinomas. A study of five cases and review of the literature. Int J Gynecol Pathol 1996;15:303314.Google Scholar
Hirasawa, T. [Ovarian neuroendocrine carcinoma associated with mucinous carcinoma and teratoma.] Nihon Rinsho Jpn 2004;62:973978.Google Scholar
Khurana, KK, Tornos, C, Silva, EG. Ovarian neuroendocrine carcinoma associated with a mucinous neoplasm. Arch Pathol Lab Med 1994;118:10321034.Google Scholar
Ohira, S, Itoh, K, Shiozawa, T, Horiuchi, A, Ono, K, Takeuchi, H, et al. Ovarian non-small cell neuroendocrine carcinoma with paraneoplastic parathyroid hormone-related hypercalcemia. Int J Gynecol Pathol 2004;23:393397.Google Scholar
Veras, E, Deavers, MT, Silva, EG, Malpica, A. Ovarian nonsmall cell neuroendocrine carcinoma: a clinicopathologic and immunohistochemical study of 11 cases. Am J Surg Pathol 2007;31:774782.Google Scholar
Ulbright, TM, Young, RH. Gonadoblastoma and selected other aspects of gonadal pathology in young patients with disorders of sex development. Semin Diagn Pathol 2014;31:427440.Google Scholar
Nakashima, N, Young, RH, Scully, RE. Androgenic granulosa cell tumors of the ovary. A clinicopathologic analysis of 17 cases and review of the literature. Arch Pathol Lab Med 1984;108:786791.Google Scholar
Ahmed, E, Young, RH, Scully, RE. Adult granulosa cell tumor of the ovary with foci of hepatic cell differentiation: a report of four cases and comparison with two cases of granulosa cell tumor with Leydig cells. Am J Surg Pathol 1999;23:10891093.Google Scholar
Young, RH, Oliva, E, Scully, RE. Luteinized adult granulosa cell tumors of the ovary: a report of four cases. Int J Gynecol Pathol 1994;13:302310.Google Scholar
Al-Agha, OM, Huwait, HF, Chow, C, Yang, W, Senz, J, Kalloger, SE, et al. FOXL2 is a sensitive and specific marker for sex cord-stromal tumors of the ovary. Am J Surg Pathol 2011;35:484494.Google Scholar
Stenwig, JT, Hazekamp, JT, Beecham, JB. Granulosa cell tumors of the ovary. A clinicopathological study of 118 cases with long-term follow-up. Gynecol Oncol 1979;7:136152.Google Scholar
Shah, SP, Kobel, M, Senz, J, Morin, RD, Clarke, BA, Wiegand, KC, et al. Mutation of FOXL2 in granulosa-cell tumors of the ovary. N Engl J Med 2009;360:27192729.Google Scholar
Verdin, H, de Baere, E. FOXL2 impairment in human disease. Horm Res Paediatr 2012;77:211.Google Scholar
Young, RH, Dickersin, GR, Scully, RE. Juvenile granulosa cell tumor of the ovary. A clinicopathological analysis of 125 cases. Am J Surg Pathol 1984;8:575596.Google Scholar
Zaloudek, C, Norris, HJ. Granulosa tumors of the ovary in children: a clinical and pathologic study of 32 cases. Am J Surg Pathol 1982;6:503512.Google Scholar
Ferry, JA, Young, RH, Engel, G, Scully, RE. Oxyphilic Sertoli cell tumor of the ovary: a report of three cases, two in patients with the Peutz–Jeghers syndrome. Int J Gynecol Pathol 1994;13:259266.Google Scholar
Oliva, E, Alvarez, T, Young, RH. Sertoli cell tumors of the ovary: a clinicopathologic and immunohistochemical study of 54 cases. Am J Surg Pathol 2005;29:143156.Google Scholar
Tracy, SL, Askin, FB, Reddick, RL, Jackson, B, Kurman, RJ. Progesterone secreting Sertoli cell tumor of the ovary. Gynecol Oncol 1985;22:8596.Google Scholar
Korzets, A, Nouriel, H, Steiner, Z, Griffel, B, Kraus, L, Freund, U, et al. Resistant hypertension associated with a renin–producing ovarian Sertoli cell tumor. Am J Clin Pathol 1986;85:242247.Google Scholar
Young, RH, Scully, RE. Well-differentiated ovarian Sertoli–Leydig cell tumors: a clinicopathological analysis of 23 cases. Int J Gynecol Pathol 1984;3:277290.Google Scholar
Young, RH, Scully, RE. Ovarian Sertoli–Leydig cell tumors. A clinicopathological analysis of 207 cases. Am J Surg Pathol 1985;9:543569.Google Scholar
Foulkes, WD, Priest, JR, Duchaine, TF. DICER1: mutations, microRNAs and mechanisms. Nat Rev Cancer 2014;14:662672.Google Scholar
Heravi-Moussavi, A, Anglesio, MS, Cheng, SW, Senz, J, Yang, W, Prentice, L, et al. Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. N Engl J Med 2012;366:234242.Google Scholar
Witkowski, L, Mattina, J, Schonberger, S, Murray, MJ, Choong, CS, Huntsman, DG, et al. DICER1 hotspot mutations in non-epithelial gonadal tumours. Br J Cancer 2013;109:27442750.Google Scholar
Burandt, E, Young, RH. Thecoma of the ovary: a report of 70 cases emphasizing aspects of its histopathology different from those often portrayed and its differential diagnosis. Am J Surg Pathol 2014;38:10231032.Google Scholar
Zhang, J, Young, RH, Arseneau, J, Scully, RE. Ovarian stromal tumors containing lutein or Leydig cells (luteinized thecomas and stromal Leydig cell tumors): a clinicopathological analysis of fifty cases. Int J Gynecol Pathol 1982;1:270285.Google Scholar
Kim, MS, Hur, SY, Yoo, NJ, Lee, SH. Mutational analysis of FOXL2 codon 134 in granulosa cell tumour of ovary and other human cancers. J Pathol 2010;221:147152.Google Scholar
McCluggage, WG, Staats, PN, Gilks, CB, Clement, PB, Young, RH. Luteinized thecomas (thecomatosis) associated with sclerosing peritonitis exhibit positive staining with sex cord markers steroidogenic factor-1 (SF-1) and FOXL2. Am J Surg Pathol 2013;37:14581459.Google Scholar
Banno, K, Kisu, I, Yanokura, M, Masuda, K, Ueki, A, Kobayashi, Y, et al. Hereditary gynecological tumors associated with Peutz–Jeghers syndrome (review). Oncol Lett 2013;6:11841188.Google Scholar
Scully, RE. Sex cord tumor with annular tubules a distinctive ovarian tumor of the Peutz–Jeghers syndrome. Cancer 1970;25:11071121.Google Scholar
Young, RH, Welch, WR, Dickersin, GR, Scully, RE. Ovarian sex cord tumor with annular tubules: review of 74 cases including 27 with Peutz–Jeghers syndrome and four with adenoma malignum of the cervix. Cancer 1982;50:13841402.Google Scholar
Paraskevas, M, Scully, RE. Hilus cell tumor of the ovary. A clinicopathological analysis of 12 Reinke crystal-positive and nine crystal-negative cases. Int J Gynecol Pathol 1989;8:299310.Google Scholar
Roth, LM, Sternberg, WH. Ovarian stromal tumors containing Leydig cells. II. Pure Leydig cell tumor, non-hilar type. Cancer 1973;32:952960.Google Scholar
Sternberg, WH, Roth, LM. Ovarian stromal tumors containing Leydig cells. I. Stromal-Leydig cell tumor and non-neoplastic transformation of ovarian stroma to Leydig cells. Cancer 1973;32:940951.Google Scholar
Hayes, MC, Scully, RE. Ovarian steroid cell tumors (not otherwise specified). A clinicopathological analysis of 63 cases. Am J Surg Pathol 1987;11:835845.Google Scholar
Young, RH, Scully, RE. Ovarian steroid cell tumors associated with Cushing's syndrome: a report of three cases. Int J Gynecol Pathol 1987;6:4048.Google Scholar
Wagner, M, Browne, HN, Marston Linehan, W, Merino, M, Babar, N, Stratton, P. Lipid cell tumors in two women with von Hippel–Lindau syndrome. Obstet Gynecol 2010;116 (suppl 2):535539.Google Scholar
Verdonk, C, Guerin, C, Lufkin, E, Hodgson, SF. Activation of virilizing adrenal rest tissues by excessive ACTH production. An unusual presentation of Nelson's syndrome. Am J Med 1982;73:455459.Google Scholar
Al-Ahmadie, HA, Stanek, J, Liu, J, Mangu, PN, Niemann, T, Young, RH. Ovarian “tumor” of the adrenogenital syndrome: the first reported case. Am J Surg Pathol 2001;25:14431450.Google Scholar
Bas, F, Saka, N, Darendeliler, F, Tuzlali, S, Ilhan, R, Bundak, R, et al. Bilateral ovarian steroid cell tumor in congenital adrenal hyperplasia due to classic 11beta-hydroxylase deficiency. J Pediatr Endocrinol Metab 2000;13:663667.Google Scholar
Tiosano, D, Vlodavsky, E, Filmar, S, Weiner, Z, Goldsher, D, Bar-Shalom, R. Ovarian adrenal rest tumor in a congenital adrenal hyperplasia patient with adrenocorticotropin hypersecretion following adrenalectomy. Horm Res Paediatr 2010;74:223228.Google Scholar
Thomas, TT, Ruscher, KR, Mandavilli, S, Balarezo, F, Finck, CM. Ovarian steroid cell tumor, not otherwise specified, associated with congenital adrenal hyperplasia: rare tumors of an endocrine disease. J Pediatr Surg 2013;48:E23E27.Google Scholar
Jelinic, P, Mueller, JJ, Olvera, N, Dao, F, Scott, SN, Shah, R, et al. Recurrent SMARCA4 mutations in small cell carcinoma of the ovary. Nat Genet 2014;46:424426.Google Scholar
Ramos, P, Karnezis, AN, Craig, DW, Sekulic, A, Russell, ML, Hendricks, WP, et al. Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4. Nat Genet 2014;46:427429.Google Scholar
Witkowski, L, Carrot-Zhang, J, Albrecht, S, Fahiminiya, S, Hamel, N, Tomiak, E, et al. Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type. Nat Genet 2014;46:438443.Google Scholar
Foulkes, WD, Clarke, BA, Hasselblatt, M, Majewski, J, Albrecht, S, McCluggage, WG. No small surprise: small cell carcinoma of the ovary, hypercalcaemic type, is a malignant rhabdoid tumour. J Pathol 2014;233:209214.Google Scholar
Young, RH, Oliva, E, Scully, RE. Small cell carcinoma of the ovary, hypercalcemic type. A clinicopathological analysis of 150 cases. Am J Surg Pathol 1994;18:11021116.Google Scholar
McCluggage, WG, Oliva, E, Connolly, LE, McBride, HA, Young, RH. An immunohistochemical analysis of ovarian small cell carcinoma of hypercalcemic type. Int J Gynecol Pathol 2004;23:330336.Google Scholar
Forster, C, Ostertag, H, Schmitt, J, Roessner, A. Small cell carcinoma of the ovary, hypercalcemic type. A case report with immunohistochemical, ultrastructural and cytophotometric analysis and review of the literature. Gen Diagn Pathol 1997;142:365370.Google Scholar
Kurman, RJ, Hedrick, EL, Ronnett, BM, eds. Blaustein's Pathology of the Female Genital Tract, 6th edn. New York: Springer, 2011:785846.Google Scholar
Hoekman, K, Tjandra, YI, Papapoulos, SE. The role of 1,25-dihydroxyvitamin D in the maintenance of hypercalcemia in a patient with an ovarian carcinoma producing parathyroid hormone-related protein. Cancer 1991;68:642647.Google Scholar
Brown, WW, Shetty, KR, Rosenfeld, PS. Hyperthyroidism due to struma ovarii: demonstration by radioiodine scan. Acta Endocrinol (Copenh) 1973;73:266272.Google Scholar
Bollen, EC, Lamers, CB, Jansen, JB, Larsson, LI, Joosten, HJ. Zollinger–Ellison syndrome due to a gastrin-producing ovarian cystadenocarcinoma. Br J Surg 1981;68:776777.Google Scholar
Cocco, AE, Conway, SJ. Zollinger–Ellison syndrome associated with ovarian mucinous cystadenocarcinoma. N Engl J Med 1975;293:485486.Google Scholar
Connell, WR, Price, JD, Lowe, DG, Shepherd, JH, Farthing, MJ. Zollinger–Ellison syndrome caused by a mucinous cystadenocarcinoma of the ovary. Aust N Z J Med 1993;23:520521.Google Scholar
Long, TT, 3rd, Barton, TK, Draffin, R, Reeves, WJ, McCarty, KS Jr. Conservative management of the Zollinger–Ellison syndrome. Ectopic gastrin production by an ovarian cystadenoma. JAMA 1980;243:18371839.Google Scholar
Morgan, DR, Wells, M, MacDonald, RC, Johnston, D. Zollinger–Ellison syndrome due to a gastrin secreting ovarian mucinous cystadenoma. Case report. Br J Obstet Gynaecol 1985;92:867869.Google Scholar
Garcia-Villanueva, M, Badia Figuerola, N, Ruiz del Arbol, L, Hernandez Ortiz, MJ. Zollinger–Ellison syndrome due to a borderline mucinous cystadenoma of the ovary. Obstet Gynecol 1990;75:549552.Google Scholar
de Broucker, F, Caudron, C, Sournia, V, Adamsbaum, C, Levesque, M. [Zollinger–Ellison syndrome of ovarian origin. Apropos of a case with a review of the literature.] J Radiol 1989;70:111114.Google Scholar
Maton, PN, Mackem, SM, Norton, JA, Gardner, JD, O'Dorisio, TM, Jensen, RT. Ovarian carcinoma as a cause of Zollinger–Ellison syndrome. Natural history, secretory products, and response to provocative tests. Gastroenterology 1989;97:468471.Google Scholar
O'Neill, RT, Mikuta, JJ. Hypoglycemia associated with serous cystadenocarcinoma of the ovary. Obstet Gynecol 1970;35:287289.Google Scholar
Scully, RE Young, RH, Clement, PB. Atlas of Tumor Pathology, 3rd Series, Fascicle 23: Tumors of the Ovary, Maldeveloped Gonads, Fallopian Tube, and Broad Ligament. Washington, DC: Armed Forces Institute of Pathology, 1999.Google Scholar
Treille, C, Roche, J, Halimi, S, Girona, GC, Pasquier, D, Sage, JC, et al. [Ovarian carcinoma manifested by organic hypoglycemia.] N Presse Med 1979;8:30613062.Google Scholar
Gregersen, G, Holst, JJ, Trankjaer, A, Stadil, F, Mogensen, AM. Case report: somatostatin producing teratoma, causing rapidly alternating extreme hyperglycemia and hypoglycemia, and ovarian somatostatinoma. Metabolism 2002;51:11801183.Google Scholar
Kojima, G, Terada, KY, Miki, N, Miki, K. Non-islet cell tumor hypoglycemia associated with recurrent carcinosarcoma of the ovary. Endocr Pract 2013;19:e8387.Google Scholar
Baranowska, B, Zgliczynski, S, Jeske, W, Stopinska-Gluszak, U, Niewiadomska, A, Frelek, M, et al. Polycystic ovary syndrome, accompanied by autonomous prolactin hypersecretion. Case report. Ginekol Pol 1982;53:409414.Google Scholar
Carmina, E, Rosato, F, Maggiore, M, Gagliano, AM, Indovina, D, Janni, A. Prolactin secretion in polycystic ovary syndrome (PCO): correlation with the steroid pattern. Acta Endocrinol (Copenh) 1984;105:99104.Google Scholar
Falaschi, P, del Pozo, E, Rocco, A, Toscano, V, Petrangeli, E, Pompei, P, et al. Prolactin release in polycystic ovary. Obstet Gynecol 1980;55:579582.Google Scholar
Kallenberg, GA, Pesce, CM, Norman, B, Ratner, RE, Silvergerg, SG. Ectopic hyperprolactinemia resulting from an ovarian teratoma. JAMA 1990;263:24722474.Google Scholar
Palmer, PE, Bogojavlensky, S, Bhan, AK, Scully, RE. Prolactinoma in wall of ovarian dermoid cyst with hyperprolactinemia. Obstet Gynecol 1990;75:540543.Google Scholar
Hoffman, WH, Gala, RR, Kovacs, K, Subramanian, MG. Ectopic prolactin secretion from a gonadoblastoma. Cancer 1987;60:26902695.Google Scholar
Gupta, P, Goyal, S, Gonzalez-Mendoza, LE, Noviski, N, Vezmar, M, Brathwaite, CD, et al. Corticotropin-independent Cushing syndrome in a child with an ovarian tumor misdiagnosed as nonclassic congenital adrenal hyperplasia. Endocr Pract 2008;14:875879.Google Scholar
Crawford, SM, Pyrah, RD, Ismail, SM. Cushing's syndrome associated with recurrent endometrioid adenocarcinoma of the ovary. J Clin Pathol 1994;47:766768.Google Scholar
Diab, DL, Faiman, C, Siperstein, AE, Grossman, WF, Rabinowitz, LO, Hamrahian, AH. Virilizing ovarian Leydig cell tumor in a woman with subclinical Cushing syndrome. Endocr Pract 2008;14:358361.Google Scholar
Hassan, E, Creatsas, G, Mastorakos, G, Michalas, S. Clinical implications of the ovarian/endometrial renin–angiotensin-aldosterone system. Ann N Y Acad Sci 2000;900:107118.Google Scholar
Pepperell, JR, Yamada, Y, Nemeth, G, Palumbo, A, Naftolin, F. The ovarian renin–angiotensin system. A paracrine-intracrine regulator of ovarian function. Adv Exp Med Biol 1995;377:379389.Google Scholar
Yoshimura, Y. The ovarian renin–angiotensin system in reproductive physiology. Front Neuroendocrinol 1997;18:247291.Google Scholar
Lee, SH, Kang, MS, Lee, GS, Chung, WY. Refractory hypertension and isosexual pseudoprecocious puberty associated with renin-secreting ovarian steroid cell tumor in a girl. J Korean Med Sci 2011;26:836838.Google Scholar
Stephen, MR, Lindop, GB. A renin secreting ovarian steroid cell tumour associated with secondary polycythaemia. J Clin Pathol 1998;51:7577.Google Scholar
Civantos, F, Rywlin, AM. Carcinomas with trophoblastic differentiation and secretion of chorionic gonadotrophins. Cancer 1972;29:789798.Google Scholar
Horn, LC, Hanel, C, Bartholdt, E, Dietel, J. Serous carcinoma of the endometrium with choriocarcinomatous differentiation: a case report and review of the literature indicate the existence of 2 prognostically relevant tumor types. Int J Gynecol Pathol 2006;25:247251.Google Scholar
Oliva, E, Andrada, E, Pezzica, E, Prat, J. Ovarian carcinomas with choriocarcinomatous differentiation. Cancer 1993;72:24412446.Google Scholar
Olson, MT, Gocke, CD, Giuntoli, RL, 2nd, Shih Ie, M. Evolution of a trophoblastic tumor from an endometrioid carcinoma–a morphological and molecular analysis. Int J Gynecol Pathol 2011;30:117120.Google Scholar

References

Elder, D.E.. Lever’s Histopathology of the Skin. Philadelphia, PA: Lippincott Williams & Wilkins, 2008.Google Scholar
Merkel, F.. Tastzellen und Tastkoerperchen bei den Haustieren und beim Menschen. Arch Microsc Anat 1875;11:636652.Google Scholar
van Keymeulen, A. et al. Epidermal progenitors give rise to Merkel cells during embryonic development and adult homeostasis. J Cell Biol 2009;187:91100.Google Scholar
Morrison, K.M. et al. Mammalian Merkel cells are descended from the epidermal lineage. Devel Biol 2009;336:7683.Google Scholar
Eispert, A.-C. et al. Evidence for distinct populations of human Merkel cells. Histochem Cell Biol 2009;132:8393.Google Scholar
Moll, I. et al. Human Merkel cells: aspects of cell biology, distribution and functions. Eur J Cell Biol 2005;82:259271.Google Scholar
Lucarz, A. and Brand, G.. Current considerations about Merkel cells. Eur J Cell Biol 2007;86:243251.Google Scholar
Boulais, N. and Misery, L.. Merkel cells. J Am Acad Dermatol 2007;57:147165.Google Scholar
Hartschuh, W. and Schulz, T.. Merkel cell hyperplasia in chronic radiation-damaged skin: its possible relationship to fibroepithelioma of Pinkus. J Cutan Pathol 1997;24:477483.Google Scholar
Kanitakis, J. et al. Merkel cells in hyperplastic and neoplastic lesions of the skin. Dermatol 1998;196:208212.Google Scholar
Schulz, T. and Hartschuh, W.. Merkel cells in nevus sebaceus: An immunohistochemical study. Am J Dermatopathol 1995;16:570579.Google Scholar
Hartschuh, W. and Schulz, T.. Merkel cells are integral constituents of desmoplastic trichoepithelioma: an immunohistochemical and electron microscopic study. J Cutan Pathol 1995;22:413421.Google Scholar
Schulz, T. and Hartschuh, W.. Merkel cells are absent in basal cell carcinomas but frequently found in trichoblastomas: An immunohistochemical study. J Cutan Pathol 1997;24:1424.Google Scholar
Dadzie, O. and Teixeira, F.. What can primary cutaneous neuroendocrine carcinomas with squamoid and neuroendocrine differentiation teach us about the origin of Merkel cells? Int J Dermatol 2009;48:9193.Google Scholar
Rodriguez, G. and Villamizar, R.. Carcinoid tumor with skin metastasis. Am J Dermatopathol 1992;14:263269.Google Scholar
Lee, W-J. et al. Multiple cutaneous metastases of neuroendocrine carcinoma derived from the uterine cervix. J Eur Acad Dermatol Venereol 2009;23:441496.Google Scholar
Puri, R.K. et al. Metastatic cutaneous carcinoid tumor mimicking an adnexal poroid neoplasm. J Cutan Pathol 2008;35:5457.Google Scholar
Fries, J.F. et al. Scleroderma-like lesions and the carcinoid syndrome. Arch Intern Med 1973;131:550553.Google Scholar
Toker, C.. Trabecular carcinoma of the skin. Arch Dermatol 1972;105:107110.Google Scholar
Prieto Munoz, I. et al. Merkel cell carcinoma from 2008 to 2012: reaching a new level of understanding. Cancer Treat Rev 2013;39:421429.Google Scholar
Houben, R., Scrama, D., and Becker, J.C.. Molecular pathogenesis of Merkel cell carcinoma. Exp Dermatol 2009;18:193198.Google Scholar
Albores-Saavedra, J. et al. Merkel cell carcinoma demographics, morphology, and survival based on 3870 cases: a population based study. J Cutan Pathol 2010;37:2027.Google Scholar
Mott, R.T., Smoller, B.R., and Morgan, M.B.. Merkel cell carcinoma: a clinicopathologic study with prognostic implications. J Cutan Pathol 2004;31:217223.Google Scholar
Assouline, A. et al. Clinical and therapeutic aspects in elderly patients with Merkel cell carcinoma: special focus on radiotherapy. J Am Geriatr Soc 2009;57:1946.Google Scholar
Guler-Nizam, E. et al. Clinical course and prognostic factors of Merkel cell carcinoma of the skin. Br J Dermatol 2009;161:9094.Google Scholar
Koksal, Y. et al. Merkel cell carcinoma in a child. J Pediatr Hematol Oncol 2009;31:359361.Google Scholar
Goldenhersh, M.A. et al. Merkel cell tumor masquerading as granulation tissue on a teenager’s toe. Am J Dermatopathol 1992;14:560563.Google Scholar
Eng, T.Y. et al. Treatment of Merkel cell carcinoma. Am J Clin Oncol 2004;27:510515.Google Scholar
Coleman, N.M. et al. Primary neuroendocrine carcinoma of the vagina with Merkel cell carcinoma phenotype. Am J Surg Pathol 2006;30:405410.Google Scholar
Longo, F. et al. Neuroendocrine (Merkel cell) carcinoma of the oral mucosa: report of a case with immunohistochemical study and review of the literature. J Oral Pathol Med 1999;28:8891.Google Scholar
Yom, S.S. et al. Merkel cell carcinoma of the tongue and head and neck oral mucosal sites. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;101:761768.Google Scholar
Eusebi, V. et al. Neuroendocrine carcinoma within lymph nodes in the absence of a primary tumor, with special reference to Merkel cell carcinoma. Am J Surg Pathol 1992;16:658666.Google Scholar
Brenner, B. et al. Second neoplasms in patients with Merkel cell carcinoma. Cancer 2001;91:13581362.Google Scholar
Milman, T. and McCormick, S.A.. The molecular genetics of eyelid tumors: recent advances and future directions. Graefes Arch Clin Exp Ophthalmol 2013;251:419433.Google Scholar
Tsuruta, D. et al. Merkel cell carcinoma, Bowen’s disease and chronic occupational arsenic poisoning. Br J Dermatol 1998;139:291294.Google Scholar
Boutilier, R. et al. Merkel cell carcinoma: squamous and atypical fibroxanthoma-like differentiation in successive local tumor recurrences. Am J Dermatopathol 2001;23:4649.Google Scholar
Forman, S.B., Vidmar, D.A., and Ferringer, T.C.. Collision tumor composed of Merkel cell carcinoma and lentigo maligna melanoma. J Cutan Pathol 2008;35:203206.Google Scholar
Battistella, M. et al. Primary cutaneous neuroendocrine carcinoma within a cystic trichoblastoma: a nonfortuitous association? Am J Dermatopathol 2011;33:383387.Google Scholar
Tanahashi, J. et al. Merkel cell carcinoma co-existent with sebaceous carcinoma of the eyelid. J Cutan Pathol 2009;36:983986.Google Scholar
Younker, S.R. and Billingsley, E.M.. Combined Merkel cell carcinoma and atypical fibroxanthoma. J Cutan Med Surg 2005;6–9.Google Scholar
