Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-28T07:16:21.505Z Has data issue: false hasContentIssue false

Subpart IVE - Clinical – Metabolic, Endocrine

from Part IV - Clinical

Published online by Cambridge University Press:  31 March 2017

Sharon E. Mace
Affiliation:
Department of Emergency Medicine, Cleveland Clinic, Ohio
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Observation Medicine
Principles and Protocols
, pp. 225 - 243
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Kitabchi, AE, Umpierrez, GE, Murohy, MB, et al. Hyperglycemic crises in adult patients with diabetes: a consensus statement from the American Diabetes Association. Diabetes Care, 2006. 29(12): 27392748.CrossRefGoogle ScholarPubMed
Kitabchi, AE, Umpierrez, GE, Murphy, MB, et al. Management of hyperglycemic crises in patients with diabetes. Diabetes Care, 2001. 24(1): 131153.CrossRefGoogle ScholarPubMed
Malone, ML, Gennis, V, Goodwin, JS. Characteristics of diabetic ketoacidosis in older versus younger adults. J Am Geriatr Soc, 1992. 40(11): 11001104.CrossRefGoogle ScholarPubMed
Arieff, AI, Carroll, HJ. Nonketotic hyperosmolar coma with hyperglycemia: clinical features, pathophysiology, renal function, acid-base balance, plasma-cerebrospinal fluid equilibria and the effects of therapy in 37 cases. Medicine (Baltimore), 1972. 51(2): 7394.CrossRefGoogle ScholarPubMed
Fulop, MH, Tannenbaum, H, Dreyer, N. Ketotic hyperosmolar coma. Lancet, 1973. 2(7830): 635639.CrossRefGoogle ScholarPubMed
Daugirdas, JT, Kronfol, NO, Tzamaloukas, AH, et al. Hyperosmolar coma: cellular dehydration and the serum sodium concentration. Ann Intern Med, 1989. 110(11): 855857.CrossRefGoogle ScholarPubMed
Lavin, PJ. Hyperglycemic hemianopia: a reversible complication of non-ketotic hyperglycemia. Neurology, 2005. 65(4): 616619.CrossRefGoogle ScholarPubMed
Nyenwe, EA, Loganathan, RS, Blum, S, et al. Active use of cocaine: an independent risk factor for recurrent diabetic ketoacidosis in a city hospital. Endocr Pract, 2007. 13(1): 2229.CrossRefGoogle Scholar
Al-Kudsi, RR, Daugindas, JT, Ing, TS, et al. Extreme hyperglycemia in dialysis patients. Clin Nephrol, 1982. 17(5): 228231.Google ScholarPubMed
Katz, MA. Hyperglycemia-induced hyponatremia –calculation of expected serum sodium depression. N Engl J Med, 1973. 289(16): 843844.CrossRefGoogle ScholarPubMed
Kebler, R, McDonald, Cadnapaphornchai P. Dynamic changes in serum phosphorus levels in diabetic ketoacidosis. Am J Med, 1985. 79(5): 571576.CrossRefGoogle ScholarPubMed
Casteels, K, Beckers, D, Wouters, C, et al. Rhabdomyolysis in diabetic ketoacidosis. Pediatr Diabetes, 2003. 4(1): 2931.CrossRefGoogle ScholarPubMed
Shilo, SD, Werner, D, Hershko, C. Acute hemolytic anemia caused by severe hypophosphatemia in diabetic ketoacidosis. Acta Haematol, 1985. 73(1): 5557.CrossRefGoogle ScholarPubMed
Yadav, D, Nair, S, Norkus, ED, et al. Nonspecific hyperamylasemia and hyperlipasemia in diabetic ketoacidosis: incidence and correlation with biochemical abnormalities. Am J Gastroenterol, 2000. 95(11): 31233128.CrossRefGoogle ScholarPubMed
