Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T15:10:11.565Z Has data issue: false hasContentIssue false

Part III - Diversity and Community Ecology of Endophytes

Published online by Cambridge University Press:  01 April 2019

Trevor R. Hodkinson
Affiliation:
Trinity College Dublin
Fiona M. Doohan
Affiliation:
University College Dublin
Matthew J. Saunders
Affiliation:
Trinity College Dublin
Brian R. Murphy
Affiliation:
Trinity College Dublin
Get access

Summary

A study to detect the diversity of endophytic Actinobacteria from Australian rice was conducted using culture-dependent and culture-independent methods. Rice samples were collected from the rice growing area near Yanco, New South Wales, Australia. Isolation of the endophytic Actinobacteria was done over two consecutive growing seasons. The results demonstrated that most isolates were obtained from plants 10 weeks and older, and only a few were found in younger plants. Microbispora spp. were the most commonly isolated endophytic Actinobacteria (94%) with Streptomyces spp. and other genera present at lower numbers (6%). The culture-dependent method findings were confirmed by T-RFLP profile analysis. Restriction digests using HhaI and RsaI also showed an abundance of terminal restriction fragments (TRFs) profiles related to the genus Microbispora. Furthermore, other biological properties of the endophytic Actinobacteria isolates were also determined. Four isolates, Saccharothrix OSH21, Saccharopolyspora OSR26, Streptomyces OSR46 and Microbispora OSR61, were found to suppress the growth of the pathogenic fungus Rhizoctonia solani. Moreover, these isolates might be able to promote plant growth by producing indole acetic acid or to solubilise phosphate making this nutrient available for plant uptake.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Alexander, D. B. and Zuberer, D. A. (1991). Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils, 12, 3945.CrossRefGoogle Scholar
Araujo, J. M., da Silva, A. C. and Azevedo, J. L. (2000). Isolation of endophytic actinomycetes from roots and leaves of maize (Zea mays L.). Brazilian Archives of Biology and Technology, 43, 211221.CrossRefGoogle Scholar
Barnett, S., Zhao, S., Ballard, R. and Franco, C. (2017). Selection of microbes for control of Rhizoctonia root rot on wheat using a high throughput pathosystem. Biological Control, 113, 4557.CrossRefGoogle Scholar
Beneduzi, A., Peres, D., Vargas, L. K. et al. (2008). Evaluation of genetic diversity and plant-growth-promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Applied Soil Ecology, 39, 311320.CrossRefGoogle Scholar
Berg, G. (2009). Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied and Environmental Microbiology, 84, 1118.Google ScholarPubMed
Boerema, E.B. (1974). Growth and yield of rice in the Murrumbidgee Valley as influenced by climate, method of sowing, plant density and nitrogen nutrition. MSc Thesis, Macquarie University, NSW.Google Scholar
Burch, G. and Sarathchandra, U. (2006), Activities and survival of endophytic bacteria in white clover (Trifolium repens L.). Canadian Journal of Microbiology, 52, 848856.CrossRefGoogle ScholarPubMed
Cao, L., Qiu, Z., You, J. et al. (2005). Isolation and characterisation of endophytic streptomycete antagonists of Fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiology Letters, 247, 147152.CrossRefGoogle ScholarPubMed
Compant, S., Duffy, B., Nowak, J., Clement, C. and Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, Mechanisms of Action, and Future Prospects. Applied and Environmental Microbiology, 71, 49514959.CrossRefGoogle ScholarPubMed
Conn, V. M. and Franco, C. M. M. (2004a). Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Applied and Environmental Microbiology, 70, 17871794.CrossRefGoogle ScholarPubMed
Conn, V. M. and Franco, C. M. M. (2004b). Effect of microbial inoculants on the indigenous actinobacterial endophyte population in the roots of wheat as determined by terminal restriction fragment length polymorphism. Applied and Environmental Microbiology, 70, 64076413.CrossRefGoogle ScholarPubMed
Conn, S., Curtin, C., Bézier, A., Franco, C. and Zhang, W. (2008). Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. Journal of Experimental Botany, 59, 36213634.CrossRefGoogle ScholarPubMed
Coombs, J. T. and Franco, C. M. M. (2003a). Isolation and identification of Actinobacteria from surface-sterilized wheat roots. Applied and Environmental Microbiology, 69, 56035608.CrossRefGoogle ScholarPubMed
Coombs, J. T. and Franco, C. M. M. (2003b). Visualization of an endophytic Streptomyces species in wheat seed. Applied and Environmental Microbiology, 69, 42604262.CrossRefGoogle ScholarPubMed
Coombs, J. T., Michelsen, P. P. and Franco, C. M. M. (2003). Evaluation of endophytic Actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biological Control, 29, 359366.CrossRefGoogle Scholar
Cother, E. J., Reinke, R., McKenzie, C. et al. (2004). An unusual stem necrosis of rice caused by Pantoea ananas and the first record of this pathogen on rice in Australia. Australian Plant Pathology, 33, 495503.CrossRefGoogle Scholar
Davis, K. E. R., Joseph, S. J. and Janssen, P. H. (2005). Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Applied and Environmental Microbiology, 71, 826834.CrossRefGoogle ScholarPubMed
Dunbar, J., Ticknor, L. O. and Kuske, C. R. (2001). Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities. Applied and Environmental Microbiology, 67, 190197.CrossRefGoogle ScholarPubMed
Franco, C., Michelsen, P., Percy, N. et al. (2007). Actinobacterial endophytes for improved crop performance. Australasian Plant Pathology, 36, 524531.CrossRefGoogle Scholar
Franco, C. M. (2015). Microbispora. In Bergey’s Manual of Systematics of Archaea and Bacteria, ed. Whitman, W. B, Rainey, F., Kämpfer, P., Trujillo, M, Chun, J., DeVos, P., Hedlund, B. and Dedysh, S. doi: 10.1002/9781118960608.gbm00200.Google Scholar
Glickmann, E. and Dessaux, Y. (1995). A critical examination of the specificity of the Salkowski reagent for indolic compound produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 61, 793796.CrossRefGoogle ScholarPubMed
Hardoim, P. R., Andreote, F. D., Reinhold-Hurek, B. et al. (2011). Rice root-associated bacteria: insight into community structures across 10 cultivars. FEMS Microbiology Ecology, 77, 154164.CrossRefGoogle ScholarPubMed
Hartmann, A., Schmid, M., Tuinen, D. and Berg, G. (2009). Plant-driven selection of microbes. Plant and Soil, 321, 235257.CrossRefGoogle Scholar
Hayakawa, M. and Nonomura, H. (1987). Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. Journal of Fermentation Technology, 65, 501509.CrossRefGoogle Scholar
Hasegawa, S., Meguro, A., Shimizu, M. et al. (2006). Endophytic actinomycetes and their interactions with host plants. Actinomycetologica, 20, 7281.CrossRefGoogle Scholar
Indananda, C., Matsumoto, A., Inahashi, Y. et al. (2010). Actinophytocola oryzae gen. nov., sp. nov., isolated from the roots of Thai glutinous rice plants, a new member of the family Pseudonocardiaceae. International Journal of Systematic and Evolutionary Microbiology, 60,11411146.CrossRefGoogle ScholarPubMed
Indananda, C., Thamchaipenet, A., Matsumoto, A. et al. (2011). Actinoallomurus oryzae sp. nov., an endophytic actinomycete isolated from root of Thai jasmine rice plant. International Journal of Systematic and Evolutionary Microbiology, 61, 737741.CrossRefGoogle ScholarPubMed
Jenkins, S., Waite, I., Blackburn, A. et al. (2009). Actinobacterial community dynamics in long term managed grasslands. Antonie van Leeuwenhoek, 95, 319334.CrossRefGoogle ScholarPubMed
Kaewkla, O. and Franco, C. M. M. (2013). Kribbella endophytica sp. nov., an endophytic actinobacterium isolated from the surface-sterilized leaf of a native apricot tree. International Journal of Systematic and Evolutionary Microbiology, 63, 12491253.CrossRefGoogle ScholarPubMed
Kawase, T., Saito, A., Sato, T. et al. (2004). Distribution and phylogenetic analysis of family 19 chitinases in Actinobacteria. Applied and Environmental Microbiology, 70, 11351144.CrossRefGoogle Scholar
Kampapongsa, D. and Kaewkla, O. (2016). Biodiversity of endophytic Actinobacteria from jasmine rice (Oryza sativa L. KDML 105) grown in Roi-Et Province, Thailand and their antimicrobial activity against rice pathogen. Annals of Microbiology, 66, 587595.CrossRefGoogle Scholar
Khamna, S., Yokota, A. and Lumyong, S. (2009). Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World Journal of Microbiology and Biotechnology, 25, 649655.CrossRefGoogle Scholar
Kim, S. T., Cho, K. S., Yu, S. J. and Kang, K. Y. (2001). Two-dimensional electrophoretic analysis of rice proteins by polyethylene glycol fractination for protein arrays. Electrophoresis, 22, 21032109.3.0.CO;2-W>CrossRefGoogle Scholar
Kizuka, M., Enokita, R., Takahashi, K. et al. (1998). Studies on actnomycetes isolated from plant leaves. Actinomycetologica, 12, 8991.CrossRefGoogle Scholar
Kornerup, A. and Wanscher, J. H. (1978). Methuen Handbook of Colour. London: Eyre Methuen Ltd.Google Scholar
Lanoot, B., Vancanneyt, M., Dawyndt, P. et al. (2004). BOX-PCR fingerprinting as a powerful tool to reveal synonymous names in the genus Streptomyces. Emended descriptions are proposed for the species Streptomyces cinereorectus, S. fradiae, S. tricolor, S. colombiensis, S. filamentosus, S. vinaceus and S. phaeopurpureus. Systematic and Applied Microbiology, 27, 8492.CrossRefGoogle ScholarPubMed
Lee, S. O., Choi, G. J., Choi, Y. H. et al. (2008). Isolation and characterization of endophytic actinomycetes from Chinese cabbage roots as antagonists to Plasmodiophora brassicae. Journal of Microbiology and Biotechnology, 18, 17411746.Google ScholarPubMed
Loper, J. E. and Buyer, J. S. (1991). Siderophore in microbial interactions on plant surfaces. Molecular Plant–Microbe Interactions, 4, 513.CrossRefGoogle Scholar
Mano, H. and Morisaki, H. (2008). Endophytic bacteria in rice plant. Microbes and Environments, 23, 109117.CrossRefGoogle ScholarPubMed
Marsh, T. L. (2005). Culture-independent microbial community analysis with terminal restriction fragment length polymorphism. In Methods in Enzymology, ed. Jared, R. L. San Diego, CA: Academic Press, pp. 308329.CrossRefGoogle ScholarPubMed
Nawani, N. N. and Kapadnis, B. P. (2003). Chitin degrading potential of bacteria from extreme and moderate environment. Indian Journal of Environmental Biology, 41, 248254.Google ScholarPubMed
Prakamhang, J., Minamisawa, K., Teamtaisong, K. et al. (2009). The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.). Applied Soil Ecology, 42, 141149.CrossRefGoogle Scholar
Qin, S., Li, J., Chen, H.-H. et al. (2009). Isolation, diversity, and antimicrobial activity of rare Actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Applied and Environmental Microbiology, 75, 61766186.CrossRefGoogle ScholarPubMed
Sarmin, K., Tan, G. Y. A., Franco, C. M. M. et al. (2013). Streptomyces kebangsaanensis sp. nov. an endophytic actinomycete isolated from a Malaysian ethnomedicinal plant that produces phenazine-1-carboxylic acid. International Journal of Systematic and Evolutionary Microbiology, 63, 37333738.CrossRefGoogle ScholarPubMed
Shimizu, M., Yazawa, S. and Ushijima, Y. (2009). A promising strain of endophytic Streptomyces sp. for biological control of cucumber anthracnose. Journal of General Plant Pathology, 75, 2736.CrossRefGoogle Scholar
Shyu, C., Soule, T., Bent, S. et al. (2007). MiCA: a web-based tool for the analysis of microbial communities based on terminal-restriction fragment length polymorphisms of 16S and 18S rRNA genes. Microbial Ecology, 53, 562570.CrossRefGoogle ScholarPubMed
Stach, J. E. M., Maldonado, L. A., Ward, A. C. et al. (2003). New primers for the class Actinobacteria: application to marine and terrestrial environments. Environmental Microbiology, 5, 828841.CrossRefGoogle ScholarPubMed
Taechowisan, T., Peberdy, J. F. and Lumyong, S. (2003). Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World Journal of Microbiology and Biotechnology, 19, 381385.CrossRefGoogle Scholar
Tan, H. M., Cao, L. X., He, Z. F. et al. (2006). Isolation of endophytic actinomycetes from different cultivars of tomato and their activities against Ralstonia solanacearum in vitro. World Journal of Microbiology and Biotechnology, 22, 12751280.CrossRefGoogle Scholar
