Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T23:41:43.848Z Has data issue: false hasContentIssue false

Part VI - Shared Representations in Applied Contexts

Published online by Cambridge University Press:  27 October 2016

Sukhvinder S. Obhi
Affiliation:
McMaster University, Ontario
Emily S. Cross
Affiliation:
Bangor University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Shared Representations
Sensorimotor Foundations of Social Life
, pp. 563 - 653
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abernethy, B., & Zawi, K. (2007). Pickup of essential kinematics underpins expert perception of movement patterns. Journal of Motor Behavior, 39, 353367.CrossRefGoogle ScholarPubMed
Abernethy, B., Zawi, K., & Jackson, R. C. (2008). Expertise and attunement to kinematic constraints. Perception, 37, 931948.CrossRefGoogle ScholarPubMed
Abreu, A. M., Macaluso, E., Azevedo, R. T., Cesari, P., Urgesi, C., & Aglioti, S. M. (2012). Action anticipation beyond the action observation network: A functional magnetic resonance imaging study in expert basketball players. European Journal of Neuroscience, 35, 16461654.CrossRefGoogle ScholarPubMed
Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11, 11091116.CrossRefGoogle ScholarPubMed
Alaerts, K., Heremans, E., Swinnen, S. P., & Wenderoth, N. (2009). How are observed actions mapped to the observer’s motor system? Influence of posture and perspective. Neuropsychologia, 47, 415422.CrossRefGoogle Scholar
Ashford, D., Davids, K., & Bennett, S. J. (2007). Developmental effects influencing observational modelling: A meta-analysis. Journal of Sports Sciences, 25, 547558.CrossRefGoogle ScholarPubMed
Avenanti, A., Annella, L., Candidi, M., Urgesi, C., & Aglioti, S. M. (2013a). Compensatory plasticity in the action observation network: Virtual lesions of STS enhance anticipatory simulation of seen actions. Cerebral Cortex, 23, 570580.CrossRefGoogle ScholarPubMed
Avenanti, A., Candidi, M., & Urgesi, C. (2013b). Vicarious motor activation during action perception: Beyond correlational evidence. Frontiers in Human Neuroscience, 7, 185.CrossRefGoogle ScholarPubMed
Avenanti, A., Urgesi, C. (2011). Understanding ‘what’ others do: Mirror mechanisms play a crucial role in action perception. Social Cognitive and Affective Neuroscience, 6, 257259.Google Scholar
Borroni, P., Montagna, M., Cerri, G., & Baldissera, F. (2005). Cyclic time course of motor excitability modulation during the observation of a cyclic hand movement. Brain Research, 1065, 115124.CrossRefGoogle ScholarPubMed
Brault, S., Bideau, B., Craig, C. M., & Kulpa, R. (2010). Balancing deceit and disguise: How to successfully fool the defender in a 1 vs. 1 situation in rugby. Human Movement Science, 29, 412425.CrossRefGoogle Scholar
Brown, L. E., Wilson, E. T., & Gribble, P. L. (2009). Repetitive transcranial magnetic stimulation to the primary motor cortex interferes with motor learning by observing. Journal of Cognitive Neuroscience, 21, 10131022.CrossRefGoogle Scholar
Calvo-Merino, B., Grèzes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16, 19051910.CrossRefGoogle ScholarPubMed
Cañal-Bruland, R., van der Kamp, J., & van Kesteren, J. (2010). An examination of motor and perceptual contributions to the recognition of deception from others’ actions. Human Movement Science, 29, 94102.CrossRefGoogle Scholar
Casile, A., & Giese, M. A. (2006). Nonvisual motor training influences biological motion perception. Current Biology, 16, 6974.CrossRefGoogle ScholarPubMed
Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. NeuroImage, 50, 11481167.CrossRefGoogle ScholarPubMed
Censor, N., & Cohen, L. G. (2011). Using repetitive transcranial magnetic stimulation to study the underlying neural mechanisms of human motor learning and memory. Journal of Physiology, 589, 2128.CrossRefGoogle Scholar
Correia, V., Araujo, D., Craig, C., & Passos, P. (2011). Prospective information for pass decisional behavior in rugby union. Human Movement Science, 30, 984997.CrossRefGoogle ScholarPubMed
Correia, V., Araújo, D., Cummins, A., & Craig, C. M. (2012). Perceiving and acting upon spaces in a VR rugby task: Expertise effects in affordance detection and task achievement. Journal of Sport & Exercise Psychology, 34, 305321.CrossRefGoogle Scholar
Craig, C. M. (2013). Understanding perception and action in sport: How can virtual reality technology help? Sports Technology, 6, 161169.CrossRefGoogle Scholar
Craig, C. M., Bastin, J., & Montagne, G. (2011). How information guides movement: Intercepting curved free kicks in soccer. Human Movement Science, 30, 931941.CrossRefGoogle ScholarPubMed
Craig, C. M., Goulon, C., Berton, E., Rao, G., Fernandez, L., & Bootsma, R. J. (2009). Optic variables used to judge future ball arrival position in expert and novice soccer players. Attention, Perception & Psychophysics, 71, 515522.CrossRefGoogle ScholarPubMed
Dessing, J. C., & Craig, C. M. (2010). Bending it like Beckham: How to visually fool the goalkeeper. PloS One, 5, e13161.CrossRefGoogle ScholarPubMed
Fadiga, L., Craighero, L., & Olivier, E. (2005). Human motor cortex excitability during the perception of others’ action. Current Opinion in Neurobiology, 15, 213218.CrossRefGoogle ScholarPubMed
Farrow, D., & Abernethy, B. (2003). Do expertise and the degree of perception–action coupling affect natural anticipatory performance? Perception, 32, 11271139.CrossRefGoogle ScholarPubMed
Friston, K., Mattout, J., & Kilner, J. (2011). Action understanding and active inference. Biological Cybernetics, 104, 137160.CrossRefGoogle ScholarPubMed
Gangitano, M., Mottaghy, F. M., & Pascual-Leone, A. (2004). Modulation of premotor mirror neuron activity during observation of unpredictable grasping movements. European Journal of Neuroscience, 20, 21932202.CrossRefGoogle ScholarPubMed
Gibson, J. (1979). The ecological approach to human perception. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Giese, M. A, & Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience, 4, 179192.CrossRefGoogle ScholarPubMed
Graf, M., Reitzner, B., Corves, C., Casile, A., Giese, M., & Prinz, W. (2007). Predicting point-light actions in real-time. NeuroImage, 36(Suppl 2), T22T32.CrossRefGoogle ScholarPubMed
Grafton, S. T. (2009). Embodied cognition and the simulation of action to understand others. Annals of the New York Academy of Sciences, 1156, 97117.CrossRefGoogle ScholarPubMed
Gruetzmacher, N., Panzer, S., Blandin, Y., Shea, C. H., & Charles, H. (2011). Observation and physical practice: Coding of simple motor sequences. Quarterly Journal of Experimental Psychology, 64, 11111123.CrossRefGoogle ScholarPubMed
Handford, C., Davids, K., Bennett, S., & Button, C. (1997). Skill acquisition in sport: Some applications of an evolving practice ecology. Journal of Sports Sciences, 15, 621640.CrossRefGoogle ScholarPubMed
Hayes, S. J., Elliott, D., & Bennett, S. J. (2010). General motor representations are developed during action-observation. Experimental Brain Research, 204, 199206.CrossRefGoogle ScholarPubMed
Holmes, P., & Calmels, C. (2008). A neuroscientific review of imagery and observation use in sport. Journal of Motor Behavior, 40, 433445.CrossRefGoogle ScholarPubMed
Hubbard, T. (2005). Representational momentum and related displacements in spatial memory: A review of the findings. Psychonomic Bulletin & Review, 12, 822851.CrossRefGoogle ScholarPubMed
Jackson, R. C., Warren, S., & Abernethy, B. (2006). Anticipation skill and susceptibility to deceptive movement. Acta Psychologica, 123, 355371.CrossRefGoogle ScholarPubMed