Stentz, FB, Umpierrez, GE, Cuervo, R, et al. Proinflammatory cytokines, markers of cardiovascular risks, oxidative stress, and lipid peroxidation in patients with hyperglycemic crises. Diabetes, 2004. 53(8): 20792086.CrossRefGoogle ScholarPubMed
Slovis, CM, Monk, VG, Slovis, RG, et al. Diabetic ketoacidosis and infection: leukocyte count and differential as early predictors of serious infection. Am J Emerg Med, 1987. 5(1): 15.CrossRefGoogle ScholarPubMed
Weidman, SW, Ragland, JB, Fisher, JN Jr, et al. Effects of insulin on plasma lipoproteins in diabetic ketoacidosis: evidence for a change in high density lipoprotein composition during treatment. J Lipid Res, 1982. 23(1): 171182.CrossRefGoogle ScholarPubMed
Burge, MR, Hardy, KJ, Schade, DS. Short-term fasting is a mechanism for the development of euglycemic ketoacidosis during periods of insulin deficiency. J Clin Endocrinol Metab, 1993. 76(5): 11921198.Google ScholarPubMed
Kitabchi, AE, Umpierrez, GE, Miles, JM, et al. Hyperglycemic crises in adult patients with diabetes. Diabetes Care, 2009. 32(7): 13351343.CrossRefGoogle ScholarPubMed
Middleton, P, Kelly, AM, Brown, J, et al. Agreement between arterial and central venous values for pH, bicarbonate, base excess, and lactate. Emerg Med J, 2006. 23(8): 622624.CrossRefGoogle ScholarPubMed
Hillman, K. Fluid resuscitation in diabetic emergencies–a reappraisal. Intensive Care Med, 1987. 13(1): 48.CrossRefGoogle ScholarPubMed
Molitch, ME, Rodman, E, Hirsch, CA, et al. Spurious serum creatinine elevations in ketoacidosis. Ann Intern Med, 1980. 93(2): 280281.CrossRefGoogle ScholarPubMed
Kitabchi, AE, Murphy, MB, Spencer, J, et al. Is a priming dose of insulin necessary in a low-dose insulin protocol for the treatment of diabetic ketoacidosis? Diabetes Care, 2008. 31(11): 20812085.CrossRefGoogle Scholar
Luzi, L, Barrett, EJ, Groop, LC, et al. Metabolic effects of low-dose insulin therapy on glucose metabolism in diabetic ketoacidosis. Diabetes, 1988. 37(11): 14701477.CrossRefGoogle Scholar
Brown, PM, Tompkins, CV, Juul, S, et al. Mechanism of action of insulin in diabetic patients: a dose-related effect on glucose production and utilisation. Br Med J, 1978. 1(6122): 12391242.CrossRefGoogle ScholarPubMed
Umpierrez, GE, Cuervo, R, Karabell, A, et al. Treatment of diabetic ketoacidosis with subcutaneous insulin aspart. Diabetes Care, 2004. 27(8): 18731878.CrossRefGoogle ScholarPubMed
Hillier, TA, Abbott, RD, Barrett, EJ. Hyponatremia: evaluating the correction factor for hyperglycemia. Am J Med, 1999. 106(4): 399403.CrossRefGoogle ScholarPubMed
Narins, RG, Cohen, JJ. Bicarbonate therapy for organic acidosis: the case for its continued use. Ann Intern Med, 1987. 106(4): 615618.CrossRefGoogle ScholarPubMed
Okuda, Y, Adrogue, HJ, Field, JB, et al. Counterproductive effects of sodium bicarbonate in diabetic ketoacidosis. J Clin Endocrinol Metab, 1996. 81(1): 314320.Google ScholarPubMed
Wolfsdorf, J, Glaser, N, Sperling, MA. Diabetic ketoacidosis in infants, children, and adolescents: A consensus statement from the American Diabetes Association. Diabetes Care, 2006. 29(5): 11501159.CrossRefGoogle ScholarPubMed
Medical Managment of Type I Diabetes. American Diabetes Association, 2004. Alexandria, VA.Google Scholar
