Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T23:20:46.863Z Has data issue: false hasContentIssue false

Part I - Introduction

Published online by Cambridge University Press:  01 April 2019

Trevor R. Hodkinson
Affiliation:
Trinity College Dublin
Fiona M. Doohan
Affiliation:
University College Dublin
Matthew J. Saunders
Affiliation:
Trinity College Dublin
Brian R. Murphy
Affiliation:
Trinity College Dublin
Get access

Summary

Endophytes are any microbes that can live within plants. We divide them into three major functional groups: endosyms (endosymbionts), endopaths (pathogens) and endosympaths (those that exist in both forms along a mutualism–parasitism continuum). Within these groups, endophytologists recognise harmful pathogenic microbes and a diverse range of beneficial/commensal microbes, including bacteria and archaea, such as diazotrophs, and fungi, such as the vertically transmitted clavicipitaceous endophytes, the generally horizontally transmitted class 2 fungal endophytes, mycorrhizal fungi and dark septate endophytes. This chapter introduces the science of endophyte biology and its application for a world population that is projected to grow to over 9 billion by 2050. It explores the potential of endophytes for improved agricultural and silvicultural sustainability including: yield improvement and nutrition; biocontrol of pests and diseases; and abiotic stress resistance in the context of climate change. It outlines how bioprospectors are using endophytes as sources of novel metabolites for the pharmaceutical and biochemical industries, and describes how endophytes can be used in vitro to elicit the increased production of known secondary metabolites from plants.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achatz, B., von Rüden, S., Andrade, D. et al. (2010). Root colonization by Piriformospora indica enhances grain yield in barley under diverse nutrient regimes by accelerating plant development. Plant Soil, 333, 5970.CrossRefGoogle Scholar
Akinsanya, M. A., Goh, J. K., Lim, S. P. and Ting, A. S. (2015). Metagenomics study of endophytic bacteria in Aloe vera using next-generation technology. Genomics Data, 6, 159163.CrossRefGoogle ScholarPubMed
Arndt, C., Msangi, S. and Thurlow, J. (2016). Green Energy: Fueling the Path to Food Security, in 2016 Global Food Policy Report. Washington, DC: International Food Policy Research Institute, pp. 5665.Google Scholar
Barra-Bucarei, L., France, A. and Millas, P. (2019). Crossing frontiers: endophytic entomopathogenic fungi for biological control of plant diseases. In Endophytes for a Growing World, ed. Hodkinson, T. R., Doohan, F. M., Saunders, M. J. and Murphy, B. R.. Cambridge: Cambridge University Press, Chapter 4.Google Scholar
Beekwilder, J., Murphy, B. R., Mathuna, E. M., Barry, A. and Hodkinson, T. R. (2019). Isolation, diversity and potential use of endophytes in the biomass and bioenergy crop Miscanthus. In Endophytes for a Growing World, ed. Hodkinson, T. R., Doohan, F. M., Saunders, M. J. and Murphy, B. R.. Cambridge: Cambridge University Press, Chapter 9.Google Scholar
Behie, S. W. and Bidochka, M. J. (2014). Nutrient transfer in plant–fungal symbioses. Trends in Plant Science, 19, 734740.CrossRefGoogle ScholarPubMed
Berthelot, C., Chalot, M., Leyval, C. and Blaudez, D. (2019). From darkness to light: emergence of the mysterious dark septate endophytes in plant growth promotion and stress alleviation. In Endophytes for a Growing World, ed. Hodkinson, T. R., Doohan, F. M., Saunders, M. J. and Murphy, B. R.. Cambridge: Cambridge University Press, Chapter 7.Google Scholar