Su, W. et al. Merkel cell carcinoma in situ arising in a trichilemmal cyst: a case report and literature review. Am J Dermatopathol 2008;30:458461.Google Scholar
Requena, L. et al. Merkel cell carcinoma within follicular cysts: report of two cases. J Cutan Pathol 2008;35:11271133.Google Scholar
Craig, P.J. et al. Incidental chronic lymphocytic leukaemia in a biopsy of Merkel cell carcinoma. J Cutan Pathol 2009;36:706710.Google Scholar
Paulson, K.G. et al. Systemic immune suppression predicts diminished Merkel cell carcinoma-specific survival independent of stage. J Invest Derm 2013;133:642646.Google Scholar
Schrama, D., Urgurel, S., and Becker, J.C.. Merkel cell carcinoma:recent insights and new treatment options. Curr Opin Oncol 2012;24:141149.Google Scholar
Cone, L.A. et al. Merkel cell carcainoma in an HIV-1-infected man. AIDS 2006;20:474475.Google Scholar
Rockville Merkel Cell Carcinoma Group. Merkel cell carcinoma: recent progress and current priorities on etiology, pathogenesis and clinical management. J Clin Oncol 2009;27:40214026.Google Scholar
Engels, E.A. et al. Merkel cell carcinoma and HIV infection. Lancet 2002;359:497498.Google Scholar
Koljonen, V. et al. Incidence of Merkel cell carcinoma in renal transplant patients. Nephrol Dial Transplant 2009;24:32313235.Google Scholar
Buell, J.F. et al. Immunosuppression and Merkel cell cancer. Transplant Proc 2002;34:17801781.Google Scholar
Koljonen, V. et al. Chronic lymphocytic leukaemia patients have a high risk of Merkel-cell polyomavirus DNA-positive Merkel-cell carcinoma. Br J Cancer 2009;101:14441447.Google Scholar
Llombart, B. et al. Clinicopathological and immunohistochemical analysis of 20 cases of Merkel cell carcinoma in search of prognostic markers. Histopathology 2005;1–12.Google Scholar
Sinclair, N. et al. Merkel cell carcinoma of the eyelid in association with chronic lymphocytic leukemia. Br J Ophthalmol 2003;87:240251.Google Scholar
Vlad, R. and Woodlock, T.J.. Merkel cell carcinoma after chronic lymphocytic leukemia: case report and literature review. Am J Clin Oncol 2003;26:531534.Google Scholar
McLoone, N.M. et al. Merkel cell carcinoma in a patient with chronic sarcoidosis. Clin Exp Dermatol 2005;30:580582.Google Scholar
Snow, S.N. et al. Merkel cell carcinoma of the skin and mucosa: Report of 12 cutaneous cases with 2 cases arising from the nasal mucosa. Dermatol Surg 2001;27:165170.Google Scholar
Satter, E.K. and DeRienzo, D.P.. Synchronous onset of multiple cutaneous neuroendocrine (Merkel cell) carcinomas localized to the scalp. J Cutan Pathol 2008;35:685691.Google Scholar
Lemos, B. and Nghiem, P.. Merkel cell carcinoma: more deaths but still no pathway to blame. J Invest Dermatol 2007;127:21002103.Google Scholar
Sibley, R.K., Dehner, L.P., and Rosai, J.. Primary neuroendocrine (Merkel cell?) carcinoma of the skin: I. A clinicopathologic and ultrastructural study of 43 cases. Am J Surg Pathol 1985;9:95108.Google Scholar
Szadowska, A. et al. Neuroendocrine (Merkel cell) carcinoma of the skin: a clinicomorphological study of 13 cases. Histopathol 1989;15:483493.Google Scholar
Grotz, T.E. et al. Natural history of Merkel cell carcinoma following locoregional recurrence. Ann Surg Oncol 2012;19:25562562.Google Scholar
Sandel, H.D. et al. Merkel cell carcinoma: Does tumor size or depth of invasion correlate with recurrence, metastasis, or patient survival? Laryngoscope 2006;116:791795.Google Scholar
Wojak, J.C. and Murali, R.. Primary neuroendocrine (Merkel cell) carcinoma presenting in the calvarium: case report. Neurosurgery 1990;26:137139.Google Scholar
Jabbour, J. et al. Merkel cell carcinoma: Assessing the effect of wide local excision, lymph node dissection, and radiotherapy on recurrence and survival in early-stage disease: results from a review of 82 consecutive cases diagnosed between 1992 and 2004. Ann Surg Oncol 2007;14:19431952.Google Scholar
Wooff, J.C. et al. Complete spontaneous regression of metastatic Merkel cell carcinoma: a case report and review of the literature. Am J Dermatopathol 2012;32:614617.Google Scholar
Torroni, A., Lore, B., and Iannetti, G.. The importance of the head and neck region in regression of advanced Merkel cell carcinoma: a clinical report. J Craniofacial Surg 2007;18:11731176.Google Scholar
Sais, G., Admella, C., and Soler, T.. Spontaneous regression in primary cutaneous neuroendocrine (Merkel cell) carcinoma: a rare immune phenomenon. J Eur Acad Dermatol Venereol 2002;16:8283.Google Scholar
Val-Bernal, J.F. et al. Spontaneous complete regression in Merkel cell carcinoma after biopsy. Adv Anat Pathol 2011;18:174175.Google Scholar
Tam, C.S. et al. “Leukaemic” presentation of metastatic Merkel cell carcinoma. Br J Haematol 2005;129:442446.Google Scholar
Pitale, M., Sessions, R.B., and Husain, S.. An analysis of prognostic factors in cutaneous neuroendocrine carcinoma. Laryngoscope 1992;102:244249.Google Scholar
Goldberg, S.R., Neifeld, J.P., and Frable, W.J.. Prognostic value of tumor thickness in patients with Merkel cell carcinoma. J Surg Oncol 2007;95:618622.Google Scholar
Feng, H. et al. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 2008;319:10961199.Google Scholar
Becker, J.C. et al. Merkel cell polyomavirus is frequently present in Merkel cell carcinoma of European patients. J Invest Dermatol 2009;129:248250.Google Scholar
Schrama, D. et al. Merkel cell polyomavirus status is not associated with clinical course of Merkel cell carcinoma. J Invest Dermatol 2011;131:16311638.Google Scholar
Sihto, H. et al. Clinical factors associated with Merkel cell polyomavirus infection in Merkel cell carcinoma. J Natl Cancer Inst 2009;101:938945.Google Scholar
Andres, C. et al. Prevalence of MCPyV in Merkel cell carcinoma and non-Merkel cell carcinoma tumors. J Cutan Pathol 2010;37:2834.Google Scholar
Pulitzer, M.. Molecular diagnosis of infection-related cancers n dermatopathology. Semin Cutan Med Surg 2012;31:247257.Google Scholar
Harms, P.W. et al. Distinct gene expression profiles of viral- and nonviral-associated Merkel cell carcinoma revealed by transcriptome analysis. J Invest Derm 2013;133:936945.Google Scholar
Shuda, M. et al. Human Merkel cell polyomavirus infection I. MCV T antigen expression in Merkel cell carcinoma, lymphoid tissues and lymphoid tumors. Int J Cancer 2009;125:12431249.Google Scholar
Bickle, K. et al. Merkel cell carcinoma: a clinical, histopathologic and immunohistochemical review. Semin Cutan Med Surg 2004;23:4653.Google Scholar
Andres, C., Puchta, U., and Flaig, M.J.. Detection of Merkel cell polyomavirus DNA in atypical fibroxanthoma in correlation to clinical features. Am J Dermatopathol 2010;32:799803.Google Scholar
Dworkin, A.M. et al. Merkel cell polyomavirus in cutaneous squamous cell carcinoma of immunocompetent individuals. J Invest Dermatol 2009;129:28682874.Google Scholar
Wieland, U. et al. Merkel cell polyomavirus DNA in persons without Merkel cell carcinoma. Emerg Infect Dis 2009;15:14961498.Google Scholar
Lewis, J.S., Duncavage, E., and Klonowski, P.W.. Oral cavity neuroendocrine carcinoma: a comparison study with cutaneous Merkel cell carcinoma and other mucosal head and neck neuroendocrine carcinomas. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110:209217.Google Scholar
Wetzels, C.T.A.H. et al. Ultrastructural proof of polyomavirus in Merkel cell carcinoma tumour cells and its absence in small cell carcinoma of the lung. PLOS ONE 4:e4958.Google Scholar
Paulson, K.G. et al. Array-CGH reveals recurrent genomic changes in Merkel cell carcinoma including amplification of L-myc. J Invest Dermatol 2009;129:15471555.Google Scholar
Suciu, V. et al. The potential contribution of fluorescent in situ hybridization analysis to the cytopathological diagnosis of Merkel cell carcinoma. Cytopathology 2008;19:4851.Google Scholar
Gancberg, D. et al. Trisomy 6 in Merkel cell carcinoma: a recurrent chromosomal aberration. Histopathology 2000;37:445451.Google Scholar
Lim, C.S. et al. Increasing tumor thickness is associated with recurrence and poorer survival in patients with Merkel cell carcinoma. Ann Surg Oncol 2012;19:33253334.Google Scholar
Lassacher, A. et al. p14ARF hypermethylation is common but INK4aARF locus or p53 mutations are rare in Merkel cell carcinoma. J Invest Dermatol 2008;128:17881796.Google Scholar
Kytola, S. et al. Alterations of the SDHD gene locus in midgut carcinoids, Merkel cell carcinomas, pheochromocytomas, and abdominal paragangliomas. Genes Chromosomes Cancer 2002;34:325332.Google Scholar
Houben, R. et al. Absence of classical MAP kinase pathway signalling in Merkel cell carcinoma. J Invest Dermatol 2006;126:11351142.Google Scholar
Wong, S.L. et al. Intraoperative imprint cytology for evaluation of sentinel lymph nodes from Merkel cell carcinoma. Am Surgeon 2009;75:615619.Google Scholar
Dey, P. et al. Fine-needle aspiration cytology of Merkel cell carcinoma. Diagn Cytopathol 2004;31:364365.Google Scholar
Shin, H.J.C. and Caraway, N.P.. Fine-needle aspiration biopsy of metastatic small cell carcinoma from extrapulmonary sites. Diagn Cytopathol 1999;19:177181.Google Scholar
Gould, V.E. et al. Biology of disease: neuroendocrine (Merkel) cells of the skin: hyperplasias, dysplasias and neoplasms. Lab Invest 1985;52:334352.Google Scholar
Acebo, E. et al. Merkel cell carcinoma: a clinicopathological study of 11 cases. J Eur Acad Dermatol Venereol 2005;19:546551.Google Scholar
Hattori, H.. Merkel cell carcinoma composed of small, intermediate and squamous cell foci showing mutually exclusive expression of neuroendocrine markers and cytokeratin 20. Br J Dermatol 2003;148:183185.Google Scholar
Li, N., Wolgamot, G., and Argenyi, Z.. Primary cutaneous neuroendocrine cell carcinoma (Merkel cell carcinoma) with prominent microcystic features, mimicking eccrine carcinoma. J Cutan Pathol 2007;34:410414.Google Scholar
Smith, K.J. et al. Neuroendocrine (Merkel cell) carcinoma with an intraepidermal component. Am J Dermatopathol 1993;15:528533.Google Scholar
Vanchinathan, V. et al. A malignant cutaneous neuroendocrine tumor with features of Merkel cell carcinoma and differentiating neuroblastoma. Am J Dermatopathol 2009;31:193196.Google Scholar
Fernandez-Figueras, M. et al. Merkel cell (primary neuroendocrine) carcinoma of the skin with nodal metastasis showing rhabdomyosarcomatous differentiation. J Cutan Pathol 2002;29:619622.Google Scholar
Tan, K-B. et al. Merkel cell carcinoma with fibrosarcomatous differentiation. Pathol 2008;40:314316.Google Scholar
Vazmitel, M. et al. Vascular changes in Merkel cell carcinoma based on a histopathological study of 92 cases. Am J Dermatopathol 2008;30:106111.Google Scholar
Vazmitel, M., Michal, M., and Kazakov, D.V.. Merkel cell carcinoma and Azzopardi phenomenon. Am J Dermatopathol 2007;29:314315.Google Scholar
Plaza, J.A. and Suster, S.. The Toker tumor: spectrum of morphological features in primary neuroendocrine carcinomas of the skin (Merkel cell carcinoma). Ann Diagn Pathol 2006;10:376385.Google Scholar
Huang, G-S. et al. Merkel cell carcinoma arising from the subcutaneous fat of the arm with intact skin. Dermatol Surg 2005;31:717719.Google Scholar
Kanitakis, J. et al. Merkel cell carcinoma in organ-transplant recipients: report of two cases with unusual histological features and literature review. J Cutan Pathol 2006;33:686694.Google Scholar
Traest, K., de Vos, R., and van den Oord, J.J.. Pagetoid Merkel cell carcinoma: speculations on its origin and the mechanism of epidermal spread. J Cutan Pathol 1999;26:362365.Google Scholar
Hashimoto, K. et al. Pagetoid Merkel cell carcinoma: epidermal origin of the tumor. J Cutan Pathol 1998;25:572579.Google Scholar
LeBoit, P.E., Crutcher, W.A., and Shapiro, P.E.. Pagetoid intraepidermal spread in Merkel cell (primary neuroendocrine) carcinoma of the skin. Am J Surg Pathol 1992;16:584592.Google Scholar
Katana, H. et al. Detection of Merkel cell polyomavirus in Merkel cell carcinoma and Kaposi’s sarcoma. J Med Virol 2009;81:19511958.Google Scholar
Jensen, K., Kohler, S., and Rouse, R.V.. Cytokeratin staining in Merkel cell carcinoma: an immunohistochemical study of cytokeratins 5/6, 7, 17 and 20. Appl Immunohistochem Mol Morphol 2000;8:310315.Google Scholar
Beer, T.W.. Merkel cell carcinomas with CK20 negative and CK7 positive immunostaining. J Cutan Pathol 2009;36:385386.Google Scholar
Heenan, P.J., Cole, J.M., and Spagnolo, D.V.. Primary cutaneous neuroendocrine carcinoma (Merkel cell tumor): an adnexal epithelial neoplasm. Am J Dermatopathol 1990;12:716.Google Scholar
McNiff, J.M. et al. CD56 staining in Merkel cell carcinoma and natural killer-cell lymphoma: magic bullet, diagnostic pitfall, or both? J Cutan Pathol 2005;32:541545.Google Scholar
Asioli, S. et al. p63 expression as a new prognostic marker in Merkel cell carcinoma. Cancer 2007;110:640647.Google Scholar
Hall, B.J. et al. Immunohistochemical prognostication of Merkel cell carcinoma: p63 expression but not polyomavirus status correlates with outcome. J Cutan Pathol 2012;39:911917.Google Scholar
Bobos, M. et al. Immunohistochemical distinction between Merkel cell carcinoma and small cell carcinoma of the lung. Am J Dermatopathol 2006;28:99104.Google Scholar
Sibley, R.K. and Dahl, D.. Primary neuroendocrine (Merkel cell?) carcinoma of the skin II. An immunocytochemical study of 21 cases. Am J Surg Pathol 1985;9:109116.Google Scholar
Layfield, L. et al. Neuroendocrine carcinoma of the skin: an immunohistochemical study of tumor markers and neuroendocrine products. J Cutan Pathol 1986;13:268273.Google Scholar
Mhawech-Fauceglia, P. et al. Pax-5 immunoexpression in various types of benign and malignant tumours: a high-throughput tissue microarray analysis. J Clin Pathol 2007;60:709714.Google Scholar
Dong, H.Y. et al. B-cell specific activation protein encoded by the PAX-5 gene is commonly expressed in Merkel cell carcinoma and small cell carciomas. Am J Surg Pathol 2005;29:687692.Google Scholar
Kohle, K. et al. Immunohistochemical expression of PAX5 and TdT by Merkel cell carcinoma and pulmonary small cell carcinoma: a potential diagnostic pitfall but useful discriminatory marker. Int J Clin Exp Pathol 2013;6:142147.Google Scholar
Andres, C. et al. Immunohistochemical features of Merkel cell carcinoma in correlation with presence of Merkel cell polyomavirus DNA. Acta Dermatol Venereol 2011;91:722723.Google Scholar
Feinmesser, M. et al. c-KIT expression in primary and metastatic Merkel cell carcinoma. Am J Dermatopathol 2004;26:458462.Google Scholar
Strong, S. et al. KIT receptor (CD117) expression in Merkel cell carcinoma. Br J Dermatol 2004;150:367399.Google Scholar
He, H. et al. Frequent expression of glypican-3 in Merkel cell carcinoma: an immunohistochemical study of 55 cases. Appl Immunohistochem Mol Morphol 2009;17:4046.Google Scholar
Carson, H.J., Reddy, V., and Taxy, J.B.. Proliferation markers and prognosis in Merkel cell carcinoma. J Cutan Pathol 1998;25:1619.Google Scholar
Schmid, M. et al. p53 abnormalities are rare events in neuroendocrine (Merkel cell) carcinoma of the skin: an immunohistochemical and SSCP analysis. Virchows Arch 1997;430:233237.Google Scholar
Plettenberg, A., Pammer, J., and Tschachler, E.. Merkel cells and Merkel cell carcinoma express the BCL-2 proto-oncogene. Exp Dermatol 1996;5:183188.Google Scholar
Moll, I. et al. Differences of Bcl-2 protein expression between Merkel cells and Merkel cell carcinoma. J Cutan Pathol 1996;23:109117.Google Scholar
Sahi, H. et al. Bcl-2 expression indicates better prognosis of Merkel cell carcinoma regardless of the presence of Merkel cell polyomavirus. Virchows Arch 2012;461:553559.Google Scholar
Leech, S.N. et al. Merkel cell carcinoma can be distinguished from metastatic small cell carcinoma using antibodies to cytokeratin 20 and thyroid transcription factor 1. J Clin Pathol 2001;54:727729.Google Scholar
Kaufmann, O. and Dietel, M.. Expression of thyroid transcription factor-1 in pulmonary and extrapulmonary small cell carcinomas and other neuroendocrine carcinomas of various sites. Histopathology 2000;36:415420.Google Scholar
Sierakowski, A. et al. Metastatic Merkel cell carcinoma with positive expression of TTF-1: A case report. Am J Dermatopathol 2009;31:384386.Google Scholar
Allen, P.J. et al. Immunohistochemical analysis of sentinel lymph nodes from patients with Merkel cell carcinoma. Cancer 2001;92:16501655.Google Scholar
Merot, Y.. Is the neuroendocrine carcinoma of the skin a Merkel cell tumor? What we can learn from immunohistochemical and ultrastructural studies. Int J Dermatol 1990;29:102104.Google Scholar
Mount, S.L. and Taatjes, D.J.. Neuroendocrine carcinoma of the skin (Merkel cell carcinoma): an immunoelectron-microscopic case study. Am J Dermatopathol 1994;16:6065.Google Scholar
Sidhu, G.S., Chandra, P., and Cassai, N.D.. Merkel cells, normal and neoplastic: an update. Ultrastruc Pathol 2005;29:287295.Google Scholar
Yaziji, H. and Gown, A.M.. Merkel cell carcinoma: review of 22 cases with surgical, pathologic and therapeutic considerations. Cancer 2000;89:18661867.Google Scholar
De Argila, D. et al. Small-cell carcinoma of the lung presenting as a cutaneous metastasis of the lip mimicking a Merkel cell carcinoma. Clin Exp Dermatol 1999;24:170172.Google Scholar
Hanson, I.M. et al. A study of eleven cutaneous malignant melanomas in adults with small-cell morphology: emphasis on diagnostic difficulties and unusual features. Histopathology 2002;40:187195.Google Scholar
Shipkov, C.D. et al. Merkel cell carcinoma vs. basal cell carcinoma: histopathologic challenges. J Cutan Pathol 2008;35:789790.Google Scholar
Ball, N.J. and Tanhuanco-Kho, G.. Merkel cell carcinoma frequently shows histologic features of basal cell carcinoma: a study of 30 cases. J Cutan Pathol 2007;34:612619.Google Scholar
de Biase, D. et al. Extracutaneous Merkel cell carcinomas harbor polyomavirus DNA. Hum Pathol 2012;43:980985.Google Scholar
Ordóñez, N.G.. Value of thyroid transcription factor-1 immunostaining in distinguishing small cell lung carcinomas from other small cell carcinomas. Am J Surg Pathol 2000;24:12171223.Google Scholar
Hanly, A.J. et al. Analysis of thyroid transcription factor-1 and cytokeratin 20 separates Merkel cell carcinoma from small cell carcinoma of lung. J Cutan Pathol 2000;27:118120.Google Scholar
Schmidt, U. et al. Cytokeratin and neurofilament protein staining in Merkel cell carcinoma of the small cell type and small cell carcinoma of the lung. Am J Dermatopathol 1998;20:346351.Google Scholar
Ly, T.Y. et al. The spectrum of Merkel cell polyomavirus expression in Merkel cell carcinoma, in a variety of cutaneous neoplasms, and in neuroendocrine carcinomas from different anatomical sites. Hum Pathol 2012;43:557566.Google Scholar
Zhang, P.J. et al. Immunoexpression of villin in neuroendocrine tumors and its diagnostic implications. Arch Pathol Lab Med 1999;123:812816.Google Scholar
Jouary, T. et al. Adjuvant prophylactic regional radiotherapy versus observation in stage I Merkel cell carcinoma: a multicentric prospective randomized study. Ann Oncol 2012;23:10741080.Google Scholar
Eng, T.Y. et al. A comprehensive review of the treatment of Merkel cell carcinoma. Am J Clin Oncol 2007;30:624636.Google Scholar
Nicolaidou, E. et al. Advances in Merkel cell carcinoma pathogenesis and management: a recently discovered virus, a new international consensus staging system and new diagnostic codes. Br J Dermatol 2012;166:1621.Google Scholar
Senchenkov, A., Barnes, S.A., and Moran, S.L.. Predictors of survival and recurrence in the surgical treatment of Merkel cell carcinoma of the extremities. J Surg Oncol 2007;95:229234.Google Scholar
Thomas, C.J., Wood, G.C., and Marks, V.J.. Mohs micrographic surgery in the treatment of rare aggressive cutaneous tumors: the Geisinger experience. Dermatol Surg 2007;33:333339.Google Scholar
Al-Ghazal, S.K.. Merkel cell carcinoma of the skin treated by primary radiotherapy. Br J Dermatol 1997;136:641.Google Scholar
Koh, C.S.L. and Veness, M.J.. Role of definitive radiotherapy in treating patients with inoperable Merkel cell carcinoma: the Westmead Hospital experience and a review of the literature. Aust J Dermatol 2009;50:249256.Google Scholar
Stokes, J.B. et al. Patients with Merkel cell carcinoma tumors ≤1.0 cm in diameter are unlikely to harbor regional lymph node metastasis. J Clin Oncol 2009;27:37723777.Google Scholar
Mehrany, K. et al. A meta-analysis of the prognostic significance of sentinel lymph node status in Merkel cell carcinoma. Dermatol Surg 2002;28:113117.Google Scholar
Tai, P. et al. Multimodality management for 145 cases of Merkel cell carcinoma. Med Oncol 2010;27:12601266.Google Scholar
Muirhead, R. and Ritchie, D.M.. Partial regression of Merkel cell carcinoma in response to withdrawal of azathioprine in an immunosuppression-induced case of metastatic Merkel cell carcinoma. Clin Oncol 2007;19:96.Google Scholar
Burack, J. and Altschuler, E.L.. Sustained remission of metastatic Merkel cell carcinoma with treatment of HIV infection. J R Soc Med 2003;96:238.Google Scholar
Allen, P.J. et al. Surgical management of Merkel cell carcinoma. Ann Surg 1999;229:97105.Google Scholar
Bajetta, E. et al. Single-institution series of early-stage Merkel cell carcinoma: Long-term outcomes in 95 patients managed with surgery alone. Ann Surg Oncol 2009;16:29852993.Google Scholar
Smith, V.A., Camp, E.R. and Lentsch, E.J.. Merkel cell carcinoma: identification of prognostic factors unique to tumors located in the head and neck based on an analysis of SEER data. Laryngoscope 2012;122:12831290.Google Scholar
Andea, A. et al. Merkel cell carcinoma: Histologic features and prognosis. Cancer 2008;113:25492558.Google Scholar
Ng, L., Beer, T.W., and Murray, K.. Vascular density has prognostic value in Merkel cell carcinoma. Am J Dermatopathol 2008;30:442445.Google Scholar
