Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T11:30:48.997Z Has data issue: false hasContentIssue false

6 - The influence of jet stream regime on extreme weather events

from Part II - High-impact weather in mid latitudes

Published online by Cambridge University Press:  05 March 2016

Jianping Li
Affiliation:
Beijing Normal University
Richard Swinbank
Affiliation:
Met Office, Exeter
Richard Grotjahn
Affiliation:
University of California, Davis
Hans Volkert
Affiliation:
Deutsche Zentrum für Luft- und Raumfahrt eV (DLR)
Get access
Type
Chapter

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashcroft, L. C., Pezza, A. B., and Simmonds, I. (2009). Cold events over Southern Australia: Synoptic climatology and hemispheric structure, J. Clim, 22, 66796698.CrossRefGoogle Scholar
Barnes, E. A. and Hartmann, D. L. (2011). Rossby wave scales, propagation and the variability of eddy-driven jets, J. Atmos. Sci., 68, 28932908.CrossRefGoogle Scholar
Barnes, E. A. and Hartmann, D. L. (2012). Detection of Rossby wave breaking and its response to shifts of the midlatitude jet with climate change, J. Geophys. Res. D09117, doi: 10.1029/2012JD017469CrossRefGoogle Scholar
Dee, D. P. et al. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137, 553597.CrossRefGoogle Scholar
Dima, I. M., Wallace, J. M., and Kraucunas, I. (2005). Tropical zonal momentum balance in the NCEP reanalyses, J. Atmos. Sci., 62, 24992513.CrossRefGoogle Scholar
Eichelberger, S. J. and Hartmann, D. L. (2007). Zonal jet structure and the leading mode of variability, J. Clim., 20, 51495163.CrossRefGoogle Scholar
Franzke, C. (2013). Persistent regimes and extreme events of the North Atlantic atmospheric circulation, Phil. Trans. R. Soc. A, 371, 20110471.CrossRefGoogle ScholarPubMed
Garfinkel, C. I. and Waugh, D. W. (2014). Tropospheric Rossby wave breaking and variability of the latitude of the eddy-driven jets*, J. Climate, 27, 70697085.CrossRefGoogle Scholar
Garfinkel, C. I., Waugh, D. W., and Gerber, E. P. (2013). The effect of tropospheric jet latitude on coupling between the stratospheric polar vortex and the troposphere, Journal of Climate, 26, 20772097.CrossRefGoogle Scholar
Garfinkel, C. I. and Harnik, N. (2015). The non-Gaussianity and spatial asymmetry of temperature extremes relative to the jet: the role of horizontal advection. To be submitted.Google Scholar
Harnik, N. (2014). Extreme upper level cyclonic vorticity events in relation to the southern hemisphere jet stream. Geophys. Res. Lett., 41, 43734380.CrossRefGoogle Scholar
Harnik, N., Galanti, E., Martius, O., and Adam, O. (2014). The Anomalous Merging of the African and North Atlantic Jet Streams during Northern Hemisphere Winter of 2010. J. Climate, 27, 73197334.CrossRefGoogle Scholar
Held, I. M. (1975). Momentum transport by quasi-geostrophic eddies. J. Atmos. Sci., 32, 14941497.2.0.CO;2>CrossRefGoogle Scholar
Held, I. M. (2000). The general circulation of the atmosphere. Introduction to general circulation theories. Proc. Prog. Geophys. Fluid Dyn. Woods Hole Oceanogr. Inst., http://gfd.whoi.edu/proceedings/2000/PDFvol2000.html.Google Scholar
Held, I. M. and Hou, A. Y. (1980). Nonlinear axially symmetric circulations in a nearly inviscid atmosphere, J. Atmos. Sci., 37(3), 515533.2.0.CO;2>CrossRefGoogle Scholar
Held, I. M. and Suarez, M. J. (1994). A proposal for the intercomparison of the dynamical cores of atmospheric general-circulation models, B. Am. Meteorol. Soc., 75, 18251830.2.0.CO;2>CrossRefGoogle Scholar
Kalnay, E. et al. (1996). The NCEP/NCAR 40-year reanalysis project, B. Am. Meteorol. Soc., 77 434471.2.0.CO;2>CrossRefGoogle Scholar
Lachmy, O. and Harnik, N. (2014). The transition to a subtropical jet regime and its maintenance, J. Atmos. Sci., 71, 13891409.CrossRefGoogle Scholar
Lee, S. and Kim, H. K. (2003). The dynamical relationship between subtropical and eddy-driven jets, J. Atmos. Sci., 60, 14901503.2.0.CO;2>CrossRefGoogle Scholar