Tian, X. L., Cao, L. X., Zeng, Q. G. et al. (2004). Study on the communities of endophytic fungi and endophytic actinomycetes from rice and their antipathogenic activities in vitro. World Journal of Microbiology and Biotechnology, 20, 303309.CrossRefGoogle Scholar
Tian, X. L., Cao, L. X., Tan, H. et al. (2007). Diversity of cultivated and uncultivated actinobacterial endophytes in the stems and roots of rice. Microbial Ecology, 53, 700707.CrossRefGoogle ScholarPubMed
Watanabe, T., Kanai, R., Kawase, T. et al. (1999). Family 19 chitinases of Streptomyces species: characterization and distribution. Microbiology, 145, 33533363.CrossRefGoogle Scholar
Watanabe, Y., Nakamura, Y. and Ishii, R. (1997). Relationship between starch accumulation and actvities of the related enzymes in the leaf sheath as a temporary sink organ in rice (Oryza sativa). Australian Journal of Plant Physiology, 24, 563569.Google Scholar
Wensing, A., Braun, S. D., Buttner, P. et al. (2010). Impact of siderophore production by Pseudomonas syringae pv. syringae 22d/93 on epiphytic fitness and biocontrol activity against Pseudomonas syringae pv. glycinea 1a/96. Applied and Environmental Microbiology, 76, 27042711.CrossRefGoogle ScholarPubMed

References

Ameline, A., Kerdellant, E., Rombaut, A. et al. (2015). Status of the bioenergy crop Miscanthus as a potential reservoir for aphid pests. Industrial Crops and Products, 74, 103110.CrossRefGoogle Scholar
An, G. H., Miyakawa, S., Kawahara, A., Osaki, M. and Ezawa, Z. (2008). Community structure of arbuscular mycorrhizal fungi associated with pioneer grass species Miscanthus sinensis in acid sulfate soils: habitat segregation along pH gradients. Soil Science and Plant Nutrition, 54, 517528.CrossRefGoogle Scholar
Bailey, B. A., Bae, H., Strem, M. D. et al. (2008). Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biological Control, 46, 2435.CrossRefGoogle Scholar
Barnes, C. J., Burns, C. A., Gast, C. J., McNamara, N. P. and Bending, G. D. (2016). Spatio-temporal variation of core and satellite arbuscular mycorrhizal fungus communities in Miscanthus giganteus. Frontiers in Microbiology, 7, 1278.CrossRefGoogle ScholarPubMed
Börschig, C., Klein, A.-M. and Krauss, J. (2014). Effects of grassland management, endophytic fungi and predators on aphid abundance in two distinct regions. Journal of Plant Ecology, 7, 490498.CrossRefGoogle Scholar
Busby, P. E., Ridout, M. and Newcombe, G. (2016). Fungal endophytes: modifiers of plant disease. Plant Molecular Biology, 90, 645655.CrossRefGoogle ScholarPubMed
Bush, L. P., Wilkinson, H. H. and Schardl, C. L. (1997). Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiology, 114, 17.CrossRefGoogle ScholarPubMed
Chiang, Y. C., Chou, C. H., Lee, P. R. and Chiang, T. Y. (2001). Detection of leaf-associated fungi based on PCR and nucleotide sequence of the ribosomal internal transcribed spacer (ITS) in Miscanthus. Botanical Bulletin of Academia Sinica, 42, 3944.Google Scholar
Christian, D. G., Riche, A. B. and Yates, N. E. (2008). Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests. Industrial Crops and Products, 28, 320327.CrossRefGoogle Scholar
Clifton-Brown, J., Chiang, Y.-C. and Hodkinson, T. R. (2008). Miscanthus: genetic resources and breeding potential to enhance bioenergy production. In Genetic Improvement of Bioenergy Crops, ed. Vermerris, W. New York: Springer Science, pp. 273290.Google Scholar
Cope-Selby, N., Cookson, A., Squance, M. et al. (2017). Endophytic bacteria in Miscanthus seed: implications for germination, vertical inheritance of endophytes, plant evolution and breeding. GCB Bioenergy, 9, 5777.CrossRefGoogle Scholar
de Cesare, M., Hodkinson, T. R. and Barth, S. (2010). Chloroplast DNA markers (cpSSRs, SNPs) for Miscanthus, Saccharum and related grasses (Panicoideae, Poaceae). Molecular Breeding, 26, 539544.CrossRefGoogle Scholar
Farrar, K., Bryant, D. and Cope-Selby, N. (2014). Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnology Journal, 12, 11931206.CrossRefGoogle ScholarPubMed
Gamboa, M. A., Laureano, S. and Bayman, P. (2002). Measuring diversity of endophytic fungi in leaf fragments: does size matter? Mycopathologia, 156, 41–45.CrossRefGoogle ScholarPubMed
Gardes, M. and Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113118.CrossRefGoogle Scholar
Heather, W. A. and Sharma, I. K. (1987). Physiologic specialisation in the hyperparasitism of races of Melampsora larici-populina by isolates of Cladosporium tenuissimum. Forest Pathology, 17, 185188.CrossRefGoogle Scholar
Hebert, P. D. N., Cywinska, A., Ball, S. L. and deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270, 313321.CrossRefGoogle ScholarPubMed
Hibbett, D. S., Binder, M., Bischoff, J. F. et al. (2007). A higher-level phylogenetic classification of the Fungi. Mycological Research, 111, 509547.CrossRefGoogle ScholarPubMed
Hodkinson, T. R. and Parnell, J. A. N. (2007). Introduction to the systematics of species rich groups. In Reconstructing the Tree of Life: Taxonomy and Systematics of Species Rich Taxa, ed. Hodkinson, T. R and Parnell, J. A. N. Boca Raton, FL: CRC Press, pp. 320.Google Scholar
Hodkinson, T. R., Chase, M. W. and Renvoize, S. A. (2001). Genetic resources of Miscanthus. Aspects of Applied Biology, 65, 239248.Google Scholar
Hodkinson, T. R., Chase, M. W., Lledó, D. M., Salamin, N. and Renvoize, S. A. (2002). Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. Journal of Plant Research, 115, 381392.CrossRefGoogle Scholar
Hodkinson, T. R., Salamin, N., Chase, M. W. et al. (2007a). Large trees, supertrees, and diversification of the grass family. Aliso, 23, 248258.CrossRefGoogle Scholar
Hodkinson, T. R., Waldren, S., Parnell, J. A. N. et al. (2007b). DNA banking for plant breeding, biotechnology and biodiversity evaluation. Journal of Plant Research, 120, 1729.CrossRefGoogle ScholarPubMed
Hodkinson, T. R., Jones, M. B., Waldren, S. and Parnell, J. A. N., eds. (2011). Climate Change Ecology and Systematics. Cambridge: Cambrige University Press.CrossRefGoogle Scholar
Hodkinson, T. R., Klaas, M., Jones, M., Prickett, R. and Barth, S. (2015). Miscanthus: a case study for the utilization of natural genetic variation. Plant Genetic Resources, 13, 219237.CrossRefGoogle Scholar
Hodkinson, T. R., Petrunenko, E., Klaas, M. et al. (2016). New breeding collections of Miscanthus sinensis, M. sacchariflorus and hybrids from Primorsky Krai, Far Eastern Russia. In Perennial Biomass Crops for a Resource-Constrained World, ed. Barth, S, Murphy-Bokern, D., Kalinina, O., Taylor, G. and Jones, M. B. Berlin: Springer, pp. 105118.CrossRefGoogle Scholar
Hodkinson, T. R. (2018). Evolution and taxonomy of the grasses (Poaceae): a model family for the study of species-rich groups. Annual Plant Reviews Online, doi: 10.1002/9781119312994.apr0622.CrossRefGoogle Scholar
Johnson, L. J. and Caradus, J. R. (2019). The science required to deliver Epichloë endophytes to commerce. In Endophytes for a Growing World, ed. Hodkinson, T. R., Doohan, F. M., Saunders, M. J. and Murphy, B. R.. Cambridge: Cambridge University Press, Chapter 16.Google Scholar
Jones, M. B. and Walsh, M., eds. (2001). Miscanthus for Energy and Fibre. London: James and James.Google Scholar
Jones, M. B., Finnan, J. and Hodkinson, T. R. (2015). Morphological and physiological traits for higher biomass production in perennial rhizomatous grasses grown on marginal land. GCB Bioenergy, 7, 375385.CrossRefGoogle Scholar
Karpyn Esqueda, K. M., Yen, A. L., Rochfort, S. et al. (2017). A review of perennial ryegrass endophytes and their potential use in the management of African black beetle in perennial grazing systems in Australia. Frontiers in Plant Science, 8, 3.CrossRefGoogle ScholarPubMed
Kim, K. W. (2015). Three-dimensional surface reconstruction and in situ site-specific cutting of the teliospores of Puccinia miscanthi causing leaf rust of the biomass plant Miscanthus sinensis. Micron, 73, 1520.CrossRefGoogle ScholarPubMed
Kim, S., Da, K. and Mei, C. (2012). An efficient system for high-quality large-scale micropropagation of Miscanthus × giganteus plants. In Vitro Cellular & Developmental Biology-Plant, 48, 613619.CrossRefGoogle Scholar
Kunkel, B. A., Grewal, P. S. and Quigley, M. F. (2004). A mechanism of acquired resistance against an entomopathogenic nematode by Agrotis ipsilon feeding on perennial ryegrass harboring a fungal endophyte. Biological Control, 29, 100108.CrossRefGoogle Scholar
Lee, W. C. and Kuan, W. C. (2015). Miscanthus as cellulosic biomass for bioethanol production. Biotechnology Journal, 10, 840854.CrossRefGoogle ScholarPubMed
Leme, A. C., Bevilaqua, M. R. R., Rhoden, S. A. et al. (2013). Molecular characterization of endophytes isolated from Saccharum spp based on esterase and ribosomal DNA (ITS1-5.8S-ITS2) analyses. Genetics and Molecular Research, 12, 40954105.CrossRefGoogle ScholarPubMed
Malinowski, D. P., Alloush, G. A. and Belesky, D. P. (2000). Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescue. Plant and Soil, 227, 115126.CrossRefGoogle Scholar
Martín, J. A., Macaya-Sanz, D. and Witzell, J. (2015). Strong in vitro antagonism by elm xylem endophytes is not accompanied by temporally stable in planta protection against a vascular pathogen under field conditions. European Journal of Plant Pathology, 142, 185196.CrossRefGoogle Scholar
McGrath, S., Hodkinson, T. R. and Barth, S. (2007). Extremely high cytoplasmic diversity in natural and breeding populations of Lolium (Poaceae). Heredity, 99, 531544.CrossRefGoogle ScholarPubMed
Mejía, L. C., Herre, E. A., Sparks, J. P. et al. (2014). Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Frontiers in Microbiology, 5, 479.Google Scholar
Mekete, T., Sikora, R. A., Kiewnick, S. and Hallmann, S. (2011). Description of plant parasitic nematodes associated with coffee in Ethiopia. Nematologia mediterranea, 36, 6977.Google Scholar
Moreira, A. S., Germaine, K. J., Lloyd, A. et al. (2016). Draft genome sequence of three endophyte strains of Pseudomonas fluorescens isolated from Miscanthus giganteus. Genome Announcements, 4(5), e00965–16.CrossRefGoogle ScholarPubMed
Moritz, C. and Cicero, C. (2004). DNA barcoding: promise and pitfalls. PLoS Biology, 2, e354.CrossRefGoogle ScholarPubMed
Murphy, B. R., Doohan, F. M. and Hodkinson, T. R. (2014). Persistent fungal root endophytes isolated from a wild barley species suppress seed-borne infections in a barley cultivar. BioControl, 60, 281292.CrossRefGoogle Scholar
Murphy, B. R., Batke, S. P., Doohan, F. M. and Hodkinson., T. R. (2015a). Media manipulations and the culture of beneficial fungal root endophytes. International Journal of Biology, 7, 94102.CrossRefGoogle Scholar
Murphy, B. R., Doohan, F. M. and Hodkinson, T. R. (2015b). Fungal root endophytes of a wild barley species increase yield in a nutrient-stressed barley cultivar. Symbiosis, 65, 17.CrossRefGoogle Scholar
Murphy, B. R., Martin Nieto, L., Doohan, F. M. and Hodkinson, T. R. (2015c). Fungal endophytes enhance agronomically important traits in severely drought-stressed barley. Journal of Agronomy and Crop Science, 201, 419427.CrossRefGoogle Scholar
Murphy, B. R., Martin Nieto, L., Doohan, F. M. and Hodkinson, T. R. (2015d). Profundae diversitas: the uncharted genetic diversity in a newly studied group of fungal root endophytes. Mycology, 6, 139150.CrossRefGoogle Scholar
Murphy, B. R., Doohan, F. M. and Hodkinson, T. R. (2018). From concept to commerce: developing a successful fungal endophyte inoculant for agricultural crops. Journal of Fungi, 4, 24, 211.CrossRefGoogle ScholarPubMed
Nutaratat, P., Srisuk, N., Arunrattiyakorn, P. and Limtong, S. (2014). Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biology, 118, 683694.CrossRefGoogle ScholarPubMed
O’Neil, N. R. and Farr, D. F. (1996). Miscanthus blight, a new foliar disease of ornamental grasses and sugarcane incited by Leptosphaeria sp. and its anamorphic state Stagonospora sp.. Plant Disease, 80, 980987.CrossRefGoogle Scholar
Pandey, R. R., Arora, D. K. and Dubey, R. C. (1993). Antagonistic interactions between fungal pathogens and phylloplane fungi of guava. Mycopathologia, 124, 3139.CrossRefGoogle Scholar
Perdereau, A., Klaas, M., Barth, S. and Hodkinson, T. R. (2017). Plastid genome sequencing reveals biogeographical structure and extensive population genetic variation in wild populations of Phalaris arundinacea L. in north-western Europe. GCB Bioenergy, 9, 4656.CrossRefGoogle Scholar
Rehner, S. A. and Buckley, E. (2005). A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia, 97, 8489.Google ScholarPubMed