Sihto, H. et al. Tumor infiltrating immune cells and outcome of Merkel cell carcinoma: a population-based study. Clin Cancer Res 2012;18:28722881.Google Scholar
Tucci, M.G. et al. Immunohistochemical study of apoptosis markers and involvement of chemokine CXCR4 in skin Merkel cell carcinoma. J Eur Acad Dermatol Venereol 2006;20:12201225.Google Scholar
Koljonen, V. et al. Proliferative activity detected by Ki67 correlates with poor outcome in Merkel cell carcinoma. Histopathology 2006;49:551553.Google Scholar
Fernandez-Figueras, M.T. et al. Prognostic significance of p27KIP1, p45Skp2 and Ki67 expression profiles in Merkel cell carcinoma, extracutaneous small cell carcinoma, and cutaneous squamous cell carcinoma. Histopathology 2005;46:614621.Google Scholar
Schwartz, J.L. et al. Features predicting sentinel lymph node positivity in Merkel cell carcinoma. J Clin Oncol 2011;29:10361041.Google Scholar
Skelton, H.G. et al. Merkel cell carcinoma: Analysis of clinical, histologic and immunohistologic features of 132 cases with relation to survival. J Am Acad Dermatol 1997;37:734739.Google Scholar
Edge, S.B. et al. AJCC Cancer Staging Manual. New York: Springer, 2011.Google Scholar
Rao, P. et al. The College of American Pathologists Cancer Checklists: Protocol for the Examination of Specimens From Patients with Merkel Cell Carcinoma of the Skin. Northfield, IL: College of American Pathologists, 2012 (http://www.cap.org/apps/docs/committees/cancer/cancer_protocols/2012/SkinMerkelCell_12protocol.pdf, accessed 2 September 2015).Google Scholar
Kim, D. et al. Cutaneous paraganglioma of the vertex in a child. J Craniofacial Surg 2012;23:e338e340.Google Scholar
Flieder, A. et al. Endocrine mucin-producing sweat gland carcinoma: a cutaneous neoplasm analogous to solid papillary carcinoma fo the breast. Am J Surg Pathol 1997;21:15011506.Google Scholar
Zembowicz, A. et al. Endocrine mucin-producing sweat gland carcinoma: Twelve new cases suggest that it is a precursor of some invasive mucinous carcinomas. Am J Surg Pathol 2005;29:13301339.Google Scholar

References

Jabbour, S.A., Miller, J.L.. Review article: endocrinopathies and the skin. Int J Dermatol 2000;39: 8899.Google Scholar
Montinari, M., Rongioletti, F.. Pituitary gland diseases. In Rongioletti, F., Smoller, B.R. eds. Clinical and Pathological Aspects of Skin Diseases in Endocrine, Metabolic, Nutritional and Deposition Disease. New York: Springer, 2010:3542.Google Scholar
Davidovici, B.B., Orion, E., Wolf, R.. Cutaneous manifestations of pituitary gland diseases. Clin Dermatol 2008;26:288295.Google Scholar
Centurión, S.A., Schwartz, R.A.. Cutaneous signs of acromegaly. Int J Dermatol 2002;41:631634.Google Scholar
Ben-Shlomo, A., Melmed, S.. Skin manifestations in acromegaly. Clin Dermatol 2006;24:256259.Google Scholar
Stefanato, C.M.. Histopathology of alopecia: a clinicopathological approach to diagnosis. Histopathology 2010;56:2438.Google Scholar
Braun-Falco, O., Plewig, G., Wolff, H.H., Burgdorf, W.H.C.. Dermatology, 2nd edn: Ch. 48 Nutritional, metabolic and endocrine disorders. New York: Springer, 2000:13491366.Google Scholar
Marchand, I., Barkaoui, M.A., Garel, C., et al. Central diabetes insipidus as the inaugural manifestation of Langerhans cell histiocytosis: natural history and medical evaluation of 26 children and adolescents. J Clin Endocrinol Metab 2011;96:E1352E1360.Google Scholar
Margolis, S.. Cutaneous xanthomatosis, diabetes insipidus, and hyperprolactinemia. Endocr Pract 2010;16:933.Google Scholar
Charli-Joseph, Y., Saeb-Lima, M.. Parathyroid disease. In Rongioletti, F., Smoller, B.R. eds. Clinical and Pathological Aspects of Skin Diseases in Endocrine, Metabolic, Nutritional and Deposition Disease. New York: Springer, 2010:4354.Google Scholar
Fuleihan, G.-H., Rubeiz, N.. Dermatologic manifestations of parathyroid-related disorders. Clin Dermatol 2006;24:281288.Google Scholar
Haffner, J., Keusch, G., Wahl, C., Burg, G.. Calciphylaxis: a syndrome of skin necrosis and acral gangrene in chronic renal failure. Vasa 1998;27:137143.Google Scholar
Wilmer, W.A., Magro, C.M.. Calciphylaxis: emerging concepts in prevention, diagnosis, and treatment. Semin Dial 2002;15:172186.Google Scholar
Molina-Ruiz, A.M., Cerroni, L., Kutzner, H., Requena, L.. Cutaneous deposits. Am J Dermatopathol 2014;36:148.Google Scholar
Fernandez-Flores, A.. Cutaneous amyloidosis: a concept review. Am J Dermatopathol 2012;34:114; quiz 15–17.Google Scholar
Jabbour, S.A.. Cutaneous manifestations of endocrine disorders: a guide for dermatologists. Am J Clin Dermatol 2003;4:315331.Google Scholar
Rongioletti, F.. Pancreas disease and diabetes mellitus. In Rongioletti, F., Smoller, B.R. eds. Clinical and Pathological Aspects of Skin Diseases in Endocrine, Metabolic, Nutritional and Deposition Disease. New York: Springer, 2010:1126.Google Scholar
Oumeish, O.Y.. Skin disorders in patients with diabetes. Clin Dermatol 2008;26:235242.Google Scholar
Van Hattem, S., Bootsma, A.H., Thio, H.B.. Skin manifestations of diabetes. Cleve Clin J Med 2008;75:772, 774, 776–777.Google Scholar
Schneider, J.B., Norman, R.A.. Cutaneous manifestations of endocrine-metabolic disease and nutritional deficiency in the elderly. Dermatol Clin 2004;22:2331.Google Scholar
Ahmed, I., Goldstein, B.. Diabetes mellitus. Clin Dermatol 2006;24:237246.Google Scholar
Weedon, D., Strutton, G., Rubin, A.I.. Weedon’s Skin Pathology, 3rd edn: Ch 7 The granulomatous reaction pattern. Philadelphia, PA: Churchill, Livingstone-Elsevier, 2010:149166.Google Scholar
Weedon, D., Strutton, G., Rubin, A.I.. Weedon’s Skin Pathology, 3rd edn: Ch 18 Metabolic and storage diseases. Philadelphia, PA: Churchill, Livingstone-Elsevier, 2010:411486.Google Scholar
Saray, Y., Seçkin, D., Bilezikçi, B.. Acquired perforating dermatosis: clinicopathological features in twenty-two cases. J Eur Acad Dermatol Venereol 2006;20:679688.Google Scholar
Esperanza, L.E., Frenske, N.A.. Hyperandrogenism, insulin resistance and acanthosis nigricans (HAIR-AN) syndrome: spontaneous remission in a 15-year-old girl. J Am Acad Dermatol 1996;34:892897.Google Scholar
Petrou-Amerikanou, C., Markopoulos, A.K., Belazi, M., Karamitsos, D., Papanayotou, P.. Prevalence of oral lichen planus in diabetes mellitus according to the type of diabetes. Oral Dis 1998;4:3740.Google Scholar
Ngo, B.T., Hayes, K.D., DiMiao, D.J., Srinivasan, S.K., Huerter, C.J., Rendell, M.S.. Manifestations of cutaneous diabetic microangiopathy. Am J Clin Dermatol 2005;6:225237.Google Scholar
Richardson, T., Kerr, D.. Skin-related complications of insulin therapy: epidemiology and emerging management strategies. Am J Clin Dermatol 2003;4:661667.Google Scholar
Ramon, M., Pujol, R.M., Wang, C.-Y.E., et al. Necrolytic migratory erythema: clinicopathologic study of 13 cases. Int J Dermatol 2004; 43:1218.Google Scholar
Kheir, S.M., Omura, E.F., Grizzle, W.E., et al. Histologic variation in the skin lesions of the glucagonoma syndrome. Am J Surg Pathol 1986; 10:445453.Google Scholar
Kovács, R.K., Korom, I., Dobozy, A., et al. Necrolytic migratory erythema. J Cutan Pathol 2006; 33:242245.Google Scholar
Calder, K.B., Smoller, B.R.. Adrenal disease. In Rongioletti, F., Smoller, B.R. eds. Clinical and Pathological Aspects of Skin Diseases in Endocrine, Metabolic, Nutritional and Deposition Disease. New York: Springer, 2010:310.Google Scholar
Sperling, L.C., Cowper, S.E., Knopp, E.A.. An Atlas of Hair Pathology with Clinical Correlations, 2nd edn: Ch 15: Alopecia areate. Boca Raton, FL: CRC Press, 2012:7995.Google Scholar
Fatourechi, V.. Pretibial myxedema: pathophysiology and treatment options. Am J Clin Dermatol 2005;6: 295309.Google Scholar
Rebora, A., Rongioletti, F.. Thyroid disease. In Rongioletti, F., Smoller, B.R. eds. Clinical and Pathological Aspects of Skin Diseases in Endocrine, Metabolic, Nutritional and Deposition Disease. New York: Springer, 2010:2734.Google Scholar
Weedon, D., Strutton, G., Rubin, A.I.. Weedon’s Skin Pathology, 3rd edn: Ch 8 The vasculopathic reaction pattern. Philadelphia, PA: Churchill, Livingstone-Elsevier, 2010:167216.Google Scholar
Leonhardt, J.M., Heymann, W.R.. Thyroid disease and the skin. Dermatol Clin 2002;20: 473481.Google Scholar
Lo Muzio, L., Santarelli, A., Campisi, G., Lacaita, M., Favia, G.. Possible link between Hashimoto’s thyroiditis and oral lichen planus: a novel association found. Clin Oral Investig 2013;17: 333336.Google Scholar

References

Schoen, F.J., Mitchell, R.N.. The heart. In Kumar, V., Abbas, A.K., Fausto, N., Aster, J.C., eds. Robbins and Cotran Pathologic Basis of Disease, 8th edn. Philadelphia PA: Elsevier-Saunders, 2010:529588.Google Scholar
Du Bose, T.J., Miller, M.M., Moutos, D.M.. Embryonic heart rates compared in assisted and non-assisted pregnancies. ObGyn.net 2000 (http://www.obgyn.net/us/cotm/0001/ehr2000.htm, accessed 23 September 2015).Google Scholar
Cunningham, K.S., Veinot, V.P., Butany, J.. An approach to endomyocardial biopsy interpretation. J Clin Pathol 2006;59:121129.Google Scholar
Severs, N.J. The cardiac gap junction and intercalated disc. Int J Cardiol 1990;26:137.Google Scholar
Veinot, J.P., Ghadially, F.N., Walley, V.M.. Light microscopy and ultrastructure of the blood vessels and heart. In Silver, M.D., Gotlieb, A.I., Schoen, F.J., eds. Cardiovascular Pathology, 3rd edn. New York: Churchill Livingstone, 2001:3053.Google Scholar
Cooke, R.. The mechanism of muscle contraction. CRC Crit Rev Biochem 1986;21:53118.CrossRefGoogle ScholarPubMed
Katz, A.M.. Cardiomyopathy of overload: A major determinant of prognosis in congestive heart failure. N Eng J Med 1990;322:100110.Google Scholar
Parker, T.G., Packer, S.E., Schneider, M.D.. Peptide growth factors can provoke "fetal" contractile protein gene expression in rat cardiac myocytes. J Clin Invest 1990;85:507514.Google Scholar
Mercardier, J.J., Lompre, A.M., Duc, P., et al. Altered sarcoplasmic reticulum Ca2+-ATPase gene expression in the human ventricle during end-stage heart failure. J Clin Invest 1990;85:305309.Google Scholar
Saito, Y., Nakao, K., Arai, H., et al. Augmented expression of atrial natriuretic polypeptide gene in ventricle of human failing heart. J Clin Invest 1989;83:298305.Google Scholar
Schneider, H.J., Aimaretti, G., Kreitschmann, I., et al. Hypopituitarism. Lancet 2007;369:14611470.Google Scholar
Prabhakar, V.K., Shalet, S.M.. Aetiology, diagnosis, and management of hypopituitarism in adult life. Postgrad Med J 2006;82:259266.CrossRefGoogle ScholarPubMed
Eden, S., Wiklund, O., Oscarsson, J., et al. Growth hormone treatment of growth hormone deficient adults results in a marked increase in Lp (a) and HDL cholesterol concentrations. Arterioscler Thromb Vasc Biol 1993;13:296.Google Scholar
Fazio, S., Sabatini, D., Capaldo, B., et al. A preliminary study of growth hormone in the treatment of dilated cardiomyopathy. N Eng J Med 1996;334:809.Google Scholar
Colao, A., Marullo, P., Di Somma, C., et al. Growth hormone and the heart. Clin Endocrinol (Oxf) 2001;54:137154.CrossRefGoogle ScholarPubMed
Melmed, S.. Medical progress: acromegaly. N Engl J Med 2006;355:25582573.Google Scholar
Palmeiro, C.R., Anand, R., Dardi, I.K., et al. Growth hormone and the cardiovascular system. Cardiol Rev 2012;20:197207.Google Scholar
Lombardi, G., Galdiero, M., Auriemma, R.S., et al. Acromegaly and the cardiovascular system. Neuroendocrinology 2006;83:211217.Google Scholar
Pollack, A.. The heart in acromegaly. Clin Correlations 2010 (http://www.clinicalcorrelations.org/?p=3093, accessed 27 September 2015).Google Scholar
Kahaly, G., Olsharusen, K.V., Mohr-Kahaly, S., et al. Arrhythmia profile in acromegaly. Eur Heart J 1992;13:5156.Google Scholar
Vitale, G., Pivonello, R., Lombardi, G., et al. Cardiac abnormalities in acromegaly: pathophysiology and implications for management. Treat Endocrinol 2004;3:309318.Google Scholar
Colao, A., Ferone, D., Marzullo, P., et al. Systemic complications of acromegaly: epidemiology, pathogenesis, and management. Endocr Rev 2004;25:102152.Google Scholar
Ezzat, S., Serri, O., Chik, C., et al. Canadian consensus guidelines for the diagnosis and management of acromegaly. Clin Invest Med 2006;29:2939.Google Scholar
Hunter, J.J., Chien, K.R.. Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 1999;341:12761283.Google Scholar
Lie, J.T., Grossman, S.J.. Pathology of the heart in acromegaly: anatomic findings in 27 autopsied patients. Am Heart J 1980;100:4152.CrossRefGoogle ScholarPubMed
Sebastien, J.C., Neggers, C., van der Lely, A.. Somatostatin analog and pegvisomant combination therapy for acromegaly. Nat Rev Endocrinol 2009;5:546552.Google Scholar
Bianco, A.C., Salvatore, D., Gereben, B., et al. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocrine Rev 2002;23:3889.Google Scholar
Everts, M.E., Verhoeven, F.A., Bezstarosti, K., et al. Uptake of thyroid hormones in neonatal rat cardiac myocytes. Endocrinology 1996;137:42354242.Google Scholar
Morkin, E.. Regulation of myosin heavy chain genes in the heart. Circulation 1993;87:14511460.Google Scholar
Ojamaa, K., Klemperer, J.D., Mac Gilbray, S.S., et al. Thyroid hormone and hemodynamic regulation of beta-myosin chain promotor in the heart. Endocrinology 1996;137:802808.Google Scholar
Dillmann, W.H.. Cellular action of thyroid hormone on the heart. Thyroid 2002;12:447452.Google Scholar
Klein, I., Ojamaa, K.. Thyroid hormone and the cardiovascular system. N Engl J Med 2001;344:501509.Google Scholar
Ojamaa, K., Sabet, A., Kenessey, A., et al. Regulation of rat cardiac Kv1.5 gene expression by thyroid hormone is rabid and chamber specific. Endocrinology 1999;140:31703176.Google Scholar
Hiroi, Y., Kim, H.H., Ying, H., et al. Rapid nongenomic actions of thyroid hormone. Proc Natl Acad Sci USA 2006;103:1410414109.Google Scholar
Kuzman, J.A., Gerdes, A.M., Kobayashi, S., et al. Thyroid hormone activates Akt and prevents serum starvation-induced cell death in neonatal rat cardiomyocytes. J Mol Cell Cardiol 2005;39:841844.Google Scholar
Klein, I., Danzi, S.. Thyroid disease and the heart. Circulation 2007;116:17251735.Google Scholar
Danzi, S., Klein, I.. Thyroid hormone and the cardiovascular system. Minerva Endocrinologica 2004;29:139150.Google Scholar
Taddei, S., Caraccio, N., Virdis, A., et al. Impaired endothelium-dependent vasodilatation in subclinical hypothyroidism: beneficial effect of levothyroxine therapy. J Clin Endocrinol Metab 2003;88:37313737.CrossRefGoogle ScholarPubMed
Marvisi, M., Zambrelli, P., Brianti, M., et al. Pulmonary hypertension is frequent in hyperthyroidism and normalizes after therapy. Eur J Intern Med 2006;17:267271.Google Scholar
Duntas, L.H.. Thyroid disease and lipids. Thyroid 2002;12:287293.Google Scholar
Caraccio, N., Ferrannini, E., Monzani, F.. Lipoprotein profile in subclinical hypothyroidism: response to replacement, a randomized placebo-controlled study. J Clin Endocrinol Metab 2002;87:15331538.Google Scholar
Rush, J., Danzi, S., Klein, I.. Role of thyroid disease in the development of statin-induced myopathy. Endocrinologist 2006;145:574581.Google Scholar
Zonszein, J., Fein, F.S., Sonnenblick, E.H.. The heart and endocrine disease. In Schlant, R.C., Alexander, R.W., eds. Hurst’s: The Heart, Arteries and Veins, Vol. 8. 1994:19071985.Google Scholar
Devereux, R.B., Kramer-Fox, R., Kligfield, P.: Mitral valve prolapse: causes, clinical manifestations and, management. Ann Intern Med 1989;111:305317.CrossRefGoogle ScholarPubMed
Maitra, A.. The endocrine system. In Kumar, V., Abbas, A.K., Fausto, N., Aster, J.C., eds. Robbins and Cotran Pathologic Basis of Disease, 8th edn. Philadelphia PA: Elsevier-Saunders, 2010:10971164.Google Scholar
Jajiri, J., Morita, M., Higashi, K, et al. The cause of low voltage QRS complex in primary hypothyroidism. Pericardial effusion or thyroid hormone deficiency? Jpn Heart J 1985;26:539547.Google Scholar
Schenck, J.B., Rizvi, A.A., Lin, T.. Severe Primary Hypothyroidism manifesting with torsade de pointes. Am J Med Sci 2006;331:154156.Google Scholar
Jameson, J.L., Weetman, A.P.. Disorders of the thyroid gland. In Kaspar, D.L., Braunwald, E., Fauci, A.S., et al. eds. Harrison’s Principles of Internal Medicine: Vol II. Toronto: McGraw Hill, 2005:21042127.Google Scholar
Kelly, J.K., Butt, J.C.. Fatal myxedema pericarditis in a Christian scientist. Am J Clin Pathol 1986;86:113.CrossRefGoogle Scholar
Santos, A.D., Miller, R.P., Puthenpurakal, K.M., et al. Echocardiographic characterization of the reversible cardiomyopathy of hypothyroidism. Am J Med 1980;68:675.Google Scholar
Klein, I., Becker, D.V., Levey, G.S.. Treatment of hyperthyroid disease. Ann Intern Med 2008;121:281288.Google Scholar
Nakazawa, H.K., Sakuri, K., Hamada, N., et al. Management of atrial fibrillation in the post-thyrotoxic state. Am J Med 1982;72:903906.Google Scholar
Roti, E., Montermini, M., Roti, S., et al. The effect of diltiazem, a calcium channel-blocking drug, on cardiac rate and rhythm in hyperthyroid patients. Arch Intern Med 1998;148:19191921.Google Scholar
Danzi, K., Klein, I.. Thyroid hormone and blood pressure regulation. Curr Hypertens Rep 2003;5:513520.Google Scholar
Marx, S.J.. Hyperparathyroid and Hypoparathyroid disorders. N Engl J Med 2000;343:18631875.Google Scholar
Farford, B., Presutti, J., Moraghan, T.J.. Nonsurgical management of primary hyperparathyroidism. Mayo Clin Proc 2007;82:351355.Google Scholar
Potts, J.T.. Disease of the parathyroid gland and other hyper- and hypocalcemic disorders. In Kaspar, D.L., Braunwald, E., Fauci, A.S., et al. eds. Harrison’s Principles of Internal Medicine. Toronto: McGraw Hill, 2005:22492268.Google Scholar
Hedback, G., Tisell, L.E., Bengtsson, B.A., et al. Premature death in patients operated on for primary hyperparathyroidism. World J Surg 1990;14:829836.Google Scholar
Fliser, D., Franek, E., Fode, P., et al. Subacute infusion of physiological doses of parathyroid hormones raises blood pressure in humans. Nephrol Dial Transplant 1997;12:933938.Google Scholar
Andersson, P., Rydberg, E., Willenheimer, R.. Primary hyperparathyroidism and heart disease-a review. Eur Heart J 2004;25:17761787.Google Scholar
Gennari, C., Nami, R., Gonnelli, S.. Hypertension and primary hyperparathyroidism: the role of adrenergic and renin–angiotensin-aldosterone systems. Miner Electrolyte Metab 1995;21:7781.Google Scholar
Schluter, K.D., Weber, M., Piper, H.M.. Parathyroid hormone induces protein kinase C but not adenylate cyclase in adult cardiomyocytes and regulates cyclic AMP levels via protein kinase C-dependent phosphodiesterase activity. Biochem J 1995;310:439444.Google Scholar
Shimoyama, M., Ogino, K., Furuse, Y., et al. Signaling pathway and chronotropic action of parathyroid hormone in isolated perfused rat heart. J Cardiovasc Pharmacol 2001;38:491499.Google Scholar
Hurley, K., Baggs, D.. Hypocalcemic cardiac failure in the emergency department. J Emerg Med 2005;28:155159.Google Scholar
Stefenelli, T., Mayr, H., Bergler-Klein, J., et al. Primary hyperparathyroidism: incidence of cardiac abnormalities and partial reversibility after successful parathyroidectomy. Am J Med 1993;95:197202.Google Scholar
Stefenelli, T., Abela, C., Frank, H., et al. Cardiac abnormalities in patients with primary hyperparathyroidism: implications for follow-up. J Clin Endocrinol Metab 1997;82:106112.Google Scholar
Fitzpatrick, L.A., Bilezikian, J.P., Silverberg, S.J.. Parathyroid hormone and the cardiovascular system. Curr Osteoporos Rep. 2008;6:7783.Google Scholar
Lester, W.M., Gotlieb, A.I.. Cardiovascular effects of systemic diseases and conditions. In Silver, M.D., Gotlieb, A.I., Schoen, F.J., eds. Cardiovascular Pathology, 3rd edn. New York: Churchill Livingstone, 2001:493540.Google Scholar
Bilezikian, J.P., Potts, J.T. Jr., Guleihan Gel, H., et al. Summary statement from a workshop on asymptomatic primary hyperparathyroidism: a perspective for the 21st century. J Bone Miner Res 2002;17:N2N11.Google Scholar
Williams, G.H., Dluhy, R.G.. Disorders of the adrenal cortex. In Kaspar, D.L., Braunwald, E., Fauci, A.S., et al. eds. Harrison’s Principles of Internal Medicine. Toronto: McGraw Hill, 2005:21272148.Google Scholar
Connell, J.M., Whitworth, J.A., Davies, D.L., et al. Effects of ACTH and cortisol administration on blood pressure, electrolyte metabolism, atrial natriuretic peptide and renal function in normal man. J Hypertens 1987;5:425433.Google Scholar
Fimognari, F.L., Piccirillo, G., Lama, J., et al. Associated daily biosynthesis of cortisol and thromboxane A2: a preliminary report. J Lab Clin Med 1996;128:115121.Google Scholar
Kirilov, G., Tomova, A., Dakovska, L., et al. Elevated plasma endothelin as an additional cardiovascular risk factor in patients with Cushing’s syndrome. Eur J Endocrinol 2003;149:549553.Google Scholar
Kelly, J.J., Martin, A., Whitworth, J.A.. Role of erythropoietin in cortisol-induced hypertension. J Hum Hypertens 2000;14:195198.Google Scholar
Langenfeld, M.R., Veelken, R., Schobel, H.P., et al. Is endogenous erythropoietin a pathogenetic factor in the development of essential hypertension? Nephrol Dial Transplant 1997;12:11551160.Google Scholar
Whitworth, J.A., Mangos, G.J., Kelly, J.J.. Cushing, cortisol, and cardiovascular disease. Hypertension 2000;36:912916.Google Scholar
Williamson, P.M., Kelly, J.J., Whitworth, J.A.. Dose–response relationships and mineralocorticoid activity in cortisol-induced hypertension in humans. J Hyertens 1996;14:S37S41.Google Scholar
Arnaldi, G., Angeli, A., Atkinson, A.B., et al. Diagnosis and complications of Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 2003;88:55935602.CrossRefGoogle ScholarPubMed
De Leo, M., Pivonello, R., Auriemma, R.S., et al. Cardiovascular disease in Cushing’s syndrome: heart versus vasculature. Neuroendocrinology 2010;92:5054.Google Scholar