Jellema, T., & Perrett, D. I. (2003). Perceptual history influences neural responses to face and body postures. Journal of Cognitive Neuroscience, 15, 961971.CrossRefGoogle ScholarPubMed
Keysers, C., & Gazzola, V. (2009). Expanding the mirror: Vicarious activity for actions, emotions, and sensations. Current Opinion in Neurobiology, 19, 666671.CrossRefGoogle ScholarPubMed
Kioumourtzoglou, E., Michalopoulou, M., Tzetzis, G., & Kourtessis, T. (2000). Ability profile of the elite volleyball player. Perceptual and Motor Skills, 90, 757770.CrossRefGoogle ScholarPubMed
Komatsu, H. (2006). The neural mechanisms of perceptual filling-in. Nature Reviews Neuroscience, 7, 220231.CrossRefGoogle ScholarPubMed
Makris, S., & Urgesi, C. (2015). Neural underpinnings of superior action prediction abilities in soccer players. Social Cognitive and Affective Neuroscience, 10(3), 342–351.Google ScholarPubMed
Mann, D. L., Abernethy, B., & Farrow, D. (2010). Visual information underpinning skilled anticipation: The effect of blur on a coupled and uncoupled in situ anticipatory response. Attention, Perception & Psychophysics, 72, 13171326.CrossRefGoogle ScholarPubMed
Mattar, A. A. G., & Gribble, P. L. (2005). Motor learning by observing. Neuron, 46, 153160.CrossRefGoogle ScholarPubMed
Milner, A. D., & Goodale, M. A. (2006). The visual brain in action. Oxford: Oxford University Press, 297.CrossRefGoogle Scholar
Milner, A. D., (2008). Two visual systems re-viewed. Neuropsychologia, 46, 774785.CrossRefGoogle ScholarPubMed
Motes, M. A., Hubbard, T. L., Courtney, J. R., & Rypma, B. (2008). A principal components analysis of dynamic spatial memory biases. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 10761083.Google ScholarPubMed
Muellbacher, W., Ziemann, U., Wissel, J., Dang, N., Kofler, M., et al. (2002). Early consolidation in human primary motor cortex. Nature, 415, 640644.CrossRefGoogle ScholarPubMed
Ong, N. T., & Hodges, N. J. (2010). Absence of after-effects for observers after watching a visuomotor adaptation. Experimental Brain Research, 205, 325334.CrossRefGoogle ScholarPubMed
Porro, C. A., Facchin, P., Fusi, S., Dri, G., & Fadiga, L. (2007). Enhancement of force after action observation: Behavioural and neurophysiological studies. Neuropsychologia, 45, 31143121.CrossRefGoogle ScholarPubMed
Ranganathan, R., & Carlton, L. G. (2007). Perception–action coupling and anticipatory performance in baseball batting. Journal of Motor Behavior, 39, 369380.CrossRefGoogle ScholarPubMed
Ripoll, H., Kerlirzin, Y., Stein, J. F., & Reine, B. (1995). Analysis of information processing, decision making, and visual strategies in complex problem solving sport situations. Human Movement Science, 14, 325349.CrossRefGoogle Scholar
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192.CrossRefGoogle ScholarPubMed
Romani, M., Cesari, P., Urgesi, C., Facchini, S., & Aglioti, S. M. (2005). Motor facilitation of the human cortico-spinal system during observation of bio-mechanically impossible movements. NeuroImage, 26, 755763.CrossRefGoogle ScholarPubMed
Savelsbergh, G. J. P., Williams, A. M., van der Kamp, J., & Ward, P. (2002). Visual search, anticipation and expertise in soccer goalkeepers. Journal of Sports Sciences, 20, 279287.CrossRefGoogle ScholarPubMed
Shea, C. H., Wright, D. L., Wulf, G., & Whitacre, C. (2000). Physical and observational practice afford unique learning opportunities. Journal of Motor Behavior, 32, 2736.CrossRefGoogle ScholarPubMed
Smeeton, N. J., & Huys, R. (2011). Anticipation of tennis-shot direction from whole-body movement: The role of movement amplitude and dynamics. Human Movement Science, 30(5), 957–965.CrossRefGoogle ScholarPubMed
Springer, A., Parkinson, J., & Prinz, W. (2013). Action simulation: Time course and representational mechanisms. Frontiers in Psychology, 4, 120.CrossRefGoogle ScholarPubMed
Stefan, K., Cohen, L. G., Duque, J., Mazzocchio, R., Celnik, P., et al. (2005). Formation of a motor memory by action observation. Journal of Neuroscience, 25, 93399346.CrossRefGoogle ScholarPubMed
Tomeo, E., Cesari, P., Aglioti, S. M., & Urgesi, C. (2013). Fooling the kickers but not the goalkeepers: Behavioral and neurophysiological correlates of fake action detection in soccer. Cerebral Cortex, 23, 27652778.CrossRefGoogle Scholar
Urgesi, C., Candidi, M., Fabbro, F., Romani, M., & Aglioti, S. M. (2006a). Motor facilitation during action observation: Topographic mapping of the target muscle and influence of the onlooker’s posture. European Journal of Neuroscience, 23, 25222530.CrossRefGoogle ScholarPubMed
Urgesi, C., Maieron, M., Avenanti, A., Tidoni, E., Fabbro, F., & Aglioti, S. M. (2010). Simulating the future of actions in the human corticospinal system. Cerebral Cortex, 20, 25112521.CrossRefGoogle ScholarPubMed
Urgesi, C., Moro, V., Candidi, M., & Aglioti, S. M. (2006b). Mapping implied body actions in the human motor system. Journal of Neuroscience, 26, 79427949.CrossRefGoogle ScholarPubMed
Urgesi, C., Savonitto, M., Fabbro, F., & Aglioti, S. (2012). Long- and short-term plastic modeling of action prediction abilities in volleyball. Psychological Research, 76, 540562.CrossRefGoogle ScholarPubMed
Van Overwalle, F., & Baetens, K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. NeuroImage, 48, 564584.CrossRefGoogle ScholarPubMed
Vogt, S., & Thomaschke, R. (2007). From visuo-motor interactions to imitation learning: Behavioural and brain imaging studies. Journal of Sports Sciences, 25, 497517.CrossRefGoogle ScholarPubMed
Weissensteiner, J., Abernethy, B., Farrow, D., & Müller, S. (2008). The development of anticipation: A cross-sectional examination of the practice experiences contributing to skill in cricket batting. Journal of Sport & Exercise Psychology, 30, 663684.CrossRefGoogle ScholarPubMed
Williams, A. (2000). Perceptual skill in soccer: Implications for talent identification and development. Journal of Sports Sciences, 18(9), 737–750.Google ScholarPubMed
Williams, A., Davids, K., & Williams, J. (1999). Visual perception and action in sport. Abingdon: Taylor & Francis.Google Scholar
Wilson, M., & Knoblich, G. G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131, 460.CrossRefGoogle ScholarPubMed

References

Amin, G. R., & Sharma, S. J. (2014). Cricket team selection using data envelopment analysis. European Journal of Sport Science, 14(S1), S369S376.CrossRefGoogle ScholarPubMed
Araújo, D., Davids, K., & Hristovski, R. (2006). The ecological dynamics of decision making in sport. Psychology of Sport and Exercise, 7, 653676CrossRefGoogle Scholar
Bhattacharjee, D., & Saikia, H. (2013). Selecting the optimum cricket team after a tournament. Asian Journal of Exercise & Sports Science, 10(2), 7791.Google Scholar
Bierhals, R., Schuster, I., Kohler, P., & Badke-Schaub, P. (2007). Shared mental models: Linking team cognition and performance. CoDesign, 3(1), 7594.CrossRefGoogle Scholar
Blickensderfer, E. L., Reynolds, R., Salas, E., & Cannon-Bowers, J. A. (2010). Shared expectations and implicit coordination in tennis doubles teams. Journal of Applied Sport Psychology, 22, 486499.CrossRefGoogle Scholar
Bourbousson, J., Poizat, G., Saury, J., & Sève, C. (2012). Temporal aspects of team cognition: A case study on concerns sharing within basketball. Journal of Applied Sport Psychology, 24(2), 224241. doi: 10.1080/10413200.2011.630059.CrossRefGoogle Scholar
Buchanan, J. M. (2000). Group selection and team sports. Journal of Bioeconomics, 2, 17.CrossRefGoogle Scholar
Bullough, S., Millar, R., Ramchandani, G., & Coleman, R. (2014). The effect of central contracts on the stability and performance of the England Test cricket team. RICYDE: Revista internacional de ciencias del deporte, 35(10), 415.Google Scholar