Bing, L. A. and Lewis, L. C. (1991). Suppression of Ostrinia nubilalis (Huebner) (Lepidoptera: Pyralidae) by endophytic Beauveria bassiana (Balsamo) Vuillemin. Environmental Entomology, 20, 12071211.CrossRefGoogle Scholar
Bonfante, P. and Genre, A. (2010). Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nature Communications, 1 , 48, 111.CrossRefGoogle ScholarPubMed
Brundrett, M. C. (2006). Understanding the roles of multifunctional mycorrhizal and endophytic fungi. In Microbial Root Endophytes, ed. Schulz, B, Boyle, C and Sieber, T. N. Berlin: Springer, pp. 281298.CrossRefGoogle Scholar
Busby, P. E., Soman, C., Wagner, M. R. et al. (2017). Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol, 15, e2001793.CrossRefGoogle ScholarPubMed
Cannon, P. F. and Simmons, C. M. (2017). Diversity and host preference of leaf endophytic fungi in the Iwokrama Forest Reserve, Guyana. Mycologia, 94, 210220.CrossRefGoogle Scholar
Card, S., Johnson, L. E. B., Teasdale, S. and Caradus, J. (2016). Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiology Ecology, 92, fiw114.CrossRefGoogle ScholarPubMed
CGIAR (2016). Annual Report 2016: Innovations for Global Food Security. Montpellier, France: CGIAR.Google Scholar
Clement, S. L., Wilson, A. D., Lester, D. G. and Davitt, C. M. (1997). Fungal endophytes of wild barley and their effects on Diuraphis noxia population development. Entomologia Experimentalis et Applicata, 82, 275281.CrossRefGoogle Scholar
Collinge, D. B., Jørgensen, H. J. L., Latz, M. A. C. et al. (2019). Searching for novel fungal biological control agents for plant disease control among endophytes. In Endophytes for a Growing World, ed. Hodkinson, T. R., Doohan, F. M., Saunders, M. J. and Murphy, B. R.. Cambridge: Cambridge University Press, Chapter 2.Google Scholar
COP (2010). The Strategic Plan for Biodiversity 2011–2020 and the Aichi Biodiversity Targets (X/2). Conference of the Parties to the Convention on Biological Diversity, Tenth meeting, Nagoya, Japan.Google Scholar
Costa, D., Tavares, R. M., Baptista, P. and Lino-Neto, T. (2019). The influence of endophytes on cork oak forests under a changing climate. In Endophytes for a Growing World, ed. Hodkinson, T. R., Doohan, F. M., Saunders, M. J. and Murphy, B. R.. Cambridge: Cambridge University Press, Chapter 12.Google Scholar
D’Arcy, C. J., Eastburn, D. M. and Schumann, G. L. (2001). Illustrated Glossary of Plant Pathology. The Plant Health Instructor. doi: 10.1094/PHI-I-2001-0219-01. www.apsnet.org/edcenter/illglossaryGoogle Scholar
Desbrosses, G. J. and Stougaard, J. (2011). Root nodulation: a paradigm for how plant–microbe symbiosis influences host developmental pathways. Cell Host Microbe, 10, 348358.CrossRefGoogle ScholarPubMed
Dobbelaere, S., Croonenborghs, A., Thys, A., Vande Broek, A. and Vanderleyden, J. (1999). Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil, 212, 153162.CrossRefGoogle Scholar
Estendorfer, J., Stempfhuber, B., Haury, P. et al. (2017). The influence of land use intensity on the plant-associated microbiome of Dactylis glomerata L. Frontiers in Plant Science, 8, 930.CrossRefGoogle ScholarPubMed
Fang, X., Jost, R., Finnegan, P. M. and Barbetti, M. J. (2013). Comparative proteome analysis of the strawberry-Fusarium oxysporum f. sp. fragariae pathosystem reveals early activation of defense responses as a crucial determinant of host resistance. Journal of Proteome Research, 12, 17721788.CrossRefGoogle ScholarPubMed