Sugihara, N., Shimizu, M., Ino, H., et al. Cardiac characteristics and postoperative courses in Cushing’s syndrome. Am J Cardiol 1992;69:14751480.Google Scholar
Oelkers, W.. Adrenal insufficiency. N Engl J Med 1996;335:12061212.Google Scholar
Hartog, M., Joplin, G.F.. Effects of cortisol deficiency on the electrocardiogram. Br Med J 1968;2:275277.Google Scholar
Findling, J.W., Raff, H.. Newer diagnostic techniques and problems in Cushing’s disease. Endocinol Metab Clin North Am 1999;28:191210.CrossRefGoogle ScholarPubMed
Invitti, C., Giraldi, F.P., De Martin, M., et al. Diagnosis and management of Cushing’s syndrome: results of an Italian multicentre study. J Clin Endocrinol Metab 1999;84:440448.Google Scholar
Galetta, F., Franzoni, F., Bernini, G., et al. Cardiovascular complications in patients with pheochromocytoma: a mini-review. Biomed Pharmacother 2010;64:505509.CrossRefGoogle ScholarPubMed
Hall, W.D., Wollam, G.L., Tuttle, E.P. Jr. Diagnostic evaluation of the patient with systemic arterial hypertension. In Schlant, R.C., Alexander, R.W., eds. Hurst’s: The Heart, Arteries and Veins, Vol. 8. 1994:14031426.Google Scholar
Shaw, J.E., Sicree, R.A., Zimmet, P.Z.. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Practice 2010;87:414.Google Scholar
Powers, A.C.. Diabetes mellitus. In Kaspar, D.L., Braunwald, E., Fauci, A.S., et al. eds. Harrison’s Principles of Internal Medicine. Toronto: McGraw Hill, 2005:21522185.Google Scholar
Jellinger, P.S.. Metabolic consequences of hyperglycemia and insulin resistance. Clinical Cornerstone 2007;8:s30s42.Google Scholar
Muniyappa, R., Montagnani, M., Koh, K.K., et al. Cardiovascular actions of insulin. Endocr Rev 2007;28:473491.Google Scholar
Kahn, N.N., Bauman, W.A., Hatcher, V.B., et al. Inhibition of platelet aggregation and the stimulation of prostacyclin synthesis by insulin in humans. Am J Physiol 1993;265:H2160H2167.Google Scholar
Vincent, M.A., Dawson, D., Clark, A.D.H., et al. Skeletal muscle microvascular recruitment by physiological hyperinsulinemia precedes increases in total blood flow. Diabetes 2002;51:4248.Google Scholar
Kahn, A.M., Seidel, C.L., Allen, J.C., et al. Insulin reduces contraction and intracellular calcium concentration in vascular smooth muscles. J Clin Invest 1993;92:11611167.Google Scholar
von Lewinski, D., Bruns, S., Walther, S., et al. Insulin causes Ca2+ dependent and Ca2+-independent positive inotropic effects in failing human myocardium. Circulation 2005;111:25882595.Google Scholar
Maier, S., Aulbach, F., Simm, A., et al. Stimulation of L-type Ca2+ current in human atrial myocytes by insulin. Cardiovasc Res 1999;44:390397.Google Scholar
Sundell, J., Knuuti, J.. Insulin and myocardial blood flow. Cardiovasc Res 2003;57:312319.Google Scholar
Ayramoglu, R.K., Basciano, H., Adeli, K.. Lipid and lipoprotein dysregulation in insulin resistant states. Clin ChimiActa 2006;368:119.Google Scholar
Boden, G., Laakso, M.. Lipids and glucose in type 2 diabetes: what is the cause and effect? Diabetes Care 2008;27:22532259.Google Scholar
Dokken, B.B.. The pathophysiology of cardiovascular disease and diabetes: Beyond blood pressure and lipids. Diabetes Spectrum 2008;21:160165.Google Scholar
Atkinson, M.A., Eisenbarth, G.S.. Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 2001;358:221229.CrossRefGoogle ScholarPubMed
Canadian Diabetes Association Clinical Practice Guidelines Expert Committee. Clinical practice guidelines for the prevention and management of diabetes in Canada. Can J Diabetes 2008;32:s10.Google Scholar
Asbun, J., Villarreal, F.J.. The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. JACC 2006;47:693700.Google Scholar
Goldberg, R.B., Meliies, M.J., Sacks, F.M., et al. Cardiovascular events and their reduction with pravastatin in diabetic and glucose intolerant myocardial infarction survives with average cholesterol levels: subgroup analysis in the cholesterol and recurrent events (CARE) trial. Circulation 1998;98:25132519.Google Scholar
Pyorala, K., Pedersen, T.R., Kjekshus, J., et al. Cholesterol lowering with simvastatin improves prognosis of diabetic patients with coronary heart disease: a subgroup analysis of the Scandinavian Simvastatin Survival Study (4S). Diabetes Care 1997;20:614620.Google Scholar
MRC/BHF Heart Production. Study of cholesterol lowering with simvastatin in 20 536 high-risk patients: a randomized placebo controlled trial. Lancet 2002;36:722.Google Scholar
Antiplatelet Trialists’ Collaboration. Secondary prevention of vascular disease by prolonged antiplatelet treatment. Br Med J (Clin Res Ed) 1998;296:320331.Google Scholar
CAPRIE Steering Committee. A randomized, blinded, trial of clopidogrel versus aspirin in patients at risk of ischemic events (CAPRIE). Lancet 1996;348:13291339.Google Scholar
Bhattacharyya, S., Davar, J., Dreyfus, G., et al. Carcinoid heart disease. Circulation 2007;116:28602865.Google Scholar
Lundin, L., Norheim, I., Landelius, J., et al. Carcinoid heart disease: relationship of circulating vasoactive substance to ultrasound-detectable cardiac abnormalities. Circulation 1988;77:264269.Google Scholar
Gustafsson, B.I., Hauso, O., Drozdov, I., et al. Carcinoid heart disease. Int J Cardiol 2008;129:318324.Google Scholar
Waltenberger, J., Lundin, L., Oberg, K., et al. Involvement of transforming growth factor in the formation of fibrotic lesions in carcinoid heart disease. Am J Pathol 1993;142:7178.Google Scholar
Connolly, H., Crary, J., McGoon, M., et al. Valvular heart disease associated with fenfluramine–phentermine. N Engl J Med 1997;337:581588.Google Scholar
Ghevariya, V., Malieckal, A., Ghevariya, N., et al. Carcinoid tumors of the gastrointestinal tract. South Med J 2009;102:10321040.Google Scholar
Janson, E.T., Holmberg, L., Stridberg, M., et al. Carcinoid tumors: analysis of prognostic factors and survival in 301 patients from a referral center. Ann Oncol 1997;8:685690.Google Scholar
Krenning, E.P., Kooij, P.P., Bakker, W.H., et al. Radiotherapy with a radiolabeled somatostatin analogue [111-In-DTPA-d-Phe1]-octreotide. A case history. Ann N Y Acad Sci 1994;733:496506.Google Scholar
Modlin, I.M., Kidd, M., Latich, I., et al. Current status of gastrointestinal carcinoids. Gastroenterology 2005;128:17171751.Google Scholar
Mansencal, N., Mitry, E., Forissier, J., et al. Assessment of patent foramen ovale in carcinoid heart disease. Am Heart J 2006;151:e1e6.Google Scholar
Wilkes, D., Charitakis, K., Basson, C.T.. Inherited disposition to cardiac myxoma development. Nat Rev Cancer 2006;6:157165.CrossRefGoogle ScholarPubMed
Stratakis, C.A., Kirschner, L.S., Carney, J.A.. Carney complex: diagnosis and management of the complex of spotty skin pigmentation, myxomas, endocrine overactivity, and schwannomas. Am J Med Genet 1998;80:183185.Google Scholar
Stergiopoulos, S.G., Stratakis, C.A.. Human tumors associated with Carney complex and germline PRKAR1A mutations: a protein kinase A disease! FEBS Lett 2003;546:5964.CrossRefGoogle ScholarPubMed
Stratakis, C.A., Kirschner, L.S., Carney, J.A.. Clinical and molecular features of the Carney complex: diagnostic criteria and recommendations for patient evaluation. J Clin Endocrinol Metab 2001;86:40414046.Google Scholar
Bossis, I., Voutetakis, A., Bei, T., et al. Protein kinase A and its role in human neoplasia: the Carney complex paradigm. Endocr Relat Cancer 2004;11:265280.Google Scholar
Stratakis, C.A., Courcoutsakis, N.A., Abati, A., et al. Thyroid gland abnormalities in patients with the syndrome of spotty skin pigmentation, myxomas, endocrine overactivity, and schwannomas (Carney complex). J Clin Endocrinol Metab 1997;82:20372043.CrossRefGoogle ScholarPubMed

References

Rosai, J. Rosai and Ackerman’s Surgical Pathology, 10th edn. Edinburgh: Mosby, 2011.Google Scholar
Goldblum, JR, Folpe, AL, Weiss, SW. Enzinger and Weiss’ Soft Tissue Tumors, 6th edn. Philadelphia, PA: Elsevier-Saunders, 2013.Google Scholar
Mayor, R, Theveneau, E. The neural crest. Development 2013;140:22472251.Google Scholar
Miettinen, M. Modern Soft Tissue Pathology, Tumors and Non-Neoplastic Conditions. Cambridge, UK: Cambridge University Press, 2010.Google Scholar
Buckingham, M, Bajard, L, Chang, T, Daubas, P, Hadchouel, J, Meilhac, S, et al. The formation of skeletal muscle: from somite to limb. J Anat 2003;202:5968.Google Scholar
Christ, B, Brand-Saberi, B. Limb muscle development. Int J Dev Biol 2002;46:905914.Google Scholar
Braun, T, Gautel, M. Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat Rev Mol Cell Biol 2011;12:349361.Google Scholar
Relaix, F, Rocancourt, D, Mansouri, A, Buckingham, M. A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 2005;435:948953.CrossRefGoogle ScholarPubMed
Bryson-Richardson, RJ, Currie, PD. The genetics of vertebrate myogenesis. Nat Rev Genet 2008;9:632646.Google Scholar
Clemente, CF, Corat, MA, Saad, ST, Franchini, KG. Differentiation of C2C12 myoblasts is critically regulated by FAK signaling. Am J Physiol Regul Integr Comp Physiol 2005;289:R862870.Google Scholar
Romero, NB, Mezmezian, M, Fidzianska, A. Main steps of skeletal muscle development in the human: Morphological analysis and ultrastructural characteristics of developing human muscle. Handbook Clin Neurol 2013;113:12991310.Google Scholar
Kuang, S, Rudnicki, MA. The emerging biology of satellite cells and their therapeutic potential. Trends Mol Med 2008;14:8291.Google Scholar
Soleimani, VD, Punch, VG, Kawabe, Y, Jones, AE, Palidwor, GA, Porter, CJ, et al. Transcriptional dominance of Pax7 in adult myogenesis is due to high-affinity recognition of homeodomain motifs. Dev Cell 2012;22:12081220.Google Scholar
Hinz, B, Phan, SH, Thannickal, VJ, Prunotto, M, Desmouliere, A, Varga, J, et al. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol 2012;180:13401355.Google Scholar
Schweitzer, R, Chyung, JH, Murtaugh, LC, Brent, AE, Rosen, V, Olson, EN, et al. Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development 2001;128:38553866.Google Scholar
Brent, AE, Schweitzer, R, Tabin, CJ. A somitic compartment of tendon progenitors. Cell 2003;113:235248.CrossRefGoogle ScholarPubMed
Pryce, BA, Watson, SS, Murchison, ND, Staverosky, JA, Dunker, N, Schweitzer, R. Recruitment and maintenance of tendon progenitors by TGFbeta signaling are essential for tendon formation. Development 2009;136:13511361.Google Scholar
Lejard, V, Blais, F, Guerquin, MJ, Bonnet, A, Bonnin, MA, Havis, E, et al. EGR1 and EGR2 involvement in vertebrate tendon differentiation. J Biol Chem 2011;286:58555867.Google Scholar
Berthet, E, Chen, C, Butcher, K, Schneider, RA, Alliston, T, Amirtharajah, M. Smad3 binds Scleraxis and Mohawk and regulates tendon matrix organization. J Orthopaed Res 2013;31:14751483.Google Scholar
Ito, Y, Toriuchi, N, Yoshitaka, T, Ueno-Kudoh, H, Sato, T, Yokoyama, S, et al. The Mohawk homeobox gene is a critical regulator of tendon differentiation. Proc Natl Acad Sci USA 2010;107:1053810542.Google Scholar
Bucala, R, Spiegel, LA, Chesney, J, Hogan, M, Cerami, A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1994;1:7181.Google Scholar
Bellini, A, Mattoli, S. The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest 2007;87:858870.Google Scholar
Hong, KM, Burdick, MD, Phillips, RJ, Heber, D, Strieter, RM. Characterization of human fibrocytes as circulating adipocyte progenitors and the formation of human adipose tissue in SCID mice. FASEB J 2005;19:20292031.Google Scholar
Salvatori, G, Lattanzi, L, Coletta, M, Aguanno, S, Vivarelli, E, Kelly, R, et al. Myogenic conversion of mammalian fibroblasts induced by differentiating muscle cells. J Cell Sci 1995;108:27332739.Google Scholar
Rosen, ED, MacDougald, OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 2006;7:885896.Google Scholar
Billon, N, Monteiro, MC, Dani, C. Developmental origin of adipocytes: new insights into a pending question. Biol Cell 2008;100:563575.Google Scholar
Takashima, Y, Era, T, Nakao, K, Kondo, S, Kasuga, M, Smith, AG, et al. Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell 2007;129:13771388.Google Scholar
Lee, G, Kim, H, Elkabetz, Y, Al Shamy, G, Panagiotakos, G, Barberi, T, et al. Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol 2007;25:14681475.Google Scholar
Catalan, V, Gomez-Ambrosi, J, Rodriguez, A, Fruhbeck, G. Role of extracellular matrix remodelling in adipose tissue pathophysiology: relevance in the development of obesity. Histol Histopathol 2012;27:15151528.Google Scholar
Spalding, KL, Arner, E, Westermark, PO, Bernard, S, Buchholz, BA, Bergmann, O, et al. Dynamics of fat cell turnover in humans. Nature 2008;453:783787.Google Scholar
Tchkonia, T, Thomou, T, Zhu, Y, Karagiannides, I, Pothoulakis, C, Jensen, MD, et al. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab 2013;17:644656.Google Scholar
Arey, LB. Developmental Anatomy: A Textbook and Laboratory Manual of Embryology, rev 7th edn. Philadelphia PA: WB Saunders, 1974.Google Scholar
Tang, W, Zeve, D, Suh, JM, Bosnakovski, D, Kyba, M, Hammer, RE, et al. White fat progenitor cells reside in the adipose vasculature. Science 2008;322:583586.Google Scholar
Tran, KV, Gealekman, O, Frontini, A, Zingaretti, MC, Morroni, M, Giordano, A, et al. The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell metabolism 2012;15:222229.Google Scholar
Crossno, JT Jr., Majka, SM, Grazia, T, Gill, RG, Klemm, DJ. Rosiglitazone promotes development of a novel adipocyte population from bone marrow-derived circulating progenitor cells. J Clin Invest 2006;116:32203228.Google Scholar
Gupta, RK, Arany, Z, Seale, P, Mepani, RJ, Ye, L, Conroe, HM, et al. Transcriptional control of preadipocyte determination by Zfp423. Nature 2010;464:619623.Google Scholar
Seale, P, Bjork, B, Yang, W, Kajimura, S, Chin, S, Kuang, S, et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008;454:961967.Google Scholar
Huttunen, P, Hirvonen, J, Kinnula, V. The occurrence of brown adipose tissue in outdoor workers. Eur J Appl Physiol Occup Physiol 1981;46:339345.Google Scholar
Majka, SM, Barak, Y, Klemm, DJ. Concise review: adipocyte origins: weighing the possibilities. Stem Cells 2011;29:10341040.Google Scholar
Szasz, T, Bomfim, GF, Webb, RC. The influence of perivascular adipose tissue on vascular homeostasis. Vascular Health Risk Manag 2013;9:105116.Google Scholar
Risau, W, Lemmon, V. Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev Biol 1988;125:441450.Google Scholar
Pouget, C, Pottin, K, Jaffredo, T. Sclerotomal origin of vascular smooth muscle cells and pericytes in the embryo. Dev Biol 2008;315:437447.Google Scholar
Teixeira, V, Arede, N, Gardner, R, Rodriguez-Leon, J, Tavares, AT. Targeting the hemangioblast with a novel cell type-specific enhancer. BMC Dev Biol 2011;11:76.Google Scholar
Lancrin, C, Sroczynska, P, Stephenson, C, Allen, T, Kouskoff, V, Lacaud, G. The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 2009;457:892895.Google Scholar
Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 2005;438:932936.CrossRefGoogle ScholarPubMed
Tavian, M, Zheng, B, Oberlin, E, Crisan, M, Sun, B, Huard, J, et al. The vascular wall as a source of stem cells. Ann N Y Acad Sci 2005;1044:4150.Google Scholar
Korthuis, R. Skeletal Muscle Circulation. San Rafael, CA: Morgan & Claypool, 2011.Google Scholar
Benjamin, M, Kaiser, E, Milz, S. Structure-function relationships in tendons: a review. J Anat 2008;212:211228.Google Scholar
Stecco, C, Macchi, V, Porzionato, A, Duparc, F, De Caro, R. The fascia: the forgotten structure. Ital J Anat Embryol 2011;116:127138.Google Scholar
Schleip, R, Jager, H, Klingler, W. What is "fascia"? A review of different nomenclatures. J Bodywork Move Ther 2012;16:496502.Google Scholar
Langevin, HM, Huijing, PA. Communicating about fascia: history, pitfalls, and recommendations. Int J Therc Massage Bodywork 2009;2:38.Google Scholar
Morwood, J. Pocket Oxford Latin dictionary, rev edn. Oxford: Oxford University Press, 2005.Google Scholar
Martin, EA. Concise Medical Dictionary. Oxford: Oxford University Press, 2010.Google Scholar
Edwards, DA. The blood supply and lymphatic drainage of tendons. J Anat 1946;80:147152.Google Scholar
Fenwick, SA, Hazleman, BL, Riley, GP. The vasculature and its role in the damaged and healing tendon. Arthritis Res 2002;4:252260.Google Scholar
Heaton, JM. The distribution of brown adipose tissue in the human. J Anat 1972;112:3539.Google Scholar
Giralt, M, Villarroya, F. White, brown, beige/brite: different adipose cells for different functions? Endocrinology 2013;154:29923000.Google Scholar
Wronska, A, Kmiec, Z. Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiol 2012;205:194208.Google Scholar
Kelley, DE, Thaete, FL, Troost, F, Huwe, T, Goodpaster, BH. Subdivisions of subcutaneous abdominal adipose tissue and insulin resistance. Am J Physiol Endocrinol Metab 2000;278:E941948.Google Scholar
Billon, N, Dani, C. Developmental origins of the adipocyte lineage: new insights from genetics and genomics studies. Stem Cell Rev 2012;8:5566.Google Scholar
Rajsheker, S, Manka, D, Blomkalns, AL, Chatterjee, TK, Stoll, LL, Weintraub, NL. Crosstalk between perivascular adipose tissue and blood vessels. Curr Opin Pharmacol 2010;10:191196.Google Scholar
Meijer, RI, Serne, EH, Smulders, YM, van Hinsbergh, VW, Yudkin, JS, Eringa, EC. Perivascular adipose tissue and its role in type 2 diabetes and cardiovascular disease. Current Diabetes Rep 2011;11:211217.Google Scholar
Ham, AW, Leeson, TS. Histology, 4th edn. Philadelphia PA: Lippincott, 1961.Google Scholar
Carpenter, S, Karpati, G. Pathology of Skeletal Muscle. New York: Churchill Livingstone, 1984.Google Scholar
Mills, SE. Histology for Pathologists. Philadelphia PA: Lippincott Williams & Wilkins, 2007.Google Scholar
Heffner, RR. Muscle Pathology. New York: Churchill Livingstone, 1984.Google Scholar
Levy-Marchal, C, Pénicaud, L. Adipose tissue development from animal models to clinical conditions. In Third ESPE Advanced Seminar in Developmental Endocrinology, 2009. Basel: Karger, 2010.Google Scholar
Lie, JT, Stehbens, WE. Vascular Pathology. London: Chapman & Hall Medical, 1995.Google Scholar
Banes, AJ, Donlon, K, Link, GW, Gillespie, Y, Bevin, AG, Peterson, HD, et al. Cell populations of tendon: a simplified method for isolation of synovial cells and internal fibroblasts: confirmation of origin and biologic properties. J Orthopaed Res 1988;6:8394.Google Scholar
Haraida, S, Nerlich, AG, Wiest, I, Schleicher, E, Lohrs, U. Distribution of basement membrane components in normal adipose tissue and in benign and malignant tumors of lipomatous origin. Mod Pathol 1996;9:137144.Google Scholar
Arbuthnott, E. Brown adipose tissue: structure and function. Proc Nutr Soc 1989;48:177182.Google Scholar
Hull, D. The structure and function of brown adipose tissue. Br Med Bull 1966;22:9296.Google Scholar
Andreeva, ER, Pugach, IM, Gordon, D, Orekhov, AN. Continuous subendothelial network formed by pericyte-like cells in human vascular bed. Tissue Cell 1998;30:127135.Google Scholar
Armulik, A, Genove, G, Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 2011;21:193215.Google Scholar
Matsuoka, LY, Uitto, J, Wortsman, J, Abergel, RP, Dietrich, J. Ultrastructural characteristics of keloid fibroblasts. Am J Dermatopathol 1988;10:505508.Google Scholar
Sandbo, N, Dulin, N. Actin cytoskeleton in myofibroblast differentiation: ultrastructure defining form and driving function. Transl Res 2011;158:181196.Google Scholar
Singer, II. The fibronexus: a transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts. Cell 1979;16:675685.Google Scholar
Eyden, B. The myofibroblast: an assessment of controversial issues and a definition useful in diagnosis and research. Ultrastruct Pathol 2001;25:3950.Google Scholar
Sbarbati, A, Zancanaro, C, Cigolini, M, Cinti, S. Brown adipose tissue: a scanning electron microscopic study of tissue and cultured adipocytes. Acta Anat 1987;128:8488.Google Scholar
Justo, R, Oliver, J, Gianotti, M. Brown adipose tissue mitochondrial subpopulations show different morphological and thermogenic characteristics. Mitochondrion 2005;5:4553.Google Scholar
Goebel, HH, Sewry, CA, Weller, RO, International Society of Neuropathology. Muscle Disease Pathology and Genetics. Chichester, UK: Wiley-Blackwell, 2013.Google Scholar
Mastaglia, FL, Walton, JN. Skeletal Muscle Pathology. 2nd edn. Edinburgh: Churchill Livingstone, 1992.Google Scholar
Schochet, SS. Diagnostic Pathology of Skeletal Muscle and Nerve. Norwalk, CT: Appleton-Century-Crofts, 1986.Google Scholar
Preeyasombat, C, Sirikulchayanonta, V, Mahachokelertwattana, P, Sriphrapradang, A, Boonpucknavig, S. Cushing’s syndrome caused by Ewing’s sarcoma secreting corticotropin releasing factor-like peptide. Am J Dis Child 1992;146:11031105.Google Scholar
des Guetz, G, Mariani, P, Freneaux, P, Pouillart, P. Paraneoplastic syndromes in cancer: case 2. Leucocytosis associated with liposarcoma recurrence: original presentation of liposarcoma recurrence. J Clin Oncol 2004;22:22422243.Google Scholar
Demicco, EG, Park, MS, Araujo, DM, Fox, PS, Bassett, RL, Pollock, RE, et al. Solitary fibrous tumor: a clinicopathological study of 110 cases and proposed risk assessment model. Mod Pathol 2012;25:12981306.Google Scholar
Chmielecki, J, Crago, AM, Rosenberg, M, O’Connor, R, Walker, SR, Ambrogio, L, et al. Whole-exome sequencing identifies a recurrent NAB2STAT6 fusion in solitary fibrous tumors. Nat Genet 2013;45:131132.Google Scholar
Hajdu, M, Singer, S, Maki, RG, Schwartz, GK, Keohan, ML, Antonescu, CR. IGF2 over-expression in solitary fibrous tumours is independent of anatomical location and is related to loss of imprinting. J Pathol 2010;221:300307.Google Scholar
Briselli, M, Mark, EJ, Dickersin, GR. Solitary fibrous tumors of the pleura: eight new cases and review of 360 cases in the literature. Cancer 1981;47:26782689.Google Scholar
Zafar, H, Takimoto, CH, Weiss, G. Doege–Potter syndrome: hypoglycemia associated with malignant solitary fibrous tumor. Med Oncol 2003;20:403408.Google Scholar
