Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-28T16:18:03.169Z Has data issue: false hasContentIssue false

Part IV - Endophytes for Novel Biomolecules and In Vitro Methods

Published online by Cambridge University Press:  01 April 2019

Trevor R. Hodkinson
Affiliation:
Trinity College Dublin
Fiona M. Doohan
Affiliation:
University College Dublin
Matthew J. Saunders
Affiliation:
Trinity College Dublin
Brian R. Murphy
Affiliation:
Trinity College Dublin
Get access

Summary

The fortuitous discovery of penicillin from Penicillium chrysogenum heralded the golden era of antibiotics. Since then, fungi have significantly contributed to the welfare of humans by producing bioactive compounds which have been used as antibacterial, anticancer, antioxidant and immunomodulatory agents. However, in recent years, microorganisms associated with plants have emerged as fountainheads of bioactive molecules with high therapeutic potential. In general terms, endophytes are an extremely diverse and ubiquitous group of microorganisms that resides within the living internal tissues of a host plant in a non-invasive manner. Endophytes communicate with their host plant through metabolic interactions which enables them to produce signal molecules with interesting biological activities. Further, the genetic recombination of endophytes with the host plant enables them to mimic the biological properties of the host and produce analogous bioactive compounds. Thus, they start producing the host plant phytochemicals when cultured independently. The endless need for potent drugs has prompted researchers to explore alternative avenues for finding novel bioactive molecules, and endophytes appear to be a plausible target for drug discovery. This chapter reviews the current research trends with these promising organisms.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Agusta, A., Wulansari, D., Nurkanto, A. and Fathoni, A. (2014). Biotransformation of protoberberine alkaloids by the endophytic fungus Coelomycetes AFKR-3 isolated from yellow moonsheed plant (Archangelisia flava (L.) Merr.). Procedia Chemistry, 13, 3843.CrossRefGoogle Scholar
Aly, A. H., Debbab, A. and Proksch, P. (2011). Fungal endophytes: unique plant inhabitants with great promises. Applied Microbiology and Biotechnology, 90, 18291845.CrossRefGoogle ScholarPubMed
Aly, A. H., Debbab, A. and Proksch, P. (2013). Fungal endophytes–secret producers of bioactive plant metabolites. Pharmazie, 68, 499505.Google ScholarPubMed
Amna, T., Puri, S. C., Verma, V. et al. (2006). Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin. Canadian Journal of Microbiology, 52, 189196.CrossRefGoogle ScholarPubMed
Arnold, A. E. (2007). Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biology Reviews, 21, 5166.CrossRefGoogle Scholar
Arnold, A. E., Maynard, Z., Gilbert, G. S., Coley, P. D. and Kursar, T. A. (2000). Are tropical fungal endophytes hyperdiverse? Ecology Letters, 3, 267274.CrossRefGoogle Scholar
Ayob, F. W., Simarani, K., Abidin, N. Z. and Mohamad, J. (2017). First report on a novel Nigrospora sphaerica isolated from Catharanthus roseus plant with anticarcinogenic properties. Microbial Biotechnology, 10, 926932.CrossRefGoogle ScholarPubMed
Bacon, C. W. and White, J. F. (2000). Microbial endophytes. New York, NY: Marcel Dekker.CrossRefGoogle Scholar
Che, J. X., Shi, J. L., Gao, Z. H. and Zhang, Y. (2016a). A new approach to produce Resveratrol by enzymatic bioconversion. Journal of Microbiology and Biotechnology, 26, 13481357.CrossRefGoogle ScholarPubMed
Che, J., Shi, J., Gao, Z. and Zhang, Y. (2016b). Transcriptome analysis reveals the genetic basis of the resveratrol biosynthesis pathway in an endophytic fungus (Alternaria sp. MG1) isolated from Vitis vinifera. Frontiers in Microbiology, 7, 1257.Google Scholar
Che, J. X., Shi, J. L., Lu, Y. and Liu, Y. L. (2016c). Validation of reference genes for normalization of gene expression by qRT-PCR in a resveratrol-producing endophytic fungus (Alternaria sp. MG1). AMB Express, 6, 1–10.CrossRefGoogle Scholar
Chithra, S., Jasim, B., Sachidanandan, P., Jyothis, M. and Radhakrishnan, E. K. (2014a). Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum. Phytomedicine,21, 534540.CrossRefGoogle ScholarPubMed
Chithra, S., Jasim, B., Anisha, C., Mathew, J. and Radhakrishnan, E. K. (2014b). LC-MS/MS based identification of piperine production by endophytic Mycosphaerellasp. PF13 from Piper nigrum. Applied Biochemistry and Biotechnology, 173, 3035.CrossRefGoogle ScholarPubMed
Chithra, S., Jasim, B., Mathew, J. and Radhakrishnan, E. K. (2017). Endophytic Phomopsis sp. colonization in Oryza sativa was found to result in plant growth promotion and piperine production. Physiologia Plantarum, 160, 437446.Google Scholar
Chowdhary, K., Kaushik, N., Coloma, A. G. and Raimundo, C. M. (2012). Endophytic fungi and their metabolites isolated from Indian medicinal plant. Phytochemistry Reviews, 11, 467485.CrossRefGoogle Scholar
Cragg, G. M. and Pezzuto, J. M. (2016). Natural products as a vital source for the discovery of cancer chemotherapeutic and chemopreventive agents. Medical Principles and Practice, 25, 4159.CrossRefGoogle ScholarPubMed
Dai, W. and Tao, W. (2008). Preliminarily study on fermentation conditions of taxol-producing endophytic fungus. Chemical Industry and Engineering Progress, 27, 883886.Google Scholar
De Bary, A. (1866). Morphologie und physiologie der Pilze, Flechten and myxomyceten. In Hofmeister’s Handbook of Physiological Botany, ed. W. Hofmeister, Vol. II. Leipzig, Germany: Engelmann, pp. 1335.Google Scholar
Deng, B. W., Liu, K. H., Chen, W. Q., Ding, X. W. and Xie, X. C. (2009). Fusarium solani, Tax-3, a new endophytic taxol-producing fungus from Taxus chinensis. World Journal of Microbiology and Biotechnology, 25, 139143.CrossRefGoogle Scholar
Dong, L. H., Fan, S. W., Ling, Q. Z., Huang, B. B. and Wei, Z. J. (2014). Identification of huperzine A-producing endophytic fungi isolated from Huperzia serrata. World Journal of Microbiology and Biotechnology, 30, 10111017.CrossRefGoogle Scholar
Duan, L. I., Liwei, G. and Hong, Y. (2009). Isolation and identification of producing endophytic fungi of berberine from the plant Phellodendron amurense. Journal of Anhui Agricultural Sciences, 2009, 22.Google Scholar
Eyberger, A. L., Dondapati, R. and Porter, J. R. (2006). Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. Journal of Natural Products, 69, 11211124.CrossRefGoogle ScholarPubMed
Freeman, E. M. (1904). The seed fungus of Lolium temulentum L. Philosophical Transactions of the Royal Society of London B, 196, 127.Google Scholar
Gangadevi, V. and Muthumary, J. (2008). Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb. World Journal of Microbiology Biotechnology, 24, 717724.CrossRefGoogle Scholar