Saikkonen, K., Young, C. A., Helander, M. and Schardl, C. L. (2016). Endophytic Epichloë species and their grass hosts: from evolution to applications. Plant Molecular Biology, 90, 665675.CrossRefGoogle ScholarPubMed
Salamin, N., Hodkinson, T. R. and Savolainen, V. (2005). Towards building the tree of life: a simulation study for all angiosperm genera. Systematic Biology, 54, 183196.CrossRefGoogle ScholarPubMed
Scauflaire, J., Gourgue, M., Foucart, G. et al. (2013). Fusarium miscanthi and other Fusarium species as causal agents of Miscanthus × giganteus rhizome rot in Belgium. European Journal of Plant Pathology, 137, 13.CrossRefGoogle Scholar
Schardl, C. L. (2001). Epichloë festucae and related mutualistic symbionts of grasses. Fungal Genetics and Biology, 33, 6982.CrossRefGoogle ScholarPubMed
Schmidt, C. S., Mrnka, L., Frantík, T. et al. (2017). Combined effects of fungal inoculants and the cytokinin-like growth regulator thidiazuron on growth, phytohormone contents and endophytic root fungi in Miscanthus × giganteus. Plant Physiology and Biochemistry, 120, 120e131.CrossRefGoogle ScholarPubMed
Schoch, C. L., Seifert, K. A., Huhndorf, S. et al. (2012). Fungal barcoding consortium. Proceedings of the National Academy of Sciences of the United States of America, 109, 62416246.CrossRefGoogle Scholar
Sharma, G. and Pandey, R. R. (2010). Influence of culture media on growth, colony character and sporulation of fungi isolated from decaying vegetable wastes. Journal of Yeast and Fungal Research, 1, 157164.Google Scholar
Shrestha, P., Ibáñez, A. B., Bauer, S. et al. (2015). Fungi isolated from Miscanthus and sugarcane: biomass conversion, fungal enzymes, and hydrolysis of plant cell wall polymers. Biotechnology for Biofuels, 8, 38.CrossRefGoogle ScholarPubMed
Stielow, J. B., Lévesque, C. A., Seifert, K. A. et al. (2015). One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes, Persoonia, 22, 242263.CrossRefGoogle Scholar
Straub, D., Rothballer, M., Hartmann, A. and Ludewig, U. (2013a). The genome of the endophytic bacterium H.frisingense GSF30T identifies diverse strategies in the Herbaspirillum genus to interact with plants. Frontiers in Microbiology, 4,168.CrossRefGoogle ScholarPubMed
Straub, D., Yang, H., Liu, Y., Tsap, T. and Ludewig, U. (2013b). Root ethylene signalling is involved in Miscanthus sinensis growth promotion by the bacterial endophyte Herbaspirillum frisingense GSF30T. Journal of Experimental Botany, 64, 4603–4615.CrossRefGoogle ScholarPubMed
Stuart, R. M., Romao, A. S., Pizzirani-Kleiner, A. A., Azevedo, J. L. and Araujo, W. L. (2010). Culturable endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane and its non-transgenic isolines. Archives of Microbiology, 192, 307313.CrossRefGoogle ScholarPubMed
Teerawatananon, A., Jacobs, S. W. L. and Hodkinson, T. R. (2011). Phylogenetics of Panicoideae (Poaceae) based on chloroplast and nuclear DNA sequences. Telopea, 13,115142.CrossRefGoogle Scholar
Vega, F. E., Posada, F., Aime, M. C. et al. (2008). Entomopathogenic fungal endophytes. Biological Control, 46, 7282.CrossRefGoogle Scholar
Verma, S., Varma, A., Rexer, K. et al. (1998). Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia, 90, 896903.CrossRefGoogle Scholar
Vilgalys, R. and Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology, 172, 42384246.CrossRefGoogle ScholarPubMed
Waller, F., Achatz, B., Baltruschat, H. et al. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences of the United States of America, 102, 1338613391.CrossRefGoogle ScholarPubMed
Wang, Y., Li, H., Feng, G., Du, L. and Zeng, D. (2017). Biodegradation of diuron by an endophytic fungus Neurospora intermedia DP8-1 isolated from sugarcane and its potential for remediating diuron-contaminated soils. PLoS One, 12, e0182556.CrossRefGoogle ScholarPubMed
White, T. J., Bruns, T., Lee, S. and Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications, ed. Innis, M. A Gelfand, D. H, Sninsky, J. J and White, T. J. New York: Academic Press Inc., pp. 315322.Google Scholar
Wilson, R.T. (1995). Livestock Production Systems. Umberleigh, UK: Bartridge Partners.Google Scholar
Xue, S., Kalinina, O. and Lewandowski, I. (2015). Present and future options for the improvement of Miscanthus propagation techniques. Renewable & Sustainable Energy Reviews, 49, 12331246.CrossRefGoogle Scholar
Yahr, R., Schoch, C. L. and Dentinger, B. T. M. (2016). Scaling up discovery of hidden diversity in fungi: impacts of barcoding approaches. Philosophical Transactions of the Royal Society B, 371, 20150336.CrossRefGoogle ScholarPubMed
Yost, M. A., Randall, B. K., Kitchen, N. R., Heaton, E. A. and Myers, R. L. (2017). Yield potential and nitrogen requirements of Miscanthus × giganteus on eroded soil. Agronomy Journal, 109, 684695.CrossRefGoogle Scholar
You, Y.-H., Yoon, H.-J., Woo, J.-R. et al. (2011). Plant growth-promoting activity of endophytic fungi isolated from the roots of native plants in Dokdo Islands. Journal of Life Science, 21, 16191624.CrossRefGoogle Scholar

References

Ahmad, F., Husain, F. M. and Ahmad, I. (2011). Rhizosphere and root colonization by bacterial inoculants and their monitoring methods: a critical area in PGPR research. In Microbes and Microbial Technology: Agricultural and Environmental Applications, ed. Ahmad, I., Ahmad, F. and Pichtel, J.. New York: Springer, pp. 363391.CrossRefGoogle Scholar
Aman, M. and Rai, V. R. (2016). Antifungal activity of novel indole derivative from endophytic bacteria Pantoea ananatis 4G-9 against Mycosphaerella musicola. Biocontrol Science and Technology, 26, 476491.CrossRefGoogle Scholar
Baltrus, D. A., Nishimura, M. T., Romanchuk, A. et al. (2011). Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates. Plos Pathogens, 7, e1002132.CrossRefGoogle Scholar
Barak, J. D., Gorski, L., Naraghi-Arani, P. et al. (2005). Salmonella enterica virulence genes are required for bacterial attachment to plant tissue. Applied and Environmental Microbiology, 71, 56855691.CrossRefGoogle ScholarPubMed
Bashan, Y. (1991). Airborne transmission of the rhizosphere bacterium Azospirillum. Microbial Ecology, 22, 257269.CrossRefGoogle Scholar
Bashan, Y. and Holguin, G. (1994). Root-to-root travel of the beneficial bacterium Azospirillum brasilense. Applied and Environmental Microbiology, 60, 21202131.CrossRefGoogle ScholarPubMed
Bazzi, C., Piazza, C. and Burr, T. J. (1987). Detection of Agrobacterium tumefaciens in grapevine cuttings. EPPO Bulletin, 17, 105112.CrossRefGoogle Scholar
Beckers, B., De Beeck, M. O., Thijs, S. et al. (2016). Performance of 16s rDNA primer pairs in the study of rhizosphere and endosphere bacterial microbiomes in metabarcoding studies. Frontiers in Microbiology, 7, 650.CrossRefGoogle Scholar
Bell, C. R., Dickie, G. A., Harvey, W. L. G. et al. (1995). Endophytic bacteria in grapevine. Canadian Journal of Microbiology, 41, 4653.CrossRefGoogle Scholar
Berger, C. N., Sodha, S. V., Shaw, R. K. et al. (2010). Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environmental Microbiology, 12, 23852397.CrossRefGoogle ScholarPubMed
Bertani, I., Abbruscato, P., Piffanelli, P. et al. (2016). Rice bacterial endophytes: Isolation of a collection, identification of beneficial strains and microbiome analysis. Environmental Microbiology Reports, 8, 388398.CrossRefGoogle ScholarPubMed
Bextine, B., Lampe, D., Lauzon, C. et al. (2005). Establishment of a genetically marked insect-derived symbiont in multiple host plants. Current Microbiology, 50, 17.CrossRefGoogle ScholarPubMed
Bhore, S. J., Ravichantar, N. and Loh, C. Y. (2010). Screening of endophytic bacteria isolated from leaves of Sambung Nyawa [Gynura procumbens (Lour.) Merr.] for cytokinin-like compounds. Bioinformation, 5, 191197.CrossRefGoogle ScholarPubMed
Bodenhausen, N., Horton, M. W. and Bergelson, J. (2013). Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One, 8, e56329.CrossRefGoogle ScholarPubMed
Bovallius, A., Bucht, B., Roffey, R. et al. (1978). Long-range air transmission of bacteria. Applied and Environmental Microbiology, 35, 12311232.CrossRefGoogle ScholarPubMed
Brandl, M. T. (2006). Fitness of human enteric pathogens on plants and implications for food safety. Annual Review of Phytopathology, 44, 367392.CrossRefGoogle ScholarPubMed
Bright, M. and Bulgheresi, S. (2010). A complex journey: transmission of microbial symbionts. Nature Reviews Microbiology, 8, 218230.CrossRefGoogle ScholarPubMed
Caporaso, J. G., Lauber, C. L., Walters, W. A. et al. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America, 108, 45164522.CrossRefGoogle Scholar
Castillo, U., Harper, J. K., Strobel, G. A. et al. (2003). Kakadumycins, novel antibiotics from Streptomyces sp NRRL 30566, an endophyte of Grevillea pteridifolia. Fems Microbiology Letters, 224, 183190.CrossRefGoogle ScholarPubMed
Castillo, U. F., Strobel, G. A., Ford, E. J. et al. (2002). Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology-Sgm, 148, 26752685.CrossRefGoogle ScholarPubMed
Chatterjee, S., Almeida, R. P. P. and Lindow, S. (2008). Living in two worlds: the plant and insect lifestyles of Xylella fastidiosa. Annual Review of Phytopathology, 46, 243271.CrossRefGoogle ScholarPubMed
Chee-Sanford, J. C., Williams, M. M., Davis, A. S. and Sims, G. K. (2006). Do microorganisms influence seed-bank dynamics? Weed Science, 54, 575587.CrossRefGoogle Scholar
Chi, F., Shen, S.-H., Cheng, H.-P. et al. (2005). Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Applied and Environmental Microbiology, 71, 72717278.CrossRefGoogle ScholarPubMed
Compant, S., Reiter, B., Sessitsch, A. et al. (2005). Endophytic colonization of Vitis vinifera L. by plant-growth-promoting bacterium Burkholderia sp strain PsJN. Applied and Environmental Microbiology, 71, 16851693.CrossRefGoogle ScholarPubMed
Copeland, J. K., Yuan, L. J., Layeghifard, M. et al. (2015). Seasonal community succession of the phyllosphere microbiome. Molecular Plant–Microbe Interactions, 28, 274285.CrossRefGoogle ScholarPubMed
Costa, L. E. D., De Queiroz, M. V., Borges, A. C. et al. (2012). Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Brazilian Journal of Microbiology, 43, 15621575.CrossRefGoogle Scholar
Curtis, T. P., Head, I. M., Lunn, M. et al. (2006). What is the extent of prokaryotic diversity? Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 20232037.CrossRefGoogle ScholarPubMed
Ding, T. and Melcher, U. (2016). Influences of plant species, season and location on leaf endophytic bacterial communities of non-cultivated plants. PLoS One, 11, e0150895.CrossRefGoogle ScholarPubMed
Ding, L., Munich, J., Goerls, H. et al. (2010). Xiamycin, a pentacyclic indolosesquiterpene with selective anti-HIV activity from a bacterial mangrove endophyte. Bioorganic & Medicinal Chemistry Letters, 20, 66856687.CrossRefGoogle ScholarPubMed
Ding, L., Maier, A., Fiebig, H. H. et al. (2011). A family of multicyclic indolosesquiterpenes from a bacterial endophyte. Organic & Biomolecular Chemistry, 9, 40294031.CrossRefGoogle ScholarPubMed
Dong, Z. M., Canny, M. J., McCully, M. E. et al. (1994). A nitrogen-fixing endophyte of sugarcane stems: a new role for the apoplast. Plant Physiology, 105, 11391147.CrossRefGoogle ScholarPubMed
Ezra, D., Castillo, U. F., Strobel, G. A. et al. (2004). Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp (MSU-2110) endophytic on Monstera sp. Microbiology-Sgm, 150, 785793.CrossRefGoogle ScholarPubMed
Ferreira, A., Quecine, M. C., Lacava, P. T. et al. (2008). Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. Fems Microbiology Letters, 287, 814.CrossRefGoogle ScholarPubMed
Fouhy, F., Clooney, A. G., Stanton, C. et al. (2016). 16S rRNA gene sequencing of mock microbial populations: impact of DNA extraction method, primer choice and sequencing platform. BMC Microbiology, 16, 123.CrossRefGoogle ScholarPubMed
Franco, C., Michelsen, P., Percy, N. et al. (2007). Actinobacterial endophytes for improved crop performance. Australasian Plant Pathology, 36, 524531.CrossRefGoogle Scholar
Frank, A., Saldierna Guzmán, J. and Shay, J. (2017). Transmission of bacterial endophytes. Microorganisms, 5, E70.CrossRefGoogle ScholarPubMed
Gagne-Bourgue, F., Aliferis, K. A., Seguin, P. et al. (2013). Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum L.) cultivars. Journal of Applied Microbiology, 114, 836853.CrossRefGoogle ScholarPubMed