Chick, JF, Chauhan, NR, Madan, R. Solitary fibrous tumors of the thorax: nomenclature, epidemiology, radiologic and pathologic findings, differential diagnoses, and management. AJR Am J Roentgenol 2013;200:W238W248.Google Scholar
Gold, JS, Antonescu, CR, Hajdu, C, Ferrone, CR, Hussain, M, Lewis, JJ, et al. Clinicopathologic correlates of solitary fibrous tumors. Cancer 2002;94:10571068.Google Scholar
Jiang, Y, Xia, WB, Xing, XP, Silva, BC, Li, M, Wang, O, et al. Tumor-induced osteomalacia: an important cause of adult-onset hypophosphatemic osteomalacia in China: Report of 39 cases and review of the literature. J Bone Miner Res 2012;27:19671975.Google Scholar
Ledford, CK, Zelenski, NA, Cardona, DM, Brigman, BE, Eward, WC. The phosphaturic mesenchymal tumor: why is definitive diagnosis and curative surgery often delayed? Clin Orthopaed Relat Res 2013;471:36183625.Google Scholar
Clifton-Bligh, RJ, Hofman, MS, Duncan, E, Sim Ie, W, Darnell, D, Clarkson, A, et al. Improving diagnosis of tumor-induced osteomalacia with gallium-68 DOTATATE PET/CT. J Clin Endocrinol Metab 2013;98:687694.Google Scholar
Weidner, N, Santa Cruz, D. Phosphaturic mesenchymal tumors. A polymorphous group causing osteomalacia or rickets. Cancer 1987;59:14421454.Google Scholar
Kuro, OM. Klotho, phosphate and FGF-23 in ageing and disturbed mineral metabolism. Nat Rev Nephrol 2013;9:650660.Google Scholar
Folpe, AL, Fanburg-Smith, JC, Billings, SD, Bisceglia, M, Bertoni, F, Cho, JY, et al. Most osteomalacia-associated mesenchymal tumors are a single histopathologic entity: an analysis of 32 cases and a comprehensive review of the literature. Am J Surg Pathol 2004;28:130.Google Scholar
Bowe, AE, Finnegan, R, Jan de Beur, SM, Cho, J, Levine, MA, Kumar, R, et al. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun 2001;284:977981.Google Scholar
Shelekhova, KV, Kazakov, DV, Hes, O, Treska, V, Michal, M. Phosphaturic mesenchymal tumor (mixed connective tissue variant): a case report with spectral analysis. Virchows Arch 2006;448:232235.Google Scholar
Bahrami, A, Weiss, SW, Montgomery, E, Horvai, AE, Jin, L, Inwards, CY, et al. RT-PCR analysis for FGF23 using paraffin sections in the diagnosis of phosphaturic mesenchymal tumors with and without known tumor induced osteomalacia. Am J Surg Pathol 2009;33:13481354.Google Scholar

References

Karsenty, G. The complexities of skeletal biology. Nature 2003;423:316318.Google Scholar
Lee, NK, Karsenty, G. Reciprocal regulation of bone and energy metabolism. Trends Endocrinol Metab 2008;19:161166.Google Scholar
Karsenty, G, Ferron, M. The contribution of bone to whole-organism physiology. Nature 2012;481:314320.Google Scholar
Bilezikian, JP, Raisz, LG, Martin, TJ. Principles of Bone Biology, Vols. 1 and 2. San Diego, FL: Academic Press, 2008.Google Scholar
Ducy, P, Zhang, R, Geoffroy, V, Ridall, AL, Karsenty, G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997;89:747754.Google Scholar
Karsenty, G, Kronenberg, HM, Settembre, C. Genetic control of bone formation. Annu Rev Cell Dev Biol 2009;25:629648.Google Scholar
Glorieux, FH, Pettifor, JM, Jüppner, H. Pediatric Bone Biology and Diseases. Amsterdam: Elsevier/Academic Press, 2012.Google Scholar
Thakker, RV. Genetics of Bone Biology and Skeletal Disease. London: Academic Press, 2013.Google Scholar
Yang, Y. Skeletal morphogenesis during embryonic development. Crit Rev Eukaryot Gene Express 2009;19:197218.Google Scholar
Chung, UI, Kawaguchi, H, Takato, T, Nakamura, K. Distinct osteogenic mechanisms of bones of distinct origins. J Orthopaed Sci 2004;9:410414.Google Scholar
Riminucci, M, Bradbeer, JN, Corsi, A, Gentili, C, Descalzi, F, Cancedda, R, et al. Vis-a-vis cells and the priming of bone formation. J Bone Miner Res 1998;13:18521861.Google Scholar
Provot, S, Schipani, E. Molecular mechanisms of endochondral bone development. Biochem Biophys Res Commun 2005;328:658665.Google Scholar
Klein, M, Bonar, SG, Freemont, T, Vinh, T, Lopez-Ben, R, Siegel, H, et al. Atlas of Non-neoplastic Pathology: Non-Neoplastic Diseases of Bones and Joints. Bethesda, MD: ARP Press, 2011.Google Scholar
Eames, BF, Helms, JA. Conserved molecular program regulating cranial and appendicular skeletogenesis. Dev Dyn 2004;231:413.Google Scholar
Hall, BK, Miyake, T. All for one and one for all: condensations and the initiation of skeletal development. BioEssays 2000;22:138147.Google Scholar
Mills, SE. Histology for Pathologists. Philadelphia PA: Lippincott Williams & Wilkins; 2007.Google Scholar
Karsenty, G, Wagner, EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2002;2:389406.Google Scholar
Carroll, SH, Ravid, K. Differentiation of mesenchymal stem cells to osteoblasts and chondrocytes: a focus on adenosine receptors. Exp Rev Mol Med 2013;15:e1.Google Scholar
Edwards, JR, Mundy, GR. Advances in osteoclast biology: old findings and new insights from mouse models. Nature Rev Rheumatol 2011;7:235243.Google Scholar
Nakashima, K, Zhou, X, Kunkel, G, Zhang, Z, Deng, JM, Behringer, RR, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 2002;108:1729.Google Scholar
Hu, H, Hilton, MJ, Tu, X, Yu, K, Ornitz, DM, Long, F. Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 2005;132:4960.Google Scholar
Thompson, JS, Akesson, EJ, Loeb, JA, Wilson-Pauwels, L. Thompson’s Core Textbook of Anatomy, 2nd edn. Philadelphia PA: Lippincott, 1990.Google Scholar
Enlow, DH. Wolff’s law and the factor of architectonic circumstance. Am J Orthodont 1968;54:803822.Google Scholar
Kizilkanat, E, Boyan, N, Ozsahin, ET, Soames, R, Oguz, O. Location, number and clinical significance of nutrient foramina in human long bones. Ann Anat 2007;189:8795.Google Scholar
Edwards, JR, Williams, K, Kindblom, LG, Meis-Kindblom, JM, Hogendoorn, PC, Hughes, D, et al. Lymphatics and bone. Hum Pathol 2008;39:4955.Google Scholar
Webber, RH, DeFelice, R, Ferguson, RJ, Powell, JP. Bone marrow response to stimulation of the sympathetic trunks in rats. Acta Anat 1970;77:9297.Google Scholar
Ji-Ye, H, Xin-Feng, Z, Lei-Sheng, J. Autonomic control of bone formation: its clinical relevance. Handbook Clin Neurol 2013;117:161171.Google Scholar
Khor, EC, Baldock, P. The NPY system and its neural and neuroendocrine regulation of bone. Curr Osteopor Rep 2012;10:160168.Google Scholar
Elefteriou, F, Campbell, P, Ma, Y. Control of bone remodeling by the peripheral sympathetic nervous system. Calcif Tissue Int 2014;94:140151.Google Scholar
Bullough, PG. Orthopaedic Pathology, 5th edn. Philadelphia, PA: Mosby-Elsevier, 2009.Google Scholar
Franz-Odendaal, TA, Hall, BK, Witten, PE. Buried alive: how osteoblasts become osteocytes. Dev Dyn 2006;235:176190.Google Scholar
Neve, A, Corrado, A, Cantatore, FP. Osteoblast physiology in normal and pathological conditions. Cell Tissue Res 2011;343:289302.Google Scholar
Everts, V, Delaisse, JM, Korper, W, Jansen, DC, Tigchelaar-Gutter, W, Saftig, P, et al. The bone lining cell: its role in cleaning Howship’s lacunae and initiating bone formation. J Bone Miner Res 2002;17:7790.Google Scholar
Li, Y, Aparicio, C. Discerning the subfibrillar structure of mineralized collagen fibrils: a model for the ultrastructure of bone. PLOS ONE 2013;8:e76782.Google Scholar
Boivin, G, Anthoine-Terrier, C, Obrant, KJ. Transmission electron microscopy of bone tissue. A review. Acta Orthopaed Scand 1990;61:170180.Google Scholar
Miller, SC, Jee, WS. The bone lining cell: a distinct phenotype? Calcif Tissue Int 1987;41:15.Google Scholar
Sterchi, D. Bone. In Suvarna, KS, Layton, C, Bancroft, JD, eds. Bancroft’s Theory and Practice of Histological Techniques, 7th edn. Edinburgh: Churchill Livingstone-Elesvier; 2013:317352.Google Scholar
Diamanti-Kandarakis, E, Livadas, S, Tseleni-Balafouta, S, Lyberopoulos, K, Tantalaki, E, Palioura, H, et al. Brown tumor of the fibula: unusual presentation of an uncommon manifestation. Report of a case and review of the literature. Endocrine 2007;32:345349.Google Scholar
Bohlman, ME, Kim, YC, Eagan, J, Spees, EK. Brown tumor in secondary hyperparathyroidism causing acute paraplegia. Am J Med 1986;81:545547.Google Scholar
Verlaan, L, van der Wal, B, de Maat, GJ, Walenkamp, G, Nollen-Lopez, L, van Ooij, A. Primary hyperparathyroidism and pathological fractures: a review. Acta Orthopaed Belg 2007;73:300305.Google Scholar
Takeshita, T, Takeshita, K, Abe, S, Takami, H, Imamura, T, Furui, S. Brown tumor with fluid-fluid levels in a patient with primary hyperparathyroidism: radiological findings. Radiat Med 2006;24:631634.Google Scholar
Davies, AM, Pettersson, H, Ostensen, H, World Health Organization., International Society of Radiology. The WHO Manual of Diagnostic Imaging: Radiographic Anatomy and Interpretation of the Musculoskeletal System. Geneva: World Health Organization, 2002.Google Scholar
Jaffe, HL. Hyperparathyroidism. Bull N Y Acad Med 1940;16:291311.Google Scholar
Unni, KK, Inwards, CY, Bridge, JA, Atlas of Tumor Pathology, 4th Series, Fascicle 2: Tumors of Bones and Joints. Bethesda, MD: ARP Press, 2005.Google Scholar
Desai, P, Steiner, GC. Ultrastructure of brown tumor of hyperparathyroidism. Ultrastruct Pathol 1990;14:505511.Google Scholar
Rossi, B, Ferraresi, V, Appetecchia, ML, Novello, M, Zoccali, C. Giant cell tumor of bone in a patient with diagnosis of primary hyperparathyroidism: a challenge in differential diagnosis with brown tumor. Skeletal Radiol 2014;43:693697.Google Scholar
Siegal, G, Bianco, P, Dal Cin, P. Fibrous dysplasia. In Fletcher, C, Bridge, J, Hogendoorn, P, Mertens, F, eds. World Health Organization Classification of Tumours of Soft Tissue and Bone. Lyon: International Agency for Research on Cancer, 2013:352353.Google Scholar
Ippolito, E, Bray, EW, Corsi, A, De Maio, F, Exner, UG, Robey, PG, et al. Natural history and treatment of fibrous dysplasia of bone: a multicenter clinicopathologic study promoted by the European Pediatric Orthopaedic Society. J Pediatr Orthoped B 2003;12:155177.Google Scholar
Parekh, SG, Donthineni-Rao, R, Ricchetti, E, Lackman, RD. Fibrous dysplasia. J Am Acad Orthopaed Surg 2004;12:305313.Google Scholar
Collins, MT, Chebli, C, Jones, J, Kushner, H, Consugar, M, Rinaldo, P, et al. Renal phosphate wasting in fibrous dysplasia of bone is part of a generalized renal tubular dysfunction similar to that seen in tumor-induced osteomalacia. J Bone Miner Res 2001;16:806813.Google Scholar
Stanton, RP, Ippolito, E, Springfield, D, Lindaman, L, Wientroub, S, Leet, A. The surgical management of fibrous dysplasia of bone. Orphanet J Rare Dis 2012;7(suppl 1):S1.Google Scholar
Utz, JA, Kransdorf, MJ, Jelinek, JS, Moser, RP Jr., Berrey, BH. MR appearance of fibrous dysplasia. J Comput Assist Tomogr 1989;13:845851.Google Scholar
Lee, SE, Lee, EH, Park, H, Sung, JY, Lee, HW, Kang, SY, et al. The diagnostic utility of the GNAS mutation in patients with fibrous dysplasia: meta-analysis of 168 sporadic cases. Hum Pathol 2012;43:12341242.Google Scholar
Tabareau-Delalande, F, Collin, C, Gomez-Brouchet, A, Decouvelaere, AV, Bouvier, C, Larousserie, F, et al. Diagnostic value of investigating GNAS mutations in fibro-osseous lesions: a retrospective study of 91 cases of fibrous dysplasia and 40 other fibro-osseous lesions. Mod Pathol 2013;26:911921.Google Scholar
Regard, JB, Cherman, N, Palmer, D, Kuznetsov, SA, Celi, FS, Guettier, JM, et al. Wnt/beta-catenin signaling is differentially regulated by Galpha proteins and contributes to fibrous dysplasia. Proc Natl Acad Sci USA 2011;108:2010120106.Google Scholar
Bhattacharyya, N, Wiench, M, Dumitrescu, C, Connolly, BM, Bugge, TH, Patel, HV, et al. Mechanism of FGF23 processing in fibrous dysplasia. J Bone Miner Res 2012;27:11321141.Google Scholar
Fan, QM, Yue, B, Bian, ZY, Xu, WT, Tu, B, Dai, KR, et al. The CREB–Smad6–Runx2 axis contributes to the impaired osteogenesis potential of bone marrow stromal cells in fibrous dysplasia of bone. J Pathol 2012;228:4555.Google Scholar
Choong, PF, Pritchard, DJ, Rock, MG, Sim, FH, McLeod, RA, Unni, KK. Low grade central osteogenic sarcoma. A long-term followup of 20 patients. Clin Orthopaed Relat Res 1996;198–206.Google Scholar
Lee, JS, FitzGibbon, EJ, Chen, YR, Kim, HJ, Lustig, LR, Akintoye, SO, et al. Clinical guidelines for the management of craniofacial fibrous dysplasia. Orphanet J Rare Dis 2012;7(suppl 1):S2.Google Scholar
Slootweg, P, El Mofty, S. Ossifying fibroma. In Barnes, L, Eveson, J, Reichart, P, Sidransky, D, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Head and Neck Tumours. Lyon: International Agency for Research on Cancer, 2005:430.Google Scholar
Teh, B, Sweet, K, Morrison, C. Pathology and genetics of tumours of endocrine organs. In DeLellis, R, Lloyd, R, Heitz, P, Eng, C, ed. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004:320.Google Scholar
Haven, CJ, Wong, FK, van Dam, EW, van der Juijt, R, van Asperen, C, Jansen, J, et al. A genotypic and histopathological study of a large Dutch kindred with hyperparathyroidism-jaw tumor syndrome. J Clin Endocrinol Metab 2000;85:14491454.Google Scholar
Newey, PJ, Bowl, MR, Cranston, T, Thakker, RV. Cell division cycle protein 73 homolog (CDC73) mutations in the hyperparathyroidism-jaw tumor syndrome (HPT-JT) and parathyroid tumors. Hum Mutat 2010;31:295307.Google Scholar
Jackson, MA, Rich, TA, Hu, MI, Martin, JW, Perrier, ND, Waguespack, SG. CDC73-related disorders. In Pagon, RA, Adam, MP, Bird, TD, Dolan, CR, Fong, CT, Stephens, K, eds. GeneReviews. Seattle, WA: University of Washington, 2015 (http://www.ncbi.nlm.nih.gov/books/NBK3789/, accessed 10 September 2015).Google Scholar
Kennett, S, Pollick, H. Jaw lesions in familial hyperparathyroidism. Oral Surg Oral Med Oral Pathol 1971;31:502510.Google Scholar
Eversole, LR, Leider, AS, Nelson, K. Ossifying fibroma: a clinicopathologic study of sixty-four cases. Oral Surg Oral Med Oral Pathol 1985;60:505511.Google Scholar
Warnakulasuriya, S, Markwell, BD, Williams, DM. Familial hyperparathyroidism associated with cementifying fibromas of the jaws in two siblings. Oral Surg Oral Med Oral Pathol 1985;59:269274.Google Scholar
Carpten, JD, Robbins, CM, Villablanca, A, Forsberg, L, Presciuttini, S, Bailey-Wilson, J, et al. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet 2002;32:676680.Google Scholar
Rozenblatt-Rosen, O, Hughes, CM, Nannepaga, SJ, Shanmugam, KS, Copeland, TD, Guszczynski, T, et al. The parafibromin tumor suppressor protein is part of a human Paf1 complex. Mol Cell Biol 2005;25:612620.Google Scholar
Zhang, C, Kong, D, Tan, MH, Pappas, DL Jr., Wang, PF, Chen, J, et al. Parafibromin inhibits cancer cell growth and causes G1 phase arrest. Biochem Biophys Res Commun 2006;350:1724.Google Scholar
Woodard, GE, Lin, L, Zhang, JH, Agarwal, SK, Marx, SJ, Simonds, WF. Parafibromin, product of the hyperparathyroidism-jaw tumor syndrome gene HRPT2, regulates cyclin D1/PRAD1 expression. Oncogene 2005;24:12721276.Google Scholar
Yang, YJ, Han, JW, Youn, HD, Cho, EJ. The tumor suppressor, parafibromin, mediates histone H3 K9 methylation for cyclin D1 repression. Nucl Acids Res 2010;38:382390.Google Scholar
Mosimann, C, Hausmann, G, Basler, K. Parafibromin/Hyrax activates Wnt/Wg target gene transcription by direct association with beta-catenin/Armadillo. Cell 2006;125:327341.Google Scholar
Bricaire, L, Odou, MF, Cardot-Bauters, C, Delemer, B, North, MO, Salenave, S, et al. Frequent large germline HRPT2 deletions in a French National cohort of patients with primary hyperparathyroidism. J Clin Endocrinol Metab 2013;98:E403E408.Google Scholar
Kutcher, MR, Rigby, MH, Bullock, M, Trites, J, Taylor, SM, Hart, RD. Hyperparathyroidism-jaw tumor syndrome. Head Neck 2013;35:E175E177.Google Scholar
Dinnen, JS, Greenwoood, RH, Jones, JH, Walker, DA, Williams, ED. Parathyroid carcinoma in familial hyperparathyroidism. J Clin Pathol 1977;30:966975.Google Scholar

References

ADHR consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 2000;26:345348.Google Scholar
Yamashita, T.. Structural and biochemical properties of fibroblast growth factor 23. Ther Apher Dial 2005;9:313318.Google Scholar
Goetz, R., Nakada, Y., Hu, M.C., et al. Isolated C‐terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23‐FGFR‐Klotho complex formation. Proc Natl Acad Sci USA 2010;107:407441.Google Scholar
Jüppner, H., Wolf, M.. αKlotho: FGF23 coreceptor and FGF23-regulating hormone. J Clin Invest 2012;122:43364339.Google Scholar
Kuro, M. , O. Klotho in health and disease. Curr Opin Nephrol Hypertens 2012;21:362368.Google Scholar
Silver, J., Naveh-Many, T.. FGF-23 and secondary hyperparathyroidism in chronic kidney disease. Nat Rev Nephrol 2013;9:641649.Google Scholar
Shimada, T., Hasegawa, H., Yamazaki, Y., et al. FGF‐23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 2004;19:429435.Google Scholar
Rowe, P.S.. The chicken or the egg: PHEX, FGF23 and SIBLINGs unscrambled. Cell Biochem Funct 2012;30:355375.Google Scholar
Feng, J.Q., Ward, L.M., Liu, S., et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 2006;38:13101315.Google Scholar
Lorenz-Depiereux, B., Bastepe, M., Benet-Pages, A., et al. DMP1mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet 2006;38:12481250.Google Scholar
Francis, F., Hennig, S., Korn, B., et al. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat Genet 1995;11:130136.Google Scholar
Quinn, S.J., Thomsen, A.R., Egbuna, O., et al. CaSR-mediated interactions between calcium and magnesium homeostasis in mice. Am J Physiol Endocrinol Metab 2013;304:E724E733.Google Scholar
Saito, H., Maeda, A., Ohtomo, S., et al. Circulating FGF‐23 is regulated by 1α,25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem 2005;280:25432549.Google Scholar
Wolf, M., Koch, T.A., Bregman, D.B.. Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J Bone Miner Res 2013;28:17931803.Google Scholar
Karsenty, G., Ferron, M.. The contribution of bone to whole-organism physiology. Nature 2012;481:314320.Google Scholar
DiGirolamo, D.J., Clemens, T.L., Kousteni, S.. The skeleton as an endocrine organ. Nat Rev Rheumatol 2012;8:674683.Google Scholar
Lian, J.B., Gundberg, C.M.. Osteocalcin. Biochemical considerations and clinical applications. Clin Orthop Relat Res 1988;226:267291.Google Scholar
Ducy, P., Desbois, C., Boyce, B., et al. Increased bone formation in osteocalcin-deficient mice. Nature 1996;382:448452.Google Scholar
Delmas, P.D., Eastell, R., Garnero, P., et al. The use of biochemical markers of bone turnover in osteoporosis. Committee of Scientific Advisors of the International Osteoporosis Foundation. Osteoporos Int 2000;11:S2S17.Google Scholar
Szulc, P., Delmas, P.D.. Biochemical markers of bone turnover: potential use in the investigation and management of postmenopausal osteoporosis. Osteoporos.Int 2008;19:16831704.Google Scholar
Hauschka, P.V., Lian, J.B., Cole, D.E., Gundberg, C.M.. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev 1989;69:9901047.Google Scholar
Hoang, Q.Q., Sicheri, F., Howard, A.J., Yang, D.S.. Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 2003;425:977980.Google Scholar
Frazao, C., Simes, D.C., Coelho, R., et al. Structural evidence of a fourth Gla residue in fish osteocalcin: biological implications. Biochemistry 2005;44:12341242.Google Scholar
Rubinacci, A.. Expanding the functional spectrum of vitamin K in bone. Focus on: “vitamin K promotes mineralization, osteoblast to osteocyte transition, and an anti-catabolic phenotype by {gamma}-carboxylation-dependent and-independent mechanisms.” Am J Physiol Cell Physiol 2009;297:C1336C1338.Google Scholar
Sokoll, L.J., Sadowski, J.A.. Comparison of biochemical indexes for assessing vitamin K nutritional status in a healthy adult population. Am J Clin Nutr 1996;63:566573.Google Scholar
Cairns, J.R., Price, P.A.. Direct demonstration that the vitamin K-dependent bone Gla protein is incompletely gamma-carboxylated in humans. J Bone Miner Res 1994;9:19891997.Google Scholar
Gundberg, C.M., Nieman, S.D., Abrams, S., Rosen, H.. Vitamin K status and bone health: an analysis of methods for determination of undercarboxylated osteocalcin. J Clin Endocrinol Metab 1998;83:32583266.Google Scholar
Lee, A.J., Hodges, S., Eastell, R.. Measurement of osteocalcin. Ann Clin Biochem 2000;37:432446.Google Scholar
Rogers, A., Hannon, R.A., Eastell, R.. Biochemical markers as predictors of rates of bone loss after menopause. J Bone Miner Res 2000;15:13981404.Google Scholar
Liu, G., Peacock, M.. Age-related changes in serum undercarboxylated osteocalcin and its relationships with bone density, bone quality, and hip fracture. Calcif Tissue Int 1998;62:286289.Google Scholar
Tsugawa, N., Shiraki, M., Suhara, Y., et al. Vitamin K status of healthy Japanese women: age-related vitamin K requirement for gamma-carboxylation of osteocalcin. Am J Clin Nutr 2006;83:380386.Google Scholar
Plantalech, L., Guillaumont, M., Vergnaud, P., et al. Impairment of gamma carboxylation of circulating osteocalcin (bone gla protein) in elderly women. J Bone Miner Res 1991;6:12111216.Google Scholar
Shea, M.K., Benjamin, E.J., Dupuis, J., et al. Genetic and non-genetic correlates of vitamins K and D. Eur J Clin Nutr 2009;63:458464.Google Scholar
Ferron, M., Wei, J, Yoshizawa, T, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 2010;142:296308.Google Scholar
Lee, N.K., Sowa, H, Hinoi, E, Ferron, M, et al. Endocrine regulation of energy metabolism by the skeleton. Cell 2007;130:456469.Google Scholar
Ducy, P., Amling, M, Takeda, S, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 2000;100:197207.Google Scholar
Turner, R.T., Kalra, S.P., Wong, C.P., et al. Peripheral leptin regulates bone formation. J Bone Miner Res 2013;28:2234.Google Scholar
Yip, S.C., Saha, S., Chernoff, J.. PTP1B: a double agent in metabolism and oncogenesis. Trends Biochem Sci 2010;35:442449.Google Scholar
Misra, M., Miller, K.K., Cord, J., et al. Relationships between serum adipokines, insulin levels, and bone density in girls with anorexia nervosa. J Clin Endocrinol Metab 2007;92:20462052.Google Scholar