Gangadevi, V. and Muthumary, J. (2009a). A novel endophytic taxol-producing fungus Chaetomella raphigera isolated from a medicinal plant, Terminalia arjuna. Applied Biochemistry and Biotechnology, 158, 675–684.CrossRefGoogle ScholarPubMed
Gangadevi, V. and Muthumary, J. (2009b). Taxol production by Pestalotiopsis terminaliae, an endophytic fungus of Terminalia arjuna (arjun tree). Biotechnology and Applied Biochemistry, 52, 915.CrossRefGoogle ScholarPubMed
Garyali, S. and Reddy, M. S. (2013). Taxol production by an endophytic fungus, Fusarium redolens, isolated from Himalayan yew. Journal of Microbiology and Biotechnology, 23, 13721380.CrossRefGoogle ScholarPubMed
Gond, S. K., Kharwar, R. N. and White, J. F. (2014). Will fungi be the new source of the blockbuster drug taxol? Fungal Biology Reviews, 28, 7784.CrossRefGoogle Scholar
Gorgani, L., Mohammadi, M., Najafpour, G. D. and Nikzad, M. (2016). Piperine: the bioactive compound of black pepper: from isolation to medicinal formulations. Comprehensive Reviews in Food Science and Food Safety, 16, 124140.CrossRefGoogle ScholarPubMed
Gouda, S., Das, G., Sen, S. K., Shin, H. S. and Patra, J. K. (2016). Endophytes: a treasure house of bioactive compounds of medicinal importance. Frontiers in Microbiology, 7, 1538.CrossRefGoogle ScholarPubMed
Guo, B., Li, H. and Zhang, L. (1998). Isolation of a fungus producing vinblastine. Journal of Yunnan University (Natural Science), 20, 214215.Google Scholar
Gupta, M., Saxena, S. and Goyal, D. (2015). Potential pancreatic lipase inhibitory activity of an endophytic Penicillium species. Journal of Enzyme Inhibition Medicinal Chemistry, 30, 1521.CrossRefGoogle ScholarPubMed
Hodkinson, T. R. (2018). Evolution and taxonomy of the grasses (Poaceae): a model family for the study of species- rich groups. Annual Plant Reviews Online, doi: 10.1002/9781119312994. apr0622.CrossRefGoogle Scholar
Hodkinson, T. R. and Murphy, B. R. (2019). Endophytes for a growing world. In Endophytes for a Growing World, ed. T R. Hodkinson, F. M. Doohan, M. J. Saunders and B. R. Murphy. Cambridge: Cambridge University Press, Chapter 1.CrossRefGoogle Scholar
Howitz, K. T. and Sinclair, D. A. (2008). Xenohormesis: sensing the chemical cues of other species. Cell, 133, 387391.CrossRefGoogle ScholarPubMed
Hu, K., Tan, F., Tang, K., Zhu, S. and Wang, W. (2006). Isolation and screening of endophytic fungi synthesizing taxol from Taxus chinensis var. mairei. Journal of Southwest China Normal University (Natural Science Edition), 31, 134137.Google Scholar
Huang, J. X., Zhang, J., Zhang, X. R. et al. (2014). Mucor fragilis as a novel source of the key pharmaceutical agents podophyllotoxin and kaempferol, Pharmaceutical Biology, 52, 12371243.CrossRefGoogle ScholarPubMed
Karioti, A. and Bilia, A. R. (2010). Hypericins as potential leads for new therapeutics. International Journal of Molecular Sciences, 11, 562594.CrossRefGoogle ScholarPubMed
Kaul, S., Gupta, S., Ahmed, M. and Dhar, M. K. (2012). Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochemistry Reviews, 11, 487505.CrossRefGoogle Scholar
Kharwar, R. N., Mishra, A., Gond, S. K., Stierle, A. and Stierle, D. (2011). Anticancer compounds derived from fungal endophytes: their importance and future challenges. Natural Product Reports, 28, 12081228.CrossRefGoogle ScholarPubMed
Kour, A., Shawl, A. S., Rehman, S. et al. (2008). Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World Journal of Microbiology and Biotechnology, 24, 11151121.CrossRefGoogle Scholar
Krohn, K., Farooq, U., Florke, U. et al. (2007). Secondary metabolites isolated from an endophytic Phoma sp.: absolute configuration of tetrahydropyre-nophorol using the solid-state TDDFT CD methodology. European Journal of Organic Chemistry, 19, 32063211.CrossRefGoogle Scholar
Kumar, A. and Ahmad, A. (2013). Biotransformation of vinblastine to vincristine by the endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. Biocatalysis and Biotransformation, 31, 8993.CrossRefGoogle Scholar
Kumar, A., Patil, D., Rajamohanan, P. R. and Ahmad, A. (2013). Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One, 8, e71805.CrossRefGoogle ScholarPubMed
Kumara, P. M., Zuehlke, S., Priti, V. et al. (2012). Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook. f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie Van Leeuwenhoek, 101, 323329.CrossRefGoogle Scholar
Kumara, P. M., Soujanya, K. N., Ravikanth, G. et al. (2014). Rohitukine, a chromone alkaloid and a precursor of flavopiridol, is produced by endophytic fungi isolated from Dysoxylum binectariferum Hook. f and Amoora rohituka (Roxb). Wight & Arn. Phytomedicine, 21, 541546.CrossRefGoogle Scholar
Kumaran, R. S., Choi, Y. K., Lee, S. et al. (2014). Isolation of taxol, an anticancer drug produced by the endophytic fungus, Phoma betae. African Journal of Biotechnology, 11, 950960.Google Scholar
Kuriakose, G. C., Palem, P. P. C. and Jayabaskaran, C. (2016). Fungal vincristine from Eutypellaspp – CrP14 isolated from Catharanthus roseus induces apoptosis in human squamous carcinoma cell line -A431. BMC Complementary and Alternative Medicine, 16, 302.CrossRefGoogle ScholarPubMed
Kusari, S. and Spiteller, M. (2012). Metabolomics of endophytic fungi producing associated plant secondary metabolites: progress, challenges and opportunities. In Metabolomics, ed. Roessner, U.. London: InTech, pp. 241266.Google Scholar
Kusari, S. and Spiteller, M. (2016). The promise of endophytic fungi as sustainable resource of biologically relevant pro-drugs: a focus on Cameroon. In Fungi Applications and Management Strategies, ed. Deshmuk, S. K., Misra, J. K., Tewari, J. P. and Papp, T., Boca Raton, FL: CRC Press, pp. 113.Google Scholar
Kusari, S., Lamshoft, M., Zuhlke, S. and Spiteller, M. (2008). An endophytic fungus from Hypericum perforatum that produces hypericin. Journal of Natural Products, 71, 159162.CrossRefGoogle ScholarPubMed
Kusari, S., Zuhlke, S. and Spiteller, M. (2009a). An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. Journal of Natural Products, 72, 27.CrossRefGoogle ScholarPubMed
Kusari, S., Lamsho, M. and Spiteller, M. (2009b). Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. Journal of Applied Microbiology, 107, 10191030.CrossRefGoogle ScholarPubMed
Kusari, S., Zuhlke, S., Kosuth, J., Cellarova, E. and Spiteller, M. (2009c). Light-independent metabolomics of endophytic Thielavia subthermophila provides insight into microbial hypericin biosynthesis. Journal of Natural Products, 72, 18251835.CrossRefGoogle ScholarPubMed
Kusari, S., Hertweck, C. and Spiteller, M. (2012). Chemical ecology of endophytic fungi: origins of secondary metabolites. Chemistry and Biology,19, 792798.CrossRefGoogle ScholarPubMed
Kusari, S., Pandey, S. P. and Spiteller, M. (2013). Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Phytochemistry, 91, 8187.CrossRefGoogle ScholarPubMed