Burke, V. (2011). Organizing for excellence. In D. Collins, A. Button, & H. Richards (Eds.), Performance psychology: A practitioner’s guide. London: Churchill Livingstone, 99–119.CrossRefGoogle Scholar
Catteeuw, P., Gilis, B., Wagemans, J. & Wagemans, W. (2010). Perceptual-cognitive skills in offside decision making: Expertise and training effects. Journal of Sport & Exercise Psychology, 32, 828844.CrossRefGoogle ScholarPubMed
Catteeuw, P., Helsen, W., Gilis, B., Van Roie, E., & Wagemans, J. (2009). Visual scan patterns and decision-making skills of expert assistant referees in offside situations. Journal of Sport & Exercise Psychology, 31, 786797.CrossRefGoogle ScholarPubMed
Collins, D., & Collins, J. E. (2011). Putting them together: skill packages to optimise team/group performance. In D. Collins, A. Button, & H. Richards (Eds.), Performance psychology: A practitioner’s guide. London: Churchill Livingstone, 361380.CrossRefGoogle Scholar
Couturtier, L. E. (2009). “Why did you cut me?” Preparing coaching education students for the team selection process. Journal of Physical Education, Recreation & Dance, 80(9), 3942. doi: 10.1080/07303084.2009.10598393.Google Scholar
Cruickshank, A., & Collins, D. (2012). "Multidirectional management”: Exploring the challenges of performance in the WCP environment. Journal of Reflective Practice, 13(3), 455469.Google Scholar
DeChurch, L. A., & Mesmer-Magnus, J. R. (2010). Measuring shared team mental models: A meta-analysis. Group Dynamics: Theory, Research, and Practice, 14(1), 114.CrossRefGoogle Scholar
Dosseville, F., Laborde, S., & Raab, M. (2011). Contextual and personal motor experience effects in judo referees’ decisions. Sport Psychologist, 25, 6781.CrossRefGoogle Scholar
Eccles, D. W., & Tenenbaum, G. (2004). Why an expert team is more than a team of experts: A social-cognitive conceptualization of team coordination and communication in sport. Journal of Sport and Exercise Psychology, 26, 542560.CrossRefGoogle Scholar
Eccles, D. W., & Tran, K. B. (2012). Getting them on the same page: Strategies for enhancing coordination and communication in sports teams. Journal of Sport Psychology in Action, 3(1), 3040. doi: 10.1080/21520704.2011.649229.CrossRefGoogle Scholar
Fiore, S. M., Ross, K. G., & Jentsch, F. (2012). A team cognitive readiness framework for small-unit training. Journal of Cognitive Engineering and Decision Making, 6(3), 325349. doi: 10.1177/1555343412449626.CrossRefGoogle Scholar
Gershgoren, L., Filho, E.-M., Tenenbaum, G., & Schinke, R. J. (2013). Coaching shared mental models in soccer: A longitudinal case study. Journal of Clinical Sport Psychology, 7, 293312.CrossRefGoogle Scholar
Ghasemi, A., Momeni, M., Jarfarzadehpur, E., Rezaee, M., & Taheri, H. (2011). Visual skills involved in decision making by expert referees. Perceptual and Motor Skills, 112(1), 161171.Google Scholar
Hale, B. D., & Collins, D. (2002). Rugby tough. Champaign, IL: Human Kinetics.Google Scholar
Helsen, W., Gilis, B., & Weston, M. (2006). Errors in judging ‘offside’ in association football: Test of the optical error versus the perceptual flash-lag hypothesis. Journal of Sports Sciences, 24, 521528.CrossRefGoogle ScholarPubMed
Kahneman, D. (2011). Thinking, fast and slow. London: Macmillan.Google Scholar
Klein, G. (1997). An overview of naturalistic decision making applications. In Klein, G. & Zsambok, C. E. (Eds.), Naturalistic decision making. Mahwah, NJ: Lawrence Erlbaum, 4959.Google Scholar
Klein, G. (1999). Applied decision making. In Hancock, P. A. (Ed.), Human performance and ergonomics, 2nd edition. San Diego, CA: Academic Press, 87107.CrossRefGoogle Scholar
Lin, W.-B., Tung, I.-W., Chen, M.-J., & Chen, M.-Y. (2011). An analysis of an optimal selection process for characteristics and technical performance of baseball pitchers. Perceptual and Motor Skills, 113(1), 300310.CrossRefGoogle ScholarPubMed
MacMahon, C., & Mildenhall, W. (2012). A practical perspective on decision making influences in sports officiating. International Journal of Sports Science & Coaching, 7(1), 153165.CrossRefGoogle Scholar
Mascarenhas, D. R. D., Collins, D., & Mortimer, P. (2005b). Elite refereeing performance: Developing a model for sport science support. Sport Psychologist, 19, 364379.CrossRefGoogle Scholar
Mascarenhas, D., Collins, D., & Mortimer, P. (2005c). Assessing the accuracy and coherence of decision making in rugby-union referees. Journal of Sport Behavior, 28(3), 253271.Google Scholar
Mascarenhas, D. R. D., Collins, D., Mortimer, P., & Morris, B. (2005a). Training accurate and coherent decision making in rugby. Sport Psychologist, 19, 131147.CrossRefGoogle Scholar
Memmert, D., & Furley, P. (2007). ‘I spy with my little eye!’ Breadth of attention, inattentional blindness, and tactical decision making in team sports. Journal of Sport & Exercise Psychology, 29, 365381.CrossRefGoogle ScholarPubMed
Miles, J. R., & Kivlighan, D. M. Jr. (2008). Team cognition in group interventions: The relation between coleaders’ shared mental models and group climate. Group Dynamics: Theory, Research, and Practice, 12(3), 191209.CrossRefGoogle Scholar
Moura, F. A, Martins, L. E. B., Anido, R. O., Ruffino, P. R. C., Barros, R. M. L., & Cunha, S. A. (2013). A spectral analysis of team dynamics and tactics in Brazilian football. Journal of Sports Sciences, 31(14), 15681577. doi: 10.1080/02640414.2013.789920.CrossRefGoogle ScholarPubMed
Norman, D. A., & Shallice, T. (1986). Attention to action. In Davidson, R. J., Schwartz, G. E., & Shapiro, D. (Eds.), Consciousness and self-regulation: Advances in research and theory, Volume 4. London: Springer, 118.Google Scholar
Pascual, R., & Henderson, S. (1997). Evidence of naturalistic decision making in military command and control. In Klein, G. & Zsambok, C. E. (Eds.), Naturalistic decision making. Mahwah, NJ: Lawrence Erlbaum, 217226.Google Scholar
Put, K., Baldo, M. V. C., Cravo, A. M., Wagemans, J., & Helsen, W. F. (2013). Experts in offside decision making learn to compensate for their illusory perceptions. Journal of Sport & Exercise Psychology, 35, 576584.CrossRefGoogle ScholarPubMed
Put, K., Wagemans, J., Jaspers, A., & Helsen, W. F. (2013). Web-based training improves on-field offside decision-making performance. Psychology of Sport and Exercise, 14, 577585.CrossRefGoogle Scholar
Rama Iyer, S., & Sharda, R. (2009). Prediction of athletes’ performance using neural networks: An application in cricket team selection. Expert Systems with Applications, 36, 55105522.CrossRefGoogle Scholar
Reimer, T., Park, E. S., & Hinsz, V. B. (2006). Shared and coordinated cognition in competitive and dynamic task environments: An information-processing perspective for team sports. International Journal of Sport and Exercise Psychology, 4, 376400. doi: 10.1080/1612197X.2006.9671804.CrossRefGoogle Scholar
Richards, P., Collins, D., & Mascarenhas, D. (2012). Developing rapid high pressure team decision making skills. The integration of slow deliberate reflective learning within the competitive performance environment: A case study of elite netball. Journal of Reflective Practice, 13(3), 455469.Google Scholar
Richards, P., Mascarenhas, D. R. D., & Collins, D. (2009) Implementing reflective practice approaches with elite team athletes: Parameters of success. Reflective Practice, 10(3), 353363.CrossRefGoogle Scholar