Gai, C. S., Lacava, P. T., Quecine, M. C. et al. (2009). Transmission of Methylobacterium mesophilicum by Bucephalogonia xanthophis for paratransgenic control strategy of citrus variegated chlorosis. Journal of Microbiology, 47, 448454.CrossRefGoogle ScholarPubMed
Gamalero, E. and Glick, B. R. (2015). Bacterial modulation of plant ethylene levels. Plant Physiology, 169, 1322.CrossRefGoogle ScholarPubMed
Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169, 3039.CrossRefGoogle ScholarPubMed
Gonella, E., Pajoro, M., Marzorati, M. et al. (2015). Plant-mediated interspecific horizontal transmission of an intracellular symbiont in insects. Scientific Reports, 5, 15811.CrossRefGoogle ScholarPubMed
Hallmann, J. (2001). Biotic interactions in plant-pathogen associations. In Biotic Interactions in Plant-Pathogen Associations, ed. M. J. Jeger and N. J. Spence. Wallingford, UK: CAB International, pp. 87119.CrossRefGoogle Scholar
Hallmann, J., Kloepper, J. W. and Rodriguez-Kabana, R. (1997a). Application of the Scholander pressure bomb to studies on endophytic bacteria of plants. Canadian Journal of Microbiology, 43, 411416.CrossRefGoogle Scholar
Hallmann, J., Quadthallmann, A., Mahaffee, W. F. et al. (1997b). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43, 895914.CrossRefGoogle Scholar
Hardoim, P. R., Van Overbeek, L. S., Berg, G. et al. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79, 293320.CrossRefGoogle ScholarPubMed
Harrison, L., Teplow, D. B., Rinaldi, M. et al. (1991). Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad-spectrum antifungal activity. Journal of General Microbiology, 137, 28572865.CrossRefGoogle ScholarPubMed
Hartmann, R., Fricke, A., Stützel, H. et al. (2017). Internalization of Escherichia coli O157:H7 gfp+ in rocket and Swiss chard baby leaves as affected by abiotic and biotic damage. Letters in Applied Microbiology, 65, 3541.CrossRefGoogle ScholarPubMed
Heaton, J. C. and Jones, K. (2008). Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: a review. Journal of Applied Microbiology, 104, 613626.CrossRefGoogle ScholarPubMed
Horton, M. W., Bodenhausen, N., Beilsmith, K. et al. (2014). Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nature Communications, 5, 5320.CrossRefGoogle ScholarPubMed
Ikeda, S., Kaneko, T., Okubo, T. et al. (2009). Development of a bacterial cell enrichment method and its application to the community analysis in soybean stems. Microbial Ecology, 58, 703714.CrossRefGoogle Scholar
Ikeda, S., Okubo, T., Anda, M. et al. (2010). Community- and genome-based views of plant-associated bacteria: plant–bacterial interactions in soybean and rice. Plant and Cell Physiology, 51, 13981410.CrossRefGoogle ScholarPubMed
Ikenaga, M. and Sakai, M. (2014). Application of locked nucleic acid (LNA) oligonucleotide-PCR clamping technique to selectively PCR amplify the SSU rRNA genes of bacteria in investigating the plant-associated community structures. Microbes and Environments, 29, 286295.CrossRefGoogle ScholarPubMed
Iniguez, A. L., Dong, Y. M., Carter, H. D. et al. (2005). Regulation of enteric endophytic bacterial colonization by plant defenses. Molecular Plant–Microbe Interactions, 18, 169178.CrossRefGoogle ScholarPubMed
Izumi, H., Anderson, I. C., Killham, K. et al. (2008). Diversity of predominant endophytic bacteria in European deciduous and coniferous trees. Canadian Journal of Microbiology, 54, 173179.CrossRefGoogle ScholarPubMed
Jang, H. and Matthews, K. R. (2018). Influence of surface polysaccharides of Escherichia coli O157: H7 on plant defense response and survival of the human enteric pathogen on Arabidopsis thaliana and lettuce (Lactuca sativa). Food Microbiology, 70, 254261.CrossRefGoogle ScholarPubMed
Ji, K. X., Chi, F., Yang, M. F. et al. (2010). Movement of rhizobia inside tobacco and lifestyle alternation from endophytes to free-living rhizobia on leaves. Journal of Microbiology and Biotechnology, 20, 238244.CrossRefGoogle ScholarPubMed
Jiao, J. Y., Wang, H. X., Zeng, Y. et al. (2006). Enrichment for microbes living in association with plant tissues. Journal of Applied Microbiology, 100, 830837.CrossRefGoogle ScholarPubMed
Johnston-Monje, D. and Raizada, M. N. (2011). Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One, 6, e20396.CrossRefGoogle ScholarPubMed
Kamoun, S. and Kado, C. I. (1990). A plant-inducible gene of Xanthomonas-campestris pv campestris encodes an exocellular component required for growth in the host and hypersensitivity on nonhosts. Journal of Bacteriology, 172, 51655172.CrossRefGoogle ScholarPubMed
Kirchhof, G., Eckert, B., Stoffels, M. et al. (2001). Herbaspirillum frisingense sp nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants. International Journal of Systematic and Evolutionary Microbiology, 51, 157168.CrossRefGoogle Scholar
Kljujev, I., Raicevic, V., Vujovic, B. et al. (2018). Salmonella as an endophytic colonizer of plants: a risk for health safety vegetable production. Microbial Pathogenesis, 115, 199207.CrossRefGoogle ScholarPubMed
Kniskern, J. M., Traw, M. B. and Bergelson, J. (2007). Salicylic acid and jasmonic acid signaling defense pathways reduce natural bacterial diversity on Arabidopsis thaliana. Molecular Plant–Microbe Interactions, 20, 15121522.CrossRefGoogle ScholarPubMed
Kozich, J. J., Westcott, S. L., Baxter, N. T. et al. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Applied and Environmental Microbiology, 79, 51125120.CrossRefGoogle ScholarPubMed
Law, A. D., Fisher, C., Jack, A. et al. (2016). Tobacco, microbes, and carcinogens: correlation between tobacco cure conditions, tobacco-specific nitrosamine content, and cured leaf microbial community. Microbial Ecology, 72, 120129.CrossRefGoogle ScholarPubMed
Lebeis, S. L., Paredes, S. H., Lundberg, D. S. et al. (2015). Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science, 349, 860864.CrossRefGoogle ScholarPubMed
Lin, C., Lu, C. H. and Shen, Y. M. (2010). Three new 2-pyranone derivatives from mangrove endophytic actinomycete strain Nocardiopsis sp A00203. Records of Natural Products, 4, 176179.Google Scholar
Lin, W. H., Li, L. Y., Fu, H. Z. et al. (2005). New cyclopentenone derivatives from an endophytic Streptomyces sp isolated from the mangrove plant Aegiceras comiculatum. Journal of Antibiotics, 58, 594598.CrossRefGoogle ScholarPubMed
Lindemann, J., Constantinidou, H. A., Barchet, W. R. et al. (1982). Plants as sources of airborne bacteria, including ice nucleation-active bacteria. Applied and Environmental Microbiology, 44, 10591063.CrossRefGoogle ScholarPubMed
Liu, Y. X., Shi, J. X., Feng, Y. G. et al. (2013). Tobacco bacterial wilt can be biologically controlled by the application of antagonistic strains in combination with organic fertilizer. Biology and Fertility of Soils, 49, 447464.CrossRefGoogle Scholar
Lòpez-Fernàndez, S., Mazzoni, V., Pedrazzoli, F., Pertot, I. and Campisano, A. (2017). A phloem-feeding insect transfers bacterial endophytic communities between grapevine plants. Frontiers in Microbiology, 8, 834.CrossRefGoogle ScholarPubMed
Madhaiyan, M., Alex, T. H. H., Ngoh, S. T. et al. (2015). Leaf-residing Methylobacterium species fix nitrogen and promote biomass and seed production in Jatropha curcas. Biotechnology for Biofuels, 8, 222.CrossRefGoogle ScholarPubMed
Magnani, G. S., Didonet, C. M., Cruz, L. M. et al. (2010). Diversity of endophytic bacteria in Brazilian sugarcane. Genetics and Molecular Research, 9, 250258.CrossRefGoogle ScholarPubMed
Mano, H., Tanaka, F., Nakamura, C. et al. (2007). Culturable endophytic bacterial flora of the maturing leaves and roots of rice plants (Oryza sativa) cultivated in a paddy field. Microbes and Environments, 22, 175185.CrossRefGoogle Scholar
Mastretta, C., Taghavi, S., Van Der Lelie, D. et al. (2009). Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. International Journal of Phytoremediation, 11, 251267.CrossRefGoogle Scholar
McEvoy, A., O’Regan, F., Fleming, C. C. et al. (2016). Bleeding canker of horse chestnut (Aesculus hippocastanum) in Ireland: incidence, severity and characterization using DNA sequences and real-time PCR. Plant Pathology, 65, 14191429.CrossRefGoogle Scholar
Miller, C. M., Miller, R. V., Garton-Kenny, D. et al. (1998). Ecomycins, unique antimycotics from Pseudomonas viridiflava. Journal of Applied Microbiology, 84, 937944.CrossRefGoogle ScholarPubMed
Mitter, B., Pfaffenbichler, N., Flavell, R. et al. (2017). A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Frontiers in Microbiology, 8, 11.CrossRefGoogle ScholarPubMed
Morris, C. E., Barny, M. A., Berge, O. et al. (2017). Frontiers for research on the ecology of plant-pathogenic bacteria: Fundamentals for sustainability challenges in bacterial molecular plant pathology. Molecular Plant Pathology, 18, 308319.CrossRefGoogle ScholarPubMed
Mundt, J. O. and Hinkle, N. F. (1976). Bacteria within ovules and seeds. Applied and Environmental Microbiology, 32, 694698.CrossRefGoogle ScholarPubMed
Murphy, B. R., Doohan, F. M. and Hodkinson, T. R. (2018). From concept to commerce: developing a successful fungal endophyte inoculant for agricultural crops. Journal of Fungi (Basel), 4, E24.Google ScholarPubMed
Nocker, A., Burr, M. and Camper, A. K. (2007). Genotypic microbial community profiling: a critical technical review. Microbial Ecology, 54, 276289.CrossRefGoogle ScholarPubMed
Qin, S., Xing, K., Jiang, J.-H. et al. (2011). Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic Actinobacteria. Applied Microbiology and Biotechnology, 89, 457473.CrossRefGoogle ScholarPubMed
Qin, S., Chen, H.-H., Zhao, G.-Z. et al. (2012). Abundant and diverse endophytic Actinobacteria associated with medicinal plant Maytenus austroyunnanensis in Xishuangbanna tropical rainforest revealed by culture-dependent and culture-independent methods. Environmental Microbiology Reports, 4, 522531.CrossRefGoogle ScholarPubMed
Raaijmakers, J. M. and Mazzola, M. (2012). Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annual Review of Phytopathology, 50, 403424.CrossRefGoogle ScholarPubMed
Reinhold-Hurek, B. and Hurek, T. (2011). Living inside plants: bacterial endophytes. Current Opinion in Plant Biology, 14, 435443.CrossRefGoogle ScholarPubMed
Reiter, B. and Sessitsch, A. (2006). Bacterial endophytes of the wildflower Crocus albiflorus analyzed by characterization of isolates and by a cultivation-independent approach. Canadian Journal of Microbiology, 52, 140149.CrossRefGoogle ScholarPubMed
Ren, J. H., Li, H., Wang, Y. F. et al. (2013). Biocontrol potential of an endophytic Bacillus pumilus JK-SX001 against poplar canker. Biological Control, 67, 421430.CrossRefGoogle Scholar
Ren, X. L., Zhang, N., Cao, M. H. et al. (2012). Biological control of tobacco black shank and colonization of tobacco roots by a Paenibacillus polymyxa strain C5. Biology and Fertility of Soils, 48, 613620.CrossRefGoogle Scholar
Ringelberg, D., Foley, K. and Reynolds, C. M. (2012). Bacterial endophyte communities of two wheatgrass varieties following propagation in different growing media. Canadian Journal of Microbiology, 58, 6780.CrossRefGoogle ScholarPubMed
Roos, I. M. M. and Hattingh, M. J. (1983). Scanning electron-microscopy of Pseudomonas syringae pv morsprunorum on sweet cherry leaves. Journal of Phytopathology, 108, 1825.CrossRefGoogle Scholar
Rosenblueth, M. and Martinez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts. Molecular Plant–Microbe Interactions, 19, 827837.CrossRefGoogle ScholarPubMed
Ruppel, S., Hechtbuchholz, C., Remus, R. et al. (1992). Settlement of the diazotrophic, phytoeffective bacterial strain Pantoea agglomerans on and within winter-wheat – an investigation using ELISA and transmission electron-microscopy. Plant and Soil, 145, 261273.CrossRefGoogle Scholar
Ryan, R. P., Germaine, K., Franks, A. et al. (2008). Bacterial endophytes: recent developments and applications. Fems Microbiology Letters, 278, 19.CrossRefGoogle ScholarPubMed
Sakai, M. and Ikenaga, M. (2013). Application of peptide nucleic acid (PNA)-PCR clamping technique to investigate the community structures of rhizobacteria associated with plant roots. Journal of Microbiological Methods, 92, 281288.CrossRefGoogle ScholarPubMed
Saleem, M., Arshad, M., Hussain, S. et al. (2007). Perspective of plant-growth- promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology & Biotechnology, 34, 635648.CrossRefGoogle ScholarPubMed
Saleem, M., Law, A. D. and Moe, L. A. (2016). Nicotiana roots recruit rare rhizosphere taxa as major root-inhabiting microbes. Microbial Ecology, 71, 469472.CrossRefGoogle ScholarPubMed