Mahlstein, I., Martius, O., Chevalier, C., and Ginsbourger, D. (2012). Changes in the odds of extreme events in the Atlantic basin depending on the position of the extratropical jet, Geophys. Res. Lett., 39, L22805.CrossRefGoogle Scholar
Marengo, J. A., Ambrizzi, T., Kiladis, G., and Liebmann, B. (2002). Upper-air wave trains over the Pacific Ocean and wintertime cold surges in tropical-subtropical South America leading to freezes in southern and southeastern Brazil, Theor. Appl. Clim., 73, 223242.CrossRefGoogle Scholar
Martius, O., Zenklusen, E., Schwierz, C., and Davies, H. C. (2006). Episodes of alpine heavy precipitation with an overlying elongated stratospheric intrusion: A climatology, Int. J. Climatol., 26, 11491164.CrossRefGoogle Scholar
Michel, C. and Riviere, G. (2014). Sensitivity of the position and variability of the eddy-driven jet to different SST profiles in an aquaplanet general circulation model, J. Atmos. Sci., 71, 349371.CrossRefGoogle Scholar
Nakamura, H., Sampe, T., Tanimoto, Y., and Shimpo, A. (2004). Observed associations among storm tracks, jet streams and midlatitude oceanic fronts, Geophysical Monograph Series, 147, 329345.Google Scholar
Panetta, R. L. (1993). Zonal jets in wide baroclinically unstable regions: Persistence and scale selection, J. Atmos. Sci., 50, 20732106.2.0.CO;2>CrossRefGoogle Scholar
Petoukhov, V., Rahmstorf, S., Petri, S., and Schellnhuber, H. J. (2013). Quasi resonant amplification of planetary waves and recent northern hemisphere weather extremes, Proc. Natl. Acad. Sci. U.S.A., 110, 53365341.CrossRefGoogle Scholar
Randel, W. J. and Held, I. M. (1991). Phase speed spectra of transient eddy fluxes and critical layer absorption, J. Atmos. Sci., 48, 688697.2.0.CO;2>CrossRefGoogle Scholar
Randel, W. J. and Stanford, J. L. (1985). An observational study of medium scale wave dynamics in the southern hemisphere summer. Part I: Wave structure and energetics. J. Atmos. Sci., 42, 11721188.2.0.CO;2>CrossRefGoogle Scholar
Rhines, P. B. (1975). Waves and turbulence on a beta-plane, J. Fluid Mech., 69, 417443.CrossRefGoogle Scholar
Romero, R., Sumner, G., Ramis, C., and Genoves, A. (1999). A classification of the atmospheric circulation patterns producing significant daily rainfall in the Spanish Mediterranean area. Int. J. Climatol., 19, 765785.3.0.CO;2-T>CrossRefGoogle Scholar
Schlemmer, L., Martius, O., Sprenger, M., Schwierz, C., and Twitchett, A. (2010). Disentangling the forcing mechanisms of a heavy precipitation event along the alpine south side using potential vorticity inversion. Mon. Wea. Rev., 138, 23362353, doi: 10.1175/2009MWR3202.1.CrossRefGoogle Scholar
Schneider, E. K. (1977). Axially symmetric steady-state models of the basic state for instability and climate studies. Part II. Nonlinear circulations, J. Atmos. Sci., 34, 280296.2.0.CO;2>CrossRefGoogle Scholar
Schubert, S., Wang, H., and Suarez, M. (2011). Warm season subseasonal variability and climate extremes in the northern hemisphere: The role of stationary Rossby waves, J. Clim., 24, 47734792.CrossRefGoogle Scholar
Schubert, S. D., Wang, H., Koster, R., Suarez, M., and Groisman, P. Y. (2014). Northern Eurasian heat waves and droughts. J. Clim., 27, 31693207.CrossRefGoogle Scholar
Son, S. W. and Lee, S. (2005). The response of westerly jets to thermal driving in a primitive equation model, J. Atmos. Sci., 62, 37413757.CrossRefGoogle Scholar
Sprenger, M., Martius, O., and Arnold, J. (2012). Cold surge episodes over Southeastern Brazil – a potential vorticity perspective, Int. J. Climatol., 33, 27582767.CrossRefGoogle Scholar
Wallace, J. M., Held, I. M., Thompson, D. W. J., Trenberth, K. E., and Walsh, J. E. (2014). Global warming and winter weather, Science, 343.CrossRefGoogle ScholarPubMed
Woollings, T., Hannachi, A., Hoskins, B., and Turner, A. (2010). A regime view of the North Atlantic oscillation and its response to anthropogenic forcing, J. Clim., 23(6), 12911307.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×