Kusari, S., Singh, S. and Jayabaskaran, C. (2014). Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends in Biotechnology, 32, 297303.CrossRefGoogle ScholarPubMed
Leiter, J., Downing, V., Hartwell, J. L. and Shear, J. J. (1950). Damage induced in sarcoma 37 with podophyllin, podophyllotoxin alpha-peltatin, beta-peltatin, and quercetin. Journal of the National Cancer Institute, 10, 12731293.Google ScholarPubMed
Li, M. C. and Wang, X. (2009). Isolation and identification of the 10-hydroxycamptothecin-producing endophytic fungi from Camptotheca acuminata Decne. Acta Botanica Boreali- Occidentalia Sinica, 29, 06140617.Google Scholar
Li, W., Zhou, J, Lin, Z. and Hu, Z. (2007). Study on fermentation condition for production of huperzine A from endophytic fungus 2F09P03B of Huperzia serrata. Chinese Medicinal Biotechnology, 2, 254259.Google Scholar
Li, Y., Yang, J., Zhou, X., Zhao, W. and Jian, Z. (2015). Isolation and identification of a 10-deacetyl baccatin-III-producing endophyte from Taxus wallichiana. Applied biochemistry and biotechnology, 175, 22242231.CrossRefGoogle ScholarPubMed
Liang, Z., Zhang, J., Zhang, X., Li, J., Zhang, X. and Zhao, C. (2016). Endophytic fungus from Sinopodophyllum emodi (Wall.) Ying that produces podophyllotoxin. Journal of Chromatographic Science, 54, 175178.Google ScholarPubMed
Lingqi, Z., Bo, G., Haiyan, L. et al. (2000). Preliminary study on the isolation of endophytic fungus of Catharanthus roseus and its fermentation to produce products of therapeutic value. Chinese Traditional Herbal Drugs, 31, 805807.Google Scholar
Liu, K., Ding, X., Deng, B. and Chen, W. (2009). Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis. Journal of Industry Microbiology and Biotechnology, 36, 11711177.CrossRefGoogle ScholarPubMed
Liu, Y., Nan, L., Liu, J. et al. (2016). Isolation and identification of resveratrol-producing endophytes from wine grape Cabernet Sauvignon. Springer Plus, 5, 1029.Google ScholarPubMed
Ludwig-Muller, J. (2015). Plants and endophytes: equal partners in secondary metabolite production? Biotechnology Letters, 37, 13251334.CrossRefGoogle ScholarPubMed
Marinho, A. M. S., Rodrigues-Filho, E., Moitinh, M. L. R. and Santos, L. S. (2005). Biologically active polyketides produced by Penicillium janthinellum isolated as an endophytic fungus from fruits of Melia azedarach. Journal of the Brazilian Chemical Society, 16, 280283.CrossRefGoogle Scholar
Meshram, V., Saxena, S. and Paul, K. (2016). Xylarinase: a novel clot busting enzyme from an endophytic fungus Xylaria curta. Journal of Enzyme Inhibition Medicinal Chemistry, 31, 110.CrossRefGoogle ScholarPubMed
Mohammad, N., Mauji, R., Pravej, A. and Grothaus, P. (2012). Fusarium solani, P1, a new endophytic podophyllotoxin-producing fungus from roots of Podophyllum hexandrum. African Journal of Microbiology Research, 6, 24932499.Google Scholar
Na, R., Jiajia, L., Dongliang, Y. et al. (2016). Indentification of vincamine indole alkaloids producing endophytic fungi isolated from Nerium indicum, Apocynaceae. Microbiological Research, 192, 114121.CrossRefGoogle ScholarPubMed
Nicoletti, R. and Fiorentino, A. (2015). Plant bioactive metabolites and drugs produced by endophytic fungi of spermatophyta. Agriculture, 5, 918970.CrossRefGoogle Scholar
Omeje, E. O., Ahomafor, J. E., Onyekaba, T. U. et al. (2017). Endophytic fungi as alternative and reliable sources for potent anticancer agents. In Natural Products and Cancer Drug Discovery, ed. Badria, F. A.. London: IntechOpen, pp. 142157.Google Scholar
Palem, P. P. C., Kuriakose, G. C. and Jayabaskaran, C. (2015). An endophytic fungus, Talaromyces radicus, isolated from Catharanthus roseus, produces vincristine and vinblastine, which induce apoptotic cell death. PLoS One, 10, e0144476.CrossRefGoogle ScholarPubMed
Pan, B. F., Su, X., Hu, B. et al. (2015). Fusarium redolens 6WBY3, an endophytic fungus isolated from Fritillaria unibracteata var. wabuensis, produces peimisine and imperialine-3β-D-glucoside. Fitoterapia, 103, 213221.CrossRefGoogle ScholarPubMed
Pan, F., Hou, K., Gao, F. et al. (2014). Peimisine and peimininen production by endophytic fungus Fusarium sp. isolated from Fritillaria unibracteata var. wabuensis. Phytomedicine, 21, 11041109.CrossRefGoogle ScholarPubMed
Pandi, M., Kumaran, R. S., Choi, Y.-K., Kim, H. J. and Muthumary, J. (2011). Isolation and detection of taxol, an anticancer drug produced from Lasiodiplodia theobromae, an endophytic fungus of the medicinal plant Morinda citrifolia. African Journal of Biotechnology, 10, 14281435.Google Scholar
Parthasarathy, R. and Sathiyabama, M. (2014). Gymnemagenin-producing endophytic fungus isolated from a medicinal plant Gymnema sylvestre R.Br. Applied Biochemistry and Biotechnology, 172, 31413152.CrossRefGoogle ScholarPubMed
Petrini, O. (1991). Fungal endophytes of tree leaves. In Microbial Ecology of Leaves, ed. Fokkema, N. J. and Heuvel, V. D.. Cambridge: Cambridge University Press, pp. 185187.Google Scholar
Porras-Alfaro, A. and Bayman, P. (2011). Hidden fungi, emergent properties: endophytes and microbiomes. Annual Review of Phytopathology, 49, 291315.CrossRefGoogle ScholarPubMed
Promputtha, I., Lumyong, S. and Dhanasekaran, V. (2007). Phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microbial Ecology, 53, 579590.CrossRefGoogle ScholarPubMed
Pu, X., Qu, X., Chen, F. et al. (2013). Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: Isolation, identification, and fermentation conditions optimization for camptothecin production. Applied Microbiology and Biotechnology, 97, 93659375.CrossRefGoogle ScholarPubMed
Puri, S. C., Verma, V., Amna, T., Qazi, G. N. and Spiteller, M. (2005). An endophytic fungus from Nothapodytes foetida that produces camptothecin. Journal of Natural Products, 68, 17171719.CrossRefGoogle ScholarPubMed
Puri, S. C., Nazir, A., Chawla, R. et al. (2006). The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin ligans. Journal of Biotechnology, 122, 494510.CrossRefGoogle Scholar
Qian, Y. X., Kang, J. C., Luo, Y. K. et al. (2016). A bilobalide-producing endophytic fungus, Pestalotiopsis uvicola from medicinal plant Ginkgo biloba. Current Microbiology, 73, 280286.CrossRefGoogle ScholarPubMed
Ran, X., Zhang, G., Li, S. and Wang, J. (2017). Characterization and antitumor activity of camptothecin from endophytic fungus Fusarium solani isolated from Camptotheca acuminate. African Health Sciences, 17, 566574.CrossRefGoogle ScholarPubMed
Rehman, S., Shawl, A. S., Kour, A. et al. (2008). An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Applied Biochemistry and Microbiology, 44, 203209.CrossRefGoogle ScholarPubMed
Rehman, S., Shawl, A. S., Kour, A. et al. (2009). Comparative studies and identification of camptothecin produced by an endophyte at shake flask and bioreactor. Natural Product Research, 23, 10501057.CrossRefGoogle ScholarPubMed