Roberts, C. M., & Faull, A. L. (2013). Building a successful Olympic team selection protocol in women’s handball: A case study examining the benefits of employing reflective practice. Reflective Practice: International and Multidisciplinary Perspectives, 14(5), 648659. doi: 10.1080/14623943.2013.835719.CrossRefGoogle Scholar
Schweizer, G., Plessner, H., & Brand, R. (2013). Establishing standards for basketball elite referees’ decisions. Journal of Applied Sport Psychology, 25(3), 370375. doi: 10.1080/10413200.2012.741090.CrossRefGoogle Scholar
Serfaty, D. MacMillan, J., Entin, E. E., & Entin, E. B. (1997). The decision making expertise of battle commanders. In Klein, G. & Zsambok, C. E. (Eds.), Naturalistic decision making. Mahwah, NJ: Lawrence Erlbaum, 233246.Google Scholar
Silva, P., Garganta, J., Araújo, D., Davids, K., & Aguiar, P. (2013). Shared knowledge or shared affordances? Insights from an ecological dynamics approach to team coordination in sports. Sports Medicine, 43, 765772. doi: 10.1007/s40279-013-0070-9.CrossRefGoogle ScholarPubMed
Schmorrow, D. D., Bolstad, C. A., May, K. A., & Cuevas, H. M. (2012). Editors’ introduction to the special issue on exploring cognitive readiness in complex operational environments: Advances in theory and practice, Part II. Journal of Cognitive Engineering and Decision Making, 6(4), 355357.CrossRefGoogle Scholar
Trninić, S., Papić, V., Trninić, V., & Vukičević, D. (2008). Player selection procedures in team sport games. Acta Kinesiologica, 2(1), 2428.Google Scholar
Ward, P., & Eccles, D. W. (2006). A commentary on Team cognition and expert teams: Emerging insights into performance for exceptional teams’. International Journal of Sport and Exercise Psychology, 4, 463483CrossRefGoogle Scholar
Williams, A. M., & Davids, K. (1998). Visual search strategy, selective attention, and expertise in soccer. Research Quarterly for Exercise and Sport, 69, 111128.CrossRefGoogle ScholarPubMed

References

Aziz-Zadeh, L., Iacoboni, M., Zaidel, E., Wilson, S., & Mazziotta, J. (2004). Left hemisphere motor facilitation in response to manual action sounds. European Journal of Neuroscience, 19, 26092612.CrossRefGoogle ScholarPubMed
Bangert, M., Peschel, T., Schlaug, G., Rotte, M., Drescher, D., et al. (2006). Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. NeuroImage, 30, 917926.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a ‘theory of mind’? Cognition, 21, 3746.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., O’Riordan, M., Stone, V., Jones, R., & Plaisted, K. (1999). Recognition of faux pas by normally developing children and children with Asperger syndrome or high-functioning autism. Journal of Autism and Developmental Disorders, 29, 407418.CrossRefGoogle ScholarPubMed
Batson, C. D., & Powell, A. A. (2003). Altruism and prosocial behaviour. In Handbook of Psychology, 19, 463484. doi: 10.1002/0471264385.wei0519.CrossRefGoogle Scholar
Behrends, A., Muller, S., & Dziobek, I. (2012). Moving in and out of synchrony: A concept for a new intervention fostering empathy through interactional dance and movement. The Arts in Psychotherapy, 39, 107116.CrossRefGoogle Scholar
Bengtsson, S. L., Ullén, F., Henrik Ehrsson, H., Hashimoto, T., Kito, T., et al. (2009). Listening to rhythms activates motor and premotor cortices. Cortex, 45(1), 6271.CrossRefGoogle ScholarPubMed
Bernieri, F. J., & Rosenthal, R. (1991). Interpersonal coordination: Behaviour matching and interactional synchrony. In Feldman, R. S. & Rime, B. (Eds.), Fundamentals of nonverbal behaviour. Cambridge: Cambridge University Press, 401432.Google Scholar
Boecker, H., Dagher, A., Ceballos-Baumann, A. O., Passingham, R. E., Samuel, M., et al. (1998). Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control: Investigations with H215O PET. Journal of Neurophysiology, 79(2), 10701080.CrossRefGoogle Scholar
Bregman, M. R., Iversen, J. R., Lichman, D., Reinhart, M., & Patel, A. D. (2012). A method for testing synchronization to a musical beat in domestic horses (Equus ferus caballus). Empirical Musicology Review, 7, 144156.CrossRefGoogle Scholar
Buccino, G., Vogt, S., Ritzl, A., Fink, G. R., Zilles, K., et al. (2004). Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron, 42, 323334.CrossRefGoogle ScholarPubMed
Carr, L., Iacoboni, M., Dubeau, M., Mazziotta, J. C., & Lenzi, G. L. (2003). Neural mechanisms of empathy in humans: A relay from neural systems for imitation to limbic areas. Proceedings of the National Academy of Sciences, 100, 54975502.CrossRefGoogle ScholarPubMed
Catalan, M. J., Honda, M., Weeks, R. A., Cohen, L. G., & Hallett, M. (1998). The functional neuroanatomy of simple and complex sequential finger movements. Brain, 121, 253264.CrossRefGoogle ScholarPubMed
Chartrand, T. L., & Bargh, J. A. (1999). The chameleon effect: The perception–behavior link and social interaction. Journal of Personality and Social Psychology, 76, 893910.CrossRefGoogle ScholarPubMed
Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex, 18(12), 28442854.CrossRefGoogle ScholarPubMed
Cohen, E. E. A., Ejsmond-Frey, R., Knight, N., & Dunbar, R. I. M. (2010). Rowers’ high: Behavioural synchrony is correlated with elevated pain thresholds. Biology Letters, 6, 106108.CrossRefGoogle ScholarPubMed
Cook, P., Rouse, A., Wilson, M. & Reichmuth, C. (2013). A California sea lion (Zalophus californianus) can keep the beat: Motor entrainment to rhythmic auditory stimuli in a non vocal mimic. Journal of Comparative Psychology, 127(4), 412427.CrossRefGoogle Scholar
Cross, I. (2001). Music, cognition, culture, and evolution. Annals of the New York Academy of Sciences, 930, 2842.CrossRefGoogle ScholarPubMed
Cross, I. (2005). Music and meaning, ambiguity and evolution. In Miell, D., MacDonald, R., & Hargreaves, D. (Eds.), Musical communication. Oxford: Oxford University Press, 27–43.Google Scholar
Cross, I. (2009). The evolutionary nature of musical meaning. Musicae Scientiae, 13, 179200.CrossRefGoogle Scholar
Curley, J. P., & Keverne, E. B. (2005). Genes, brain and mammalian social bonds. Trends in Ecology and Evolution, 20, 561567.CrossRefGoogle ScholarPubMed
Diedrichsen, J., Criscimagna-Hemminger, S. E., & Shadmehr, R. (2007). Dissociating timing and coordination as functions of the cerebellum. Journal of Neuroscience, 27(23), 62916301.CrossRefGoogle ScholarPubMed
Downey, L. E., Blezat, A., Nicholas, J., Omar, R., Golden, H. L., et al. (2013). Mentalising music in frontotemporal dementia. Cortex, 49, 18441855.CrossRefGoogle ScholarPubMed
Dunbar, R. I. M. (2010). The social role of touch in humans and primates: Behavioural function and neurobiological mechanisms. Neuroscience and Biobehavioural Reviews, 34, 260268.CrossRefGoogle ScholarPubMed
Dunbar, R. I. M., Kaskatis, K., MacDonald, I., & Barra, V. (2012). Performance of music elevates pain threshold and positive affect: Implications for the evolutionary function of music. Evolutionary Psychology, 10, 688702.CrossRefGoogle ScholarPubMed
Emery, N. J., & Clayton, N. S. (2005). Evolution of the avian brain and intelligence. Current Biology, 15, 946950.CrossRefGoogle ScholarPubMed
Falk, D. (2004). Prelinguistic evolution in early hominins: Whence motherese? Behavioral and Brain Sciences, 27, 491541.CrossRefGoogle ScholarPubMed
Frith, C. D., & Frith, U. (2006). How we predict what other people are going to do. Brain Research, 1079, 3646.CrossRefGoogle ScholarPubMed
Frith, U., & Frith, C. D. (2003). Development and neurophysiology of mentalizing. Philosophical Transactions of the Royal Society B: Biological Sciences, 358, 459473.CrossRefGoogle ScholarPubMed
Gallese, V. (2001). The ‘shared manifold’ hypothesis: From mirror neurons to empathy. Journal of Consciousness Studies, 8, 3350.Google Scholar
Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2, 493501.CrossRefGoogle ScholarPubMed
Gao, J. H., Parsons, L. M., Bower, J. M., Xiong, J., Li, J., & Fox, P. T. (1996). Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science, 272(5261), 545547.CrossRefGoogle ScholarPubMed
Gelder, B. de. (2006). Towards the neurobiology of emotional body language. Nature Reviews Neuroscience, 7, 242249.CrossRefGoogle ScholarPubMed
Gerloff, C., Corwell, B., Chen, R., Hallett, M., & Cohen, L. G. (1998). The role of the human motor cortex in the control of complex and simple finger movement sequences. Brain, 121, 16951709.CrossRefGoogle ScholarPubMed
Glenberg, A. M., & Jona, M. (1991). Temporal coding in rhythm tasks revealed by modality effects. Memory & Cognition, 19(5), 514522.CrossRefGoogle ScholarPubMed
Glenberg, A. M., Mann, S., Altman, L., Forman, T., & Procise, S. (1989). Modality effects in the coding reproduction of rhythms. Memory & Cognition, 17(4), 373383.CrossRefGoogle ScholarPubMed
Grafton, S. T., Fagg, A. H., & Arbib, M. A. (1998). Dorsal premotor cortex and conditional movement selection: A PET functional mapping study. Journal of Neurophysiology, 79(2), 10921097.CrossRefGoogle ScholarPubMed
Grahn, J. A. (2012). See what I hear? Beat perception in auditory and visual rhythms. Experimental Brain Research, 220, 5161.CrossRefGoogle ScholarPubMed
Grahn, J. A., & Brett, M. (2007). Rhythm perception in motor areas of the brain. Journal of Cognitive Neuroscience, 19(5), 893906.CrossRefGoogle ScholarPubMed
Grahn, J. A., (2009). Impairment of beat-based rhythm discrimination in Parkinson’s disease. Cortex, 45(1), 5461.CrossRefGoogle ScholarPubMed
Grahn, J. A., & McAuley, J. D. (2009). Neural bases of individual differences in beat perception. NeuroImage, 47, 18941903.CrossRefGoogle ScholarPubMed
Grahn, J. A., & Rowe, J. B. (2009). Feeling the beat: Premotor and striatal interactions in musicians and non-musicians during beat perception. Journal of Neuroscience, 29(23), 75407548.CrossRefGoogle Scholar
Grahn, J. A., (2012). Finding and feeling the musical beat: Striatal dissociations between detection and prediction of regularity. Cerebral Cortex, 23(4), 912921.Google ScholarPubMed
Grahn, J. A., & Schuit, D. (2012). Individual differences in rhythmic ability: Behavioral and neuroimaging investigations. Psychomusicology: Music, Mind, and Brain, 22(2),105–21.Google Scholar
Graybiel, A. M. (2005). The basal ganglia: Learning new tricks and loving it. Current Opinion in Neurobiology,15, 638644.CrossRefGoogle Scholar
Graybiel, A. M., Aosaki, T., Flaherty, A. W., & Kimura, M. (1994). The basal ganglia and adaptive motor control. Science, 5180, 18261831.CrossRefGoogle Scholar
Guttman, S. E., Gilroy, L. A., & Blake, R. (2005). Hearing what the eyes see: Auditory encoding of visual temporal sequences. Psychological Science, 16, 228265.CrossRefGoogle ScholarPubMed
Handel, S., & Buffardi, L. (1969). Using several modalities to perceive one temporal pattern. Journal of Experimental Psychology, 21, 3741.Google ScholarPubMed
Hanna, J. L. (1977). African dance and the warrior tradition. Journal of Asian and African Studies, 12, 111133.CrossRefGoogle Scholar
Hannon, E. E., & Trainor, L. J. (2007). Music acquisition: Effects of enculturation and formal training on development. Trends in Cognitive Sciences, 11, 466472.CrossRefGoogle ScholarPubMed
Hannon, E. E., & Trehub, S. (2005). Metrical categories in infancy and adulthood. Psychological Science, 16, 4855.CrossRefGoogle ScholarPubMed
Hasegawa, A., Okanoya, K., Hasegawa, T., & Seki, Y. (2011). Rhythmic synchronization tapping to an audio-visual metronome in budgerigars. Scientific Reports, 1, 18.CrossRefGoogle Scholar
Haslinger, B., Erhard, P., Altenmuller, E., Schroeder, U., Boecker, H., & Ceballos-Baumann, A. O. (2005). Transmodal sensorimotor networks during action observation in professional pianists. Journal of Cognitive Neuroscience, 17, 282293.CrossRefGoogle ScholarPubMed
Haueisen, J., & Knosche, T. R. (2001). Involuntary motor activity in pianists evoked by music perception. Journal of Cognitive Neuroscience, 13, 786792.CrossRefGoogle ScholarPubMed
Heaton, P., Allen, R., Williams, K., Cummins, O., & Happé, F. (2008). Do social and cognitive deficits curtail musical understanding? Evidence from autism and Down syndrome. British Journal of Developmental Psychology, 26, 171182.CrossRefGoogle Scholar
Heaton, P., Hermelin, B., & Pring, L. (1999). Can children with autistic spectrum disorders perceive affect in music? An experimental investigation. Psychological Medicine, 29, 14051410.CrossRefGoogle ScholarPubMed
Hove, M. J. (2008). Shared circuits, shared time, and interpersonal synchrony. Behavioural and Brain Sciences, 31, 2930.CrossRefGoogle Scholar
Hove, M. J., & Risen, J. L. (2009). It’s all in the timing: Interpersonal synchrony increases affiliation. Social Cognition, 27, 949960.CrossRefGoogle Scholar
Hsieh, S., Hornberger, M., Piguet, O., & Hodges, J. R. (2012). Brain correlates of musical and facial emotion recognition: Evidence from the dementias. Neuropsychologia, 50, 18141822.CrossRefGoogle ScholarPubMed
Huron, D. (2006). Is music an evolutionary adaptation? Annals of the New York Academy of Sciences, 930, 4361.Google Scholar
Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., & Rizzolatti, G. (2005). Grasping the intentions of others with one’s own mirror neuron system. PloS Biology, 3, e79.CrossRefGoogle ScholarPubMed
Izuma, K., Saito, D. N., & Sadato, N. (2008). Processing of social and monetary rewards in the human striatum. Neuron, 58, 284294.CrossRefGoogle ScholarPubMed
Kilner, J. M., Baker, S. N., Salenius, S., Hari, R., & Lemon, R. N. (2000). Human cortical muscle coherence is directly related to specific motor parameters. Journal of Neuroscience, 20, 88388845.CrossRefGoogle ScholarPubMed
King-Casas, B., Tomlin, D., Anen, C., Camerer, C. F., Quartz, S. R., & Montague, P. R. (2005). Getting to know you: Reputation and trust in a two-person economic exchange. Science, 308, 7883.CrossRefGoogle Scholar
Kirschner, S., & Tomasello, M. (2010). Joint music making promotes prosocial behavior in 4-year-old children. Evolution and Human Behaviour, 31, 354364.CrossRefGoogle Scholar
Knutsson, E. (1972). An analysis of Parkinsonian gait. Brain, 95, 475486.CrossRefGoogle ScholarPubMed
Koelsch, S., Fritz, T., Schulze, K., Aslop, D., & Schlaug, G. (2005). Adults and children processing music: An fMRI study. NeuroImage, 25, 10681076.CrossRefGoogle ScholarPubMed
Kogan, N. (1997). Reflections on aesthetics and evolution. Critical Review: A Journal of Politics and Society, 11, 193210.CrossRefGoogle Scholar
Kohler, E., Keysers, C., Umilta, M. A., Fogassi, L., Gallese, V., & Rizzolatti, G. (2002). Hearing sounds, understanding actions: Action representation in mirror neurons. Science, 297, 846848.CrossRefGoogle ScholarPubMed
Kokal, I., Engel, A., Kirschner, S., & Keysers, C. (2011). Synchronized drumming enhances activity in the caudate and facilitates prosocial commitment – if the rhythm comes easily. PLoS One, 6, e27272.CrossRefGoogle ScholarPubMed
Leslie, K. R., Johnson-Frey, S. H., & Grafton, S. T. (2004). Functional imaging of face and hand imitation: Towards a motor theory of empathy. NeuroImage, 21, 601607.CrossRefGoogle ScholarPubMed
Lindenberger, U., Li, S., Gruber, W., & Muller, V. (2009). Brains swinging in concert: cortical phase synchronization while playing guitar. BMC Neuroscience, 10(22). doi: 10.1186/1471-2202-10-22.CrossRefGoogle Scholar
Lotze, M., Scheler, G., Tan, H.-R. M., Braun, C., & Birbaumer, N. (2003). The musician’s brain: Functional imaging of amateurs and professionals during performance and imagery. NeuroImage, 20, 18171829.CrossRefGoogle ScholarPubMed