FAO, IFAD, UNICEF, WFP and WHO (2017). The State of Food Security and Nutrition in the World 2017. Building Resilience for Peace and Food Security. Rome: FAO.Google Scholar
Fesel, P. H. and Zuccaro, A. (2016). Dissecting endophytic lifestyle along the parasitism/mutualism continuum in Arabidopsis. Current Opinion in Microbiology, 32, 103112.CrossRefGoogle ScholarPubMed
Finkel, O. M., Castrillo, G., Herrera Paredes, S., Salas González, I. and Dangl, J. L. (2017). Understanding and exploiting plant beneficial microbes. Current Opinion in Plant Biology, 38, 155163.CrossRefGoogle ScholarPubMed
G20 (2017). Group of 20 ‘Towards Food and Water Security: Fostering Sustainability, Advancing Innovation,’ G20 Agriculture Ministers’ Action Plan 2017. www.g20.utoronto.ca/2017/170122-agriculture-action-en.htmlGoogle Scholar
Gelorini, V., Verbeken, A., Lens, L. et al. (2012). Effects of land use on the fungal spore richness in small crater-lake basins of western Uganda. Fungal Diversity, 55, 125142.CrossRefGoogle Scholar
Godfray, H. C., Beddington, J. R., Crute, I. R. et al. (2010). Food security: the challenge of feeding 9 billion people. Science, 327, 812818.CrossRefGoogle ScholarPubMed
Gupta, S. and Chaturvedi, P. (2019). Enhancing secondary metabolite production in medicinal plants using endophytic elicitors: a case study of Centella asiatica (Apiaceae) and Asiaticoside. In Endophytes for a Growing World, ed. Hodkinson, T. R., Doohan, F. M., Saunders, M. J. and Murphy, B. R.. Cambridge: Cambridge University Press, Chapter 14.Google Scholar
Hallmann, J., Berg, G. and Schulz, B. (2007). Isolation Procedures for Endophytic Microorganisms. New York: Springer.Google Scholar
Hardoim, P. R., van Overbeek, L. S., Berg, G. et al. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79, 293320.CrossRefGoogle ScholarPubMed
Hirsch, P. R. and Mauchline, T. H. (2012). Who’s who in the plant root microbiome? Nature Biotechnology, 30, 961962.CrossRefGoogle ScholarPubMed
Hodkinson, T. R. (2018). Evolution and taxonomy of the grasses (Poaceae): a model family for the study of species-rich groups. Annual Plant Reviews Online, doi: 10.1002/9781119312994.apr0622.CrossRefGoogle Scholar
Hodkinson, T. R., Jones, M. B., Waldren, S. and Parnell, J. A. N., eds. (2011). Climate Change Ecology and Systematics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hodkinson, T. R., Klaas, M., Jones, M. B., Prickett, R. and Barth, S. (2015). Miscanthus: a case study for the utilization of natural genetic variation. Plant Genetic Resources, 13, 219237.CrossRefGoogle Scholar
Hodkinson, T. R. and Murphy, B. R. (2019). Endophytes for a growing world. In Endophytes for a Growing World, ed. Hodkinson, T. R., Doohan, F. M., Saunders, M. J. and Murphy, B. R.. Cambridge: Cambridge University Press, Chapter 1.CrossRefGoogle Scholar
Høyer, A. K., Jørgensen, H. J. L., Jensen, B., Murphy, B. R. and Hodkinson, T. R. (2019). emerging methods for biological control of barley diseases including the role of endophytes. In Endophytes for a Growing World, ed. Hodkinson, T. R., Doohan, F. M., Saunders, M. J. and Murphy, B. R.. Cambridge: Cambridge University Press, Chapter 5.Google Scholar
Hubbard, M., Germida, J. J. and Vujanovic, V. (2013). Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second generation seed viability. Journal of Applied Microbiology, 116, 109122.CrossRefGoogle ScholarPubMed
