Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-16T08:06:43.712Z Has data issue: false hasContentIssue false

Dissecting the neuroanatomy of creativity and curiosity: The subdivisions within networks matter

Published online by Cambridge University Press:  21 May 2024

Rocco Chiou*
Affiliation:
School of Psychology, University of Surrey, Guildford, UK r.chiou@surrey.ac.uk https://roccochiou.weebly.com/ Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
Francesca M. Branzi
Affiliation:
Institute of Population Health, University of Liverpool, Liverpool, UK francesca.branzi@liverpool.ac.uk
Katya Krieger-Redwood
Affiliation:
Department of Psychology, University of York, York, UK katya.krieger-redwood@york.ac.uk beth.jefferies@york.ac.uk
Elizabeth Jefferies
Affiliation:
Department of Psychology, University of York, York, UK katya.krieger-redwood@york.ac.uk beth.jefferies@york.ac.uk
*
*Corresponding author.

Abstract

Ivancovsky et al. argue that the neurocognitive mechanisms of creativity and curiosity both rely on the interplay among brain networks. Research to date demonstrates that such inter-network dynamics are further complicated by functional fractionation within networks. Investigating how networks subdivide and reconfigure in service of a task offers insights about the precise anatomy that underpins creative and curious behaviour.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional-anatomic fractionation of the brain's default network. Neuron, 65(4), 550562.CrossRefGoogle ScholarPubMed
Assem, M., Glasser, M. F., Van Essen, D. C., & Duncan, J. (2020). A domain-general cognitive core defined in multimodally parcellated human cortex. Cerebral Cortex, 30(8), 43614380.CrossRefGoogle ScholarPubMed
Assem, M., Shashidhara, S., Glasser, M. F., & Duncan, J. (2022). Precise topology of adjacent domain-general and sensory-biased regions in the human brain. Cerebral Cortex, 32(12), 25212537.CrossRefGoogle ScholarPubMed
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20(2), 8795.CrossRefGoogle ScholarPubMed
Benedek, M., Beaty, R. E., Schacter, D. L., & Kenett, Y. N. (2023). The role of memory in creative ideation. Nature Reviews Psychology, 2(4), 246257.CrossRefGoogle Scholar
Branzi, F. M., & Lambon Ralph, M. A. (2023). Semantic-specific and domain-general mechanisms for integration and update of contextual information. Human Brain Mapping, 44(17), 55475566.CrossRefGoogle ScholarPubMed
Chiou, R., Cox, C. R., & Lambon Ralph, M. A. (2023a). Bipartite functional fractionation within the neural system for social cognition supports the psychological continuity of self versus other. Cerebral Cortex, 33(4), 12771299.CrossRefGoogle ScholarPubMed
Chiou, R., Humphreys, G. F., & Lambon Ralph, M. A. (2020). Bipartite functional fractionation within the default network supports disparate forms of internally oriented cognition. Cerebral Cortex, 30(10), 54845501.CrossRefGoogle ScholarPubMed
Chiou, R., Jefferies, E., Duncan, J., Humphreys, G. F., & Lambon Ralph, M. A. (2023b). A middle ground where executive control meets semantics: The neural substrates of semantic control are topographically sandwiched between the multiple-demand and default-mode systems. Cerebral Cortex, 33(8), 45124526.CrossRefGoogle ScholarPubMed
Dixon, M. L., De La Vega, A., Mills, C., Andrews-Hanna, J., Spreng, R. N., Cole, M. W., & Christoff, K. (2018). Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proceedings of the National Academy of Sciences, 115(7), E1598E1607.CrossRefGoogle Scholar
Gao, Z., Zheng, L., Chiou, R., Gouws, A., Krieger-Redwood, K., Wang, X., … Jefferies, E. (2021). Distinct and common neural coding of semantic and non-semantic control demands. NeuroImage, 236, 118230.CrossRefGoogle ScholarPubMed
Krieger-Redwood, K., Steward, A., Gao, Z., Wang, X., Halai, A., Smallwood, J., & Jefferies, E. (2023). Creativity in verbal associations is linked to semantic control. Cerebral Cortex, 33(9), 51355147.CrossRefGoogle ScholarPubMed
Sternberg, R. J., & Kaufman, J. C. (2010). Constraints on creativity: Obvious and not so obvious. In J. C. Kaufman & R. J. Sternberg (Eds.), The Cambridge Handbook of Creativity, (pp. 467482). Cambridge University Press.CrossRefGoogle Scholar
Vatansever, D., Smallwood, J., & Jefferies, E. (2021). Varying demands for cognitive control reveal shared neural processes supporting semantic and episodic memory retrieval. Nature Communications, 12(1), 2134.CrossRefGoogle ScholarPubMed
Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., … Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 11251165.Google ScholarPubMed
Zhang, M., Bernhardt, B. C., Wang, X., Varga, D., Krieger-Redwood, K., Royer, J., … Jefferies, E. (2022). Perceptual coupling and decoupling of the default mode network during mind-wandering and reading. eLife, 11, e74011.CrossRefGoogle ScholarPubMed