Lynch, M. P., Eilers, R. E., Oller, D. K., & Urbano, R. C. (1990). Innateness, experience, and music perception. Psychological Science, 1, 272276.CrossRefGoogle Scholar
Macrae, C. N., Duffy, O. K., Miles, L. K., & Lawrence, J. (2008). A case of hand waving: Action synchrony and person perception. Cognition, 109, 152156.CrossRefGoogle ScholarPubMed
McAuley, J. D., & Henry, M. J. (2010). Modality effects in rhythm processing: Auditory encoding of visual rhythms is neither obligatory nor automatic. Attention, Perception & Psychophysics, 72(5), 13771389.CrossRefGoogle ScholarPubMed
McIntosh, A. R., Cabeza, R. E., & Lobaugh, N. J. (1998). Analysis of neural interactions explains the activation of occipital cortex by an auditory stimulus. Journal of Neurophysiology, 80, 27902796.CrossRefGoogle ScholarPubMed
McNeill, W. H. (1995). Keeping together in time: Dance and drill in human history. Cambridge, MA: Harvard University Press.Google Scholar
Merker, B. (2000). Synchronous chorusing and the origins of music. Musicae Scientiae, 3, 5973.CrossRefGoogle Scholar
Miller, G. F. (1997). Protean primates: The evolution of adaptive unpredictability in competition and courtship. In Whiten, A. & Byrne, R. W. (Eds.), Machiavellian intelligence II: Extensions and evaluations. Cambridge: Cambridge University Press, 312–340.Google Scholar
Mink, J. (1996). The basal ganglia: Focused selection and inhibition of competing motor programs. Progress in Neurobiology, 50(4), 381425.CrossRefGoogle ScholarPubMed
Molnar-Szakacs, I., & Overy, K. (2006). Music and mirror neurons: From motion to ‘e’motion. SCAN, 1, 235241.Google ScholarPubMed
Morris, M. E., Iansek, R., Matyas, T. A., & Summers, J. J. (1996). Stride length regulation in Parkinson’s disease: Normalization strategies and underlying mechanisms. Brain, 119 (Pt 2), 551568.CrossRefGoogle ScholarPubMed
Nombela, C., Hughes, L. E., Owen, A. M., & Grahn, J. A. (2013). Into the groove: Can rhythm influence Parkinson’s disease? Neuroscience and Biobehavioural Reviews, 37(10), 25642570.CrossRefGoogle ScholarPubMed
Nutt, J. G., & Wooten, G. F. (2005). Clinical practice: Diagnosis and initial management of Parkinson’s disease. New England Journal of Medicine, 353, 10211027.CrossRefGoogle ScholarPubMed
Omar, R., Henley, S. M. D., Bartlett, J. W., Hailstone, J. C., Gordon, E., et al. (2011). The structural neuroanatomy of music emotion recognition: Evidence from frontotemporal lobar degeneration. NeuroImage, 56, 18141821.CrossRefGoogle ScholarPubMed
Patel, A. D. (2008). Music, language, and the brain. New York: Oxford University Press.Google Scholar
Patel, A. D. & Iversen, J. R. (2006) A non-human animal can drum a steady beat on a musical instrument. In Baroni, M., Addessi, A. R., Caterina, R., & Costa, M. (Eds.), Proceedings of the 9th International Conference on Music Perception & Cognition (ICMPC9), 477.Google Scholar
Patel, A. D., Iversen, J. R., Bregman, M. R., & Schulz, I. (2009). Experimental evidence for synchronization to a musical beat in a nonhuman animal. Current Biology, 19, 827830.CrossRefGoogle Scholar
Patel, A. D., Iversen, J. R., Chen, Y., & Repp, B. H. (2005). The influence of metricality and modality on synchronization with a beat. Experimental Brain Research, 163, 226238.CrossRefGoogle ScholarPubMed
Pellegrino, G. de, Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91, 176180.CrossRefGoogle ScholarPubMed
Phillips-Silver, J., Toiviainen, P., Gosselin, N., Piche, O., Nozaradan, S., Palmer, C., & Peretz, I. (2011). Born to dance but beat deaf: A new form of congenital amusia. Neuropsychologia, 49(5), 961969.CrossRefGoogle Scholar
Picard, N., & Strick, P. (1996). Motor areas of the medial wall: A review of their location and functional activation. Cerebral Cortex, 6(3), 342353.CrossRefGoogle Scholar
Pinker, S. (1997). How the mind works. New York: W.W. Norton and Company.Google Scholar
Phillips-Silver, J., & Trainor, L. J. (2005). Feeling the beat: Movement influences infant rhythm perception. Science, 308(5727), 1430.CrossRefGoogle ScholarPubMed
Rabinowitch, T. Cross, I., & Burnard, P. (2012). Long-term musical group interaction has a positive influence on empathy in children. Psychology of Music, 41, 484498.CrossRefGoogle Scholar
Reddish, P., Bulbulia, J., & Fischer, R. (2014). Does synchrony promote generalized prosociality? Religion, Brain and Behaviour, 4, 319.CrossRefGoogle Scholar
Redgrave, P., Prescott, T., & Gurney, K. N. (1999). The basal ganglia: A vertebrate solution to the selection problem? Neuroscience, 89, 10091023.CrossRefGoogle Scholar
Repp, B. H. (2005). Sensorimotor synchronization: A review of the tapping literature. Psychonomic Bulletin and Review, 12, 969992.CrossRefGoogle ScholarPubMed
Repp, B. H., & Penel, A. (2002). Auditory dominance in temporal processing: New evidence from synchronization with simultanious visual and auditory sequences. Journal of Experimental Psychology: Human Perception and Performance, 28(5), 10851099.Google Scholar
Repp, B. H., & Penel, A. (2004). Rhythmic movement is attracted more strongly to auditory than to visual rhythms. Psychological Research, 68, 252270.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2, 661670.CrossRefGoogle ScholarPubMed
Roelfsema, P. R., Engel, A. K., Konig, P., & Singer, W. (1997). Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature, 385, 157161.CrossRefGoogle ScholarPubMed
Schachner, A., Brady, T. F., Pepperberg, I. M., & Hauser, M. D. (2009). Spontaneous motor entrainment to music in multiple vocal mimicking species. Current Biology, 19(10), 831836.CrossRefGoogle ScholarPubMed
Schonberg, T., Daw, N. D., Joel, D., & O’Doherty, J. P. (2007). Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making. Journal of Neuroscience, 27, 1286012867.CrossRefGoogle ScholarPubMed
Schwartze, M., Keller, P. E., Patel, A. D., & Kotz, S. A. (2011). The impact of basal ganglia lesions on sensorimotor synchronization, spontaneous motor tempo, and the detection of tempo changes. Behavioural Brain Research, 216, 685691.CrossRefGoogle ScholarPubMed
Soley, G., & Hannon, E. E. (2010). Infants prefer the musical meter of their own culture: A cross-cultural comparison. Developmental Psychology, 46(1), 286292.CrossRefGoogle ScholarPubMed
Sowinski, J., & Dalla Bella, S. (2013). Poor synchronization to the beat may result from deficient auditory-motor mapping. Neuropsychologia, 51, 19521963.CrossRefGoogle Scholar
Steinbeis, N., & Koelsch, S. (2009). Understanding the intentions behind man-made products elicits neural activity in areas dedicated to mental state attribution. Cerebral Cortex, 19, 619623.CrossRefGoogle ScholarPubMed
Teki, S., Grube, M., Kumar, S., & Griffiths, T. D. (2011). Distinct neural substrates of duration-based and beat-based auditory timing. Journal of Neuroscience, 31, 38053812.CrossRefGoogle ScholarPubMed
Thach, W. T. (1998). What is the role of the cerebellum in motor learning and cognition? Trends in Cognitive Sciences, 2(9), 331337.CrossRefGoogle ScholarPubMed
Tognoli, E., Lagarde, J., DeBuzman, G. C., & Kelso, J. A. S. (2007). The phi complex as a neuromarker of human social coordination. Proceedings of the National Academy of Sciences, 104, 81908195.CrossRefGoogle ScholarPubMed
Trehub, S. E. (2003). The developmental origins of musicality. Nature Neuroscience, 6, 669673.CrossRefGoogle ScholarPubMed
Uddin, L. Q., Kaplan, J. T., Molnar-Szakacs, I., Zaidel, E., & Iacoboni, M. (2005). Self-face recognition activates a frontoparietal ‘mirror’ network in the right hemisphere: An event-related fMRI study. NeuroImage, 25, 926935.CrossRefGoogle ScholarPubMed