Saleem, M., Meckes, N., Pervaiz, Z. H. et al. (2017). Microbial interactions in the phyllosphere increase plant performance under herbivore biotic stress. Frontiers in Microbiology, 8, 41.CrossRefGoogle ScholarPubMed
Saleem, M., Law, A. D., Sahib, M. R. et al. (2018). Impact of root system architecture on rhizosphere and root microbiome. Rhizosphere, 6, 4751.CrossRefGoogle Scholar
Santoyo, G., Moreno-Hagelsieb, G., Orozco-Mosqueda, M. D. et al. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research, 183, 9299.CrossRefGoogle ScholarPubMed
Schloss, P. D., Westcott, S. L., Ryabin, T. et al. (2009). Introducing MOTHUR: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 75377541.CrossRefGoogle ScholarPubMed
Seo, S. and Matthews, K. R. (2014). Exposure of Escherichia coli O157:H7 to soil, manure, or water influences its survival on plants and initiation of plant defense response. Food Microbiology, 38, 8792.CrossRefGoogle ScholarPubMed
Shen, Z. Y., Mustapha, A., Lin, M. S. et al. (2017). Biocontrol of the internalization of Salmonella enterica and Enterohaemorrhagic Escherichia coli in mung bean sprouts with an endophytic Bacillus subtilis. International Journal of Food Microbiology, 250, 3744.CrossRefGoogle ScholarPubMed
Simko, I., Zhou, Y. G. and Brandl, M. T. (2015). Downy mildew disease promotes the colonization of romaine lettuce by Escherichia coli O157:H7 and Salmonella enterica. BMC Microbiology, 15, 19.CrossRefGoogle ScholarPubMed
Sørensen, J. S. A. (2007). Plant-associated bacteria: lifestyle and molecular interactions. In Modern Soil Microbiology, 2 edn, ed. van Elsas, J. D., Jansson, J. K. and Trevors, J. T.. Boca Raton, FL: CRC Press, pp. 211236.Google Scholar
Sprent, J. I. and Defaria, S. M. (1988). Mechanisms of infection of plants by nitrogen-fixing organisms. Plant and Soil, 110, 157165.CrossRefGoogle Scholar
Stewart, E. J. (2012). Growing unculturable bacteria. Journal of Bacteriology, 194, 41514160.CrossRefGoogle ScholarPubMed
Strobel, G. and Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews, 67, 491502.CrossRefGoogle ScholarPubMed
Su, C., Lei, L. P., Duan, Y. Q. et al. (2012). Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Applied Microbiology and Biotechnology, 93, 9931003.CrossRefGoogle ScholarPubMed
Sumner, J. (2000). The Natural History of Medicinal Plants. Portland, OR: Timber Press.Google Scholar
Sun, L., Qiu, F. B., Zhang, X. X. et al. (2008). Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microbial Ecology, 55, 415424.CrossRefGoogle ScholarPubMed
Teplitski, M., Barak, J. D. and Schneider, K. R. (2009). Human enteric pathogens in produce: un-answered ecological questions with direct implications for food safety. Current Opinion in Biotechnology, 20, 166171.CrossRefGoogle ScholarPubMed
Tyler, H. L. and Triplett, E. W. (2008). Plants as a habitat for beneficial and/or human pathogenic bacteria. Annual Review of Phytopathology, 46, 5373.CrossRefGoogle ScholarPubMed
Tyson, G. W. and Banfield, J. F. (2005). Cultivating the uncultivated: a community genomics perspective. Trends in Microbiology, 13, 411415.CrossRefGoogle ScholarPubMed
Vijayan, P., Shockey, J., Levesque, C. A. et al. (1998). A role for jasmonate in pathogen defense of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 95, 72097214.CrossRefGoogle ScholarPubMed
Vorholt, J. A. (2012). Microbial life in the phyllosphere. Nature Reviews Microbiology, 10, 828840.CrossRefGoogle ScholarPubMed
Wang, H. X., Geng, Z. L., Zeng, Y. et al. (2008). Enriching plant microbiota for a metagenomic library construction. Environmental Microbiology, 10, 26842691.CrossRefGoogle ScholarPubMed
Warriner, K. and Namvar, A. (2010). The tricks learnt by human enteric pathogens from phytopathogens to persist within the plant environment. Current Opinion in Biotechnology, 21, 131136.CrossRefGoogle ScholarPubMed
Warriner, K., Ibrahim, F., Dickinson, M. et al. (2003). Internalization of human pathogens within growing salad vegetables. Biotechnology & Genetic Engineering Reviews, 20, 117134.CrossRefGoogle ScholarPubMed
Wennstrom, A. (1994). Endophyte: the misuse of an old term. Oikos, 71, 535536.CrossRefGoogle Scholar
Wilson, D. (1995). Endophyte: the evolution of a term, and clarification of its use and definition. Oikos, 73, 274276.CrossRefGoogle Scholar
Wistrom, C. and Purcell, A. H. (2005). The fate of Xylella fastidiosa in vineyard weeds and other alternate hosts in California. Plant Disease, 89, 994999.CrossRefGoogle ScholarPubMed
Wright, K. M., Crozier, L., Marshall, J. et al. (2017). Differences in internalization and growth of Escherichia coli O157:H7 within the apoplast of edible plants, spinach and lettuce, compared with the model species Nicotiana benthamiana. Microbial Biotechnology, 10, 555569.CrossRefGoogle ScholarPubMed
Yang, B., Wang, Y. and Qian, P. Y. (2016). Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics, 17, 135.CrossRefGoogle ScholarPubMed
You, C. B., Lin, M., Fang, X. J. et al. (1995). Attachment of Alcaligenes to rice roots. Soil Biology & Biochemistry, 27, 463466.CrossRefGoogle Scholar
Zhang, H. W., Song, Y. C. and Tan, R. X. (2006). Biology and chemistry of endophytes. Natural Product Reports, 23, 753771.CrossRefGoogle ScholarPubMed
Zhang, X., Zhou, Y. Y., Li, Y. et al. (2017). Screening and characterization of endophytic Bacillus for biocontrol of grapevine downy mildew. Crop Protection, 96, 173179.CrossRefGoogle Scholar
Zhao, Y. F., Sundin, G. W. and Wang, D. P. (2009). Construction and analysis of pathogenicity island deletion mutants of Erwinia amylovora. Canadian Journal of Microbiology, 55, 457464.CrossRefGoogle ScholarPubMed

References

Abuamsha, R., Salman, M. and Ehlers, R.-U. (2011). Improvement of seed bio-priming of oilseed rape (Brassica napus ssp. oleifera) with Serratia plymuthica and Pseudomonas chlororaphis. Biocontrol Science and Technology, 21, 199213.Google Scholar
Achouak, W., Sutra, L., Heulin, T. et al. (2000). Pseudomonas brassicacearum sp. nov. and Pseudomonas thivervalensis sp. nov., two root-associated bacteria isolated from Brassica napus and Arabidopsis thaliana. International Journal of Systematic and Evolutionary Microbiology, 50, 1, 918.CrossRefGoogle ScholarPubMed
Ahemad, M. and Khan, M. S. (2010). Comparative toxicity of selected insecticides to pea plants and growth promotion in response to insecticide-tolerant and plant-growth-promoting Rhizobium leguminosarum. Crop Protection, 29, 325329.CrossRefGoogle Scholar
Alström, S. (2001). Characteristics of bacteria from oilseed rape in relation to their biocontrol activity against Verticillium dahliae. Journal of Phytopathology, 149, 5764.CrossRefGoogle Scholar
Anderson, A., Baldock, J. A., Rogers, S. L., Bellotti, W. and Gill, G. (2004). Influence of chlorsulfuron on rhizobial growth, nodule formation, and nitrogen fixation with chickpea. Australian Journal of Agricultural Research, 55, 10591070.CrossRefGoogle Scholar
Angus, J., Herwaarden, A., Howe, G. and Van, H. A. (1991). Productivity and break crop effects of winter-growing oilseeds. Australian Journal of Experimental Agriculture, 31, 669677.CrossRefGoogle Scholar
Bais, H. P., Park, S. W., Weir, T. L., Callaway, R. M. and Vivanco, J. M. (2004). How plants communicate using the underground information superhighway. Trends in Plant Science, 9, 2632.CrossRefGoogle ScholarPubMed
Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S. and Vivanco, J. M. (2006). The role of root exudates in rhizosphere interations with plants and other organisms. Annual Review of Plant Biology, 57, 233–266.CrossRefGoogle Scholar
Ball, B. C., Bingham, I., Rees, R. M., Watson, C. A. and Litterick, A. (2005). The role of crop rotations in determining soil structure and crop growth conditions. Canadian Journal of Soil Science, 85, 557577.CrossRefGoogle Scholar
Berg, G. (2009). Plant-microbe interactions promoting plant growth and health, perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84, 1118.CrossRefGoogle ScholarPubMed
Boldt, T. S. and Jacobsen, C. S. (1998). Different toxic effects of the sulfonylurea herbicides metsulfuron methyl, chlorsulfuron and thifensulfuron methyl on fluorescent pseudomonads isolated from an agricultural soil. FEMS Microbiology Letters, 161, 2935.CrossRefGoogle Scholar
Bottini, R., Cassan, F. and Piccoli, P. (2004). Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Applied Microbiology and Biotechnology, 65, 497503.CrossRefGoogle ScholarPubMed
Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E. and Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807838.CrossRefGoogle ScholarPubMed
Bulgarelli, D., Rott, M., Schlaeppi, K. et al. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 488, 9195.CrossRefGoogle ScholarPubMed
Cardone, M., Mazzoncini, M., Menini, S. et al. (2003). Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: agronomic evaluation, fuel production by transesterification and characterization. Biomass and Bioenergy, 25, 623636.CrossRefGoogle Scholar
Christen, O., Sieling, K. and Hanus, H. (1992). The effect of different preceding crops on the development, growth and yield of winter wheat. European Journal of Agronomy, 1, 2128.CrossRefGoogle Scholar
Costa, R., Gotz, M., Mrotzek, N. et al. (2006). Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiology Ecology, 56, 236249.CrossRefGoogle ScholarPubMed
Costa, R., Gomes, N. C., Krogerrecklenfort, E. et al. (2007). Pseudomonas community structure and antagonistic potential in the rhizosphere: insights gained by combining phylogenetic and functional gene-based analyses. Environmental Microbiology, 9, 22602273.CrossRefGoogle ScholarPubMed
Croes, S., Weyens, N., Janssen, J. et al. (2013). Bacterial communities associated with Brassica napus L. grown on trace element-contaminated and non-contaminated fields: a genotypic and phenotypic comparison. Microbial Biotechnology, 6, 371384.CrossRefGoogle Scholar
Danielsson, J., Reva, O. and Meijer, J. (2007). Protection of oilseed rape (Brassica napus) toward fungal pathogens by strains of plant-associated Bacillus amyloliquefaciens. Microbial Ecology, 54, 134140.CrossRefGoogle ScholarPubMed
Datta, A., Sindel, B. M., Kristiansen, P., Jessop, R. S. and Felton, W. L. (2009). Effect of isoxaflutole on the growth, nodulation and nitrogen fixation of chickpea (Cicer arietinum L.). Crop Protection, 28, 923927.CrossRefGoogle Scholar
Degrune, F., Theodorakopoulos, N., Colinet, G. et al. (2017). Temporal dynamics of soil microbial communities below the seedbed under two contrasting tillage regimes. Frontiers in Microbiology, 8, 1127.CrossRefGoogle ScholarPubMed
Delourme, R., Falentin, C., Huteau, V. et al. (2006). Genetic control of oil content in oilseed rape (Brassica napus L.). Theoretical and Applied Genetics, 113, 13311345.CrossRefGoogle ScholarPubMed
Dorr de Quadros, P., Zhalnina, K., Davis-Richardson, A. et al. (2012). The effect of tillage system and crop rotation on soil microbial diversity and composition in a subtropical acrisol. Diversity, 4, 375.CrossRefGoogle Scholar
Eberbach, P. L. and Douglas, L. A. (1989). Herbicide effects on the growth and nodulation potential of Rhizobium trifolii with Trifolium subterraneum L. Plant and Soil, 119, 1523.CrossRefGoogle Scholar
Eliason, R., Schoenau, J. J., Szmigielski, A. M. and Laverty, W. M. (2004). Phytotoxicity and persistence of flucarbazone-sodium in soil. Weed Science, 52, 857862.CrossRefGoogle Scholar
Etesami, H. and Alikhani, H. A. (2016). Rhizosphere and endorhiza of oilseed rape (Brassica napus L.) plant harbor bacteria with multifaceted beneficial effects. Biological Control, 94, 1124.CrossRefGoogle Scholar
Fang, Y., Zhang, L., Jiao, Y. et al. (2016). Tobacco rotated with rapeseed for soil-borne Phytophthora pathogen biocontrol: mediated by rapeseed root exudates. Frontiers in Microbiology, 7, 894.CrossRefGoogle ScholarPubMed
Farrar, K., Bryant, D. and Cope-Selby, N. (2014). Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnology Journal, 12, 11931206.CrossRefGoogle ScholarPubMed
Fernandez, O., Theocharis, A., Bordiec, S. et al. (2012). Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Molecular Plant–Microbe Interactions, 25, 496504.CrossRefGoogle ScholarPubMed
Fiddaman, P. J. and Rossall, S. (1995). Selection of bacterial antagonists for the biological control of Rhizoctonia solani in oilseed rape (Brassica napus). Plant Pathology, 44, 695703.CrossRefGoogle Scholar
