Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-08T11:10:11.741Z Has data issue: false hasContentIssue false

18 - Reading Intention in Action

from Part IV - Understanding Others

Published online by Cambridge University Press:  27 October 2016

Sukhvinder S. Obhi
Affiliation:
McMaster University, Ontario
Emily S. Cross
Affiliation:
Bangor University
Get access

Summary

Abstract

The human ability to predict and interpret others’ intentions is crucial to social life. The purpose of this chapter is to consider the proposition that intentions can be understood from observing others’ movements. To this end, we first focus on experimental evidence showing that individual, social and communicative intentions ‘shape’ movement kinematics. Next, we review recent work suggesting that during action observation humans are capable of picking up intention information and using it to predict others’ behavior. In the third section, we address the neural mechanisms that mediate the ability to read intention from movement observation. Based on preliminary data, we argue that mirror neuron areas are sensitive to intention information conveyed by movement kinematics. Finally, we discuss the hypothesis that a deficit in this ability might account for the difficulties in social interaction reported in autism spectrum disorders.

Type
Chapter
Information
Shared Representations
Sensorimotor Foundations of Social Life
, pp. 374 - 391
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abernethy, B., & Russell, D. G. (1987). The relationship between expertise and visual search strategy in a racquet sport. Human Movement Science, 6, 283319.CrossRefGoogle Scholar
Abernethy, B., & Zawi, K. (2007). Pickup of essential kinematics underpins expert perception of movement patterns. Journal of Motor Behavior, 39, 353367.CrossRefGoogle ScholarPubMed
Abernethy, B., Zawi, K., & Jackson, R. C. (2008). Expertise and attunement to kinematic constraints. Perception, 37, 931948.CrossRefGoogle ScholarPubMed
Ansuini, C., Cavallo, A., Bertone, C., & Becchio, C. (2014). Prior-intention in the brain: The unveiling of Mister Hyde. The Neuroscientist, 21(2), 126–135.Google Scholar
Ansuini, C., Giosa, L., Turella, L., Altoè, G. M., & Castiello, U. (2008). An object for an action, the same object for other actions: Effects on hand shaping. Experimental Brain Research, 185, 111119.CrossRefGoogle ScholarPubMed
Ansuini, C., Santello, M., Massaccesi, S., & Castiello, U. (2006). Effects of end-goal on hand shaping. Journal of Neurophysiology, 95, 24562465.CrossRefGoogle ScholarPubMed
Armbrüster, C., & Spijkers, W. (2006). Movement planning in prehension: Do intended actions influence the initial reach and grasp movement? Motor Control, 10, 311329.CrossRefGoogle ScholarPubMed
Baldwin, D. A., & Baird, J. A. (2001). Discerning intentions in dynamic human action. Trends in Cognitive Sciences, 5, 171178.CrossRefGoogle ScholarPubMed
Becchio, C., Cavallo, A., Begliomini, C., Sartori, L., Feltrin, G., & Castiello, U. (2012). Social grasping: From mirroring to mentalizing. NeuroImage, 61, 240248.CrossRefGoogle ScholarPubMed
Becchio, C., Sartori, L., Bulgheroni, M., & Castiello, U. (2008a). Both your intention and mine are reflected in the kinematics of my reach to grasp movement. Cognition, 106, 894912.CrossRefGoogle ScholarPubMed
Becchio, C., Sartori, L., Bulgheroni, M., (2008b). The case of Dr. Jekyll and Mr. Hyde: A kinematic study on social intention. Consciousness and Cognition, 17, 557564.CrossRefGoogle Scholar
Becchio, C., Sartori, L., & Castiello, U. (2010). Toward you: The social side of actions. Current Directions in Psychological Science, 19, 183188.CrossRefGoogle Scholar
Bonini, L., Ferrari, P. F., & Fogassi, L. (2013). Neurophysiological bases underlying the organization of intentional actions and the understanding of others’ intention. Consciousness and Cognition, 22, 1095–104.CrossRefGoogle ScholarPubMed
Bonini, L., Rozzi, S., Serventi, F. U., Simone, L., Ferrari, P. F., & Fogassi, L. (2010). Ventral premotor and inferior parietal cortices make distinct contribution to action organization and intention understanding. Cerebral Cortex, 20,13721385.CrossRefGoogle ScholarPubMed