Rodriguez, R. J., White, J. F. J., Arnold, A. E. and Redman, R. S. (2009). Fungal endophytes: diversity and functional roles. New Phytologist, 182, 314330.CrossRefGoogle ScholarPubMed
Saxena, S. and Srivastava, A. (2014). Resveratrol: biological activities and therapeutic potential. Journal of Pharmaceutical Technology, Research and Management, 2, 145157.CrossRefGoogle Scholar
Saxena, S., Meshram, V. and Kapoor, N. (2015). Muscodor tigerii sp. nov. -volatile antibiotic producing endophytic fungus from north eastern Himalayas. Annals of Microbiology, 65, 4757.CrossRefGoogle Scholar
Schulz, B. and Boyle, C. (2005). The endophytic continuum. Mycological Research, 109, 661686.CrossRefGoogle ScholarPubMed
Schulz, B., Rommert, A. K., Dammann, U., Aust, H. J. and Strack, D. (1999). The endophyte–host interaction: a balanced antagonism? Mycological Research, 103, 12751283.CrossRefGoogle Scholar
Shao, C., Zheng, J., Chi, J. et al. (2017). Excretion Study of 10- methoxycamptothecin and its metabolite 10-hydroxycamptothecin in rats by RP-HPLC method with fluorescence detection. Acta Chromatographica, 29, 453458.CrossRefGoogle Scholar
Shi, J., Zeng, Q., Liu, Y. and Pan, Z. (2012). Alternaria sp. MG1, a resveratrol-producing fungus: isolation, identification, and optimal cultivation conditions for resveratrol production. Applied Microbiology and Biotechnology, 95, 369379.CrossRefGoogle ScholarPubMed
Shu, S., Zhao, X., Wang, W. et al. (2014). Identification of a novel endophytic fungus from Huperzia serrata which produces huperzine A. World Journal of Microbiology and Biotechnology, 30, 31013109.CrossRefGoogle ScholarPubMed
Shweta, S., Zuehlke, S., Ramesha, B. T. et al. (2010). Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry, 71, 117122.CrossRefGoogle ScholarPubMed
Stierle, A. and Strobel, G. A. (1995). The search for a taxol-producing microorganism among the endophytic fungi of the Pacific yew, Taxus brevifolia. Journal of Natural Products, 58, 13151324.CrossRefGoogle ScholarPubMed
Stierle, A., Strobel, G. A. and Stierle, D. (1993). Taxol and taxane production by Taxomyces andreanae. Science, 260, 214216.CrossRefGoogle ScholarPubMed
Stierle, A. A. and Stierle, D. B. (2015). Bioactive secondary metabolites produced by the fungal endophytes of conifers. Natural Product Communication, 10, 16711682.CrossRefGoogle ScholarPubMed
Strobel, G. and Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews, 67, 491502.CrossRefGoogle ScholarPubMed
Strobel, G. A., Hess, W. M., Ford, E., Sidhu, R. S. and Yang, X. (1996). Taxol from fungal endophytes and issue of biodiversity. Journal of Industrial Microbiology, 17, 417423.Google Scholar
Su, J. and Yang, M. (2014). Huperzine A production by Paecilomyces tenuis YS-13, an endophytic fungus isolated from Huperzia serrata. Natural Product Research, 29 , 1035–1041.Google ScholarPubMed
Tian, R., Yang, Q., Zhou, G. et al. (2006). Taxonomic study on a taxol producing fungus isolated from bark of Taxus chinensis var. mairei. Journal of Wuhan Botanical Research, 24, 541545.Google Scholar
Vasundhara, M., Kumar, A. and Reddy, M. S. (2016). Molecular approaches to screen bioactive compounds from endophytic fungi. Frontiers in Microbiology, 7, 1774.CrossRefGoogle ScholarPubMed
Venugopalan, A. and Srivastava, S. (2015). Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnology Advances, 1, 873887.CrossRefGoogle Scholar
Verma, V. C., Lobkovsky, E., Gange, A. C., Singh, S. K. and Prakash, S. (2011). Piperine production by endophytic fungus Periconia sp. isolated from Piper longum L. The Journal of Antibiotics, 64, 427431.CrossRefGoogle ScholarPubMed
Vinodhini, D. and Agastian, P. (2013). Berberine production by endophytic fungus Fusarium solani from Coscinium fenestratum. International Journal of Biological and Pharmaceutical Research, 4, 12391245.Google Scholar
Wang, B., Li, A. and Wang, X. (2001). An endophytic fungus for producing taxol. Science in China (Series C), 31, 271274.Google Scholar
Wang, J., Cox, D. G., Ding, W., Huang, G., Lin, Y. and Li, C. (2014). Three new resveratrol derivatives from the mangrove endophytic fungus Alternaria sp. Marine Drugs, 12, 28402850.CrossRefGoogle ScholarPubMed
Wang, Y. and Tang, K. (2011). A new endophytic taxol- and baccatin III-producing fungus isolated from Taxus chinensis var. mairei. African Journal of Biotechnology, 10, 1637916386.Google Scholar
Wang, Y., Zeng, Q. G., Zhang, Z. B. et al. (2011). Isolation and characterization of endophytic huperzine A-producing fungi from Huperzia serrata. Journal of Industrial Microbiology and Biotechnology, 38, 12671278.CrossRefGoogle ScholarPubMed
Wang, Y. A., Lai, Z., Li, X. X. et al. (2016). Isolation, diversity and acetylcholinesterase inhibitory activity of the culturable endophytic fungi harboured in Huperzia serrata from Jinggang Mountain, China. World Journal of Microbiology and Biotechnology, 32, 20.CrossRefGoogle ScholarPubMed
Wani, M. C., Talor, H. L., Wall, M. E., Coggon, P. and McPhail, A. T. (1971). Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. Journal of the American Chemical Society, 93, 23252327.CrossRefGoogle ScholarPubMed
Wojtyczka, R. D., Dziedzic, A., Kępa, M. et al. (2014). Berberine enhances the antibacterial activity of selected antibiotics against coagulase-negative Staphylococcus strains in vitro. Molecules, 19, 65836596.CrossRefGoogle ScholarPubMed
World Health Organization (WHO). (2017). Cancer. WHO fact sheet. Geneva: World Health Organization.Google Scholar
Xie, X. S., Fang, X. W., Huang, R. et al. (2016). A new dimeric anthraquinone from endophytic Talaromyces sp. YE3016. Natural Product Research, 30, 17061711.CrossRefGoogle ScholarPubMed
Yan, J., Qi, N., Wang, S., Gadhave, K. and Yang, S. (2014). Characterization of secondary metabolites of an endophytic fungus from Curcuma wenyujin. Current Microbiology, 69, 740744.CrossRefGoogle ScholarPubMed
Yang, X., Guo, S., Zhang, L. and Shao, H. (2003). Selection of producing podophyllotoxin endophytic fungi from podophyllin plant. Natural Product Research and Development, 15, 419422.Google Scholar
Yang, X., Zhang, L., Guo, B. and Guo, S. (2004). Preliminary study of a vincristine-producing endophytic fungus isolated from leaves of Catharanthus roseus. Chinese Traditional and Herbal Drugs, 35, 7981.Google Scholar
Yang, K., Liang, J., Li, Q. et al. (2013). Cladosporium cladosporioidesXJ-AC03, an aconitine-producing endophytic fungus isolated from Aconitum leucostomum. World Journal of Microbiology and Biotechnology, 29, 933938.CrossRefGoogle ScholarPubMed
Yin, H. and Sun, Y. H. (2011). Vincamine-producing endophytic fungus isolated from Vinca minor. Phytomedicine, 18, 802805.CrossRefGoogle ScholarPubMed
Yin, J., Xing, H. and Ye, J. (2008). Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism, 57, 712–717.CrossRefGoogle Scholar