Fox, J. E., Gulledge, J., Engelhaupt, E., Burow, M. E. and McLachlan, J. A. (2007). Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. Proceedings of the National Academy of Sciences of the United States of America, 104, 1028210287.CrossRefGoogle ScholarPubMed
Garbeva, P., van Veen, J. A. and van Elsas, J. D. (2004). Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 42, 243270.CrossRefGoogle ScholarPubMed
García-Orenes, F., Guerrero, C., Roldán, A. et al. (2010). Soil microbial biomass and activity under different agricultural management systems in a semiarid Mediterranean agroecosystem. Soil and Tillage Research, 109, 110115.CrossRefGoogle Scholar
García-Orenes, F., Morugán-Coronado, A., Zornoza, R. and Scow, K. (2013). Changes in soil microbial community structure influenced by agricultural management practices in a Mediterranean agro-ecosystem. PLoS One, 8, e80522.CrossRefGoogle Scholar
George, T. S., Dou, D. and Wang, X. (2016). Plant-microbe interactions: manipulating signals to enhance agricultural sustainability and environmental security. Plant Growth Regulation, 80, 13.CrossRefGoogle Scholar
Germaine, K. J., Liu, X., Cabellos, G. G., Hogan, J. P., Ryan, D. and Dowling, D. N. (2006). Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid. FEMS Microbiology Ecology, 57, 302310.CrossRefGoogle Scholar
Germida, J. J., Siciliano, S. D., Renato de Freitas, J. and Seib, A. M. (1998). Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiology Ecology, 26, 4350.Google Scholar
Giller, P. S. (1996). The diversity of soil communities, the ‘poor man’s tropical rainforest’. Biodiversity and Conservation, 5, 135168.CrossRefGoogle Scholar
Gkarmiri, K., Mahmood, S., Ekblad, A., Alstrom, S., Hogberg, N. and Finlay, R. (2017). Identifying the active microbiome associated with roots and rhizosphere soil of oilseed rape. Applied and Environmental Microbiology, 83, e01938-17.CrossRefGoogle ScholarPubMed
Godfray, H. C., Beddington, J. R., Crute, I. R. et al. (2010). Food security: the challenge of feeding 9 billion people. Science, 327, 812818.CrossRefGoogle ScholarPubMed
Granér, G. (2002). Studies on Fungal Pathogens on Oilseed Rape (Brassica napus). Uppsala, Sweden: Sveriges Lantbruksuniversitet (Swedish University of Agricultural Sciences).Google Scholar
Granér, G., Persson, P., Meijer, J. and Alstrom, S. (2003). A study on microbial diversity in different cultivars of Brassica napus in relation to its wilt pathogen, Verticillium longisporum. FEMS Microbiology Letters, 224, 269276.CrossRefGoogle Scholar
He, H., Ye, Z., Yang, D. et al. (2013). Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere, 90, 19601965.CrossRefGoogle ScholarPubMed
Hegewald, H., Koblenz, B., Wensch-Dorendorf, M. and Christen, O. (2017). Yield, yield formation, and blackleg disease of oilseed rape cultivated in high-intensity crop rotations. Archives of Agronomy and Soil Science, 63, 17851799.CrossRefGoogle Scholar
Hooper, D. U., Bignell, D. E., Brown, V. K. et al. (2000). Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks. BioScience, 50, 10491061.CrossRefGoogle Scholar
Hopkins, B. G., Hutchinson, P. J., Patterson, P. et al. (2004). Cropping sequence and rotation: impact on potato production and soil condition. Proceedings of the University of Idaho Winter Commodity Schools, 35, 97109.Google Scholar
Jeon, J. S., Lee, S. S., Kim, H. Y. et al. (2003). Plant growth promotion in soil by some inoculated microorganisms. The Journal of Microbiology, 41, 271276.Google Scholar
Jiang, M. L., Zhao, R., Hu, X. J., Zhang, Y. B. and Wang, G. P. (2007). Colonization of antifungal endobacterium BY-2 in oilcrop rape and its control effect on disease caused by Sclerotinia sclerotiorum. Acta Phytopathologica Sinica, 37, 192196.Google Scholar
Kalia, A. and Gosal, S. K. (2011). Effect of pesticide application on soil microorganisms. Archives of Agronomy and Soil Science, 57, 569596.CrossRefGoogle Scholar
Khan, M. S., Zaidi, A. and Aamil, M. (2004). Influence of herbicides on chickpea-Mesorhizobium symbiosis. Agronomie 24, 123127.CrossRefGoogle Scholar
Kirkegaard, J., Christen, O., Krupinsky, J. and Layzell, D. (2008). Break crop benefits in temperate wheat production. Field Crops Research, 107, 185195.CrossRefGoogle Scholar
Kwak, Y.-S. and Weller, D. M. (2013). Take-all of wheat and natural disease suppression: a review. The Plant Pathology Journal, 29, 125135.CrossRefGoogle ScholarPubMed
Lally, R. D., Galbally, P., Moreira, A. S. et al. (2017). Application of endophytic Pseudomonas fluorescens and a bacterial consortium to Brassica napus can increase plant height and biomass under greenhouse and field conditions. Frontiers in Plant Science, 8, 2193.CrossRefGoogle Scholar
Larkin, R. P., Griffin, T. S. and Honeycutt, C. W. (2010). Rotation and cover crop effects on soilborne potato diseases, tuber yield, and soil microbial communities. Plant Disease, 94, 14911502.CrossRefGoogle ScholarPubMed
Le Cocq, K., Gurr, S. J., Hirsch, P. R. and Mauchline, T. H. (2017). Exploitation of endophytes for sustainable agricultural intensification. Molecular Plant Pathology, 18, 469473.CrossRefGoogle ScholarPubMed
Lehman, M. R., Cambardella, A. C., Stott, E. D. et al. (2015). Understanding and enhancing soil biological health: the solution for reversing soil degradation. Sustainability, 7, 988–1027.CrossRefGoogle Scholar
Lehman, R. M., Osborne, S. L. and Duke, S. E. (2017). Diversified no-till crop rotation reduces nitrous oxide emissions, increases soybean yields, and promotes soil carbon accrual. Soil Science Society of America Journal, 81, 7683.CrossRefGoogle Scholar
Lundberg, D. S., Lebeis, S. L., Paredes, S. H. et al. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature, 488, 8690.CrossRefGoogle ScholarPubMed
McDaniel, M. D., Tiemann, L. K. and Grandy, A. S. (2014). Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecological Applications, 24, 560570.CrossRefGoogle ScholarPubMed
Mendes, R., Kruijt, M., de Bruijn, I. et al. (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332, 10971100.CrossRefGoogle ScholarPubMed
Montalban, B., Croes, S., Weyens, N. et al. (2016). Characterization of bacterial communities associated with Brassica napus L. growing on a Zn-contaminated soil and their effects on root growth. Internation Journal of Phytoremediation, 18, 985993.CrossRefGoogle ScholarPubMed
Murphy, B. R., Doohan, F. M. and Hodkinson, T. R. (2018). From concept to commerce: developing a successful fungal endophyte inoculant for agricultural crops. Journal of Fungi, 4, 211.CrossRefGoogle ScholarPubMed
Navarro-Noya, Y. E., Gómez-Acata, S., Montoya-Ciriaco, N. et al. (2013). Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biology and Biochemistry, 65, 8695.CrossRefGoogle Scholar
O’Callaghan, K. J., Stone, P. J., Hu, X. et al. (2000). Effects of glucosinolates and flavonoids on colonization of the roots of Brassica napus by Azorhizobium caulinodans ORS571. Applied Environmental Microbiology, 66, 21852191.CrossRefGoogle ScholarPubMed
Pampulha, M. E. and Oliveira, A. (2006). Impact of an herbicide combination of bromoxynil and prosulfuron on soil microorganisms. Current Microbiology, 53, 238243.CrossRefGoogle ScholarPubMed
Peters, R. D., Sturz, A. V., Carter, M. R. and Sanderson, J. B. (2003). Developing disease-suppressive soils through crop rotation and tillage management practices. Soil and Tillage Research, 72, 181192.CrossRefGoogle Scholar
Pham, C., Min, J. and Gu, M. (2004). Pesticide induced toxicity and stress response in bacterial cells. Bulletin of Environmental Contamination and Toxicology, 72, 380386.CrossRefGoogle ScholarPubMed
Raaijmakers, J. M. and Weller, D. M. (1998). Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Molecular Plant–Microbe Interactioins, 11, 144152.CrossRefGoogle Scholar
Rajesh, R. and Fern, W. G. D. (2006). Preliminary phenotypic and molecular screening for potential bacterial biocontrol agents of Leptosphaeria maculans, the blackleg pathogen of canola. Biocontrol Science and Technology, 16, 567582.Google Scholar
Rathore, R., Dowling, D. N., Forristal, P. D. et al. (2017). Crop establishment practices are a driver of the plant microbiota in winter oilseed rape (Brassica napus L.). Frontiers in Microbiology, 8, 1489.CrossRefGoogle Scholar
Rybakova, D., Mancinelli, R., Wikstrom, M. et al. (2017). The structure of the Brassica napus seed microbiome is cultivar-dependent and affects the interactions of symbionts and pathogens. Microbiome, 5, 104.CrossRefGoogle ScholarPubMed
Schonhammer, A. and Fischbeck, G. (1987). Investigations on cereal crop rotations and monocultures. III. Changes in soil properties. Bayerisches Landwirt Jahrb, 64, 681694.Google Scholar
Schreiter, S., Ding, G.-C., Heuer, H. et al. (2014). Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Frontiers in Microbiology 5, 144.CrossRefGoogle ScholarPubMed
Seghers, D., Wittebolle, L., Top, E. M., Verstraete, W. and Siciliano, S. D. (2004). Impact of agricultural practices on the Zea mays L. endophytic community. Applied Environmental Microbiology, 70, 14751482.CrossRefGoogle ScholarPubMed
Sheng, X.-F., Xia, J.-J., Jiang, C.-Y., He, L.-Y. and Qian, M. (2008). Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environmental Pollution, 156, 11641170.CrossRefGoogle ScholarPubMed
Souza, R., Ambrosini, A. and Passaglia, L. M. P. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, 38, 401419.CrossRefGoogle ScholarPubMed
Steinfeld, H., de Haan, C. and Blackburn, H. (1998). Livestock and the environment, issues and options. In Agriculture and the Environment Perspectives on Sustainable Development, ed. E. Lutz. New York: World Bank, pp. 283301.Google Scholar
Teagasc (2009). Winter oilseed rape. Fact Sheet. Carlow, Ireland: Teagasc Crop Research Centre.Google Scholar
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. and Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418, 671677.CrossRefGoogle ScholarPubMed
Tilman, D., Balzer, C., Hill, J. and Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108, 2026020264.CrossRefGoogle ScholarPubMed
Trostle, R. (2008). Global Agricultural Supply and Demand: Factors Contributing to the Recent Increase in Food Commodity Prices. Washington, DC: US Department of Agriculture, Economic Research Service.Google Scholar
Wang, W., Deng, Z., Tan, H. and Cao, L. (2013). Effects of Cd, Pb, Zn, Cu-resistant endophytic Enterobacter sr CBSB1 and Rhodotorula sp. CBSB79 on the growth and phytoextraction of Brassica plants in multimetal contaminated soils. International Journal of Phytoremediation, 15, 488497.CrossRefGoogle ScholarPubMed
Weller, D. M., Raaijmakers, J. M., Gardener, B. B. and Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40, 309348.CrossRefGoogle ScholarPubMed
Whipps, J. M. (1997). Developments in the biological control of soil-borne plant pathogens. Advances in Botanical Research, 26, 1134.CrossRefGoogle Scholar
White, P. J., George, T. S., Gregory, P. J. et al. (2013). Matching roots to their environment. Annals of Botany, 112, 207222.CrossRefGoogle ScholarPubMed
Xing, K., Han, J. and Liu, H (2005). A preliminary study on the inhibitory effect of an endophytic bacterium yc8 isolated from rape. Acta Agriculturae Universitatis Jiangxiensis, 27, 852856.Google Scholar
Yin, C., Mueth, N., Hulbert, S. et al. (2017). Bacterial communities on wheat grown under long-term conventional tillage and no-till in the Pacific northwest of the United States. Phytobiomes, 1, 8390.CrossRefGoogle Scholar
Zhang, H., Sun, Y., Xie, X. et al. (2009). A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. The Plant Journal, 58, 568577.CrossRefGoogle ScholarPubMed
Zhao, Y., Gao, Z., Tian, B. et al. (2017). Endosphere microbiome comparison between symptomatic and asymptomatic roots of Brassica napus infected with Plasmodiophora brassicae. PLoS One, 12, e0185907.CrossRefGoogle ScholarPubMed

References

Acácio, V., Holmgren, M., Rego, F., Moreira, F. and Mohren, G. M. (2009). Are drought and wildfires turning Mediterranean cork oak forests into persistent shrublands? Agroforestry Systems, 76, 389400.CrossRefGoogle Scholar
Acácio, V., Dias, F. S., Catry, F. X., Rocha, M. and Moreira, F. (2017). Landscape dynamics in Mediterranean oak forests under global change: understanding the role of anthropogenic and environmental drivers across forest types. Global Change Biology, 23, 11991217.CrossRefGoogle ScholarPubMed
Allard, G., Berrahmouni, N., Besacier, C. et al. (2013). State of forest resources in the Mediterranean Region. In State of Mediterranean Forests 2013. Rome: FAO, pp. 27–114.Google Scholar