Nathan, DM, Buse, JB, Davidson, MB, et al. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care, 2009. 32(1): 193203.CrossRefGoogle ScholarPubMed
Tokarski, GF, Kahler, JK. Diabetic ketoacidosis in the emergency department and clinical decision unit. Ann Emerg Med, 1998. 32(3): S15.Google Scholar

References

Workgroup on Hypoglycemia, American Diabetic Association (A.D.A.), Defining and reporting hypoglycemia in diabetes: a report from the American Diabetes Association Workgroup on Hypoglycemia. Diabetes Care, 2005. 28(5): 12451249.CrossRefGoogle Scholar
Lasker, RD. The diabetes control and complications trial. Implications for policy and practice. N Engl J Med, 1993. 329(14): 10351036.CrossRefGoogle ScholarPubMed
U.K. prospective diabetes study 16. Overview of 6 years’ therapy of type II diabetes: a progressive disease. U.K. Prospective Diabetes Study Group. Diabetes, 1995. 44(11): 1249–1258.CrossRefGoogle Scholar
Krentz, AJ, Ferner, RE, Bailey, CJ. Comparative tolerability profiles of oral antidiabetic agents. Drug Saf, 1994. 11(4): 223241.CrossRefGoogle ScholarPubMed
Shorr, RI, Ray, WA, Daugherty, JR, et al. Incidence and risk factors for serious hypoglycemia in older persons using insulin or sulfonylureas. Arch Intern Med, 1997. 157(15): 16811686.CrossRefGoogle ScholarPubMed
Stahl, M, Berger, W. Higher incidence of severe hypoglycaemia leading to hospital admission in Type 2 diabetic patients treated with long-acting versus short-acting sulphonylureas. Diabet Med, 1999. 16(7): 586590.CrossRefGoogle ScholarPubMed
Menzies, DJ, Dorsainvil, PA, Cunha, BA, et al. Severe and persistent hypoglycemia due to gatifloxacin interaction with oral hypoglycemic agents. Am J Med, 2002. 113(3): 232234.CrossRefGoogle ScholarPubMed
ter Braak, EW, Appleman, AM, van de Laak, M, et al. Clinical characteristics of type 1 diabetic patients with and without severe hypoglycemia. Diabetes Care, 2000. 23(10): 14671471.CrossRefGoogle ScholarPubMed
Pedersen-Bjergaard, U,Reubsaet, JL, Nielsen, SL, et al. Psychoactive drugs, alcohol, and severe hypoglycemia in insulin-treated diabetes: analysis of 141 cases. Am J Med, 2005. 118(3): 307310.CrossRefGoogle ScholarPubMed
Gerich, JE. Oral hypoglycemic agents. N Engl J Med, 1989. 321(18): 12311245.Google ScholarPubMed
Eliasson, L, Renstrom, E, Ammala, C, et al. PKC-dependent stimulation of exocytosis by sulfonylureas in pancreatic beta cells. Science, 1996. 271(5250): 813815.CrossRefGoogle ScholarPubMed
Spiller, HA, Management of sulfonylurea ingestions. Pediatr Emerg Care, 1999. 15(3): 227230.CrossRefGoogle ScholarPubMed
Dizon, AM, Kowalyk, S, Hoogwerf, BJ. Neuroglycopenic and other symptoms in patients with insulinomas. Am J Med, 1999. 106(3): 307310.CrossRefGoogle ScholarPubMed
Hepburn, DA, Deary, IJ, Frier, BM, et al. Symptoms of acute insulin-induced hypoglycemia in humans with and without IDDM. Factor-analysis approach. Diabetes Care, 1991. 14(11): 949957.CrossRefGoogle ScholarPubMed
Cryer, PE. Hypoglycaemia: the limiting factor in the glycaemic management of Type I and Type II diabetes. Diabetologia, 2002. 45(7): 937948.CrossRefGoogle ScholarPubMed