Ying, Y. M., Shan, W. G. and Zhan, Z. J. (2014). Biotransformation of Huperzine a by a fungal endophyte of Huperzia serrata furnished sesquiterpenoid−alkaloid hybrids. Journal of Natural Products, 77, 2054−2059.CrossRefGoogle ScholarPubMed
Zaiyou, J., Li, M., Guifang, X. and Xiuren, Z. (2013). Isolation of an endophytic fungus producing baccatin III from Taxus wallichiana var. mairei. Journal of Industrial Microbiology and Biotechnology, 40, 12971302.CrossRefGoogle ScholarPubMed
Zaiyou, J., Li, M. and Xiqiao, H. (2017). An endophytic fungus efficiently producing Paclitaxel isolated from Taxus wallichiana var. mairei. Medicine, 96, e7406.CrossRefGoogle ScholarPubMed
Zan, J., Jun, W. and Sheng-li, P. (2009). Isolation and preliminary identification of the endophytic fungi which produce Hupzine A from four species in Hupziaceae and determination of huperzine A by HPLC. Fudan University Journal of Medical Sciences, 36, 0449.Google Scholar
Zhang, F. F., Wang, M. Z., Zheng, Y. X. et al. (2015). Isolation and characterzation of endophytic HuperzineA producing fungi from Phlegmariurus phlegmaria. Microbiology, 84, 701709.CrossRefGoogle Scholar
Zhang, F. H., Xiang, J. H., Cui, W. X. et al. (2016). Isolation and identification of berberine from endophytic fungi HL-Y-3]. Zhongguo Zhong Yao Za Zhi, 41, 29983001.Google ScholarPubMed
Zhang, J., Shi, J. and Liu, Y. (2013). Bioconversion of resveratrol using resting cells of non–genetically modified Alternaria sp. Biotechnology and Applied Biochemistry, 60, 236243.CrossRefGoogle ScholarPubMed
Zhang, L., Guo, B., Li, H. et al. (1999). Preliminary study on the isolation of endophytic fungus of Catharanthus roseus and its fermentation to produce products of therapeutic value. Chinese Traditional and Herbal Drugs, 31, 805807.Google Scholar
Zhang, P., Zhou, P. and Yu, L. (2009). An endophytic taxol-producing fungus from Taxus media, Cladosporium cladosporioides MD2. Current Microbiology, 59, 227232.CrossRefGoogle ScholarPubMed
Zhang, Z. B., Zeng, Q. G., Yan, R. M., Wang, Y., Zou, Z. R. and Zhu, D. (2011). Endophytic fungus Cladosporium cladosporioides LF70 from Huperzia serrata produces huperzine A. World Journal of Microbiology and Biotechnology, 27, 479486.CrossRefGoogle Scholar
Zhao, J., Zhou, L., Wang, J. et al. (2010). Endophytic fungi for producing bioactive compounds originally from their host plants. Current Research, Technology and Education Tropics in Applied Microbiology and Microbial Biotechnology, 1, 567576.Google Scholar
Zhu, D., Wang, J. X., Zeng, Q. G., Zhang, Z. B. and Yan, R. M. (2010). A novel endophytic huperzine A-producing fungus, Shiraia sp. Slf14, isolated from Huperzia serrata. Journal of Applied Microbiology, 109, 14691478.CrossRefGoogle ScholarPubMed

References

Akiyama, K. and Hayashi, H. (2006). Strigolactones, chemical signals for fungal symbionts and parasitic weeds in plant roots. Annals of Botany, 97, 925931.CrossRefGoogle ScholarPubMed
Andrews, J. H. and Hirano, S. S., eds. (1991). Microbial Ecology of Leaves. Brock/Springer Series. London: Springer Verlag.CrossRefGoogle Scholar
Babykutty, S., Padikkala, J., Sathiadevan, P. P. et al. (2009). Apoptosis induction of Centella asiatica on human breast cancer cells. African Journal of Traditional, Complementary and Alternative Medicines, 6, 916.Google Scholar
Bacon, C. W. and White, J. F. (2000). Microbial Endophytes. New York: Marcel Deker Inc.CrossRefGoogle Scholar
Bajaj, R., Agarwal, A., Rajpal, K. et al. (2014). Co-cultivation of Curcuma longa with Piriformospora indica enhances the yield and active ingredients. American Journal of Current Microbiology, 2, 617.Google Scholar
Baldi, A., Jain, A., Gupta, N., Srivastava, A. K. and Bisaria, V. S. (2008). Coculture of arbuscular mycorrhiza-like fungi (Piriformospora indica and Sebacina vermifera) with plant cells of Linum album for enhanced production of podophyllotoxins: a first report. Biotechnology Letters, 30, 16711677.CrossRefGoogle ScholarPubMed
Belesky, D. P. and Fedders, J. M. (1996). Does endophyte influence regrowth of tall fescue? Annals of Botany, 78, 499505.CrossRefGoogle Scholar
Boullard, B. (1957). Lamycotrophie chez les Pteridophytes. Sa frequence, ses characters, sa signification. Botaniste, 41, 1185.Google Scholar
Chen, Y., Han, T., Rui, Y. et al. (2005). Effects of total triterpenes of Centella asiatica on the corticosterone levels in serum and contents of monoamine in depression rat brain. Zhong Yao Cai, 28, 492496.Google ScholarPubMed
Chong, T. M., Abdullah, M. A., Lai, O. M., Nor’aini, F. M. and Lajis, N. H. (2005). Effective elicitation factors in Morinda elliptica cell suspension culture. Process Biochemistry, 40, 33973405.CrossRefGoogle Scholar
Clay, K. and Holah, J. (1999). Fungal endophyte symbiosis and plant diversity in successional fields. Science, 285, 17421744.CrossRefGoogle ScholarPubMed
Dai, C. C., Yu, B. Y. and Li, X. (2008). Screening of endophytic fungi that promote the growth of Euphorbia pekinensis. African Journal of Biotechnology, 7, 35053510.Google Scholar
Darnis, F., Orcel, L., de Saint Maur, P. P. and Mamov, P. (1979). Use of a titrated extract of Centella asiatica in chronic hepatic disorders. Semaine Des Hopitaux, 55, 17491750.Google ScholarPubMed
de Bary, A. (1866). Morphologie und Physiologie der Pilze, Flechten, und Myxomyceten. Hofmeister’s Handbook of Physiological Botany, Volume II. Leipzig, Germany: Engelmann.Google Scholar
De Battista, J. P., Bacon, C. W., Severson, R. F., Plattner, R. D. and Bouton, J. H. (1990). Indole acetic acid production by the fungal endophyte of tall fescue. Agronomy Journal, 82, 878880.CrossRefGoogle Scholar
Ding, C., Wang, Q. B., Guo, S. and Wang, Z. Y. (2017). The improvement of bioactive secondary metabolites accumulation in Rumex gmelini Turcz through co-culture with endophytic fungi. Brazilian Journal of Microbiology, 49, 362369.CrossRefGoogle ScholarPubMed
Dreyfuss, M. M. and Chapela, I. H. (1994). Potential of fungi in the discovery of novel, low-molecular weight pharmaceuticals. In The Discovery of Natural Products with Therapeutic Potential, ed. Gullo, V. P.. London: Butterworth-Heinemann, pp. 4980.CrossRefGoogle Scholar
Dubey, V. S., Bhalla, R. and Luthra, R. (2003). An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. Journal of Biosciences, 28, 637646.CrossRefGoogle ScholarPubMed
Freeman, E. M. (1904). The seed-fungus of Lolium temulentum, L., the Darnel. Philosophical Transactions of Royal Society B, 196, 127.Google Scholar
Furumai, T., Yamakawa, T., Yoshida, R. and Igarashi, Y. (2003). Clethramycin, a new inhibitor of pollen tube growth with antifungal activity from Streptomyces hygroscopicus TP-A0623. I. Screening, taxonomy, fermentation, isolation and biological properties. Journal of Antibiotics, 56, 700704.CrossRefGoogle ScholarPubMed
Ghisalberti, E. L. (2002). Anti-infective agents produced by the Hypomycetes genera Trichoderma and Gliocladium. Current Medicinal Chemistry-Anti- Infective Agents, 1, 343374.CrossRefGoogle Scholar