IFPRI (2018). 2018 Global Food Policy Report. Washington, DC: International Food Policy Research Institute. doi:10.2499/9780896292970.Google Scholar
Jensen, D. F., Karlsson, M., Sarrocco, S. and Vannacci, G. (2016). Biological control using microorganisms as an alternative to disease resistance. In Plant Pathogen Resistance Biotechnology, ed. Collinge, D. B. New York and London: Wiley Blackwell, pp. 341363.CrossRefGoogle Scholar
Johnson, L. J. and Caradus, J. R. (2019). The science required to deliver Epichloë endophytes to commerce. In Endophytes for a Growing World, ed. Hodkinson, T. R., Doohan, F. M., Saunders, M. J. and Murphy, B. R.. Cambridge: Cambridge University Press, Chapter 16.Google Scholar
Jumpponen, A. (2001). Dark septate endophytes: are they mycorrhizal? Mycorrhiza, 11, 207211.CrossRefGoogle Scholar
Krell, V., Jakobs-Schoenwandt, D. and Patel, A. V. (2019). Application of formulated endophytic entomopathogenic fungi for novel plant protection strategies. In Endophytes for a Growing World, ed. Hodkinson, T. R., Doohan, F. M, Saunders, M. J. and Murphy, B. R.. Cambridge: Cambridge University Press, Chapter 3.Google Scholar
Le Cocq, K., Gurr, S. J., Hirsch, P. R. and Mauchline, T. H. (2016). Exploitation of endophytes for sustainable agricultural intensification. Molecular Plant Pathology, 18, 469473.CrossRefGoogle ScholarPubMed
Lahiri, A., Douglas, G. C., Murphy, B. R. and Hodkinson, T. R. (2019). In vitro methods for plant–microbe interaction and biocontrol studies in european ash (Fraxinus excelsior L.). In Endophytes for a Growing World, ed. Hodkinson, T. R., Doohan, F. M., Saunders, M. J. and Murphy, B. R.. Cambridge: Cambridge University Press, Chapter 15.Google Scholar
Li, J., Ovakim, D. H., Charles, T. C. and Glick, B. R. (2000). An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Current Microbiology, 41, 101105.CrossRefGoogle ScholarPubMed
Lindahl, B. D., Nilsson, R. H., Tedersoo, L. et al. (2013). Fungal community analysis by high-throughput sequencing of amplified markers: a user’s guide. New Phytologist, 199, 288299.CrossRefGoogle ScholarPubMed
Ludwig-Müller, J. (2015). Plants and endophytes: equal partners in secondary metabolite production? Biotechnology Letters, 37, 13251334.CrossRefGoogle ScholarPubMed
Mandyam, K. G. and Jumpponen, A. (2005). Seeking the elusive function of the root-colonising dark septate endophytic fungi. Studies in Mycology, 53, 173189.CrossRefGoogle Scholar
Mandyam, K. G. and Jumpponen, A. (2015). Plant–microbe interaction mutualism–parasitism paradigm synthesized from results of root-endophyte models. Frontiers in Microbiology, 5, 113.CrossRefGoogle Scholar
McNees, C. R., Greenhut, I. V., Law, A. D., Saleem, M. and Moe, L. A. (2019). Life within the leaf: ecology and applications of foliar bacterial endophytes. In Endophytes for a Growing World, ed. Hodkinson, T. R., Doohan, F. M., Saunders, M. J. and Murphy, B. R.. Cambridge: Cambridge University Press, Chapter 10.Google Scholar
Melotto, M., Underwood, W. and He, S. Y. (2008). Role of stomata in plant innate immunity and foliar bacterial diseases. Annual Review of Phytopathology, 46, 101122.CrossRefGoogle ScholarPubMed
Meshram, V. and Gupta, M. (2019). Endophytic fungi: a quintessential source of potential bioactive compounds. In Endophytes for a Growing World, ed. Hodkinson, T. R., Doohan, F. M., Saunders, M. J. and Murphy, B. R.. Cambridge: Cambridge University Press, Chapter 13.Google Scholar