Boria, S., Fabbri-Destro, M., Cattaneo, L., Sparaci, L., Sinigaglia, C., et al. (2009). Intention understanding in autism. PLoS One, 4, e5596.CrossRefGoogle ScholarPubMed
Buxbaum, L. J., Kyle, K. M., & Menon, R. (2005). On beyond mirror neurons: Internal representations subserving imitation and recognition of skilled object-related actions in humans. Cognitive Brain Research, 25, 226239.CrossRefGoogle ScholarPubMed
Casanova, M. F., van Kooten, I. A., Switala, A. E., van Engeland, H., Heinsen, H., et al. (2006). Minicolumnar abnormalities in autism. Acta Neuropathologica, 112, 287303.CrossRefGoogle ScholarPubMed
Cattaneo, L., Fabbri-Destro, M., Boria, S., Pieraccini, C., Monti, A., et al. (2007). Impairment of action chains in autism and its possible role in intention understanding. Proceedings of the National Academy of Sciences, 104, 1782517830.CrossRefGoogle ScholarPubMed
Crajé, C., Lukos, J. R., Ansuini, C., Gordon, A. M., & Santello, M. (2011). The effects of task and content on digit placement on a bottle. Experimental Brain Research, 212, 119124.CrossRefGoogle ScholarPubMed
Farrow, D., Abernethy, B., & Jackson, R. C. (2005). Probing expert anticipation with the temporal occlusion paradigm: Experimental investigations of some methodological issues. Motor Control, 9, 332351.CrossRefGoogle ScholarPubMed
Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science, 308: 662667.CrossRefGoogle ScholarPubMed
Gallagher, S. (2008). Direct perception in the intersubjective context. Consciousness and Cognition, 17, 535543.CrossRefGoogle ScholarPubMed
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119, 593609.CrossRefGoogle ScholarPubMed
Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2, 493501.CrossRefGoogle ScholarPubMed
Georgiou, I., Becchio, C., Glover, S., & Castiello, U. (2007). Different action patterns for cooperative and competitive behavior. Cognition, 102, 415433.CrossRefGoogle Scholar
Hadjikhani, N., Joseph, R. M., Snyder, J., & Tager-Flusberg, H. (2006). Anatomical differences in the mirror neuron system and social cognition network in autism. Cerebral Cortex, 16, 12761282.CrossRefGoogle ScholarPubMed
Iacoboni, M., & Dapretto, M. (2006). The mirror neuron system and the consequences of its dysfunction. Nature Reviews Neuroscience, 7, 942951.CrossRefGoogle ScholarPubMed
Kanner, L. (1943). Autistic disturbances of affective contact. Nervous Child, 2, 217250.Google Scholar
Kaplan, J. T., & Iacoboni, M. (2006). Getting a grip on other minds: Mirror neurons, intention understanding, and cognitive empathy. Social Neuroscience, 1, 175183.CrossRefGoogle ScholarPubMed
Kilner, J. M. (2011). More than one pathway to action understanding. Trends in Cognitive Science, 15, 352357.CrossRefGoogle ScholarPubMed
Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive coding: An account of the mirror neuron system. Cognitive Processing, 8, 159166.CrossRefGoogle ScholarPubMed
Manera, V., Becchio, C., Cavallo, A., Sartori, L., & Castiello, U. (2011). Cooperation or competition? Discriminating between social intentions by observing prehensile movements. Experimental Brain Research, 211, 547556.CrossRefGoogle ScholarPubMed
Marteniuk, R. G., MacKenzie, C. L., Jeannerod, M., Athenes, S., & Dugas, C. (1987). Constraints on human arm movement trajectories. Canadian Journal of Psychology, 41, 365378.CrossRefGoogle ScholarPubMed
Martineau, J., Andersson, F., Barthélémy, C., Cottier, J. P., & Destrieux, C. (2010). Atypical activation of the mirror neuron system during perception of hand motion in autism. Brain Research, 1320, 168175.CrossRefGoogle ScholarPubMed
Martineau, J., Cochin, S., Magne, R., & Barthelemy, C. (2008). Impaired cortical activation in autistic children: Is the mirror neuron system involved? International Journal of Psychophysiology, 68, 3540.CrossRefGoogle ScholarPubMed
Minshew, N. J., & Williams, D. L. (2007). The new neurobiology of autism: Cortex, connectivity, and neuronal organization. Archives of Neurology, 64, 945950.CrossRefGoogle ScholarPubMed