Glick, B. R. and Bashan, Y. (1997). Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnology Advances, 15, 353378.CrossRefGoogle ScholarPubMed
Guerin, P. (1898). Sur la presence d’un champignon dansl’ivraie. Journal de Botanique, 12, 230238.Google Scholar
Gunatilaka, A. A. L. (2006). Natural products from plant-associated microorganisms: Distribution, structural diversity, bioactivity and implication of their occurrence. Journal of Natural Products, 69, 509526.CrossRefGoogle ScholarPubMed
Guo, B., Li, H. and Zhang, L. (1998). Isolation of the fungus producing vinblastine. Journal of Yunnan University (Natural Science Edition), 20, 214215.Google Scholar
Gupta, S. (2015). Characterization of Foliar Endophytic Fungi from Centella asiatica (L.) Urban as a Promising Source of Bioactive Metabolites. PhD Thesis, G.B. Pant University of Agriculture & Technology, Pantnagar, India.Google Scholar
Gupta, S., Bhatt, P. and Chaturvedi P. (2018). Determination and quantification of asiaticoside in endophytic fungus from Centella asiatica (L.) Urban. World Journal of Microbiology and Biotechnology, 34, 111.CrossRefGoogle Scholar
Harper, J. K., Ford, E. J., Strobel, G. A. et al. (2003). Pestacin: a 1,3-dihydroisobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron, 59, 24712476.CrossRefGoogle Scholar
Hill, N. S., Belesky, D. P. and Stringer, W. C. (1991). Competitiveness of tall fescue as influenced by Acremonium coenophialum. Crop Science, 30, 156161.CrossRefGoogle Scholar
Hill, N. S., Pachon, J. G. and Bacon, C. W. (1996). Acremonium coenophialum mediated short- and long-term drought acclimation in tall fescue. Crop Science, 36, 665672.CrossRefGoogle Scholar
Hussain, M. S., Rahman, M. A., Fareed, S. et al. (2012). Current approaches toward production of secondary plant metabolites. Journal of Pharmacy and Bioallied Sciences, 4, 1020.CrossRefGoogle ScholarPubMed
Igarashi, Y., Iwashita, T., Fujita, T. et al. (2003). Clethramycin, a new inhibitor of pollen tube growth with antifungal activity from Streptomyces hygroscopicus TP-A0623. II. physicochemical properties and structure determination. Journal of Antibiotics, 56, 705706.CrossRefGoogle ScholarPubMed
Jiang, D. F., Ma, P., Yang, J. et al. (2003). Formation of blood resin in abiotic Dracaena cochinchinensis inoculated with Fusarium 9568D. Ying Yong Sheng Tai XueBao (in Chinese), 14, 477478.Google ScholarPubMed
Junker, C., Draeger, S. and Schulz, B. (2012). A fine line endophytes or pathogens in Arabidopsis thaliana. Fungal Ecology, 5, 657662.CrossRefGoogle Scholar
Karuppusamy, S. (2009). A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. Journal of Medicinal Plant Research, 3, 12221239.Google Scholar
Keith, C. (1998). Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology, 69, 1016.Google Scholar
Krings, M., Taylor, T. N., Hass, H. et al. (2007). Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytologist, 174, 648657.CrossRefGoogle Scholar
Kumara, M. P., Zuehlke, S., Priti, V. et al. (2012). Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie van Leeuwenhoek, 101, 323329.CrossRefGoogle Scholar
Kusari, S., Verma, V. C., Lamshoeft, M. and Spiteller, M. (2012). An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World Journal of Microbiology and Biotechnology, 28, 12871294.CrossRefGoogle ScholarPubMed
Li, P. Q., Lou, J. F., Mou, Y. et al. (2012). Effects of oligosaccharide elicitors from endophytic Fusarium oxysporum Dzf17 on diosgenin accumulation in Dioscorea zingiberensis seedling cultures. Journal of Medicinal Plants Research, 6, 51285134.Google Scholar
Li, Y. C., Tao, W. Y. and Cheng, L. (2009). Paclitaxel production using co-culture of Taxus suspension cells and paclitaxel-producing endophytic fungi in a co-bioreactor. Applied Microbiology and Biotechnology, 83, 233239.CrossRefGoogle Scholar
Li, Y. L. and Tao, W. Y. (2009). Interactions of Taxol-producing endophytic fungus with its host (Taxus spp.) during Taxol accumulation. Cell Biology International, 33, 106112.CrossRefGoogle ScholarPubMed
Malinowski, D. P. and Belesky, D. P. (2000). Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Science, 40, 923940.CrossRefGoogle Scholar
Malinowsky, D. P., Brauer, D. K. and Belesky, D. P. (1999). Neotyphodium coenophyialum endophyte affects root morphology of tall fescue grown under phosphorous deficiency. Journal of Agronomy and Crop Science, 183, 5360.CrossRefGoogle Scholar
Montecchio, G. P., Samaden, A., Carbone, S. et al. (1991). Centella asiatica triterpene fraction (CATTF) reduces the number of circulating endothelial cells in subjects with post phlebitic syndrome. Haematologica, 76, 256259.Google ScholarPubMed
Mucciarelli, M., Scannerini, S., Bertea, C. and Maffei, M. (2003). In vitro and in vivo peppermint (Mentha piperita) growth promotion by nonmycorrhizal fungal colonization. New Phytologist, 158, 579591.CrossRefGoogle ScholarPubMed
Murashige, T. and Skoog, F. A. (1962). A revised medium for the rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473497.CrossRefGoogle Scholar
Murphy, B. R., Martin Nieto, L., Doohan, F. M. and Hodkinson, T. R. (2015). Profundae diversitas: the uncharted genetic diversity in a newly studied group of fungal root endophytes. Mycology, 6, 139150.CrossRefGoogle Scholar
Nalini, K., Aroor, A. R., Karantu, K. S. and Rao, A. (1992). Effect of Centella asiatica fresh leaf aqueous extract on learning and memory and biogenic amine turnover in albino rats. Fitoterapia, 63, 232237.Google Scholar
Naoumkina, M. A., He, X. and Dixon, R. A. (2008). Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula. BMC Plant Biology, 8, 132.CrossRefGoogle ScholarPubMed
Nassar, H. A., El-Tarabily, K. A. and Sivasithamparam, K. (2005). Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays) roots. Journal of Biology and Fertility of Soils, 42, 97108.CrossRefGoogle Scholar
Nery-Silva, F. A., Fernandes, J. J., Juliatti, F. C. and Melo, B. (2007). Reação de germoplasma de mandioca a Xanthomonas axonopodis pv. manihots. Semina: Ciênc. Agra, 28, 310.Google Scholar
Niere, B. (2001). Significance of non-pathogenic isolates of Fusarium oxysporum Schlecht, Fries for the biological control of the burrowing nematode Radopholus similis (Cobb) Thorne on tissue-cultured bananas. PhD Thesis, University of Bonn, Germany.Google Scholar
Ola, A. R. B., Thomy, D., Lai, D., Brötz-Oesterhelt, H. and Proksch, P. (2013). Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. Journal of Natural Products, 76, 20942099.CrossRefGoogle ScholarPubMed
Peng, X., Zhao, Y., Liang, X. et al. (2006). Assessing the quality of RCTs on the effect of beta-elemene, one ingredient of a Chinese herb, against malignant tumors. Contemporary Clinical Trials, 27, 7082.CrossRefGoogle ScholarPubMed