Murphy, B. R., Doohan, F. M. and Hodkinson, T. R. (2014a). Fungal endophytes of barley roots. The Journal of Agricultural Science, 152, 602615.CrossRefGoogle Scholar
Murphy, B. R., Doohan, F. M. and Hodkinson, T. R. (2014b). Yield increase induced by the fungal root endophyte Piriformospora indica in barley grown at low temperature is nutrient limited. Symbiosis, 62, 2939.CrossRefGoogle Scholar
Murphy, B. R., Doohan, F. M. and Hodkinson, T. R. (2015a). Fungal root endophytes of a wild barley species increase yield in a nutrient-stressed barley cultivar. Symbiosis, 65, 17.CrossRefGoogle Scholar
Murphy, B. R., Doohan, F. M. and Hodkinson, T. R. (2015b). Persistent fungal root endophytes isolated from a wild barley species suppress seed-borne infections in a barley cultivar. Biocontrol, 60, 281292.CrossRefGoogle Scholar
Murphy, B. R., Martin Nieto, L., Doohan, F. M. and Hodkinson, T. R. (2015c). Fungal endophytes enhance agronomically important traits in severely drought-stressed barley. Journal of Agronomy and Crop Science, 201, 419427.CrossRefGoogle Scholar
Murphy, B. R., Martin Nieto, L., Doohan, F. M. and Hodkinson, T. R. (2015d). Profundae diversitas: the uncharted genetic diversity in a newly studied group of fungal root endophytes. Mycology, 6, 139150.CrossRefGoogle Scholar
Murphy, B. R., Doohan, F. M. and Hodkinson, T. R. (2017a). A seed dressing combining fungal endophyte spores and fungicides improves seedling survival and early growth in barley and oat. Symbiosis, 71, 6976.CrossRefGoogle Scholar
Murphy, B. R., Hodkinson, T. R. and Doohan, F. M. (2017b). A fungal endophyte consortium counterbalances the negative effects of reduced nitrogen input on the yield of field-grown spring barley. The Journal of Agricultural Science, 155, 13241331.CrossRefGoogle Scholar
Murphy, B., Doohan, F. M. and Hodkinson, T. R. (2018). From concept to commerce: developing a successful fungal endophyte inoculant for agricultural crops. Journal of Fungi, 4, 24.CrossRefGoogle ScholarPubMed
Murphy, B. R., Doohan, F. M. and Hodkinson, T. R. (2019). Prospecting crop wild relatives for beneficial endophytes. In Endophytes for a Growing World, ed. Hodkinson, T. R., Doohan, F. M., Saunders, M. J. and Murphy, B. R.. Cambridge: Cambridge University Press, Chapter 18.Google Scholar
Newsham, K. K. (2011). A meta-analysis of plant responses to dark septate root endophytes. New Phytologist, 190, 783793.CrossRefGoogle ScholarPubMed
O’Hanlon, K. (2019). Plant growth-promoting bacteria field trials in Europe. In Endophytes for a Growing World, ed. Hodkinson, T. R., Doohan, F. M., Saunders, M. J. and Murphy, B. R.. Cambridge: Cambridge University Press, Chapter 17.Google Scholar
Ownley, B. H., Pereira, R. M., Klingeman, W. E., Quigley, N. B. and Leckie, B. M. (2004). Beauveria bassiana, a dual purpose biocontrol organism, with activity against insect pests and plant pathogens. In Emerging Concepts in Plant Health Management, ed. Lartey, R. T. and Caesar, A. J.. Kerala, India: Research Signposts, pp. 255269.Google Scholar
Ownley, B. H., Gwinn, K. D. and Vega, F. E. (2010). Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. BioControl, 55, 113128.CrossRefGoogle Scholar
Paris Agreement on Climate Change (2016). C.N.92.2016.Treaties-XXVII.7.d. Geneva: United Nations Treaty Collection.Google Scholar
Parnell, J. J., Berka, R., Young, H. A. et al. (2016). From the lab to the farm: an industrial perspective of plant beneficial microorganisms. Frontiers in Plant Science, 7, 1110.CrossRefGoogle Scholar