Alves, A., Correia, A., Luque, J. and Phillips, A. (2004). Botryosphaeria corticola, sp. nov. on Quercus species, with notes and description of Botryosphaeria stevensii and its anamorph, Diplodia mutila. Mycologia, 96, 598613.CrossRefGoogle ScholarPubMed
APCOR (2016). Cork Yearbook 2016. Santa Maria de Lamas, Portugal: Portuguese Cork Association.Google Scholar
Aranda, I., Castro, L., Alía, R., Pardos, J. A. and Gil, L. (2005a). Low temperature during winter elicits differential responses among populations of the Mediterranean evergreen cork oak (Quercus suber). Tree Physiology, 25, 10851090.CrossRefGoogle ScholarPubMed
Aranda, I., Castro, L., Pardos, M., Gil, L. and Pardos, J. A. (2005b). Effects of the interaction between drought and shade on water relations, gas exchange and morphological traits in cork oak (Quercus suber L.) seedlings. Forest Ecology and Management, 210, 117129.CrossRefGoogle Scholar
Arnold, A. E., Mejía, L. C., Kyllo, D. et al. (2003). Fungal endophytes limit pathogen damage in a tropical tree. Proceedings of the National Academy of Sciences of the United States of America, 100, 15649–54.Google Scholar
Aronson, J., Pereira, J. S. and Pausas, J. G., eds. (2012). Cork Oak Woodlands On The Edge: Ecology, Adaptive Management, and Restoration. Washington, DC: Island Press.Google Scholar
Aschmann, H. (1973). Distribution and peculiarity of Mediterranean ecosystems. In Mediterranean Type Ecosystems. Ecological Studies (Analysis and Synthesis), ed. F. di Castri and H. A. Mooney. Berlin: Springer, pp. 1119.CrossRefGoogle Scholar
Azad, K. and Kaminskyj, S. (2016). A fungal endophyte strategy for mitigating the effect of salt and drought stress on plant growth. Symbiosis, 68, 7378.CrossRefGoogle Scholar
Bae, H., Sicher, R. C., Kim, M. S. et al. (2009). The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. Journal of Experimental Botany, 60, 32793295.CrossRefGoogle ScholarPubMed
Bagnouls, F. and Gaussen, H. (1957). Les climats biologiques et leur classification. Annales de Géographie, 66, 193220.CrossRefGoogle Scholar
Besson, C. K., Otieno, D., Do Vale, R. L. et al. (2006). Hydraulic lift in cork oak trees in a savannah-type Mediterranean ecosystem and its contribution to the local water balance. Plant and Soil, 282, 361378.CrossRefGoogle Scholar
Besson, C. K., Do Vale, R. L., Rodrigues, M. L. et al. (2014). Cork oak physiological responses to manipulated water availability in a Mediterranean woodland. Agricultural and Forest Meteorology, 184, 230242.CrossRefGoogle Scholar
Boncaldo, E., Sicoli, G., Mannerucci, F. and Luisi, N. (2008). Characterisation of fungal endophytic communities of deciduous oak species in Southern Italy. Italian Journal of Forest and Mountain Environments, 63, 321332.Google Scholar
Braisier, C. M. (1996). Phytophthora cinnamomi and oak decline in southern Europe. Environmental constraints including climate change. Annales des Sciences Forestieres, 53, 347358.CrossRefGoogle Scholar
Brasier, C. M., Robredo, F. and Ferraz, J. F. P. (1993). Evidence for Phytophthora cinnamomi involvement in Iberian oak decline. Plant Pathology, 42, 140145.CrossRefGoogle Scholar
Bugalho, M. N., Caldeira, M. C., Pereira, J. S., Aronson, J. and Pausas, J. G. (2011). Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Frontiers in Ecology and the Environment, 9, 278286.CrossRefGoogle Scholar
Camilo-Alves, C. S. P., Clara, M. I. E. and Ribeiro, N. M. C. A. (2013). Decline of Mediterranean oak trees and its association with Phytophthora cinnamomi: a review. European Journal of Forest Research, 132, 411432.CrossRefGoogle Scholar
Camilo-Alves, C. S. P., Vaz, M., Da Clara, M. I. E. and Ribeiro, N. M. A. (2017). Chronic cork oak decline and water status: new insights. New Forests, 48, 753772.CrossRefGoogle Scholar
Capelo, J. and Catry, F. (2007). A distribuição do sobreiro em Portugal. In Os Montados – Muito para além das árvores. Vol. 3, ed. J. S. Silva. Colecção Árvores e Florestas de Portugal. Jornal Público/Fundação Luso-Americana para o Desenvolvimento/Liga para a Protecção da Natureza. Lisboa. 9 vols, pp. 107–113.Google Scholar
Caritat, A., Molinas, M. and Gutiérrez, E. (1996). Annual cork-ring width variability of Quercus suber L. in relation to temperature and precipitation (Extremadura, southwestern Spain). Forest Ecology and Management, 86, 113120.CrossRefGoogle Scholar
Caritat, A., Gutierrez, E. and Molinas, M. (2000). Influence of weather on cork-ring width. Tree Physiology, 20, 893900.CrossRefGoogle ScholarPubMed
Carrete, M. and Donázar, J. A. (2005). Application of central-place foraging theory shows the importance of Mediterranean dehesas for the conservation of the cinereous vulture, Aegypius monachus. Biological Conservation, 126, 582590.CrossRefGoogle Scholar
Collado, J., Platas, G., González, I. and Peláez, F. (1999). Geographical and seasonal influences on the distribution of fungal endophytes in Quercus ilex. New Phytologist, 144, 525532.CrossRefGoogle ScholarPubMed
Compant, S., Heijden, M. G. A. and Sessitsch, A. (2010). Climate change effects on beneficial plant–microorganism interactions. FEMS Microbiology Ecology, 73, 197214.Google ScholarPubMed
Costa, A., Pereira, H. and Oliveira, A. (2001). A dendroclimatological approach to diameter growth in adult cork-oak trees under production. Trees – Structure and Function, 15, 438443.CrossRefGoogle Scholar
Costa, A., Madeira, M. and Oliveira, Â. C. (2008). The relationship between cork oak growth patterns and soil, slope and drainage in a cork oak woodland in Southern Portugal. Forest Ecology and Management, 255, 15251535.CrossRefGoogle Scholar
Costa, A., Pereira, H. and Madeira, M. (2010). Analysis of spatial patterns of oak decline in cork oak woodlands in Mediterranean conditions. Annals of Forest Science, 67, 204204.CrossRefGoogle Scholar
Costa, A., Nunes, L. C., Spiecker, H. and Graça, J. (2015). Insights into the responsiveness of cork oak (Quercus suber L.) to bark harvesting. Economic Botany, 69, 171184.CrossRefGoogle Scholar
Costa, A., Barbosa, I., Roussado, C., Graça, J. and Spiecker, H. (2016). Climate response of cork growth in the Mediterranean oak (Quercus suber L.) woodlands of southwestern Portugal. Dendrochronologia, 38, 7281.CrossRefGoogle Scholar
Council of European Union (1992). Council directive 92/43/EEC. Official Journal of the European Communities, L 269, 115.Google Scholar
Dastogeer, K. M. G. and Wylie, S. J. (2017). Plant-fungi association: Role of fungal endophytes in improving plant tolerance to water stress. In Plant–Microbe Interactions in Agro-Ecological Perspectives, ed. D. P. Singh, H. B. Singh and R. Prabha. Singapore: Springer Singapore, pp. 161176.Google Scholar
Desprez-Loustau, M. L., Marçais, B., Nageleisen, L. M., Piou, D. and Vannini, A. (2006). Interactive effects of drought and pathogens in forest trees. Annals of Forest Science, 63, 597612.CrossRefGoogle Scholar
de Vries, S. M. G., Alan, M., Bozzano, M. et al. (2015). Pan-European strategy for genetic conservation of forest trees and establishment of a core network of dynamic conservation units. European Forest Genetic Resources Programme (EUFORGEN), Biodiversity International, Rome, Italy. xii, 3.Google Scholar
Dewan, M. M., Ghisalbertib, E. L., Rowland, C. and Sivasithamparam, K. (1994). Reduction of symptoms of take-all of wheat and rye-grass seedlings by the soil-borne fungus Sordaria fimicola. Applied Soil Ecology, 1, 4551.CrossRefGoogle Scholar
Di Castri, F. (1991). An ecological overview of the five regions of the world with Mediterranean climate. In Biogeography of Mediterranean Invasions, ed. R. H. Groves and F. Di Castri. Cambridge: Cambridge University Press, pp. 315.CrossRefGoogle Scholar
Emberger, L. (1930). Sur une formule climatique applicable en géographie botanique. Comptes Rendus de l’Académie des Sciences, 191, 389390.Google Scholar
EUFORGEN (2009). Distribution map of cork oak (Quercus suber). www.euforgen.org.Google Scholar
Fisher, P. J., Petrini, O., Petrini, L. E. and Sutton, B. C. (1994). Fungal endophytes from the leaves and twigs of Quercus ilex L. from England, Majorca and Switzerland. New Phytologist, 127, 133137.CrossRefGoogle ScholarPubMed
Franceschini, A., Linaldeddu, B. T. and Marras, F. (2005). Occurrence and distribution of fungal endophytes in declining cork oak forests in Sardinia (Italy). IOBC-WPRS Bulletin, 28, 6774.Google Scholar
Fujimura, K. E., Egger, K. N. and Henry, G. H. R. (2008). The effect of experimental warming on the root-associated fungal community of Salix arctica. ISME Journal, 2, 105114.CrossRefGoogle ScholarPubMed
Gennaro, M., Gonthier, P. and Nicolotti, G. (2003). Fungal endophytic communities in healthy and declining Quercus robur L. and Q. cerris L. Trees in Northern Italy. Journal of Phytopathology, 151, 529534.CrossRefGoogle Scholar
Gentilesca, T., Camarero, J. J., Colangelo, M., Nolè, A. and Ripullone, F. (2017). Drought-induced oak decline in the western Mediterranean region: an overview on current evidences, mechanisms and management options to improve forest resilience. iForest – Biogeosciences and Forestry, 10, 796806.CrossRefGoogle Scholar
Gil, L. and Varela, M. C. (2008). EUFORGEN Technical guidelines for genetic conservation and use for cork oak (Quercus suber). Biodiversity International, 6.Google Scholar
Giorgi, F. (2006). Climate change hot-spots. Geophysical Research Letters, 33, L08707.CrossRefGoogle Scholar
Giorgi, F. and Lionello, P. (2008). Climate change projections for the Mediterranean region. Global and Planetary Change, 63, 90104.CrossRefGoogle Scholar
Gonthier, P., Gennaro, M. and Nicolotti, G. (2006). Effects of water stress on the endophytic mycota of Quercus robur. Fungal Diversity, 21, 6980.Google Scholar
Gonzalez, P., Neilson, R. P., Lenihan, J. M. and Drapek, R. J. (2010). Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Global Ecology and Biogeography, 19, 755768.CrossRefGoogle Scholar
González-García, S., Dias, A. C. and Arroja, L. (2013). Life-cycle assessment of typical Portuguese cork oak woodlands. Science of the Total Environment, 452, 355364.CrossRefGoogle ScholarPubMed
Gouveia, A. C. and Freitas, H. (2009). Modulation of leaf attributes and water use efficiency in Quercus suber along a rainfall gradient. Trees – Structure and Function, 23, 267275.CrossRefGoogle Scholar
Hardoim, P. R., van Overbeek, L. S., Berg, G. et al. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79, 293320.CrossRefGoogle ScholarPubMed
Hashizume, Y., Sahashi, N. and Fukuda, K. (2008). The influence of altitude on endophytic mycobiota in Quercus acuta leaves collected in two areas 1000km apart. Forest Pathology, 38, 218226.CrossRefGoogle Scholar
Hasnaoui, F., Zouaoui, I., Seghaeir, W. O. and Abbes, C. (2017). Identification and pathogenicity of Fungi associated with decline of cork oak in the north west of Tunisia. Journal of New Sciences, 40, 21642168.Google Scholar
Henriques, J., Inácio, M. L., Lima, A. and Sousa, E. (2012). New outbreaks of charcoal canker on young cork oak trees in Portugal. IOBC/WPRS Bulletin, 76, 8588.Google Scholar
Henriques, J., Nóbrega, F., Sousa, E. and Lima, A. (2016). Analysis of the genetic diversity and phylogenetic relationships of Biscogniauxia mediterranea isolates associated with cork oak. Phytoparasitica, 44, 1934.CrossRefGoogle Scholar
Hesse, U., Schöberlein, W., Wittenmayer, L. et al. (2003). Effects of Neotyphodium endophytes on growth, reproduction and drought-stress tolerance of three Lolium perenne L. genotypes. Grass and Forage Science, 58, 407415.CrossRefGoogle Scholar
Hodkinson, T. R., Jones, M. B., Waldren, S. and Parnell, J. A. N., eds. (2011). Climate Change Ecology and Systematics. Cambridge: Cambrige University Press.CrossRefGoogle Scholar
Holdridge, L. R. (1947). Determination of world plant formations from simple climatic data. Science, 105, 367368.CrossRefGoogle ScholarPubMed
Howlett, D. S., Moreno, G., Losada, M. R. M., Nair, P. R. and Nair, V. D. (2011). Soil carbon storage as influenced by tree cover in the dehesa cork oak silvopasture of central-western Spain. Journal of Environmental Monitoring, 13, 1897.CrossRefGoogle ScholarPubMed
Huang, Y. L., Devan, M. N., U’Ren, J. M., Furr, S. H. and Arnold, A. E. (2016). Pervasive effects of wildfire on foliar endophyte communities in montane forest trees. Microbial Ecology, 71, 452468.CrossRefGoogle ScholarPubMed