Pollock, N.K., Bernard, P.J., Gower, B.A.N., et al. Lower uncarboxylated osteocalcin concentrations in children with prediabetes is associated with β-cell function. J Clin Endocrinol Metab 2011;96:E1092E1099.Google Scholar
Iglesias, P., Arrieta, F, Piñera, M, et al. Serum concentrations of osteocalcin, procollagen type 1 N-terminal propeptide and β-Crosslaps in obese subjects with varying degrees of glucose tolerance. Clin Endocrinol 2011;75:184188.Google Scholar
Fernández-Real, J.M., Izquierdo, M., Ortega, F, et al. The relationship of serum osteocalcin concentration to insulin secretion, sensitivity, and disposal with hypocaloric diet and resistance training. J Clin Endocrinol Metab 2009;94:237245.Google Scholar
Bulló, M., Moreno-Navarrete, J.M., Fernández-Real, J.M., et al. Total and undercarboxylated osteocalcin predict changes in insulin sensitivity and β cell function in elderly men at high cardiovascular risk. Am J Clin Nutr 2012;95:249255.Google Scholar
Pittas, A.G., Harris, S.S., Eliades, M., et al. Association between serum osteocalcin and markers of metabolic phenotype. J Clin Endocrinol Metab 2009;94:827832.Google Scholar
Kanazawa, I., Yamaguchi, T, Yamauchi, M., et al. T 2011 serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus. Osteoporos Int 2011;22:187194.Google Scholar
Lihn, A.S., Pedersen, S.B., Richelsen, B.. Adiponectin: action, regulation and association to insulin sensitivity. Obes Rev 2005;6:1321.Google Scholar
Yoshida, M., Jacques, P.F., Meigs, J.B., et al. Effect of vitamin K supplementation on insulin resistance in older men and women. Diabetes Care 2008;31:20922096.Google Scholar
Dane, C., Dane, B., Cetin, A., et al. Comparison of the effects of raloxifene and low-dose hormone replacement therapy on bone mineral density and bone turnover in the treatment of postmenopausal osteoporosis. Gynecol Endocrinol 2007;23:398403.Google Scholar
Yasui, T., Uemura, H., Umino, Y., et al. Undercarboxylated osteocalcin concentration in postmenopausal women receiving hormone therapy daily and on alternate days. Menopause 2006;13:314322.Google Scholar
Kanaya, A.M., Herrington, D., Vittinghoff, E., et al. Glycemic effects of postmenopausal hormone therapy: the Heart and Estrogen/Progestin Replacement Study. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 2003;138:19.Google Scholar
Margolis, K.L., Bonds, D.E., Rodabough, R.J., et al. Effect of oestrogen plus progestin on the incidence of diabetes in postmenopausal women: results from the Women’s Health Initiative Hormone Trial. Diabetologia 2004;47:11751187.Google Scholar
Aonuma, H., Miyakoshi, N., Hongo, M., et al. Low serum levels of undercarboxylated osteocalcin in postmenopausal osteoporotic women receiving an inhibitor of bone resorption. Tohoku J Exp Med 2009;218:201205.Google Scholar
Vestergaard, P.. Risk of newly diagnosed type 2 diabetes is reduced in users of alendronate. Calcif Tissue Int 2011;89:265270.Google Scholar
Schwartz, A.V., Schafer, A.L., Grey, A., et al. Effects of antiresorptive therapies on glucose metabolism: results from the FIT, HORIZON-PFT, and FREEDOM trials. J Bone Miner Res 2013;28:13481354.Google Scholar
Anastasilakis, A.D., Efstathiadou, Z., Plevraki, E., et al. Effect of exogenous intermittent recombinant human PTH 1–34 administration and chronic endogenous parathyroid hormone excess on glucose homeostasis and insulin sensitivity. Horm Metab Res 2008;40:702707.Google Scholar
Schafer, A.L., Sellmeyer, D.E., Schwartz, A.V., et al. Change in undercarboxylated osteocalcin is associated with changes in body weight, fat mass, and adiponectin: parathyroid hormone (1–84) or alendronate therapy in postmenopausal women with osteoporosis (the PaTH Study). J Clin Endocrinol Metab 2011;96:E19821989.Google Scholar
Kanazawa, I., Yamaguchi, T., Yamamoto, M., et al. Serum osteocalcin level is associated with glucose metabolism and atherosclerosis parameters in type 2 diabetes mellitus. J Clin Endocrinol Metab 2009;94:4549.Google Scholar
Song, H.J., Lee, J., Kim, Y.J., et al. β1-Selectivity of β-blockers and reduced risk of fractures in elderly hypertension patients. Bone 2012;51:10081015.Google Scholar
Rejnmark, L., Vestergaard, P., Mosekilde, L.. Treatment with beta-blockers, ACE inhibitors, and calcium-channel blockers is associated with a reduced fracture risk: a nationwide case–control study. J Hypertens 2006;24:581589.Google Scholar
Yang, S., Nguyen, N.D., Center, J.R., et al. Association between beta-blocker use and fracture risk: the Dubbo Osteoporosis Epidemiology Study. Bone 2011;48:451455.Google Scholar
Yang, S., Nguyen, N.D., Eisman, J.A., et al. Association between beta-blockers and fracture risk: a Bayesian meta-analysis. Bone 2012;51:969974.Google Scholar
Karsenty, G.. The mutual dependence between bone and gonads. J Endocrinol 2012;213:107114.Google Scholar
Oury, F., Ferron, M., Huizhen, W., et al. Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J Clin Invest 2013;123:24212433.Google Scholar
Oury, F., Khrimian, L., Denny, C.A. CA, et al. Maternal and offspring pools of osteocalcin influence brain development and functions. Cell 2013;155:228241.Google Scholar
Kobayashi, S., Takahashi, H.E., Ito, A., et al. Trabecular minimodeling in human iliac bone. Bone 2003;32:163169.Google Scholar
Lauretani, F., Bandinelli, S., Griswold, M.E., et al. Longitudinal changes in BMD and bone geometry in a population-based study. J Bone Miner Res 2008;23:400408.Google Scholar
Macdonald, H.M., Nishiyama, K.K., Kang, J., et al. Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J Bone Miner Res 2011;26:5062.Google Scholar
Ruda, J.M., Hollenbeak, C.S., Stack, B.C. Jr. A systematic review of the diagnosis and treatment of primary hyperparathyroidism from 1995 to 2003. Otolaryngol Head Neck Surg 2005;132:359372.Google Scholar
Rodgers, S.E., Lew, J.I., Solórzano, C.C.. Primary hyperparathyroidism. Curr Opin Oncol 2008;20:5258.Google Scholar
Boehm, B.O., Rosinger, S., Belyi, D., et al. The parathyroid as a target for radiation damage. N Engl J Med 2011;365:676678.Google Scholar
Broome, J.T., Solorzano, C.C.. Lithium use and primary hyperparathyroidism. Endocr Pract 2011;17(suppl 1):3135.Google Scholar
Hemmer, S., Wasenius, V.M., Haglund, C.. Deletion of 11q23 and cyclin D1 overexpression are frequent aberrations in parathyroid adenomas. Am J Pathol 2001;158:13551362.Google Scholar
Rao, D.S., Honasoge, M., Divine, G.W., et al. Effect of vitamin D nutrition on parathyroid adenoma weight: pathogenetic and clinical implications. J Clin Endocrinol Metab 2000;85:10541058.Google Scholar
Björklund, P., Lindberg, D., Akerström, G., Westin, G.. Stabilizing mutation of CTNNB1/beta-catenin and protein accumulation analyzed in a large series of parathyroid tumors of Swedish patients. Mol Cancer 2008;7:53.Google Scholar
Chandrasekharappa, S.C., Guru, S.C., Manickam, P., et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 1997;276:404407.Google Scholar
Pausova, Z., Soliman, E., Amizuka, N., et al. Role of the RET proto-oncogene in sporadic hyperparathyroidism and in hyperparathyroidism of multiple endocrine neoplasia type 2. J Clin Endocrinol Metab 1996;81:27112718.Google Scholar
Chen, J.D., Morrison, C., Zhang, C., et al. Hyperparathyroidism-jaw tumour syndrome. J Intern Med 2003;253:634642.Google Scholar
Pollak, M.R., Brown, E.M., Chou, Y.H., et al. Mutations in the human Ca2+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 1993;75:1297.Google Scholar
Nesbit, M.A., Hannan, F.M., Howles, S.A., et al. Mutations affecting G-Protein Subunit a11 in Hypercalcemia and Hypocalcemia N Engl J Med 2013;368:24762486.Google Scholar
Potts, J.T. Jr. A short history of parathyroid hormone, its biological role, and pathophysiology of hormone excess. J Clin Densitom 2013;16:47.Google Scholar
Tregear, G.W., Van Rietschoten, J., Greene, E., et al. Bovine parathyroid hormone: minimum chain length of synthetic peptide required for biological activity. Endocrinology 1973;93:13491353.Google Scholar
Goltzman, D., Peytremann, A., Callahan, E., et al. Analysis of the requirements for parathyroid hormone action in renal membranes with the use of inhibiting analogues. J Biol Chem 1975;250:31993203.Google Scholar
Jüppner, H., Abou-Samra, A.B., Freeman, M., et al. A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science 1991;254:10241991.Google Scholar
Vilardaga, J.P., Romero, G., Friedman, P.A., et al. Molecular basis of parathyroid hormone receptor signaling and trafficking: a family B GPCR paradigm. Cell Mol Life Sci 2011;68:113.Google Scholar
Rouleau, M.F., Mitchell, J., Goltzman, D.. In vivo distribution of parathyroid hormone receptors in bone: evidence that a predominant osseous target cell is not the mature osteoblast. Endocrinology 1988;123:187191.Google Scholar
Boyle, W.J., Simonet, W.S., Lacey, D.L.. Osteoclast differentiation and activation. Nature 2003;423:337342.Google Scholar
Lee, S-K, Lorenzo, J.. Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow cultures: correlation with osteoclast-like cell formation. Endocrinology 1999;140:35523561.Google Scholar
Locklin, R.M., Khosla, S., Turner, R.T., et al. Mediators of the biphasic responses of bone to intermittent and continuously administered parathyroid hormone. J Cell Biochem 2003;89:180189.Google Scholar
Silverberg, S.J., Shane, E., De LaCruz, L., et al. Skeletal disease in primary hyperparathyroidism. J.Bone Miner Res 1989;4:283.Google Scholar
Silva, B.C., Costa, A.G., Cusano, N.E., et al. Catabolic and anabolic actions of parathyroid hormone on the skeleton. Endocrinol Invest 2011;34:801810.Google Scholar
Silverberg, S.J., Locker, F.G., Bilezikian, J.P.. Vertebral osteopenia: a new indication for surgery in primary hyperparathyroidism. J Clin Endocrinol Metab 1996;81:40074012.Google Scholar
Hansen, S., Beck Jensen, J.E., Rasmussen, L., et al. Effects on bone geometry, density, and microarchitecture in the distal radius but not the tibia in women with primary hyperparathyroidism: a case–control study using HR-pQCT. J Bone Miner Res 2010;25:19411947.Google Scholar
Hedback, G., Oden, A., Tisell, L.E.. The influence of surgery on the risk of death in patients with primary hyperparathyroidism. World J Surg 1991;15:399407.Google Scholar
Wermers, R.A., Khosla, S., Atkinson, E.J., et al. Survival after the diagnosis of hyperparathyroidism: a population-based study. Am J Med 1998;104:115122.Google Scholar
Marx, S.J.. Hyperparathyroid and hypoparathyroid disorders. N Engl J Med 2000;343:18631875.Google Scholar
Brandi, M.L., Gagel, R.F., Angeli, A., et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol Metab 2001;86:56585671.Google Scholar
Brandi, M.L., Falchetti, A.. Genetics of primary hyperparathyroidism. Urol Int 2004;72(suppl 1): 1116.Google Scholar
Nissen, P.H., Christensen, S.E., Heickendorff, L., et al. Molecular genetic analysis of the calcium sensing receptor gene in patients clinically suspected to have familial hypocalciuric hypercalcemia: phenotypic variation and mutation spectrum in a Danish population. J Clin Endocrinol Metab 2007;92:43734379.Google Scholar
Carling, T., Udelsman, R.. Parathyroid surgery in familial hyperparathyroid disorders. J Intern Med 2005;257:2737.Google Scholar
Hannan, F.M., Nesbit, M.A., Christie, P.T., et al. A homozygous inactivating calcium-sensing receptor mutation, Pro339Thr, is associated with isolated primary hyperparathyroidism: correlation between location of mutations and severity of hypercalcaemia. Clin Endocrinol (Oxf) 2010;73:715722.Google Scholar
Simonds, W.F., James-Newton, L.A., Agarwal, S.K., et al. Familial isolated hyperparathyroidism: clinical and genetic characteristics of thirty-six kindreds. Medicine (Baltimore) 2002;81:126.Google Scholar
Eastell, R., Arnold, A., Brandi, M.L., et al. Diagnosis of asymptomatic primary hyperparathyroidism: proceedings of the third international workshop. J Clin Endocrinol Metab 2009;94:340350.Google Scholar
Silverberg, S.J., Lewiecki, E.M., Mosekilde, L., et al. Presentation of asymptomatic primary hyperparathyroidism:proceedings of the Third International Workshop. J Clin Endocrinol Metab 2009;94:351365.Google Scholar
Bilezikian, J.P., Brandi, M.L., Rubin, M., et al. Primary hyperparathyroidism:new concepts in clinical, densitometric and biochemical features. J Intern Med 2005;257:617.Google Scholar
Christensen, S., Nissen, P.H., Vestergaard, P., et al. Discriminative power of three indices of renal calcium excretion for the distinction between familial hypocalciuric hypercalcaemia and primary hyperparathyroidism: a follow-up study on methods. Clin Endocrinol (Oxf) 2008;69:713720.Google Scholar
Khan, A., Bilezikian, J.P.. Primary hyperparathyroidism: pathophysiology and impact on bone. CMAJ 2000;163:184187.Google Scholar
Siilin, H., Lundgren, E., Mallmin, H., et al. Prevalence of primary hyperparathyroidism and impact on bone mineral density in elderly men: MrOs Sweden. World J Surg 2011;35:12661272.Google Scholar
Miller, P.D., Bilezikian, J.P.. Bone densitometry in asymptomatic primary hyperparathyroidism. J Bone Miner Res 2002;17(suppl 2):N98N102.Google Scholar
Tamura, Y., Araki, A., Chiba, Y., et al. Remarkable increase in lumbar spine bone mineral density and amelioration in biochemical markers of bone turnover after parathyroidectomy in elderly patients with primary hyperparathyroidism: a 5-year follow-up study. J Bone Miner Metab 2007;25:226231.Google Scholar
Rejnmark, L., Vestergaard, P., Mosekilde, L.. Nephrolithiasis and renal calcifications in primary hyperparathyroidism. J Clin Endocrinol Metab 2011;96:23772385.Google Scholar
Vestergaard, P., Mosekilde, L.. Fractures in patients with primary hyperparathyroidism: nationwide follow-up study of 1201 patients. World J Surg 2003;27:343349.Google Scholar
Vestergaard, P., Mosekilde, L.. Parathyroid surgery is associated with a decreased risk of hip and upper arm fractures in primary hyperparathyroidism: a controlled cohort study. J Int Med 2004;255:108114.Google Scholar
Frokjaer, V.G., Mollerup, C.L.. Primary hyperparathyroidism: renal calcium excretion in patients with and without renal stone disease before and after parathyroidectomy. World J Surg 2002;26:532535.Google Scholar
Vestergaard, P., Mosekilde, L.. Cohort study on effects of parathyroid surgery on multiple outcomes in primary hyperparathyroidism. Br Med J 2003;327:530534.Google Scholar
Vestergaard, P., Mollerup, C.L., Frokjaer, V.G., et al. Cardiovascular events before and after surgery for primary hyperparathyroidism. World J Surg 2003;27:216222.Google Scholar
Bilezikian, J.P., Khan, A.A., Potts, J.T. Jr. Guidelines for the management of asymptomatic primary hyperparathyroidism: summary statement from the third international workshop. J Clin Endocrinol Metab 2009;94:335339.Google Scholar
Cupisti, K., Raffel, A., Dotzenrath, C., et al. Primary hyperparathyroidism in the young age group: particularities of diagnostic and therapeutic schemes. World J Surg 2004;28:11531156.Google Scholar
Nakajima, K., Tamai, M., Okaniwa, S., et al. Humoral hypercalcemia associated with gastric carcinoma secreting parathyroid hormone: a case report and review of the literature. Endocr J 2013;60:557562.Google Scholar
Mizobuchi, M., Towler, D., Slatopolsky, E.. Vascular calcification:the killer of patients with chronic kidney disease. J Am Soc Nephrol 2009;20:14531464.Google Scholar
Moe, S., Drüeke, T., Cunningham, J., et al. Kidney Disease: Improving Global Outcomes (KDIGO). Definition, evaluation, and classification of renal osteodystrophy:a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 2006;69:19451953.Google Scholar
Shore, R.M., Chesney, R.W.. Rickets: part I. Pediatr Radiol 2013;43:140151.Google Scholar
Shore, R.M., Chesney, R.W.. Rickets: part II. Pediatr Radiol 2013;43:152172.Google Scholar
Greene-Finestone, L.S., Berger, C., de Groh, M., et al. 25-Hydroxyvitamin D in Canadian adults: biological, environmental, and behavioral correlates. Osteoporos Int 2011;22:13891399.Google Scholar
Berger, C., Greene-Finestone, L.S., Langsetmo, L., et al. Temporal trends and determinants of longitudinal change in 25-hydroxyvitamin D and parathyroid hormone levels. J Bone Miner Res 2012;27:13811389.Google Scholar
Prentice, A.. Nutritional rickets around the world. J Steroid Biochem Mol Biol 2013;136:201206.Google Scholar
Hahn, T.J., Halstead, L.R.. Anticonvulsant drug-induced osteomalacia: alterations in mineral metabolism and response to vitamin D3 administration Calcif Tissue.Int 1979;27:1318.Google Scholar
Drezner, M.K.. Treatment of anticonvulsant drug-induced bone disease. Epilepsy Behav 2004;5(suppl 2):S41S47.Google Scholar
Glorieux, F.H., Edouard, T., St-Arnaud, R.. Pseudo-vitamin D deficiency. In Feldman, D, ed. Vitamin D, 3rd edn. London: Elsevier, 2011:11871195.Google Scholar
Liberman, U.A., Marx, S.J.. Vitamin D-dependent rickets. In Favus, MJ, ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 5th edn. Washington, DC: American Society for Bone and Mineral Research, 2003:407413.Google Scholar
Marx, S.J., Bliziotes, M.M., Nanes, M.. Analysis of the relation between alopecia and resistance to 1,25-dihydroxyvitamin D. Clin Endocrinol (Oxf) 1986;25:373381.Google Scholar
Thacher, D., Fischer, P.R., Strand, M.A., Pettifor, J.M. Nutritional rickets around the world: causes and future directions Ann Trop Paediatr 2006;26:116.Google Scholar
Bai, X., Miao, D., Goltzman, D., Karaplis, A.C.. Early lethality in Hyp mice with targeted deletion of Pth gene. Endocrinology 2007;148:49744983.Google Scholar
Lorenz-Depiereux, B., Schnabel, D., Tiosano, D., et al. Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am J Hum Genet 2010;86:267272.Google Scholar
Shimada, T., Mizutani, S., Muto, T., et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad. Sci USA 2001;98:65006505.CrossRefGoogle ScholarPubMed
Weidner, N., Cruz, D. Santa. Phosphaturic mesenchymal tumors. A polymorphous group causing osteomalacia or rickets. Cancer 1987;59:144154.Google Scholar
Konishi, K., Nakamura, M., Yamakawa, H., et al. Hypophosphatemic osteomalacia in von Recklinghausen neurofibromatosis. Am J Med Sci 1991;301:322328.Google Scholar
White, K.E.. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 2000;26:345348.Google Scholar
Izzedine, H., Launay-Vacher, V., Isnard-Bagnis, C., Deray, G.. Drug-induced Fanconi’s syndrome. Am J Kidney Dis 2003;41:292309.Google Scholar
Fraser, W.D.. Hyperparathyroidism. Lancet 2009;374:145158.Google Scholar
Gavalas, N.G., Kemp, E.H., Krohn, K.J.E., et al. The calcium-sensing receptor is a target of autoantibodies in patients with autoimmune polyendocrine syndrome type 1. J Clin Endocrinol Metab 2007;92:21072114.Google Scholar
Ahonen, P., Myllarniemi, S., Sipila, I., Perheentupa, J.. Clinical variation of autoimmune polyendocrinopathy-candidiadis-ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med 1990;322:18291836.Google Scholar
Eisenbarth, G.S., Gottlieb, P.A.. Autoimmune polyendocrine syndromes. N Engl J Med 2004;350:20682079.Google Scholar
de Sèze, S., Solnica, J., Mitrovic, D., et al. Joint and bone disorders and hypoparathyroidism in hemochromatosis. Semin Arthritis Rheum 1972;2:7194.Google Scholar
Toumba, M., Sergis, A., Kanaris, C., et al. Endocrine complications in patients with thalassemia major. Pediatr Endocrinol Rev 2007;5:642648.Google Scholar
Carpenter, T.O., Carnes, D.L. Jr., Anast, C.S.. Hypoparathyroidism in Wilson’s disease. N Engl J Med 1983;309:873877.Google Scholar
Badell, A., Servitje, O., Graells, J., et al. Hypoparathyroidism and sarcoidosis. Br J Dermatol 1998;138:915917.Google Scholar
Winer, K.K., Zhang, B., Shrader, J.A., et al. Synthetic human parathyroid hormone 1–34 replacement therapy: a randomized crossover trial comparing pump versus injections in the treatment of chronic hypoparathyroidism. J Clin Endocrinol Metab 2012;97:391399.Google Scholar
Miao, D., He, B., Lanske, B., et al. Skeletal abnormalities in Pth-null mice are influenced by dietary calcium. Endocrinology 2004;145:20462053.Google Scholar
Miao, D., Li, J., Xue, Y., et al. Parathyroid hormone-related peptide is required for increased trabecular bone volume in parathyroid hormone-null mice. Endocrinology 2004;145:35543562.Google Scholar
Cohen, A., Dempster, D.W., Muller, R. R, et al. Assessment of trabecular and cortical architecture and mechanical competence of bone by high-resolution peripheral computed tomography: comparison with transiliac bone biopsy. Osteoporos Int 2010;21:263273.CrossRefGoogle ScholarPubMed
Duan, Y., De Luca, V., Seeman, E.. Parathyroid hormone deficiency and excess; similar effects on trabecular bone but differing effects on cortical bones. J Clin Endocr Metab 1999;84:718722.CrossRefGoogle Scholar
Mendonça, M.L., Pereira, F.A., Nogueira-Barbosa, M.H., et al. Increased vertebral morphometric fracture in patients with postsurgical hypoparathyroidism despite normal bone mineral density. BMC Endocr Disord 2013;13:1.Google Scholar
Pollak, M.R., Brown, E.M., Estep, H.L., et al. Autosomal dominant hypocalcemia caused by a calcium-sensing receptor gene mutation. Nat Genet 1994;8:303307.CrossRefGoogle Scholar
Chase, R.L., Melson, G.L., Aurbach, G.D.. Pseudohypoparathyroidism: defective excretion of 3′,5′-AMP in response to parathyroid hormone. J Clin Invest 1969;48:18321844.Google Scholar
Weinstein, L.S., ShuHua, Y., Warner, D.R., et al. Endocrine manifestations of stimulatory G protein alpha-subunit mutations and the role of genomic imprinting. Endocr Rev 2001;22:675705.Google Scholar
Mantovani, G., de Sanctis, L., Barbieri, A.M., et al. Pseudohypoparathyroidism and GNAS epigenetic defects: clinical evaluation of Albright hereditary osteodystrophy and molecular analysis in 40 patients. J Clin Endocrinol Metab 2010;95:651658.Google Scholar