Partida-Martinez, L. P. and Heil, M. (2011). The microbe-free plant: fact or artifact? Frontiers in Plant Science, 2 , 100, 116.CrossRefGoogle ScholarPubMed
Pickett, J. A., Woodcock, C. M., Midega, C. A. O. and Khan, Z. R. (2014). Push–pull farming systems. Current Opinion in Biotechnology, 26, 125132.CrossRefGoogle ScholarPubMed
Porter, J. K. (1995). Analysis of endophyte toxins: fescue and other grasses toxic to livestock. Journal of Animal Science, 73, 871880.CrossRefGoogle ScholarPubMed
Rasmussen, S., Parsons, A. J. and Jones, C. S. (2012). Metabolomics of forage plants: a review. Annals of Botany, 110, 12811290.CrossRefGoogle ScholarPubMed
Rathore, R., Germaine, K. J., Forristal, P. D., Spink, J. and Dowling, D. N. (2019). Meta-omics approach to unravel the endophytic bacterial communities of Brassica napus and other agronomically important crops in response to agricultural practices. In Endophytes for a Growing World, ed. Hodkinson, T. R., Doohan, F. M., Saunders, M. J. and Murphy, B. R.. Cambridge: Cambridge University Press, Chapter 11.Google Scholar
Richter-Heitmann, T., Eickhorst, T., Knauth, S., Friedrich, M. W. and Schmidt, H. (2016). Evaluation of strategies to separate root-associated microbial communities: a crucial choice in rhizobiome research. Frontiers in Microbiology, 7, 773.CrossRefGoogle ScholarPubMed
Rockström, J., Steffen, W., Noone, K. et al. (2009). Planetary boundaries: exploring the safe operating space for humanity. Ecology and Society, 14, 32.CrossRefGoogle Scholar
Rodriguez, R. J., White, J. F., Arnold, A. E. and Redman, R. S. (2009). Fungal endophytes: diversity and functional roles. The New Phytologist, 182, 314–30.CrossRefGoogle ScholarPubMed
Rosegrant, M. W., Ringler, C. and Zhu, T. (2009). Water for agriculture: maintaining food security under growing scarcity. Annual Reviews, 34, 205222.Google Scholar
Ryu, C. M., Farag, M., Hu, C. H. et al. (2004). Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology, 134, 10171026.CrossRefGoogle ScholarPubMed
Saikkonen, K., Young, C. A., Helander, M. and Schardl, C. L. (2016). Endophytic Epichloë species and their grass hosts. Plant Molecular Biology, 90, 665675.CrossRefGoogle ScholarPubMed
Soares, M. A., Li, H.-Y., Kowalski, K. P. et al. (2016). Evaluation of the functional roles of fungal endophytes of Phragmites australis from high saline and low saline habitats. Biological Invasions, 18, 26892702.CrossRefGoogle Scholar
Schulthess, F. M. and Faeth, S. H. (1998). Distribution, abundances, and associations of the endophytic fungal community of Arizona fescue (Festuca arizonica). Mycologia, 90, 569578.CrossRefGoogle Scholar
Schulz, B. and Boyle, C. (2006). What are endophytes? Microbial Root Endophytes, 9, 114.CrossRefGoogle Scholar
Schulz, B., Rommert, A.-K., Dammann, U., Aust, H.-J. and Strack, D. (1999). The endophyte–host interaction: a balanced antagonism? Mycological Research, 103, 12751283.CrossRefGoogle Scholar
Stone, J. K., Polishook, J. O. N. D. and White, J. F. (2004). Endophytic fungi. In Biodiversity of Fungi: Inventory and Monitoring Methods, ed. Mueller, G. M, Bills, G. F and Foster, M. S. Burlington, MA: Elsevier Academic Press, pp. 241270.CrossRefGoogle Scholar
Strobel, G. (2018). The emergence of endophytic microbes and their biological promise. Journal of Fungi, 4, 57.CrossRefGoogle ScholarPubMed
Timmusk, S., Behers, L., Muthoni, J., Muraya, A. and Aronsson, A.-C. (2017). Perspectives and challenges of microbial application for crop Improvement. Frontiers in Plant Science, 8, 49.CrossRefGoogle ScholarPubMed