Ibáñez, B., Gómez-Aparicio, L., Stoll, P. et al. (2015). A neighborhood analysis of the consequences of Quercus suber decline for regeneration dynamics in Mediterranean forests. PLoS One, 10, e0117827.CrossRefGoogle ScholarPubMed
Ibáñez, B., Gómez-Aparicio, L., Ávila, J. M., Pérez-Ramos, I. M. and Marañón, T. (2017). Effects of Quercus suber decline on woody plant regeneration: potential implications for successional dynamics in Mediterranean forests. Ecosystems, 20, 630644.CrossRefGoogle Scholar
IPMA (n.d. Clima de Portugal Continental. www.ipma.pt/pt/educativa/tempo.clima/Google Scholar
Joffre, R. and Rambal, S. (1993). How tree cover influences the water balance of Mediterranean rangelands. Ecology, 74, 570582.CrossRefGoogle Scholar
Kwaśna, H., Szewczyk, W. and Behnke-Borowczyk, J. (2016). Fungal root endophytes of Quercus robur subjected to flooding. Forest Pathology, 46, 3546.CrossRefGoogle Scholar
Larena, I., Torres, R., De Cal, A. et al. (2005). Biological control of postharvest brown rot (Monilinia spp.) of peaches by field applications of Epicoccum nigrum. Biological Control, 32, 305310.CrossRefGoogle Scholar
La Porta, N., Capretti, P., Thomsen, I. M. et al. (2008). Forest pathogens with higher damage potential due to climate change in Europe. Canadian Journal of Plant Pathology, 30, 177195.CrossRefGoogle Scholar
Lima, G., Ippolito, A., Nigro, F. and Salerno, M. (1997). Effectiveness of Aureobasidium pullulans and Candida oleophila against postharvest strawberry rots. Postharvest Biology and Technology, 10, 169178.CrossRefGoogle Scholar
Linaldeddu, B. T., Franceschini, A. and Pulina, M. A. (2005). Epidemiological aspects of Biscogniauxia mediterranea in declining cork oak forest in Sardinia (Italy). IOBC/WPRS Bulletin, 28, 308.Google Scholar
Linaldeddu, B. T., Sirca, C., Spano, D. and Franceschini, A. (2009). Physiological responses of cork oak and holm oak to infection by fungal pathogens involved in oak decline. Forest Pathology, 39, 232238.CrossRefGoogle Scholar
Linaldeddu, B. T., Sirca, C., Spano, D. and Franceschini, A. (2011). Variation of endophytic cork oak-associated fungal communities in relation to plant health and water stress. Forest Pathology, 41, 193201.CrossRefGoogle Scholar
Lionello, P., Malanotte-Rizzoli, P. and Boscolo, R. (2006). The Mediterranean climate: an overview of the main characteristics and issues. In Mediterranean Climate Variability, ed. Lionello, P., Malanotte-Rizzoli, P., Paola, and Boscolo, R.. Amsterdam: Elsevier, pp. 126.Google Scholar
Madrigal, C., Pascual, S. and Melgarejo, P. (1994). Biological control of peach twig blight (Monilinia laxa) with Epicoccum nigrum. Plant Pathology, 43, 554561.CrossRefGoogle Scholar
Maghnia, F. Z., Abbas, Y., Mahé, F. et al. (2017). Habitat- and soil-related drivers of the root-associated fungal community of Quercus suber in the Northern Moroccan forest. PLoS One, 12, e0187758.CrossRefGoogle ScholarPubMed
Malcolm, J. R., Liu, C., Neilson, R. P., Hansen, L. and Hannah, L. E. E. (2006). Global warming and extinctions of endemic species from biodiversity hotspots. Conservation Biology, 20, 538548.CrossRefGoogle ScholarPubMed
Martín, J., Cabezas, J., Buyolo, T. and Patón, D. (2005). The relationship between Cerambyx spp. damage and subsequent Biscogniauxia mediterranum infection on Quercus suber forests. Forest Ecology and Management, 216, 166174.CrossRefGoogle Scholar
Martínez-Álvarez, P., Rodríguez-Ceinós, S., Martín-García, J. and Diez, J. J. (2012). Monitoring endophyte populations in pine plantations and native oak forests in Northern Spain. Forest Systems, 21, 373382.CrossRefGoogle Scholar
Mejía, L. C., Rojas, E. I., Maynard, Z. et al. (2008). Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biological Control, 46, 414.CrossRefGoogle Scholar
Mendes, M. P., Ribeiro, L., David, T. S. and Costa, A. (2016). How dependent are cork oak (Quercus suber L.) woodlands on groundwater? A case study in southwestern Portugal. Forest Ecology and Management, 378, 122130.CrossRefGoogle Scholar
Moricca, S. and Ragazzi, A. (2008). Fungal endophytes in Mediterranean oak forests: a lesson from Discula quercina. Phytopathology, 98, 380386.CrossRefGoogle ScholarPubMed
Moricca, S., Ginetti, B. and Ragazzi, A. (2012). Species- and organ-specificity in endophytes colonizing healthy and declining Mediterranean oaks. Phytopathologia Mediterranea, 51, 587598.Google Scholar
Moricca, S., Linaldeddu, B. T., Ginetti, B. et al. (2016). Endemic and emerging pathogens threatening cork oak trees: Management options for conserving a unique forest ecosystem. Plant Disease, 100, 21842193.CrossRefGoogle ScholarPubMed
Murphy, B. R., Martin Nieto, L., Doohan, F. M. and Hodkinson, T. R. (2015). Fungal endophytes enhance agronomically important traits in severely drought-stressed barley. Journal of Agronomy and Crop Science, 201, 419427.CrossRefGoogle Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. and Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853858.CrossRefGoogle ScholarPubMed
Naseby, D. C., Pascual, J. A. and Lynch, J. M. (2000). Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities. Journal of Applied Microbiology, 88, 161169.CrossRefGoogle ScholarPubMed
O’Hanlon, K. A., Knorr, K., Jørgensen, L. N., Nicolaisen, M. and Boelt, B. (2012). Exploring the potential of symbiotic fungal endophytes in cereal disease suppression. Biological Control, 63, 6978.CrossRefGoogle Scholar
Oliveira, G. and Costa, A. (2012). How resilient is Quercus suber L. to cork harvesting? A review and identification of knowledge gaps. Forest Ecology and Management, 270, 257272.CrossRefGoogle Scholar
Oliveira, V., Lauw, A. and Pereira, H. (2016). Sensitivity of cork growth to drought events: insights from a 24-year chronology. Climatic Change, 137, 261274.CrossRefGoogle Scholar
Oses, R., Valenzuela, S., Freer, J., Sanfuentes, E. and Rodriguez, J. (2008). Fungal endophytes in xylem of healthy Chilean trees and their possible role in early wood decay. Fungal Diversity, 33, 7786.Google Scholar
Ozenda, P. and Borel, J. L. (2000). An ecological map of Europe: why and how? Comptes Rendus de l’Académie des Sciences-Series III-Sciences de la Vie, 323, 983994.Google ScholarPubMed
Paulo, J. A., Palma, J. H. N., Gomes, A. A. et al. (2015). Predicting site index from climate and soil variables for cork oak (Quercus suber L.) stands in Portugal. New Forests, 46, 293307.CrossRefGoogle Scholar
Pausas, J. G. (1997). Resprouting of Quercus suber in NE Spain after fire. Journal of Vegetation Science, 8, 703706.CrossRefGoogle Scholar
Pereira, H. (2007). Cork: Biology, Production and Uses. Amsterdam: Elsevier.Google Scholar
Pereira, J. S., Bugalho, M. N. and Caldeira, M. D. C. (2008). From the Cork Oak to Cork. Portugal: APCOR – Portuguese Cork Association.Google Scholar
Pereira, P. M. and Fonseca, M. P. (2003). Nature vs. nurture: The making of the montado ecosystem. Ecology and Society, 7, 7.Google Scholar
Petrini, O. and Fisher, P. J. (1990). Occurrence of fungal endophytes in twigs of Salix fragilis and Quercus robur. Mycological Research, 94, 1077–1080.CrossRefGoogle Scholar
Pinto, C. A., Henriques, M. O., Figueiredo, J. P. et al. (2011). Phenology and growth dynamics in Mediterranean evergreen oaks: effects of environmental conditions and water relations. Forest Ecology and Management, 262, 500508.CrossRefGoogle Scholar
Pulina, M. A., Linaldeddu, B. T. and Franceschini, A. (2006). Topoclimats et communautés des champignons endophytiques dans des bois de chênes-lièges dépéris et non dépéris en Sardaigne (Italie). Les risques liés au temps et au climat, 474.Google Scholar
Ragazzi, A., Mancini, F., Dellavalle, I., Capretti, P. and Moricca, S. (2001). Endophytic fungi in Quercus cerris: isolation frequency in relation to phenological phase, tree health and the organ affected. Phytopathologia Mediterranea, 40, 165171.Google Scholar
Ragazzi, A., Moricca, S., Capretti, P., Dellavalle, I. and Turco, E. (2003). Differences in composition of endophytic mycobiota in twigs and leaves of healthy and declining Quercus species in Italy. Forest Pathology, 33, 3138.CrossRefGoogle Scholar
Ramírez-Valiente, J. A., Valladares, F., Huertas, A. D., Granados, S. and Aranda, I. (2011). Factors affecting cork oak growth under dry conditions: Local adaptation and contrasting additive genetic variance within populations. Tree Genetics and Genomes, 7, 285295.CrossRefGoogle Scholar
Redman, R. S., Kim, Y. O., Woodward, C. J. et al. (2011). Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS One, 6, e14823.CrossRefGoogle ScholarPubMed
Rego, F. C. and Rocha, M. S. (2014). Climatic patterns in the Mediterranean region. Ecologia Mediterranea, 40, 4959.CrossRefGoogle Scholar
Reis, F., Tavares, R. M., Baptista, P. and Lino-Neto, T. (2017). Mycorrhization of Fagaceae forests within Mediterranean ecosystems. In Mycorrhiza: Function, Diversity, State of the Art, 4th edn, ed. A. Varma. Berlin: Springer International Publishing, pp. 7597.CrossRefGoogle Scholar
Rho, H., Hsieh, M., Kandel, S. L. et al. (2017). Do endophytes promote growth of host plants under stress? A meta-analysis on plant stress mitigation by endophytes. Microbial Ecology, 75, 407–418.Google Scholar
Rigueiro-Rodríguez, A., McAdam, J. and Mosquera-Losada, M. R., eds. (2009). Agroforestry in Europe. Current Status and Future Prospects. Berlin: Springer Science & Business Media B. V.CrossRefGoogle Scholar
Rodriguez, R. J., Henson, J., Van Volkenburgh, E. et al. (2008). Stress tolerance in plants via habitat-adapted symbiosis. The ISME Journal, 2, 404416.CrossRefGoogle ScholarPubMed
Rodriguez, R. J., WhiteJr., J. F., Arnold, A. E. and Redman, A. R. A. (2009). Fungal endophytes: diversity and functional roles. New Phytologist, 182, 314330.CrossRefGoogle ScholarPubMed
Romeralo, C., Santamaría, O., Pando, V. and Diez, J. J. (2015). Fungal endophytes reduce necrosis length produced by Gremmeniella abietina in Pinus halepensis seedlings. Biological Control, 80, 3039.CrossRefGoogle Scholar
Saikkonen, K. (2007). Forest structure and fungal endophytes. Fungal Biology Reviews, 21, 6774.CrossRefGoogle Scholar
Saucedo-García, A., Anaya, A. L., Espinosa-García, F. J. and González, M. C. (2014). Diversity and communities of foliar endophytic fungi from different agroecosystems of Coffea arabica L. in two regions of Veracruz, Mexico. PloS One, 9, e98454.CrossRefGoogle ScholarPubMed
Schulz, B. and Boyle, C. (2005). The endophytic continuum. Mycological Research, 109, 661686.CrossRefGoogle ScholarPubMed
Seghers, D., Wittebolle, L., Top, E. M., Verstraete, W. and Siciliano, S. D. (2004). Impact of agricultural practices on the Zea mays L. endophytic community. Applied and Environmental Microbiology, 70, 14751482.CrossRefGoogle ScholarPubMed
Sieber, T. N. (2007). Endophytic fungi in forest trees: are they mutualists? Fungal Biology Reviews, 21, 7589.CrossRefGoogle Scholar
Slippers, B. and Wingfield, M. J. (2007). Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biology Reviews, 21, 90106.CrossRefGoogle Scholar
Solomon, S., Qin, D., Manning, M. et al. (2007). Climate change 2007: The physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC, pp. 235337.Google Scholar
Sun, X., Ding, Q., Hyde, K. D. and Guo, L. D. (2012). Community structure and preference of endophytic fungi of three woody plants in a mixed forest. Fungal Ecology, 5, 624632.CrossRefGoogle Scholar
Wang, F. W., Jiao, R. H., Cheng, A. B., Tan, S. H. and Song, Y. C. (2007). Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp. World Journal of Microbiology and Biotechnology, 23, 7983.CrossRefGoogle Scholar
Waqas, M., Khan, A. L., Shahzad, R. et al. (2015a). Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress. Journal of Zhejiang University. Science. B, 16, 1011.CrossRefGoogle ScholarPubMed
Waqas, M., Khan, A. L., Hamayun, M. et al. (2015b). Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. Journal of plant interactions, 10, 280287.CrossRefGoogle Scholar
White, J. F., Torres, M. S., Johnson, H., Irizarry, I. and Tadych, M. (2014). A functional view of plant microbiomes: endosymbiotic systems that enhance plant growth and survival. In Advances in Endophytic Research, ed. Verma, V. and Gange, A.. New Delhi: Springer, pp. 425439.CrossRefGoogle Scholar
Wilson, D. and Carroll, G. C. (1994). Infection studies of Discula quercina, an endophyte of Quercus garryana. Mycologia, 86, 635647.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×