Plohman, B., Bader, G., Streich, S., Hiller, K. and Franz, G. (1994). Immuno-modulatory effects of triterpenoid saponins. European Journal of Pharmaceutical Sciences, 21, 120.CrossRefGoogle Scholar
Pocasangre, L. (2000). Biological enhancement of tissue culture plantlets with endophytic fungi for the control of the burrowing nematode Radopholus similis and the Panama disease (Fusarium oxysporum f. sp. cubense). PhD Thesis, University of Bonn, Germany.Google Scholar
Porter, J. K. (1995). Analysis of endophyte toxins: fescue and other grasses toxic to livestock. Journal Animal Science, 73, 871880.CrossRefGoogle ScholarPubMed
Prasad, R., Garg, A. P. and Varma, A. (2004). Interaction of medicinal plant growth-promoting rhizobacteria and symbiotic fungi. In Basic Research and Applications: Mycorrhizae, Microbiology Series, ed. Podila, G and Varma, A. Delhi: IK International, pp. 363407.Google Scholar
Puri, S. C., Verma, V., Amna, T., Qazi, G. N. and Spiteller, M. (2005). An endophytic fungus from Nothapodytes foetida that produces camptothecin. Journal of Natural Products, 68, 17171719.CrossRefGoogle ScholarPubMed
Rai, M., Acharya, D. and Singh, A. (2001). Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza, 11, 123128.CrossRefGoogle Scholar
Rajeswari, G., Murugan, M. and Mohan, V. R. (2013). GC-MS analysis of bioactive components of Hugonia mystax L. bark (Linaceae). Journal of Pharmaceutical and Biomedical Sciences, 29, 818824.Google Scholar
Raman, B. V., Samuel, L. A., Pardhasaradhi, M. et al. (2012). Antibacterial, antioxidant activity and GC-MS analysis of Eupatorium odoratum. Asian Journal of Pharmaceutical and Clinical Research, 5, 99106.Google Scholar
Rommert, A. K., Oros-Sichler, M., Aust, H. J., Lange, T. and Schulz, B. (2002). Growth promoting effects of endophytic colonization of the roots of larch (Larix decidua) with Cryptosporiopsis sp. and Phialophora sp. 7th International Mycological Congress, Oslo, Norway.Google Scholar
Sachin, N., Manjuntha, B. L., Mohana, K. P. et al. (2013). Do endophytic fungi possess pathway genes for plant secondary metabolites? Current Science, 104, 178182.Google Scholar
Saxena, P. K., Cole, I. B. and Murch, S. J. (2005). Approaches to quality plant based medicine: significance of chemical profiling. In Applications of Plant Metabolic Engineering, ed. Verpoorte, R., Alfermann, A. W. and Johnson, T. S.. Amsterdam: Springer, pp. 311330.Google Scholar
Sherameti, I., Shahollari, B., Venus, Y. et al. (2005). The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. Journal of Biological Chemistry, 280, 2624126247.CrossRefGoogle ScholarPubMed
Shukla, A., Rasik, A. K. and Dhawan, B. N. (1999). Asiaticoside–induced elevation of antioxidant levels in healing wounds. Phytotherapy Research, 13, 5054.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Staniek, A., Woerdenbag, H. J. and Kayser, O. (2008). Endophytes: exploiting biodiversity for the improvement of natural product-based drug discovery. Journal of Plant Interaction, 3, 7593.CrossRefGoogle Scholar
Stierle, A., Strobel, G. A. and Stierle, D. (1993). Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, 260, 214216.CrossRefGoogle ScholarPubMed
Strobel, G. A. and Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews, 67, 491502.CrossRefGoogle ScholarPubMed
Strobel, G. A., Yang, X., Sears, J. et al. (1996). Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallichiana. Microbiology, 142, 435440.CrossRefGoogle Scholar
Strobel, G. A., Miller, R. V., Miller, C. et al. (1999). Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology, 145, 19191926.CrossRefGoogle ScholarPubMed
Strobel, G. A., Ford, A. Worapong, E., J. et al. (2002). Ispoestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry, 60, 179183.CrossRefGoogle ScholarPubMed
Tang, Z. H., Rao, L. Q., Peng, G. P. et al. (2009). Effects of endophytic fungus and its elicitors on cell status and alkaloid synthesis in cell suspension cultures of Catharanthus roseus. Journal of Medicinal Plants Research, 5, 21922200.Google Scholar
Wang, J., Li, G., Lu, H. et al. (2000). Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei. FEMS Microbiology Letters, 193, 249253.CrossRefGoogle ScholarPubMed
Wang, J., Zheng, L., Tan, R. and Chin, J. (2006). The preparation of an elicitor from a fungal endophyte to enhance artemisinin production in hairy root cultures of Artemisia annua L. Chinese Journal of Biotechnology, 22, 829834.Google ScholarPubMed
Wang, J. W., Wu, J. H., Huang, W. Y. and Tan, R. X. (2006). Laccase production by Monotospora sp. an endophytic fungus in Cynodon dactylon. Bioresource Technology, 97, 786789.CrossRefGoogle ScholarPubMed
Wang, Y., Dai, C. C., Cao, J. L. and Xu, D. S. (2012). Comparison of the effects of fungal endophyte Gilmaniella sp. and its elicitor on Atractylodes lancea plantlets. World Journal of Microbiology and Biotechnology, 28, 575584.CrossRefGoogle ScholarPubMed
Yao, Y. Q., Ding, X., Jia, Y. C. et al. (2008). Anti-tumor effect of beta-elemene in glioblastoma cells depends on p38 MAPK activation. Cancer Letters, 264, 127134.CrossRefGoogle ScholarPubMed
Yuan, Z. L., Dai, C. and Chen, L. (2007). Regulation and accumulation of secondary metabolites in plant–fungus symbiotic system. African Journal of Biotechnology, 6, 12661271.Google Scholar
Yuan, Z. L., Zhang, C. L. and Lin, F. C. (2010). Role of diverse non-systemic fungal endophytes in plant performance and response to stress: progress and approaches. Journal of Plant Growth Regulation, 29, 116126.CrossRefGoogle Scholar
Yue, C. C., Miller, J., White, J. and Richardson, M. (2000). Isolation and characterization of fungal inhibitors from Epichloë festucae. Journal of Agricultural and Food Chemistry, 48, 46874692.CrossRefGoogle ScholarPubMed
Zhang, L., Guo, B., Li, H. et al. (2000). Preliminary study on the isolation of endophytic fungus of Catharanthus roseus and its fermentation to produce products of therapeutic value. Chinese Traditional and Herbal Drugs, 31, 805807.Google Scholar
Zhang, Z. and Zhou, X. (2011). GC/MS analysis on benzene/alcohol extractives of Manglietia glauca leaves for biomedicine engineering. Advanced Materials Research, 213, 475–47.CrossRefGoogle Scholar

References

Bakys, R. (2013). Dieback of Fraxinus in Baltic sea region. Swedish University of Agricultural Sciences, Uppsala, pp. 148.Google Scholar
Baral, H.-O., Queloz, V. and Hosoya, T. (2014). Hymenoscyphus fraxineus, the correct scientific name for the fungus causing ash dieback in Europe. IMA Fungus, 5, 7980.CrossRefGoogle ScholarPubMed
Barklund, P. (2005). Ash dieback sweeping over south and central Sweden. SkogsEko, 3,1113. (In Swedish.)Google Scholar
Beekwilder, J., Murphy, B. R., Mathuna, E. M.,Barry, A. and Hodkinson, T. R. (2019). Isolation, diversity and potential use of endophytes in the biomass and bioenergy crop Miscanthus. In Endophytes for a Growing World, ed. Hodkinson, T. R., Doohan, F. M., Saunders, M. J. and Murphy, B. R.. Cambridge: Cambridge University Press, Chapter 9.Google Scholar