United Nations (2015). Transforming Our World: The 2030 Agenda For Sustainable Development. A/RES/70/1. Geneva: United Nations. sustainabledevelopment.un.org.Google Scholar
van der Heijden, M. G. A., Bardgett, R. D. and Van Straalen, N. M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296–310.CrossRefGoogle Scholar
van der Heijden, M. G. A., Dombrowski, N. and Schlaeppi, K. (2017). Continuum of root–fungal symbioses for plant nutrition. Proceedings of the National Academy of Sciences of the United States of America, 114, 1157411576.CrossRefGoogle ScholarPubMed
Vega, F. E., Goettel, M. S., Blackwell, M. et al. (2009). Fungal entomopathogens: new insights on their ecology. Fungal Ecology, 2, 149159.CrossRefGoogle Scholar
Vessey, J. K. (2003). Plant growth-promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571586.CrossRefGoogle Scholar
Waller, F., Achatz, B., Baltruschat, H. et al. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences of the United States of America, 102, 1338613391.CrossRefGoogle ScholarPubMed
Waqas, M., Khan, A. L., Kamran, M. et al. (2012). Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules, 17, 1075410773.CrossRefGoogle ScholarPubMed
Wennstrom, A. (1994). Endophyte: the misuse of an old term. Oikos, 71, 535536.CrossRefGoogle Scholar
White, J. F., Cole, G. T. and Morgan-Jones, G. (1987). Endophyte-host associations in forage grasses. VI. A new species of Acremonium isolated from Festuca arizonica. Mycologia, 79, 148152.CrossRefGoogle Scholar
White, J. F., Morgan-Jones, G. and Morrow, A. C. (1993). Taxonomy, life cycle, reproduction and detection of Acremonium endophytes. Agriculture, Ecosystems and Environment, 44, 1337.CrossRefGoogle Scholar
Widiantini, F. and Franco, C. (2019). Microbispora Dominate Diversity of Endophytic Actinobacteria from Australian Rice Plants. In Endophytes for a Growing World, ed. Hodkinson, T. R., Doohan, F. M., Saunders, M. J. and Murphy, B. R.. Cambridge: Cambridge University Press, Chapter 8.Google Scholar
Wiewióra, B., Żurek, G., Pro, M., Żurek, M. and Schmidt, J. (2011). Relations between site conditions and endophyte colonization of grasses in Poland. Journal of Life Sciences, 5, 831837.Google Scholar
Wiewióra, B., Żurek, G. and Żurek, M. (2015). Endophyte-mediated disease resistance in wild populations of perennial ryegrass (Lolium perenne). Fungal Ecology, 15, 18.CrossRefGoogle Scholar
Wilberforce, E. M., Boddy, L., Griffiths, R. and Griffith, G. W. (2003). Agricultural management affects communities of culturable root-endophytic fungi in temperate grasslands. Soil Biology and Biochemistry, 35, 11431154.CrossRefGoogle Scholar
Wilson, A. D., Clement, S. L. and Kaiser, W. J. (1992). Endophytic fungi in a Hordeum germplasm collection. Plant Genetic Resources, 87, 14.Google Scholar
Wilson, D. (1995). Endophyte: the evolution of a term, and clarification of its use and definition. Oikos, 73, 274276.CrossRefGoogle Scholar
Yakti, W., Andrade-Linares, D. R., Ngwene, B. et al. (2019). Phosphate nutrition in root–fungus interactions. In Endophytes for a Growing World, ed. Hodkinson, T. R., Doohan, F. M., Saunders, M. J. and Murphy, B. R.. Cambridge: Cambridge University Press, Chapter 6.Google Scholar
Żurek, G., Wiewióra, B., Żurek, M. and Łyszczarz, R. (2017). Environmental effect on Epichloë endophyte occurrence and ergovaline concentration in wild populations of forage grasses in Poland. Plant and Soil, 410, 383399.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×