Drezner, M., Neelon, F.A., Lebovitz, H.E.. Pseudohypoparathyroidism type II: a possible defect in the reception of the cyclic AMP signal. N Engl J Med 1973;289:1056.Google Scholar
Karaplis, A.C., He, B., Nguyen, M.T., et al. Inactivating mutation in the human parathyroid hormone receptor type I gene in Blomstrand’s chondrodysplasia. Endocrinology 1998;139:52555258.Google Scholar
Duchatelet, S., Ostergaard, E., Cortes, D., et al. Recessive mutations in PTHR1 cause contrasting skeletal dysplasias in Eiken and Blomstrand syndromes. Hum Mol Genet 2005;14:15.Google Scholar
Couvineau, A., Wouters, V., Bertrand, G., et al. PTHR1 mutations associated with Ollier disease result in receptor loss of function Hum Mol Genet 2008;17:27662775.Google Scholar
Silve, C., Jüppner, H.. Ollier disease Orphanet J Rare Dis 2006;1:37.CrossRefGoogle ScholarPubMed
Kanis, J.A., Johnell, O., Oden, A., et al. Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int 2001;12:989995.Google Scholar
Seeman, E., Bianchi, G., Khosla, S., et al. Bone fragility in men: where are we? Osteoporos Int 2006;17:15771583.Google Scholar
Berger, C., Langsetmo, L., Joseph, L., et al. Change in bone mineral density as a function of age in women and men and association with the use of antiresorptive agents. CMAJ 2008;178:16601668.Google Scholar
Srivastava, S., Toraldo, G., Weitzmann, M.N., et al. Estrogen decreases osteoclast formation by down-regulating receptor activator of NF-kappa B ligand (RANKL)-induced JNK activation. J Biol Chem 2001;276:88368840.Google Scholar
Robinson, L.J., Yaroslavskiy, B.B., Griswold, R.D., et al. Estrogen inhibits RANKL-stimulated osteoclastic differentiation of human monocytes through estrogen and RANKL-regulated interaction of estrogen receptor-α with BCAR1 and Traf6. Exp Cell Res 2009;315:12871301.Google Scholar
Eghbali-Fatourechi, G., Khosla, S., Sanyal, A., et al. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 2003;111:12211230.Google Scholar
Hofbauer, L.C., Khosla, S., Dunstan, C.R., et al. Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 1999;140:43674370.Google Scholar
Manolagas, S.C., Jilka, R.L.. Mechanisms of disease: bone marrow, cytokines, and bone remodeling: emerging insights into the pathophysiology of osteoporosis. N Engl J Med 1995;332:305311.CrossRefGoogle Scholar
Tanaka, S., Takahashi, N., Udagawa, N., et al. Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J Clin Invest 1993;91:257263.Google Scholar
Kimble, R.B., Vannice, J.L., Bloedow, D.C., et al. Interleukin-1 receptor antagonist decreases bone loss and bone resorption in ovariectomized rats. J Clin Invest 1994;93:19591967.Google Scholar
Ammann, P., Rizzoli, R., Bonjour, J.P., et al. Transgenic mice expressing soluble tumor necrosis factor-receptor are protected against bone loss caused by estrogen deficiency. J Clin Invest 1997;99:16991703.Google Scholar
Kimble, R.B., Srivastava, S., Ross, F.P., et al. Estrogen deficiency increases the ability of stromal cells to support murine osteoclastogenesis via an interleukin-1- and tumor necrosis factor-mediated stimulation of macrophage colony-stimulating factor production. J Biol Chem 1996;271:2889028897.Google Scholar
Kousteni, S., Bellido, T., Plotkini, L.I., et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 2001;104:719730.Google ScholarPubMed
Manolagas, S.C., O’Brien, C.A., Almeida, M. The role of estrogen and androgen receptors in bone health and disease. Nat Rev Endocrinol 2013;9:699712.Google Scholar
Di Gregorio, G.B., Yamamoto, M., Ali, A.A., et al. Attenuation of the self-renewal of transit-amplifying osteoblast progenitors in the murine bone marrow by 17β-estradiol J Clin Invest 2001;107:803812.Google Scholar
Jilka, R.L., Takahashi, K., Munshi, M., et al. Loss of estrogen upregulates osteoblastogenesis in the murine bone marrow evidence for autonomy from factors released during bone resorption. J Clin Invest 1998;101:19421950.Google Scholar
Kousteni, S., Han, L., Chen, J.R., et al. Kinase-mediated regulation of common transcription factors accounts for the bone-protective effects of sex steroids. J Clin Invest 2003;111:16511664.Google Scholar
Kim, B.J., Bae, S.J., Lee, S.Y., et al. TNF-αmediates the stimulation of sclerostin expression in an estrogen-deficient condition. Biochem Biophys Res Commun 2012;424:170175.Google Scholar
Tyagi, A.M., Srivastava, K., Mansoori, M.N., et al. Estrogen deficiency induces the differentiation of IL-17 secreting Th17 cells: a new candidate in the pathogenesis of osteoporosis. PLOS ONE 2012;7:e44552.Google Scholar
Roussouw, J.E., Anderson, G.L., Prentice, R.L., et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 2002;288:321333.Google Scholar
Stevenson, J.C., Panay, N., Pexman-Fieth, C.. Oral estradiol and dydrogesterone combination therapy in postmenopausal women: review of efficacy and safety, Maturitas 2013;76:1021.Google Scholar
Kanis, J.A., Oden, A., Johnell, O., et al. The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 2007;18:10331046.Google Scholar
Kanis, J.A., Oden, A., Johansson, H., et al. FRAX and its applications to clinical practice. Bone 2009;44:734743.Google Scholar
Finkelstein, J.S., Klibanski, A., Neer, R.M., et al. Osteoporosis in men with idiopathic hypogonadotropic hypogonadism. Ann Intern. Med 1987;106:354361.Google Scholar
Marcus, R., Leary, D., Schneider, D.L., et al. The contribution of testosterone to skeletal development and maintenance: lessons from the androgen insensitivity syndrome. J Clin Endocrinol Metab 2000;85:10321037.Google Scholar
Rochira, V., Balestrieri, A., Madeo, B., et al. Osteoporosis and male age related hypogonadism: role of sex steroids on bone (patho)physiology. Eur J Endocr 2006;154:175185.Google Scholar
Carani, C., Qin, K., Simoni, M., et al. Effect of testosterone and estradiol in a man with aromatase deficiency. N Engl J Med 1997;337:9195.Google Scholar
Bilezikian, J.P., Morishima, A., Bell, J., et al. Increased bone mass as a result of estrogen therapy in a man with aromatase deficiency. N Engl J Med 1998;339:599603.Google Scholar
Rochira, V., Faustini-Fustini, M., Balestrieri, A., Carani, C.. Estrogen replacement therapy in a man with congenital aromatase deficiency: effects of different doses of transdermal estradiol on bone mineral density and hormonal parameters. J Clin Endocrinol Metab 2000;85:18411845.Google Scholar
Herrmann, B.L., Saller, B., Janssen, O.E., et al. Impact of estrogen replacement therapy in a male with congenital aromatase deficiency caused by a novel mutation in the CYP19 gene. J Clin Endocrinol Metab 2002;87:54765484.Google Scholar
Maffei, L., Murata, Y., Rochira, V., et al. Dysmetabolic syndrome in a man with a novel mutation of the aromatase gene: effects of testosterone, alendronate, and estradiol treatment. J Clin Endocrinol Metab 2004;89:6170.Google Scholar
Bouillon, R., Bex, M., Vanderschueren, D., Boonen, S.. Estrogens are essential for male pubertal periosteal bone expansion. J Clin Endocrinol Metab 2004;89:60256029.Google Scholar
Falahati-Nini, A., Riggs, B.L., Atkinson, E.J., et al. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest 2000;106:15531560.Google Scholar
Vandenput, L., Ohlsson, C.. Estrogens as regulators of bone health in men. Nat Rev Endocrinol 2009;5:437443.Google Scholar
Mosekilde, L., Vestergaard, P., Rejnmark, L.. The pathogenesis, treatment and prevention of osteoporosis in men. Drugs 2013;73:1529.Google Scholar
Angeli, A., Guglielmi, G., Dovio, A., et al. High prevalence of asymptomatic vertebral fractures in post-menopausal women receiving chronic glucocorticoid therapy: a cross-sectional outpatient study. Bone 2006;39:253259.Google Scholar
Jia, D., O’Brien, C.A., Stewart, S.A., et al. Glucocorticoids act directly on osteoclasts to increase their life span and reduce bone density. Endocrinology 2006;147:55925599.Google Scholar
Weinstein, R.S., Jilka, R.L., Parfitt, A.M., Manolagas, S.C.. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids: potential mechanisms of their deleterious effects on bone. J Clin Invest 1998;102:274282.Google Scholar
Seeman, E., Delmas, P.D.. Bone quality: the material and structural basis of bone strength and fragility. N Engl J Med 2006;354:22502261.CrossRefGoogle ScholarPubMed
Mazziotti, C.A.G., Angeli, A., Bilezikian, J.P., et al. Glucocorticoid-induced osteoporosis: an update, Trends Endocrinol Metab 2006;17:144149.Google Scholar
O’Brien, C.A., Jia, D., Plotkin, L.I., et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 2004;145:18351841.Google Scholar
Van Staa, T.P., Laan, R.F., Barton, I.P., et al. Bone density threshold and other predictors of vertebral fracture in patients receiving oral glucocorticoid therapy. Arthritis Rheum 2003;48:32243229.Google Scholar
van Staa, T.P.. The pathogenesis, epidemiology and management of glucocorticoid induced osteoporosis. Calcif Tissue Int 2006;79:129137.Google Scholar
Cooper, M.S. Sensitivity of bone to glucocorticoids Clin Sci 2004;107:111123.Google Scholar
Blalock, S.J., Norton, L.L., Patel, R.A., Dooley, M.A.. Patient knowledge, beliefs, and behavior concerning the prevention and treatment of glucocorticoid-induced osteoporosis Arthritis Rheum 2005;53:732739.Google Scholar
Steinbuch, M., Youket, T.E., Cohen, S.. Oral glucocorticoid use is associated with an increased risk of fracture. Osteoporos Int 2004;15:323328.Google Scholar
Kanis, J.A., Johansson, H., Oden, A., et al. A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res 2004;19:893899.Google Scholar
Buehring, B., Viswanathan, R., Binkley, N., Busse, W.. Glucocorticoid-induced osteoporosis: an update on effects and management. J Allergy Clin Immunol 2013;132:10191030.Google Scholar
Vestergaard, P., Mosekild, L.. Hyperthyroidism, bone mineral, fracture risk-a meta-analysis. Thyroid, 2003;13:585593.Google Scholar
Bassett, J.H.D., Williams, G.R.. The molecular actions of thyroid hormone in bone. Trends Endocrinol Metab 2003;14:356364.Google Scholar
Bianco, A.C., Salvatore, D., Gereben, B., et al. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases, Endocrine Rev 2002;23:3889.Google Scholar
Wexler, J.A., Sharretts, J., Thyroid and bone. Endocrinol Metab Clin 2007;36:673705.Google Scholar
O’Shea, P.J., Harvey, C.B., Suzuki, H., et al. A thyrotoxic skeletal phenotype of advanced bone formation in mice with resistance to thyroid hormone. Mol Endocrinol 2003;17:14101424.Google Scholar
O’Shea, P.J., Bassett, J.H.D., Sriskantharajah, S., et al. Contrasting skeletal phenotypes in mice with an identical mutation targeted to thyroid hormone receptor α1 or β. Mol Endocrinol 2005;19:30453059.Google Scholar
Bassett, J.H.D., Williams, G.R.. The skeletal phenotypes of TRα and TBβ mutant mice. J Mol Endocrinol 2009;42:269282.Google Scholar
Bassett, J.H.D., Nordstrom, K., Boyde, A., et al. Thyroid status during skeletal development determines adult bone structure and mineralization. Mol Endocrinol 2007;21:18931904.Google Scholar
Grimnes, G., Emaus, N., Joakimsen, R.M., et al. The relationship between serum TSH and bone mineral density inmen and postmenopausalwomen: the Tromsø study. Thyroid 2008;vol. 18:11471155.Google Scholar
Abe, E., Marians, R.C., Yu, W., et al. TSH is a negative regulator of skeletal remodeling. Cell 2003 115:151162.Google Scholar
Davies, T., Marians, R., Latif, R., The TSH receptor reveals itself. J Clin Invest 2002;110:161164.Google Scholar
Sun, L., Davies, T.F., Blair, H.C., et al. TSH and bone loss. Ann N Y Acad Sci 2006;1068:309318.Google Scholar
Morimura, T., Tsunekawa, K., Kasahara, T., et al. Expression of type 2 iodothyronine deiodinase in human osteoblast is stimulated by thyrotropin. Endocrinolog, 2005; 146:20772084.Google Scholar
Mosekilde, L., Eriksen, E.F., Charles, P.. Effects of thyroid hormones on bone and mineral metabolism. Endocrinol Metab Clin North Am 1990;19:3563.Google Scholar
Greenspan, S.L., Greenspan, F.S.. The effect of thyroid hormone on skeletal integrity. Ann Intern Med 1999;130:750758.Google Scholar
Allain, T.J., McGregor, A.M.. Thyroid hormones and bone. J Endocrinol 1993;139:918.Google Scholar
Langdahl, B.L., Loft, A.G.R., Eriksen, E.F., et al. Bone mass, bone turnover and body composition in former hypothyroid patients receiving replacement therapy. Eur J Endocrinol, 1996; 134:702709.Google Scholar
Karga, H., Papapetrou, P.D., Korakovouni, A., et al. Bone mineral density in hyperthyroidism. Clin Endocrinol, 2004;61:466472Google Scholar

References

Yao, JC, Hassan, M, Phan, A, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35 825 cases in the United States. J Clin Oncol 2008;26:30633072.Google Scholar
Modlin, IM, Sandor, A. An analysis of 8305 cases of carcinoid tumors. Cancer 1997;79:813829.Google Scholar
Kirshbom, PM, Kherani, AR, Onaitis, MW, et al. Carcinoids of unknown origin: comparative analysis with foregut, midgut, and hindgut carcinoids. Surgery 1998;124:10631070.Google Scholar
Kulke, MH, Siu, LL, Tepper, JE, et al. Future directions in the treatment of neuroendocrine tumors: consensus report of the National Cancer Institute neuroendocrine tumor clinical trials planning meeting. J Clin Oncol 2011;29:934943.Google Scholar
Bellizzi, AM. Assigning site of origin in metastatic neuroendocrine neoplasms: a clinically significant application of diagnostic immunohistochemistry. Adv Anat Pathol 2013 Sep;20:285314.Google Scholar
Boudreaux, JP, Putty, B, Frey, DJ, et al. Surgical treatment of advanced-stage carcinoid tumors: lessons learned. Ann Surg 2005;241:839845.Google Scholar
Givi, B, Pommier, SJ, Thompson, AK, et al. Operative resection of primary carcinoid neoplasms in patients with liver metastases yields significantly better survival. Surgery 2006;140:891897.Google Scholar
Moertel, CG, Kvols, LK, O'Connell, MJ, et al. Treatment of neuroendocrine carcinomas with combined etoposide and cisplatin. Evidence of major therapeutic activity in the ana-plastic variants of these neoplasms. Cancer 1991;68:227232.Google Scholar
Strosberg, JR, Coppola, D, Klimstra, DS, et al. The NANETS consensus guidelines for the diagnosis and management of poorly differentiated (high-grade) extrapulmonary neuro-endocrine carcinomas. Pancreas 2010;39:799800.Google Scholar
BL Neuroendocrine tumors. Fort Washington, PA: National Comprehensive Cancer Network, 2015 (http://www.nccn.org/professionals/physician_gls/f_guidelines.asp#site accessed 25 October 2015).Google Scholar
Soga, J, Tazawa, K. Pathologic analysis of carcinoids. Histologic reevaluation of 62 cases. Cancer 1971;28:990998.Google Scholar
Czeczok, TW, Gailey, MP, Hornick, JL, Bellizzi, AM. High grade neuroendocrine carcinomas are characterized by marked transcription factor lineage infidelity: an evaluation of 36 markers in 83 tumors. Mod Pathol 2014;27(suppl A):152A.Google Scholar
Silberg, DG, Swain, GP, Suh, ER, et al. Cdx1 and cdx2 expression during intestinal development. Gastroenterology 2000;119:961971.Google Scholar
Moskaluk, CA, Zhang, H, Powell, SM, et al. Cdx2 protein expression in normal and malignant human tissues: an immunohistochemical survey using tissue microarrays. Mod Pathol 2003;16:913919.Google Scholar
Werling, RW, Yaziji, H, Bacchi, CE, et al. CDX2, a highly sensitive and specific marker of adenocarcinomas of intestinal origin: an immunohistochemical survey of 476 primary and metastatic carcinomas. Am J Surg Pathol 2003;27:303310.Google Scholar
Barbareschi, M, Roldo, C, Zamboni, G, et al. CDX-2 homeobox gene product expression in neuroendocrine tumors: its role as a marker of intestinal neuroendocrine tumors. Am J Surg Pathol 2004;28:11691176.Google Scholar
Erickson, LA, Papouchado, B, Dimashkieh, H, et al. Cdx2 as a marker for neuroendocrine tumors of unknown primary sites. Endocr Pathol 2004;15:247252.Google Scholar
La Rosa, S, Rigoli, E, Uccella, S, et al. CDX2 as a marker of intestinal EC-cells and related well-differentiated endocrine tumors. Virchows Arch 2004;445:248254.CrossRefGoogle ScholarPubMed
Jaffee, IM, Rahmani, M, Singhal, MG, et al. Expression of the intestinal transcription factor CDX2 in carcinoid tumors is a marker of midgut origin. Arch Pathol Lab Med 2006;130: 15221526.Google Scholar
Lin, X, Saad, RS, Luckasevic, TM, et al. Diagnostic value of CDX-2 and TTF-1 expressions in separating metastatic neuroendocrine neoplasms of unknown origin. Appl Immunohistochem Mol Morphol 2007;15:407414.Google Scholar
Schmitt, AM, Riniker, F, Anlauf, M, et al. Islet 1 (Isl1) expression is a reliable marker for pancreatic endocrine tumors and their metastases. Am J Surg Pathol 2008;32: 420425.Google Scholar
Srivastava, A, Hornick, JL. Immunohistochemical staining for CDX-2, PDX-1, NESP-55, and TTF-1 can help distinguish gastrointestinal carcinoid tumors from pancreatic endocrine and pulmonary carcinoid tumors. Am J Surg Pathol 2009;33:626632.Google Scholar
Hermann, G, Konukiewitz, B, Schmitt, A, et al. Hormonally defined pancreatic and duodenal neuroendocrine tumors differ in their transcription factor signatures: expression of ISL1, PDX1, NGN3, and CDX2. Virchows Arch 2011;459:147154.Google Scholar
Chan, ES, Alexander, J, Swanson, PE, et al. PDX-1, CDX-2, TTF-1, and CK7: a reliable immunohistochemical panel for pancreatic neuroendocrine neoplasms. Am J Surg Pathol 2012;36:737743.Google Scholar
Denby, KS, Briones, AJ, Bourne, PA, et al. IMP3, NESP55, TTF-1 and CDX2 serve as an immunohistochemical panel in the distinction among small-cell carcinoma, gastrointestinal carcinoid, and pancreatic endocrine tumor metastasized to the liver. Appl Immunohistochem Mol Morphol 2012;20:573579.Google Scholar
Graham, RP, Shrestha, B, Caron, BL, et al. Islet-1 is a sensitive but not entirely specific marker for pancreatic neuroendocrine neoplasms and their metastases. Am J Surg Pathol 2013;37:399405.Google Scholar
Koo, J, Mertens, RB, Mirocha, JM, et al. Value of Islet 1 and PAX8 in identifying metastatic neuroendocrine tumors of pancreatic origin. Mod Pathol 2012;25:893901.Google Scholar
Rabban, JT, Lerwill, MF, McCluggage, WG, et al. Primary ovarian carcinoid tumors may express CDX-2: a potential pitfall in distinction from metastatic intestinal carcinoid tumors involving the ovary. Int J Gynecol Pathol 2009;28:4148.Google Scholar
Lau, SK, Luthringer, DJ, Eisen, RN. Thyroid transcription factor-1: a review. Appl Immunohistochem Mol Morphol 2002;10:97102.CrossRefGoogle ScholarPubMed
Ordóñez, NG. Thyroid transcription factor-1 is a marker of lung and thyroid carcinomas. Adv Anat Pathol 2000;7:123127.Google Scholar
Pelosi, G, Rodriguez, J, Viale, G, et al. Typical and atypical pulmonary carcinoid tumor overdiagnosed as small-cell carcinoma on biopsy specimens: a major pitfall in the management of lung cancer patients. Am J Surg Pathol 2005;29:179187.Google Scholar
Saqi, A, Alexis, D, Remotti, F, et al. Usefulness of CDX2 and TTF-1 in differentiating gastrointestinal from pulmonary carcinoids. Am J Clin Pathol 2005;123:394404.Google Scholar
Kaufmann, O, Dietel, M. Expression of thyroid transcription factor-1 in pulmonary and extrapulmonary small cell carcinomas and other neuroendocrine carcinomas of various primary sites. Histopathology 2000;36:415420.Google Scholar
Oliveira, AM, Tazelaar, HD, Myers, JL, et al. Thyroid transcription factor-1 distinguishes metastatic pulmonary from well-differentiated neuroendocrine tumors of other sites. Am J Surg Pathol 2001;25:815819.Google Scholar
Agoff, SN, Lamps, LW, Philip, AT, et al. Thyroid transcription factor-1 is expressed in extrapulmonary small cell carcinomas but not in other extrapulmonary neuroendocrine tumors. Mod Pathol 2000;13:238242.Google Scholar
Matoso, A, Singh, K, Jacob, R, et al. Comparison of thyroid transcription factor-1 expression by 2 monoclonal antibodies in pulmonary and nonpulmonary primary tumors. Appl Immunohistochem Mol Morphol 2010;18:142149.Google Scholar
Fabbro, D, Di Loreto, C, Stamerra, O, et al. TTF-1 gene expression in human lung tumours. Eur J Cancer 1996;32A:512517.Google Scholar
Folpe, AL, Gown, AM, Lamps, LW, et al. Thyroid transcription factor-1: immunohistochemical evaluation in pulmonary neuroendocrine tumors. Mod Pathol 1999;12:58.Google Scholar
Cai, YC, Banner, B, Glickman, J, et al. Cytokeratin 7 and 20and thyroid transcription factor 1 can help distinguish pulmonary from gastrointestinal carcinoid and pancreatic endocrine tumors. Hum Pathol 2001;32:10871093.Google Scholar
Sturm, N, Rossi, G, Lantuéjoul, S, et al. Expression of thyroid transcription factor-1 in the spectrum of neuroendocrine cell lung proliferations with special interest in carcinoids. Hum Pathol 2002;33:175182.Google Scholar
Zamecnik, J, Kodet, R. Value of thyroid transcription factor-1 and surfactant apoprotein A in the differential diagnosis of pulmonary carcinomas: a study of 109 cases. Virchows Arch 2002;440:353361.Google Scholar
Chang, YL, Lee, YC, Liao, WY, et al. The utility and limitation of thyroid transcription factor-1 protein in primary and metastatic pulmonary neoplasms. Lung Cancer 2004;44:149157.Google Scholar
Du, EZ, Goldstraw, P, Zacharias, J, et al. TTF-1 expression is specific for lung primary in typical and atypical carcinoids: TTF-1-positive carcinoids are predominantly in peripheral location. Hum Pathol 2004;35:825831.Google Scholar
Jerome Marson, V, Mazieres, J, Groussard, O, et al. Expression of TTF-1 and cytokeratins in primary and secondary epithelial lung tumours: correlation with histological type and grade. Histopathology 2004;45:125134.Google Scholar
Hiroshima, K, Iyoda, A, Shida, T, et al. Distinction of pulmonary large cell neuroendocrine carcinoma from small cell lung carcinoma: a morphological, immunohistochemical, and molecular analysis. Mod Pathol 2006;19:13581368.Google Scholar
La Rosa, S, Chiaravalli, AM, Placidi, C, et al. TTF1 expression in normal lung neuroendocrine cells and related tumors: immunohistochemical study comparing two different monoclonal antibodies. Virchows Arch 2010;457:497507.Google Scholar