Begerow, D., Nilsson, H., Unterseher, M. and Maier, W. (2010). Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Applied Microbiology and Biotechnology, 87, 99108.CrossRefGoogle ScholarPubMed
Brome, A. and Mitchell, R. J. (2017). Ecological Impacts of Ash Dieback and Mitigation Methods. Research Note. London: Forestry Commission UK, pp. 1–16.Google Scholar
Chanway, C. P. (1996). Endophytes: they’re not just fungi! Canadian Journal Botany, 74, 321322.CrossRefGoogle Scholar
Douglas, G. C., Pliura, A., Dufour, J. et al. (2013). Common ash (Fraxinus excelsior L.). In Forest Tree Breeding in Europe: Current State of the Art and Perspectives, Vol. 2, ed. Pâques, L. E. Springer, Managing Forest Ecosystems, 25, 403462.CrossRefGoogle Scholar
Forestry Commission UK (2015). Chalara dieback: managing ash trees and woodlands. www.forestry.gov.uk/forestry/infd-92pjkxGoogle Scholar
Gross, A., Holdenrieder, O., Pautasso, M., Queloz, V. and Sieber, T. N. (2014). Hymenoscyphus pseudoalbidus, the causal agent of European ash dieback. Molecular Plant Pathology, 15, 521.CrossRefGoogle ScholarPubMed
Hawksworth, D. L. (2001). The magnitude of fungal diversity: the 1.5 million species estimated revisited. Mycological Research, 105, 14221432.CrossRefGoogle Scholar
Hallmann, J., Quadt-Hallmann, A., Mahaffee, W. F. and Kloepper, J. W. (1997). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43, 895914.CrossRefGoogle Scholar
Hardoim, P. R., Overbeek, L. S., Berg, G. et al. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79, 293320.CrossRefGoogle ScholarPubMed
Hodkinson, T. R. (2018). Evolution and taxonomy of the grasses (Poaceae): a model family for the study of species-rich groups. Annual Plant Reviews Online, doi: 10.1002/9781119312994.apr0622.CrossRefGoogle Scholar
Hodkinson, T. R., Waldren, S., Parnell, J. A. N. et al. (2007). DNA banking for plant breeding, biotechnology and biodiversity evaluation. Journal of Plant Research, 120, 1729.CrossRefGoogle ScholarPubMed
Janse, J. D. (1981). The bacterial disease of ash (Fraxinus excelsior), caused by Pseudomonas syringae subsp. savastanoi pv. fraxini. European Journal of Forest Pathololgy, 11, 306315.CrossRefGoogle Scholar
Kosawang, C., Amby, B. D., Bussaban, B. et al. (2018). Fungal communities associated with species of Fraxinus tolerant to ash dieback, and their potential for biological control. Fungal Biology, 122, 110120.CrossRefGoogle Scholar
Kowalski, T. (2006). Chalara fraxinea sp. nov. associated with dieback of ash (Fraxinus excelsior) in Poland. Forest Pathology, 36, 264270.CrossRefGoogle Scholar
Kowalski, T. and Holdenrieder, O. (2009a). Pathogenicity of Chalara fraxinea. Forest Pathology, 39, 17.CrossRefGoogle Scholar
Kowalski, T. and Holdenrieder, O. (2009b). The teleomorph of Chalara fraxinea, the causal agent of ash dieback. Forest Pathology, 39, 304308.CrossRefGoogle Scholar
Kowalski, T. and Łukomska, A. (2005). Studies on Fraxinus excelsior L. dieback in Włoszczowa Forest Unit stands. Acta Agrobotanica, 59, 429440.Google Scholar
Kowalski, T., Bilański, P. and Kraj, W. (2017). Pathogenicity of fungi associated with ash dieback towards Fraxinus excelsior. Plant Pathology, 66, 12281238.CrossRefGoogle Scholar
Kräutler, K. and Kirisits, T. (2012). The ash dieback pathogen Hymenoscyphus pseudoalbidus is associated with leaf symptoms on ash species (Fraxinus spp.). Journal of Agricultural Extension and Rural Development, 4, 261265.Google Scholar
Link, H. F. (1809). Observationes in ordines plantarum naturales, disserta- tio prima, complectens anandrarum ordines Epiphytas, Mucedines, Gas- tromycos et Fungos. Berlin, Germany: Der Gesellschaft Naturforschender Freunde zu Berlin.Google Scholar
Marshall, D., Tunali, B. and Nelson, L. R. (1999). Occurrence of fungal endophytes in species of wild Triticum. Crop Science, 39, 15071512.CrossRefGoogle Scholar
Moore, D., Robson, G. D. and Trinci, A. P. J. (2011). 21st Century Guidebook to Fungi. Cambridge: Cambridge University Press.Google Scholar
Murphy, B. R., Batke, S. P., Doohan, F. M. and Hodkinson, T. R. (2015). Media manipulations and the culture of beneficial fungal root endophytes. International Journal of Biology, 7, 94102.CrossRefGoogle Scholar
Nilsson, R. H., Kristiansson, E., Ryberg, M., Hallenberg, N. and Larsson, K.-H. (2008). Intraspecific ITS variability in the Kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evolutionary Bioinformatics, 4, 193200.CrossRefGoogle ScholarPubMed
O’Hanlon, K. A., Knorr, K., Jørgensen, L. N., Nicolaisen, M. and Boelt, B. (2012). Exploring the potential of symbiotic fungal endophytes in cereal disease suppression. Biological Control, 63, 6978.CrossRefGoogle Scholar
Petrini, O. (1991). Fungal endophytes of tree leaves. In Microbial Ecology of Leaves. ed. Andrews, J. H. and Hirano, S. S. New York, NY: Springer Verlag, pp. 179197.CrossRefGoogle Scholar
Przybył, K. (2002). Fungi associated with necrotic apical parts of Fraxinus excelsior shoots. Forest Pathology, 32, 387394.CrossRefGoogle Scholar
Sansford, C. E. (2013). Pest risk analysis for Hymenoscyphus pseudoalbidus (anamorph Chalara fraxinea) for the UK and the Republic of Ireland. Forestry Commission, 1128.Google Scholar
Schlegel, M., Dubach, V., Buol, L. and Sieber, T. N. (2016). Effects of endophytic fungi on the ash dieback pathogen. FEMS Microbiology Ecology, 92, 118.CrossRefGoogle ScholarPubMed
Tamura, K., Peterson, D., Peterson, N. et al. (2011). MEGA5: Molecular evolutionary genetic analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 27312739.CrossRefGoogle ScholarPubMed
Thomasset, M., Fernández-Manjarrés, J. F., Douglas, G. C., Frascaria-Lacoste, N. and Hodkinson, T. R. (2011). Hybridisation, introgression and climate change: a case study for the tree genus Fraxinus (Oleaceae). In Climate Change, Ecology and Systematics, ed. T. R. Hodkinson, M. B. Jones, S. Waldren and J. A. N. Parnell. Cambridge: Cambridge University Press, pp. 320–344.CrossRefGoogle Scholar
Thomasset, M., Hodkinson, T. R., Restoux, G. et al. (2014). Thank you for not flowering: conservation genetics and gene flow analysis of native and non-native populations of Fraxinus (Oleaceae) in Ireland. Heredity, 112, 596606.CrossRefGoogle Scholar
Thomsen, I. M. (2005). Frost damage of ash. Videnblade Skovbrug, 8, 21. (In Danish).Google Scholar
Timmermann, V., Borja, I., Hietala, A. M., Kirisits, T. and Solheim, H. (2011). Ash dieback: pathogen spread and diurnal patterns of ascospore dispersal, with special emphasis on Norway. OEPP/EOPP Bulletin, 41, 1420.CrossRefGoogle Scholar
White, T. J., Bruns, T. D., Lee, S. and Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications, ed. Innis, M. A, Gelfand, D. H, Sninsky, J. J and White, T. J. New York: Academic Press, pp. 315322.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×