Uddin, L. Q., Molnar-Szakacs, I., Zaidel, E., & Iacoboni, M. (2006). rTMS to the right inferior parietal lobule disrupts self–other discrimination. SCAN, 1, 6571.Google Scholar
Valdesolo, P., & DeSteno, D. (2011). Synchrony and the social tuning of compassion. Emotions, 11, 262266.CrossRefGoogle ScholarPubMed
Waal, F. B. M. de. (2008). Putting the altruism back into altruism: The evolution of empathy. Annual Review of Psychology, 59, 279300.CrossRefGoogle ScholarPubMed
Williams, J. H. G., Waiter, G. D., Gilchrist, A., Perrett, D. I., Murray, A. D., & Whiten, A. (2006). Neural mechanisms of imitation and ‘mirror neuron’ functioning in autistic spectrum disorder. Neuropsychologia, 44, 610621.CrossRefGoogle ScholarPubMed
Williams, J. H. G., Whiten, A., Suddendorf, T., & Perrett, D. I. (2001). Imitation, mirror neurons and autism. Neuroscience and Biobehavioral Reviews, 25, 287295.CrossRefGoogle ScholarPubMed
Wiltermuth, S. S. (2012). Synchronous activity boosts compliance with requests to aggress. Journal of Experimental Social Psychology, 48, 453456.CrossRefGoogle Scholar
Wiltermuth, S. S., & Heath, C. (2009). Synchrony and cooperation. Psychological Science, 20, 15.CrossRefGoogle ScholarPubMed
Woolhouse, M., & Tidhar, D. (2010). Group dancing leads to increased person perception. Proceedings of the 11th ICMPC, Seattle, 605–608.Google Scholar
Zarco, W., Merchant, H., Prado, L., & Mendez, J. C. (2009). Subsecond timing in primates: Comparison of interval production between human subjects and rhesus monkeys. Journal of Neurophysiology, 102, 31913202.CrossRefGoogle ScholarPubMed

References

Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11, 11091116.CrossRefGoogle ScholarPubMed
Allison, T., Puce, A., & McCarthy, G. (2000). Social perception from visual cues: Role of the STS region. Trends in Cognitive Sciences, 4, 267278.CrossRefGoogle ScholarPubMed
Amoruso, L., Gelormini, C., Aboitiz, F., Alvarez González, M., Manes, F, et al. (2013). N400 ERPs for actions: Building meaning in context. Frontiers in Human Neuroscience, 7, 57.CrossRefGoogle ScholarPubMed
Aristotle. (1996), Poetics, IV. Harmondsworth: Penguin.Google Scholar
Arnheim, R. (1974 ). Art and visual perception: A psychology of the creative eye. Berkeley, CA: University of California Press.CrossRefGoogle Scholar
Augustin, D. M., & Leder, H. (2006 ). Art expertise: A study of concepts and conceptual spaces. Psychology Science, 48, 135156.Google Scholar
Beilock, S. L., & Holt, L. E. (2007). Embodied preference judgments: Can likeability be driven by the motor system? Psychological Science, 18, 5157.CrossRefGoogle ScholarPubMed
Berg, S. C. (1988). Le sacre du printemps: 7 productions from Nijinsky to Martha Graham. Ann Arbor, MI: UMI Research Press.Google Scholar
Berlyne, D. E. (1974). Studies in the new experimental aesthetics: Steps towards an objective psychology of aesthetic appreciation. New York: Wiley.Google Scholar
Blake, R., & Shiffrar, M. (2007). Perception of human motion. Annual Review of Psychology, 58, 4773.CrossRefGoogle ScholarPubMed
Bläsing, B., Calvo-Merino, B., Cross, E. S., Jola, C., Honisch, J., & Stevens, C. J. (2012). Neurocognitive control in dance perception and performance. Acta Psychologica, 139, 300308.CrossRefGoogle ScholarPubMed
Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: An fMRI study with expert dancers. Cerebral Cortex, 15, 12431249.CrossRefGoogle ScholarPubMed
Calvo-Merino, B., Grèzes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16, 19051910.CrossRefGoogle ScholarPubMed
Calvo-Merino, B., Jola, C., Glaser, D. E., & Haggard, P. (2008). Towards a sensorimotor aesthetics of performing art. Consciousness and Cognition, 17, 911922.CrossRefGoogle ScholarPubMed
Calvo-Merino, B., Urgesi, C., Orgs, G., Aglioti, S. M., & Haggard, P. (2010). Extrastriate body area underlies aesthetic evaluation of body stimuli. Experimental Brain Research, 204, 447456.CrossRefGoogle ScholarPubMed
Carbon, C. C. (2010). The cycle of preference: Long-term dynamics of aesthetic appreciation. Acta Psychologica, 134, 233244.CrossRefGoogle ScholarPubMed
Caspersen, D. (2004). The body is thinking. In G. Siegmund (Ed.), Denken in Bewegung. Leipzig: Henschel Verlag.Google Scholar
Caspersen, D. (2011). Decreation: Fragmentation and continuity. In S. Spier (Ed.), William Forsythe and the practice of choreography. London: Routledge, 93100.Google Scholar
Climenhaga, R. (2009). Pina Bausch. New York: Routledge.Google Scholar
Cross, E. S., Hamilton, A. F., & Grafton, S. T. (2006). Building a motor simulation de novo: Observation of dance by dancers. NeuroImage, 31, 12571267.CrossRefGoogle ScholarPubMed
Cross, E. S., Kirsch, L., Ticini, L. F., & Schütz-Bosbach, S. (2011). The impact of aesthetic evaluation and physical ability on dance perception. Frontiers in Human Neuroscience, 5, 102.CrossRefGoogle Scholar
Cross, E. S., Mackie, E. C., Wolford, G., & Hamilton, A. F. D. C. (2010). Contorted and ordinary body postures in the human brain. Experimental Brain Research, 204, 397407.CrossRefGoogle ScholarPubMed
Cross, E. S. & Ticini, L. F. (2011). Neuroaesthetics and beyond: New horizons in applying the science of the brain to the art of dance. Phenomenology and the Cognitive Sciences, 11 (1), 516.CrossRefGoogle ScholarPubMed
Daprati, E., Iosa, M., & Haggard, P. (2009). A dance to the music of time: Aesthetically-relevant changes in body posture in performing art. PLoS One, 4, e5023.CrossRefGoogle Scholar
De Keersmaeker, A. T., & Cvejić, B. (2013). En Atendant & Cesena: A choreographer’s score. Brussels: Rosas, Mercatorfonds.Google Scholar
Di Dio, C., Macaluso, E., & Rizzolatti, G. (2007). The golden beauty: Brain response to classical and renaissance sculptures. PLoS One, 2, e1201.CrossRefGoogle ScholarPubMed
Fechner, G. T. (1871). Vorschule der Ästhetik [Preschool of aesthetics]. Hildesheim: Olms.Google Scholar
Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science, 308, 662667.CrossRefGoogle ScholarPubMed
Forsythe, W. (2010). Improvisation technologies. Berlin: Hatje Cantz.Google Scholar
Gelder, B. de, Snyder, J., Greve, D., Gerard, G., & Hadjikhani, N. (2004). Fear fosters flight: A mechanism for fear contagion when perceiving emotion expressed by a whole body. Proceedings of the National Academy of Sciences USA, 101, 1670116706.CrossRefGoogle ScholarPubMed
Gelder, B. de, van den Stock, J., Meeren, H. K. M., Sinke, C. B. A., Kret, M. E., & Tamietto, M. (2010). Standing up for the body: Recent progress in uncovering the networks involved in the perception of bodies and bodily expressions. Neuroscience and Biobehavioral Reviews, 34, 513527.Google Scholar
Gopnik, B. (2012). Aesthetic science and artistic knowledge. In Shimamura, A. P. & Palmer, S. E. (Eds.), Aesthetic science: Connecting minds, brains and experience. New York: Oxford University Press, 129–159.Google Scholar
Gottlieb, J., Oudeyer, P. Y., Lopes, M., & Baranes, A. (2013). Information-seeking, curiosity, and attention: Computational and neural mechanisms. Trends in Cognitive Sciences, 17, 585593.CrossRefGoogle ScholarPubMed
Grèzes, J., Pichon, S., & de Gelder, B. (2007). Perceiving fear in dynamic body expressions. NeuroImage, 35, 959967.CrossRefGoogle ScholarPubMed
Grice, P. (1989). Studies in the way of words. Cambridge, MA: Harvard University Press.Google Scholar
Hammermeister, K. (2002). The German aesthetic tradition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hay, D. (2000). My body, the Buddhist. Middleton, CT: Wesleyan University Press.Google Scholar