Cryer, PE, Davis, SN, Shamoon, H. Hypoglycemia in diabetes. Diabetes Care, 2003. 26(6): 19021912.CrossRefGoogle ScholarPubMed
Dagogo-Jack, SE, Craft, S, Cryer, PE. Hypoglycemia-associated autonomic failure in insulin-dependent diabetes mellitus. Recent antecedent hypoglycemia reduces autonomic responses to, symptoms of, and defense against subsequent hypoglycemia. J Clin Invest, 1993. 91(3): 819828.CrossRefGoogle Scholar
Davis, SN, Shavers, C, Davis, B, et al. Prevention of an increase in plasma cortisol during hypoglycemia preserves subsequent counterregulatory responses. J Clin Invest, 1997. 100(2): 429438.CrossRefGoogle ScholarPubMed
Davis, SN, Shavers, C, Costa, F, et al. Role of cortisol in the pathogenesis of deficient counterregulation after antecedent hypoglycemia in normal humans. J Clin Invest, 1996. 98(3): 680691.CrossRefGoogle ScholarPubMed
MacLeod, KM, Hepburn, DA, Frier, BM. Frequency and morbidity of severe hypoglycaemia in insulin-treated diabetic patients. Diabet Med, 1993. 10(3): 238245.CrossRefGoogle ScholarPubMed
Abraira, C, Colwell, JA J, Nuttall, FQ, et al., Veterans Affairs Cooperative Study on glycemic control and complications in type II diabetes (VA CSDM). Results of the feasibility trial. Veterans Affairs Cooperative Study in Type II Diabetes. Diabetes Care, 1995. 18(8): 11131123.CrossRefGoogle Scholar
Saudek, CD, Duckworth, WC, Giobbie-Hurder, A, et al. Implantable insulin pump vs multiple-dose insulin for non-insulin-dependent diabetes mellitus: a randomized clinical trial. Department of Veterans Affairs Implantable Insulin Pump Study Group. JAMA, 1996. 276(16): 13221327.CrossRefGoogle ScholarPubMed
Schwartz, NS, Clutter, WE, Shah, SD, et al. Glycemic thresholds for activation of glucose counterregulatory systems are higher than the threshold for symptoms. J Clin Invest, 1987. 79(3): 777781.CrossRefGoogle Scholar
Brelje, TC, Scharp, DW, Sorenson, RL. Three-dimensional imaging of intact isolated islets of Langerhans with confocal microscopy. Diabetes, 1989. 38(6): 808814.CrossRefGoogle ScholarPubMed
Weir, GC, Bonner-Weir, S. Islets of Langerhans: the puzzle of intraislet interactions and their relevance to diabetes. J Clin Invest, 1990. 85(4): 983987.CrossRefGoogle ScholarPubMed
White, NH, Skor, DA, Cryer, PE, et al. Identification of type I diabetic patients at increased risk for hypoglycemia during intensive therapy. N Engl J Med, 1983. 308(9): 485491.CrossRefGoogle ScholarPubMed
Goh, HK, Chew, DE, Miranda, IG, et al. 24-Hour observational ward management of diabetic patients presenting with hypoglycaemia: a prospective observational study. Emerg Med J, 2009. 26(10): 719723.CrossRefGoogle ScholarPubMed

Bibliography

Gibbs, MA, Tayal, VS. Electrolyte disturbances. In: Marx, JA, Hockerberger, RS, Walls, RM, editors. Rosen’s Emergency Medicine Concepts and Clinical Practice. 6th ed. Philadelphia: Mosby Elsevier; 2010. pp. 16151632.CrossRefGoogle Scholar
Unwin, RJ, Luft, FC, Shirley, DG. Pathophysiology and management of hypokalemia: a clinical perspective. Nat Rev Nephrol. 2011;7:7584.CrossRefGoogle ScholarPubMed