Naish, K. R., Reader, A. T., Houston-Price, C., Bremner, A. J., & Holmes, N. P. (2013). To eat or not to eat? Kinematics and muscle activity of reach-to-grasp movements are influenced by the action goal, but observers do not detect these differences. Experimental Brain Research, 225, 261275.CrossRefGoogle Scholar
Nishitani, N., Avikainen, S., & Hari, R. (2004). Abnormal imitation-related cortical activation sequences in Asperger’s syndrome. Annals of Neurology, 55, 558562.CrossRefGoogle ScholarPubMed
Oberman, L. M., Hubbard, E. M., McCleery, J. P., Altschuler, E. L., Ramachandran, V. S., & Pineda, J. A. (2005). EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Cognitive Brain Research, 24, 190198.CrossRefGoogle ScholarPubMed
Oberman, L. M., Ramachandran, V. S., & Pineda, J. A. (2008). Modulation of mu suppression in children with autism spectrum disorders in response to familiar or unfamiliar stimuli: The mirror neuron hypothesis. Neuropsychologia, 46, 15581565.CrossRefGoogle ScholarPubMed
Pazzaglia, M., Smania, N., Corato, E., & Aglioti, S. M. (2008). Neural underpinnings of gesture discrimination in patients with limb apraxia. Journal of Neuroscience, 28, 30303041.CrossRefGoogle ScholarPubMed
Pellegrino, G. di, Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91, 176180.CrossRefGoogle ScholarPubMed
Quesque, F., Lewkowicz, D., Delevoye-Turrell, Y. N., & Coello, Y. (2013). Effects of social intention on movement kinematics in cooperative actions. Frontiers in Neurorobotics, 7, 14.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11, 264274.CrossRefGoogle ScholarPubMed
Runeson, S., & Frykholm, G. (1983). Kinematic specification of dynamics as an informational basis for person-and-action perception: Expectation, gender recognition, and deceptive intention. Journal of Experimental Psychology: General, 112, 585615.CrossRefGoogle Scholar
Sartori, L., Becchio, C., Bara, B. G., & Castiello, U. (2009). Does the intention to communicate affect action kinematics? Consciousness and Cognition, 18, 766772.CrossRefGoogle ScholarPubMed
Sartori, L., Becchio, C., & Castiello, U. (2011a). Cues to intention: The role of movement information. Cognition, 119, 242252.CrossRefGoogle ScholarPubMed
Sartori, L., Straulino, E., & Castiello, U. (2011b). How objects are grasped: The interplay between affordances and end-goals. PloS One, 6, e25203.CrossRefGoogle ScholarPubMed
Schilbach, L., Timmermans, B., Reddy, V., Costall, A., Bente, G., et al. (2013). Toward a second-person neuroscience. Behavioral and Brain Sciences, 36, 393414.CrossRefGoogle Scholar
Schuboe, A., Maldonado, A., Stork, S., & Beetz, M. (2008). Subsequent actions influence motor control parameters of a current grasping action. In Robot and Human Interactive Communication, RO-MAN. Presented at the 17th IEEE International Symposium, Yokohama, Japan, 389394.Google Scholar
Sebanz, N., & Shiffrar, M. (2009). Detecting deception in a bluffing body: The role of expertise. Psychonomic Bulletin & Review, 16, 170175.CrossRefGoogle Scholar
Sherrington, C. S. (1947). The integrative action of the nervous system. New Haven, CT: Yale University Press.Google Scholar
Tunik, E., Rice, N. J., Hamilton, A., & Grafton, S. T. (2007). Beyond grasping: Representation of action in human anterior intraparietal sulcus. NeuroImage, 36, T77T86.CrossRefGoogle ScholarPubMed
Vanrie, J., & Verfaillie, K. (2004). Perception of biological motion: A stimulus set of human point-light actions. Behavior Research Methods, Instruments, & Computers, 36, 625629.CrossRefGoogle Scholar
Vingerhoets, G., Honoré, P., Vandekerckhove, E., Nys, J., Vandemaele, P., & Achten, E. (2010). Multifocal intraparietal activation during discrimination of action intention in observed tool grasping. Neuroscience, 169, 11581167.CrossRefGoogle ScholarPubMed
Weiss, P. (1941). Autonomous versus reflexogenous activity of the central nervous system. Proceedings of the American Philosophical Society, 84, 5364.Google Scholar
Williams, J. H., Waiter, G. D., Gilchrist, A., Perrett, D. I., Murray, A. D., & Whiten, A. (2006). Neural mechanisms of imitation and ‘mirror neuron’ functioning in autistic spectrum disorder. Neuropsychologia, 44, 610621.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×