Tsuta, K, Kalhor, N, Wistuba, II, et al. Clinicopathological and immunohistochemical analysis of spindle-cell carcinoid tumour of the lung. Histopathology 2011;59:526536.Google Scholar
Masai, K, Tsuta, K, Kawago, M, et al. Expression of squamous cell carcinoma markers and adenocarcinoma markers in primary pulmonary neuroendocrine carcinomas. Appl Immunohistochem Mol Morphol 2013;21:292297.Google Scholar
Van Lommel, A. Pulmonary neuroendocrine cells (PNEC) and neuroepithelial bodies (NEB): chemoreceptors and regulators of lung development. Paediatr Respir Rev 2001 Jun;2:171176.Google Scholar
Toshitetsu, H, Mete, O. Head and neck paragangliomas: what does the pathologist need to know. Diagnostic Histopathol 2014;20: 316325.Google Scholar
Mete, O, Lopes, MB, Asa, SL. Spindle cell oncocytomas and granular cell tumors of the pituitary are variants of pituicytoma. Am J Surg Pathol 2013;37:16941699.Google Scholar
Saeed Kamil, Z, Sinson, G, Gucer, H, Asa, SL, Mete, O. TTF-1 expressing sellar neoplasm with ependymal rosettes and oncocytic change: mixed ependymal and oncocytic variant pituicytoma. Endocr Pathol 2014;25:436438.Google Scholar
Kristensen, MH, Nielsen, S, Vyberg, M. Thyroid transcription factor-1 in primary CNS tumors. Appl Immunohistochem Mol Morphol 2011;19:437443.Google Scholar
Macchia, PE, Lapi, P, Krude, H, et al. PAX8 mutations associated with congenital hypothyroidism caused by thyroid dysgenesis. Nat Genet 1998;19:8386.Google Scholar
Mansouri, A, Chowdhury, K, Gruss, P. Follicular cells of the thyroid gland require PAX8 gene function. Nat Genet 1998;19:8790.Google Scholar
Plachov, D, Chowdhury, K, Walther, C, et al. PAX8 a murine paired box gene expressed in the developing excretory system and thyroid gland. Development 1990;110:643651.Google Scholar
Bouchard, M, Souabni, A, Mandler, M, et al. Nephric lineage specification by PAX2 and PAX8. Genes Dev 2002;16:29582970.Google Scholar
Marx, A, Shimosato, Y, Kuo, TT, et al. Thymic neuroendocrine tumours. In Travis, WD, Brambilla, E, Muller-Hermelink, HK, Harris, CC, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of the Lung, Pleura, Thymus and Heart, 3rd edn. Lyon: International Agency for Research on Cancer, 2004:188195.Google Scholar
Matias-Guiu, X, DeLellis, R, Moley, JF, et al. Medullary thyroid carcinoma. In DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004:8691.Google Scholar
Long, KB, Srivastava, A, Hirsch, MS, et al. PAX8 expression in well-differentiated pancreatic endocrine tumors: correlation with clinicopathologic features and comparison with gastrointestinal and pulmonary carcinoid tumors. Am J Surg Pathol 2010;34:723729.Google Scholar
Sangoi, AR, Ohgami, RS, Pai, RK, et al. PAX8 expression reliably distinguishes pancreatic well-differentiated neuroendocrine tumors from ileal and pulmonary well-differentiated neuroendocrine tumors and pancreatic acinar cell carcinoma. Mod Pathol 2011;24:412424.Google Scholar
Ozcan, A, Shen, SS, Hamilton, C, et al. PAX 8 expression in non-neoplastic tissues, primary tumors, and metastatic tumors: a comprehensive immunohistochemical study. Mod Pathol 2011;24:751764.Google Scholar
Haynes, CM, Sangoi, AR, Pai, RK. PAX8 is expressed in pancreatic well-differentiated neuroendocrine tumors and in extrapancreatic poorly differentiated neuroendocrine carcinomas in fine-needle aspiration biopsy specimens. Cancer Cytopathol 2011;119:193201.Google Scholar
Laury, AR, Perets, R, Piao, H, et al. A comprehensive analysis of PAX8 expression in human epithelial tumors. Am J Surg Pathol 2011;35:816826.Google Scholar
Tacha, D, Zhou, D, Cheng, L. Expression of PAX8 in normal and neoplastic tissues: a comprehensive immunohistochemical study. Appl Immunohistochem Mol Morphol 2011;19:293299.Google Scholar
Lorenzo, PI, Jimenez Moreno, CM, Delgado, I, et al. Immunohistochemical assessment of Pax8 expression during pancreatic islet development and in human neuroendocrine tumors. Histochem Cell Biol 2011;136:595607.Google Scholar
Jimenez Moreno, CM, Lorenzo, PI, Delgado, I, et al. Pax8 detection in well-differentiated pancreatic endocrine tumors: how reliable is it? Am J Surg Pathol 2011;35: 19061907.Google Scholar
Ordóñez, NG. Value of PAX 8 immunostaining in tumor diagnosis: a review and update. Adv Anat Pathol 2012;19:140151.Google Scholar
Rivera, M, Sang, C, Gerhard, R, et al. Anaplastic thyroid carcinoma: morphologic findings and PAX-8 expression in cytology specimens. Acta Cytol 2010;54:668672.Google Scholar
Bishop, JA, Sharma, R, Westra, WH. PAX8 immunostaining of anaplastic thyroid carcinoma: a reliable means of discerning thyroid origin for undifferentiated tumors of the head and neck. Hum Pathol 2011;42:18731877.Google Scholar
Smallridge, RC, Ain, KB, Asa, SL, et al. for the American Thyroid Association Anaplastic Thyroid Cancer Guidelines Taskforce. American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid 2012;22:11041139.Google Scholar
DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004.Google Scholar
Agaimy, A, Erlenbach-Wunsch, K, Konukiewitz, B, et al. ISL1 expression is not restricted to pancreatic well-differentiated neuroendocrine neoplasms, but is also commonly found in well and poorly differentiated neuroendocrine neoplasms of extrapancreatic origin. Mod Pathol 2013;26:9951003.Google Scholar
Thor, S, Ericson, J, Brannstrom, T, et al. The homeodomain LIM protein Isl-1 is expressed in subsets of neurons and endocrine cells in the adult rat. Neuron 1991;7:881889.Google Scholar
Park, JY, Hong, SM, Klimstra, DS, et al. Pdx1 expression in pancreatic precursor lesions and neoplasms. Appl Immunohistochem Mol Morphol 2011;19:444449.Google Scholar
Fendrich, V, Ramerth, R, Waldmann, J, et al. Sonic hedgehog and pancreatic-duodenal homeobox 1 expression distinguish between duodenal and pancreatic gastrinomas. Endocr Relat Cancer 2009;16:613622.Google Scholar
Zhang, L, Smyrk, TC, Oliveira, AM, et al. KIT is an independent prognostic marker for pancreatic endocrine tumors: a finding derived from analysis of islet cell differentiation markers. Am J Surg Pathol 2009;33:15621569.Google Scholar
Rasmussen, P, Lindholm, J. Ectopic pituitary adenomas. Clin Endocrinol (Oxf) 1979 Jul;11:6974.Google Scholar
Nishiike, S, Tatsumi, KI, Shikina, T, Masumura, C, Inohara, H. Thyroid-stimulating hormone-secreting ectopic pituitary adenoma of the nasopharynx. Auris Nasus Larynx 2014;pii:S0385-814600115.Google Scholar
Thompson, LD, Seethala, RR, Müller, S. Ectopic sphenoid sinus pituitary adenoma (ESSPA) with normal anterior pituitary gland: a clinicopathologic and immunophenotypic study of 32 cases with a comprehensive review of the English literature. Head Neck Pathol 2012;6:75100.Google Scholar
Liu, B, Zhuang, Z, Luo, J, Wang, Y. A case report of an ectopic clival growth hormone adenoma associated with an empty sella and a review of the literature. Clin Neurol Neurosurg 2013;115:25332536.Google Scholar
Wu, XF, Wen, M. CT finding of parapharyngeal space ectopic pituitary adenoma: case report and review of literature. Head Neck 2015;37:E120E124.Google Scholar
Al-Bazzaz, S, Karamchandani, J, Mocarski, E, Horvath, E, Rotondo, F, Kovacs, K. Ectopic prolactin-producing pituitary adenoma in a benign ovarian cystic teratoma. Endocr Pathol 2014;25:321323.Google Scholar
Mete, O, Asa, SL. Clinicopathological correlations in pituitary adenomas. Brain Pathol 2012;22:443453.Google Scholar
Mete, O, Asa, SL. Therapeutic implications of accurate classification of pituitary adenomas. Semin Diagn Pathol 2013;30:158640.Google Scholar
Nonaka, D. Study of parathyroid transcription factor Gcm2 expression in parathyroid lesions. Am J Surg Pathol 2011;35:145151.Google Scholar
Ordóñez, NG. Value of GATA3 immunostaining in the diagnosis of parathyroid tumors. Appl Immunohistochem Mol Morphol 2014;22:756761.Google Scholar
Kamp, K, Feelders, RA, van Adrichem, RC, et al. Parathyroid hormone-related peptide (PTHrP) secretion by gastroenteropancreatic neuroendocrine tumors (GEP-NETs): clinical features, diagnosis, management, and follow-up. J Clin Endocrinol Metab 2014;99:30603069.Google Scholar
So, JS, Epstein, JI. GATA3 expression in paragangliomas: a pitfall potentially leading to misdiagnosis of urothelial carcinoma. Mod Pathol 2013;26:13651370.Google Scholar
Yeh Chu, PG, Weiss, LM. Keratin expression in human tissues and neoplasms. Histopathology 2002;40:403439.Google Scholar
Yeh Tot, T. Cytokeratins 20 and 7 as biomarkers: usefulness in discriminating primary from metastatic adenocarcinoma. Eur J Cancer 2002;38:758763.Google Scholar
Moll, R, Lowe, A, Laufer, J, et al. Cytokeratin 20 in human carcinomas. A new histodiagnostic marker detected bymonoclonal antibodies. Am J Pathol 1992;140:427447.Google Scholar
Miettinen, M. Keratin 20: immunohistochemical marker for gastrointestinal, urothelial, and Merkel cell carcinomas. Mod Pathol 1995;8:384388.Google Scholar
Chu, P, Wu, E, Weiss, LM. Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: a survey of 435 cases. Mod Pathol 2000;13:962972.Google Scholar
Broers, JL, Ramaekers, FC, Rot, MK, et al. Cytokeratins in different types of human lung cancer as monitored by chain-specific monoclonal antibodies. Cancer Res 1988;48:32213229.Google Scholar
Alsaad, KO, Serra, S, Schmitt, A, et al. Cytokeratins 7 and 20 immunoexpression profile in goblet cell and classical carcinoids of appendix. Endocr Pathol 2007;18:1622.Google Scholar
Jiang, Y, Long, H, Wang, W, et al. Clinicopathological features and immunoexpression profiles of goblet cell carcinoid and typical carcinoid of the appendix. Pathol Oncol Res 2011;17:127132.Google Scholar
Di Loreto, C, Di Lauro, V, Puglisi, F, et al. Immunocytochemical expression of tissue specific transcription factor-1 in lung carcinoma. J Clin Pathol 1997;50:3032.Google Scholar
Byrd-Gloster, AL, Khoor, A, Glass, LF, et al. Differential expression of thyroid transcription factor 1 in small cell lung carcinoma and Merkel cell tumor. Hum Pathol 2000;31:5862.Google Scholar
Hanly, AJ, Elgart, GW, Jorda, M, et al. Analysis of thyroid transcription factor-1 and cytokeratin 20 separates Merkel cell carcinoma from small cell carcinoma of lung. J Cutan Pathol 2000;27:118120.Google Scholar
Ordóñez, NG. Value of thyroid transcription factor-1 immunostaining in distinguishing small cell lung carcinomas from other small cell carcinomas. Am J Surg Pathol 2000;24:12171223.Google Scholar
Cheuk, W, Kwan, MY, Suster, S, et al. Immunostaining for thyroid transcription factor 1 and cytokeratin 20 aids the distinction of small cell carcinoma from Merkel cell carcinoma, but not pulmonary from extrapulmonary small cell carcinomas. Arch Pathol Lab Med 2001;125:228231.Google Scholar
Shin, SJ, DeLellis, RA, Rosen, PP. Small cell carcinoma of the breast: additional immunohistochemical studies. Am J Surg Pathol 2001;25:831832.Google Scholar
Leech, SN, Kolar, AJ, Barrett, PD, et al. Merkel cell carcinoma can be distinguished from metastatic small cell carcinoma using antibodies to cytokeratin 20 and thyroid transcription factor 1. J Clin Pathol 2001;54:727729.Google Scholar
Sturm, N, Lantuéjoul, S, Laverriere, MH, et al. Thyroid transcription factor 1 and cytokeratins 1, 5, 10, 14 (34betaE12) expression in basaloid and large-cell neuroendocrine carcinomas of the lung. Hum Pathol 2001;32:918925.Google Scholar
Chhieng, DC, Cangiarella, JF, Zakowski, MF, et al. Use of thyroid transcription factor 1, PE-10, and cytokeratins 7 and 20 in discriminating between primary lung carcinomas and metastatic lesions in fine-needle aspiration biopsy specimens. Cancer 2001;93:330336.Google Scholar
Wu, M, Wang, B, Gil, J, et al. p63 and TTF-1 immunostaining. A useful marker panel for distinguishing small cell carcinoma of lung from poorly differentiated squamous cell carcinoma of lung. Am J Clin Pathol 2003;119:696702.Google Scholar
Myong, NH. Thyroid transcription factor-1 (TTF-1) expression in human lung carcinomas: its prognostic implication and relationship with wxpressions of p53 and Ki-67 proteins. J Korean Med Sci 2003;18:494500.Google Scholar
Yamamoto, J, Ohshima, K, Ikeda, S, et al. Primary esophageal small cell carcinoma with concomitant invasive squamous cell carcinoma or carcinoma in situ. Hum Pathol 2003;34: 11081115.Google Scholar
Yang, DT, Holden, JA, Florell, SR. CD117, CK20, TTF-1, and DNA topoisomerase II-alpha antigen expression in small cell tumors. J Cutan Pathol 2004;31:254261.Google Scholar
Liu, J, Farhood, A. Immunostaining for thyroid transcription factor-1 on fine-needle aspiration specimens of lung tumors: a comparison of direct smears and cell block preparations. Cancer 2004;102:109114.Google Scholar
Nagao, T, Gaffey, TA, Olsen, KD, et al. Small cell carcinoma of the major salivary glands: clinicopathologic study with emphasis on cytokeratin 20 immunoreactivity and clinical outcome. Am J Surg Pathol 2004;28:762770.Google Scholar
Soriano, P, Navarro, S, Gil, M, et al. Small-cell carcinoma of the urinary bladder. A clinico-pathological study of ten cases. Virchows Arch 2004;445:292297.Google Scholar
McCluggage, WG, Oliva, E, Connolly, LE, et al. An immunohistochemical analysis of ovarian small cell carcinoma of hypercalcemic type. Int J Gynecol Pathol 2004;23:330336.Google Scholar
Liu, J, Farhood, A. Thyroid transcription factor-1 immunocytochemical staining of pleural fluid cytocentrifuge preparations for detection of small cell lung carcinoma. Acta Cytol 2004;48:635640.Google Scholar
Zhang, H, Liu, J, Cagle, PT, et al. Distinction of pulmonary small cell carcinoma from poorly differentiated squamous cell carcinoma: an immunohistochemical approach. Mod Pathol 2005;18:111118.Google Scholar
Nassar, H, Albores-Saavedra, J, Klimstra, DS. High-grade neuroendocrine carcinoma of the ampulla of Vater: a clinicopathologic and immunohistochemical analysis of 14 cases. Am J Surg Pathol 2005;29:588594.CrossRefGoogle ScholarPubMed
Llombart, B, Monteagudo, C, Lopez-Guerrero, JA, et al. Clinicopathological and immunohistochemical analysis of 20 cases of Merkel cell carcinoma in search of prognostic markers. Histopathology 2005;46:622634.Google Scholar
Jones, TD, Kernek, KM, Yang, XJ, et al. Thyroid transcription factor 1 expression in small cell carcinoma of the urinary bladder: an immunohistochemical profile of 44 cases. Hum Pathol 2005;36:718723.Google Scholar
Wu, M, Szporn, AH, Zhang, D, et al. Cytology applications of p63 and TTF-1 immunostaining in differential diagnosis of lung cancers. Diagn Cytopathol 2005;33:223227.Google Scholar
Bobos, M, Hytiroglou, P, Kostopoulos, I, et al. Immunohistochemical distinction between Merkel cell carcinoma and small cell carcinoma of the lung. Am J DermatoPathol 2006;28:99104.Google Scholar
Yao, JL, Madeb, R, Bourne, P, et al. Small cell carcinoma of the prostate: an immunohistochemical study. Am J Surg Pathol 2006;30:705712.Google Scholar
Kalhor, N, Zander, DS, Liu, J. TTF-1 and p63 for distinguishing pulmonary small-cell carcinoma from poorly differentiated squamous cell carcinoma in previously Pap-stained cytologic material. Mod Pathol 2006;19:11171123.Google Scholar
Yun, JP, Zhang, MF, Hou, JH, et al. Primary small cell carcinoma of the esophagus: clinicopathological and immunohistochemical features of 21 cases. BMC Cancer 2007;7:38.Google Scholar
Carlson, JW, Nucci, MR, Brodsky, J, et al. Biomarker-assisted diagnosis of ovarian, cervical and pulmonary small cell carcinomas: the role of TTF-1, WT-1 and HPV analysis. Histopathology 2007;51:305312.Google Scholar
El Demellawy, D, Khalifa, MA, Ismiil, N, et al. Primary colorectal small cell carcinoma: a clinicopathological and immunohistochemical study of 10 cases. Diagn Pathol 2007;2:35.Google Scholar
Alijo Serrano, F, Sanchez-Mora, N, Angel Arranz, J, et al. Large cell and small cell neuroendocrine bladder carcinoma: immunohistochemical and outcome study in a single institution. Am J Clin Pathol 2007;128:733739.Google Scholar
Kargi, A, Gurel, D, Tuna, B. The diagnostic value of TTF-1, CK5/6, and p63 immunostaining in classification of lung carcinomas. Appl Immunohistochem Mol Morphol 2007;15: 415420.Google Scholar
Lu, J, Xue, LY, Lu, N, et al. Superficial primary small cell carcinoma of the esophagus: clinicopathological and immunohistochemical analysis of 15 cases. Dis Esophagus 2010;23:153159.Google Scholar
Wang, W, Epstein, JI. Small cell carcinoma of the prostate. A morphologic and immunohistochemical study of 95 cases. Am J Surg Pathol 2008;32:6571.Google Scholar
Ralston, J, Chiriboga, L, Nonaka, D. MASH1: a useful marker in differentiating pulmonary small cell carcinoma from Merkel cell carcinoma. Mod Pathol 2008;21:13571362.Google Scholar
McCluggage, WG, Kennedy, K, Busam, KJ. An immunohistochemical study of cervical neuroendocrine carcinomas: neoplasms that are commonly TTF1 positive and which may express CK20 and P63. Am J Surg Pathol 2010;34:525532.Google Scholar
Li, AF, Li, AC, Hsu, CY, et al. Small cell carcinomas in gastrointestinal tract: immunohistochemical and clinicopathological features. J Clin Pathol 2010;63:620625.Google Scholar
Lewis, JS Jr., Duncavage, E, Klonowski, PW. Oral cavity neuroendocrine carcinoma: a comparison study with cutaneous Merkel cell carcinoma and other mucosal head and neck neuroendocrine carcinomas. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110:209217.Google Scholar
Sidiropoulos, M, Hanna, W, Raphael, SJ, et al. Expression of TdT in Merkel cell carcinoma and small cell lung carcinoma. Am J Clin Pathol 2011;135:831838.Google Scholar
Fernández-Aceñero, MJ, Cordova, S, Manzarbeitia, F, et al. Immunohistochemical profile of urothelial and small cell carcinomas of the bladder. Pathol Oncol Res 2011;17:519523.Google Scholar
Thompson, S, Cioffi-Lavina, M, Chapman-Fredricks, J, et al. Distinction of high-grade neuroendocrine carcinoma/small cell carcinoma from conventional urothelial carcinoma of urinary bladder: an immunohistochemical approach. Appl Immunohistochem Mol Morphol 2011;19:395399.Google Scholar
Quinn, AM, Blackhall, F, Wilson, G, et al. Extrapulmonary small cell carcinoma: a clinicopathological study with identification of potential diagnostic mimics. Histopathology 2012;61:454464.Google Scholar
Holzinger, A, Dingle, S, Bejarano, PA, et al. Monoclonal antibody to thyroid transcription factor-1: production, characterization, and usefulness in tumor diagnosis. Hybridoma 1996;15:4953.Google Scholar
Jakobsen, AM, Ahlman, H, Kolby, L, et al. NESP55, a novel chromogranin-like peptide, is expressed in endocrine tumours of the pancreas and adrenal medulla but not in ileal carcinoids. Br J Cancer 2003;88:17461754.Google Scholar
Srivastava, A, Padilla, O, Fischer-Colbrie, R, et al. Neuroendocrine secretory protein-55 (NESP-55) expression discriminates pancreatic endocrine tumors and pheochromocytomas from gastrointestinal and pulmonary carcinoids. Am J Surg Pathol 2004;28: 13711378.Google Scholar
Ischia, R, Lovisetti-Scamihorn, P, Hogue-Angeletti, R, et al. Molecular cloning and characterization of NESP55, a novel chromogranin-like precursor of a peptide with 5-HT1B receptor antagonist activity. J Biol Chem 1997;272:1165711662.Google Scholar
Gucer, H, Mete, O. Endobronchial gangliocytic paraganglioma: not all keratin-positive endobronchial neuroendocrine neoplasms are pulmonary carcinoids. Endocr Pathol 2014 Sep;25:356358.Google Scholar
Mete, O, Asa, SL. Composite medullary and papillary thyroid carcinoma in a patient with MEN2B: case report and review of c-cell lesions of the thyroid. Pathol Case Rev 2009;14:208213.Google Scholar
Mete, O, Asa, SL. Pitfalls in the diagnosis of follicular epithelial proliferations of the thyroid. Adv Anat Pathol 2012;19:363373.Google Scholar
Alumets, J, Alm, P, Falkmer, S, et al. Immunohistochemical evidence of peptide hormones in endocrine tumors of the rectum. Cancer 1981;48:24092415.Google Scholar
O'Briain, DS, Dayal, Y, DeLellis, RA, et al. Rectal carcinoids as tumors of the hindgut endocrine cells: a morphological and immunohistochemical analysis. Am J Surg Pathol 1982;6:131142.Google Scholar
Yang, K, Ulich, T, Cheng, L, et al. The neuroendocrine products of intestinal carcinoids. An immunoperoxidase study of 35 carcinoid tumors stained for serotonin and eight polypeptide hormones. Cancer 1983;51:19181926.Google Scholar
Anlauf, M, Hamscher, G, Weihe, E, et al. Xenin-immunoreactive cells and extractable xenin in neuroendocrine tumors of duodenal origin. Gastroenterology 2002;123:16161626.Google Scholar
Federspiel, BH, Burke, AP, Sobin, LH, et al. Rectal and colonic carcinoids. A clinicopathologic study of 84 cases. Cancer 1990;65:135140.Google Scholar
Burke, AP, Thomas, RM, Elsayed, AM, et al. Carcinoids of the jejunum and ileum: an immunohistochemical and clinicopathologic study of 167 cases. Cancer 1997;79:10861093.Google Scholar
Xu, B, Chetty, R, Pérez-Ordoñez, B. Neuroendocrine neoplasms of the head and neck: some suggestions for the new WHO classification of head and neck tumors. Head Neck Pathol 2014 Mar;8:2432.Google Scholar
Agaimy, A, Lell, M, Schaller, T, Märkl, B, Hornung, J. “Neuroendocrine” middle ear adenoma: consistent expression of the transcription factor ISL1 (Islet-1) further supports their neuroendocrine derivation. Histopathology 2015;66:182191.Google Scholar
Doglioni, C, Gambacorta, M, Zamboni, G, et al. Immunocytochemical localization of progesterone receptors in endocrine cells of the human pancreas. Am J Pathol 1990;137:9991005.Google Scholar
Viale, G, Doglioni, C, Gambacorta, M, et al. Progesterone receptor immunoreactivity in pancreatic endocrine tumors. An immunocytochemical study of 156 neuroendocrine tumors of the pancreas, gastrointestinal and respiratory tracts, and skin. Cancer 1992;70:22682277.Google Scholar
Wang, SC, Parekh, JR, Zuraek, MB, et al. Identification of unknown primary tumors in patients with neuroendocrine liver metastases. Arch Surg 2010;145:276280.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×