Kelen, GD, Hsu, E. Fluids and electrolytes. In: Tintinalli, JE, Stapczynski, JS, Ma, OJ, Cline, DM, Cydulka, RK, Meckles, , editors. Tintinalli’s Emergency Medicine a Comprehensive Study guide. 7th ed. New York: The McGraw-Hill Companies, Inc; 2011. pp. 117129.Google Scholar
Weiss-Guillet, EM, Takala, J, Jakob, SM. Diagnosis and management of electrolyte emergencies. Best Pract Res Clin Endocrinol Metab. 2003;17(4):623651.CrossRefGoogle ScholarPubMed
Alfonzo, AV, Isles, C, Geddes, C, et al. Potassium disorders–clinical spectrum and emergency management. Resuscitation. 2006;70(1):1025.CrossRefGoogle ScholarPubMed
Nyirenda, MJ, Tang, JI, Padfield, PL, et al. Hyperkalemia. BMJ. 2009;339:b4114:10191024.CrossRefGoogle Scholar
Weisberg, LS. Management of severe hyperkalemia. Crit Care Med. 2008;36:32463251.CrossRefGoogle ScholarPubMed
Elliott, MJ, Ronksley, PE, Clase, CM, et al. Management of patients with acute hyperkalemia. CMAJ. 2010;182(15):16311635.CrossRefGoogle ScholarPubMed
Khanna, A, White, WB. Management of hyperkalemia in patients with cardiovascular disease. Am J Med. 2009;122:215221.CrossRefGoogle ScholarPubMed
Pepin, J, Shields, C. Advances in diagnosis and management of hypokalemia and hyperkalemic emergencies. Emerg Med Pract. 2012;14(2):117.Google ScholarPubMed
Cooper, MS, Gittoes, NJ. Diagnosis and management of hypocalcaemia. BMJ. 2008;336:12981302.CrossRefGoogle ScholarPubMed
Shepard, MM, Smith, JW. Hypercalcemia. Am J Med Sci. 2007;334(5):381385.CrossRefGoogle ScholarPubMed
Makras, P, Papapoulos, SE. Medical treatment of hypercalcaemia. Hormones. 2009;8(2)8395.CrossRefGoogle ScholarPubMed
LeGrand, SB, Leskuski, D, Zama, I. Narrative Review: Furosemide for Hypercalcemia: An unproven yet common practice. Ann Intern Med. 2008:149:259263.CrossRefGoogle ScholarPubMed
Assadi, F. Hypomagnesemia: An evidence-based approach to clinical cases. Iran J Kidney Dis. 2010;4(1):1319.Google ScholarPubMed
Topf, JM, Murray, PT. Hypomagnesemia and hypermagnesemia. Rev Endocr Metab Disord. 2003;4:195206.CrossRefGoogle Scholar
Musso, CG. Magnesium metabolism in health and disease. Int Urol Nephrol. 2009;41:357362.CrossRefGoogle ScholarPubMed
Archinger, SG, Mortiz, ML, Ayus, JC. Dynatremias: Why are patients still dying? South Med J. 2006;99(4)353362.CrossRefGoogle Scholar
Adrogue, HJ, Madias, NE. Hypernatremia. N Engl J Med 2000;342(20):14931499.CrossRefGoogle ScholarPubMed
Verbalis, JG, Goldsmith, SR, Greenberg, A, et al. Hyponatremia treatment guidelines 2007: Expert panel recommendations. Am J Med. 2007;120(11A):S1S21.CrossRefGoogle ScholarPubMed
Vaidya, C, Ho, W, Freda, BJ. Management of hyponatremia: Providing treatment and avoiding harm. Cleve Clin J Med. 2010;77(10):715726.CrossRefGoogle ScholarPubMed
Lin, M, Liu, SJ, Lim, IT. Disorders of water imbalance. Emerg Med Clin N Am. 2005;23:749770.CrossRefGoogle ScholarPubMed
Wakil, A, Atkin, SL. Serum sodium disorders: Safe management. Clin Med. 2010;10(1):7982.CrossRefGoogle ScholarPubMed
Assadi, F. Hypophosphatemia: An evidence-based problem-solving approach to clinical cases. Iran J Kidney Dis. 2010;4(3)195201.Google ScholarPubMed
Shiber, JR, Mattu, A. Serum phosphate: Abnormalities in the emergency department. J Emerg Med. 2002;23(4):395400.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×