Hebb, D. O. (1949). The organization of behavior. New York: Wiley.Google Scholar
Heider, F. & Simmel, M. (1944). An experimental study of apparent behavior. American Journal of Psychology, 57, 243259.CrossRefGoogle Scholar
Heijnsbergen, C. C. van, Meeren, H. K., Grèzes, J., & de Gelder, B. (2007). Rapid detection of fear in body expressions: An ERP study. Brain Research, 1186, 233241.CrossRefGoogle ScholarPubMed
Heyes, C. (2010). Where do mirror neurons come from? Neuroscience and Biobehavioural Reviews, 34(4), 575583.CrossRefGoogle ScholarPubMed
Heyes, C. (2011). Automatic imitation. Psychological Bulletin, 137, 463483.CrossRefGoogle ScholarPubMed
Jakesch, M., & Leder, H. (2009). Finding meaning in art: Preferred levels of ambiguity in art appreciation. Quarterly Journal of Experimental Psychology, 62, 21052112.CrossRefGoogle ScholarPubMed
Kelly, S. D., Kravitz, C., & Hopkins, M. (2004). Neural correlates of bimodal speech and gesture comprehension. Brain and Language, 89, 253260.CrossRefGoogle ScholarPubMed
Keysers, C., & Perrett., D. I. (2004). Demystifying social cognition: A Hebbian perspective. Trends in Cognitive Sciences, 62(3), 501507.CrossRefGoogle ScholarPubMed
Kilner, J. (2011). More than one pathway to action understanding. Trends in Cognitive Sciences, 15, 352357.CrossRefGoogle ScholarPubMed
Kirk, U. (2008). The neural basis of object–context relationships on aesthetic judgement. PLoS One, 3, e3754.CrossRefGoogle Scholar
Kirsch, L. P., Drommelschmidt, K. A., & Cross, E. S. (2013). The impact of sensorimotor experience on affective evaluation of dance. Frontiers in Human Neuroscience, 7, 521.CrossRefGoogle ScholarPubMed
Koelsch, S. (2011). Toward a neural model of music perception: A review and updated model. Frontiers in Psychology, 2, 110.CrossRefGoogle Scholar
Laban, R. (2011). The mastery of movement. Alton, Hampshire: Dance Books Ltd.Google Scholar
Leach, J. (2013). Choreographic objects. Journal of Cultural Economy, 7(4). doi: 10.1080/17530350.2013.858058.Google Scholar
Leder, H., Belke, B., Oeberst, A., & Augustin, M. D. (2004). A model of aesthetic appreciation and aesthetic judgments. British Journal of Psychology, 95, 489508.CrossRefGoogle Scholar
Loeb, A. L. (1986). Symmetry in court and country dance. Computers & Mathematics with Applications – Part B, 12, 629639.CrossRefGoogle Scholar
McAleer, P., Pollick., F. E., Love, S. A., Crabbe, F. E., & Zacks, J. M. (2013). The role of kinematics in cortical regions for continuous human motion perception. Cognitive, Affective and Behavioral Neuroscience, 14(1), 307–318.Google Scholar
McGregor, W. (2013). Choreographic thinking tools. London: Hamlyn.Google Scholar
McManus, I. C. (1980). The aesthetics of simple figures. British Journal of Psychology, 71, 505524.CrossRefGoogle ScholarPubMed
Müller, M., Höfel, L., Brattico, E., & Jacobsen, T. (2010). Aesthetic judgments of music in experts and laypersons: An ERP study. International Journal of Psychophysiology, 76, 4051.CrossRefGoogle ScholarPubMed
Opacic, T., Stevens, C., & Tillmann, B. (2009). Unspoken knowledge: Implicit learning of structured human dance movement. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 15701577.Google ScholarPubMed
Orgs, G., Bestmann, S., Schuur, F., & Haggard, P. (2011). From body form to biological motion: The apparent velocity of human movement biases subjective time. Psychological Science, 22, 712717.CrossRefGoogle ScholarPubMed
Orgs, G., Dombrowski, J.-H., Heil, M., & Jansen-Osmann, P. (2008). Expertise in dance modulates alpha/beta event-related desynchronization during action observation. European Journal of Neuroscience, 27, 33803384.CrossRefGoogle ScholarPubMed
Orgs, G., Hagura, N., & Haggard, P. (2013). Learning to like it: Aesthetic perception of bodies, movements and choreographic structure. Consciousness & Cognition, 22, 603612.CrossRefGoogle ScholarPubMed
Orgs, G., Lange, K., Dombrowski, J. H., & Heil, M. (2006). Conceptual priming for environmental sounds and words: An ERP study. Brain Cognition, 62(3), 267272.CrossRefGoogle ScholarPubMed
Osgood, C. E., Suci, G. J., & Tannenbaum, P. H. (1957). The measurement of meaning. Urbana, IL: University of Illinois Press.Google Scholar
Palmer, S. E., Schloss, K. B., & Sammartino, J. (2013). Visual aesthetics and human preference. Annual Review of Psychology, 64, 77107.CrossRefGoogle ScholarPubMed
Peelen, M. V., & Downing, P. E. (2007). The neural basis of visual body perception. Nature Reviews Neuroscience, 8, 636–48.CrossRefGoogle ScholarPubMed
Peters, J. (2010). Damaged Goods/Meg Stuart. Are we here yet? Dijon, France: Les presses du réel.Google Scholar
Picton, T. W. (1992). The P300 wave of the human event-related potential. Journal of Clinical Neurophysiology, 9, 456479.CrossRefGoogle ScholarPubMed
Proverbio, A. M., & Riva, F. (2009). RP and N400 ERP components reflect semantic violations in visual processing of human actions. Neuroscience Letters, 459, 142146.CrossRefGoogle ScholarPubMed
Ramachandran, V. S., & Hirstein, W. (1999). The science of art. Journal of Consciousness Studies, 6, 1551.Google Scholar
Rameson, l. T., & Lieberman, M. D. (2009). Empathy: A social cognitive neuroscience approach. Social and Personality Psychology Compass, 3(1), 94110.CrossRefGoogle Scholar
Reber, R., Schwarz, N., & Winkielman, P. (2004). Processing fluency and aesthetic pleasure: Is beauty in the perceiver’s processing experience? Personality and Social Psychology Review, 8, 364382.CrossRefGoogle ScholarPubMed
Reber, R., Winkielman, P., & Schwarz, N. (1998). Effects of perceptual fluency on affective judgments. Psychological Science, 9, 4548.CrossRefGoogle Scholar
Reber, R., Wurtz, P., & Zimmermann, T. D. (2004). Exploring ‘fringe’ consciousness: The subjective experience of perceptual fluency and its objective bases. Consciousness and Cognition, 13,4760.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192.CrossRefGoogle ScholarPubMed
Shannon, C. E., & Weaver, W. (1949). A mathematical model of communication. Urbana, IL: University of Illinois Press.Google Scholar
Stanislavski, C. (1968). Creating a role. London: NEL Mentor Books.Google Scholar
Topolinski, S. (2010). Moving the eye of the beholder: Motor components in vision determine aesthetic preference. Psychological Science, 21, 12201224.CrossRefGoogle ScholarPubMed
Tsay, C. J. (2013). Sight over sound in the judgment of music performance. Proceedings of the National Academy of Sciences, 110, 1458014585.CrossRefGoogle ScholarPubMed
Urgesi, C., Calvo-Merino, B., Haggard, P., & Aglioti, S. M. (2007). Transcranial magnetic stimulation reveals two cortical pathways for visual body processing. Journal of Neuroscience, 27, 80238030.CrossRefGoogle ScholarPubMed
Wacongne, C., Labyt, E., van Wassenhove, V., Bekinschtein, T., Naccache, L., & Dehaene, S. (2011). Evidence for a hierarchy of predictions and prediction errors in human cortex. Proclamations of the National Academy of Sciences USA, 108, 20754–2079.Google ScholarPubMed
Wunderlich, K., Dayan, P., & Dolan, R. J. (2012). Mapping value based planning and extensively trained choice in the human brain. Nature Neuroscience, 15, 786791.CrossRefGoogle ScholarPubMed
Zajonc, R. B. (1968). Attitudinal effects of mere exposure. Journal of Personality and Social Psychology, 9, 127.CrossRefGoogle Scholar
Zeki, S., & Lamb, M. (1994). The neurology of kinetic art. Brain, 117, 607636.CrossRefGoogle ScholarPubMed
Zeki, S., & Stutters, J. (2012). A brain-derived metric for preferred kinetic stimuli. Open Biology, 2. doi: 10.1098/rsob.120001.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×