We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that a complete, two-sided, stable immersed anisotropic minimal hypersurface in
$\mathbf {R}^4$
has intrinsic cubic volume growth, provided the parametric elliptic integral is
$C^2$
-close to the area functional. We also obtain an interior volume upper bound for stable anisotropic minimal hypersurfaces in the unit ball. We can estimate the constants explicitly in all of our results. In particular, this paper gives an alternative proof of our recent stable Bernstein theorem for minimal hypersurfaces in
$\mathbf {R}^4$
. The new proof is more closely related to techniques from the study of strictly positive scalar curvature.
We obtain a complete topological classification of $k$-folding map-germs on generic surfaces in $\mathbb {R}^3$, discover new robust features of surfaces and recover, in a unified way, many of the robust features that were obtained previously by considering the contact of a surface with lines, planes or spheres.
We investigate the weighted
$L_p$
affine surface areas which appear in the recently established
$L_p$
Steiner formula of the
$L_p$
Brunn–Minkowski theory. We show that they are valuations on the set of convex bodies and prove isoperimetric inequalities for them. We show that they are related to f divergences of the cone measures of the convex body and its polar, namely the Kullback–Leibler divergence and the Rényi divergence.
We prove an improvement on Schmidt’s upper bound on the number of number fields of degree n and absolute discriminant less than X for
$6\leq n\leq 94$
. We carry this out by improving and applying a uniform bound on the number of monic integer polynomials, having bounded height and discriminant divisible by a large square, that we proved in a previous work [7].
The method of equivariant moving frames is employed to construct and completely classify the differential invariants for the action of the projective group on functions defined on the two-dimensional projective plane. While there are four independent differential invariants of order
$\leq 3$
, it is proved that the algebra of differential invariants is generated by just two of them through invariant differentiation. The projective differential invariants are, in particular, of importance in image processing applications.
We give a short proof of the Torelli theorem for
$ALH^*$
gravitational instantons using the authors’ previous construction of mirror special Lagrangian fibrations in del Pezzo surfaces and rational elliptic surfaces together with recent work of Sun-Zhang. In particular, this includes an identification of 10 diffeomorphism types of
$ALH^*_b$
gravitational instantons.
We study ribbons of vanishing Gaussian curvature, i.e. flat ribbons, constructed along a curve in $\mathbb {R}^{3}$. In particular, we first investigate to which extent the ruled structure determines a flat ribbon: in other words, we ask whether for a given curve $\gamma$ and ruling angle (angle between the ruling line and the curve's tangent) there exists a well-defined flat ribbon. It turns out that the answer is positive only up to an initial condition, expressed by a choice of normal vector at a point. We then study the set of infinitely narrow flat ribbons along a fixed curve $\gamma$ in terms of energy. By extending a well-known formula for the bending energy of the rectifying developable, introduced in the literature by Sadowsky in 1930, we obtain an upper bound for the difference between the bending energies of two solutions of the initial value problem. We finally draw further conclusions under some additional assumptions on the ruling angle and the curve $\gamma$.
Given $a,\,b\in \mathbb {R}$ and $\Phi \in C^{1}(\mathbb {S}^{2})$, we study immersed oriented surfaces $\Sigma$ in the Euclidean 3-space $\mathbb {R}^{3}$ whose mean curvature $H$ and Gauss curvature $K$ satisfy $2aH+bK=\Phi (N)$, where $N:\Sigma \rightarrow \mathbb {S}^{2}$ is the Gauss map. This theory widely generalizes some of paramount importance such as the ones constant mean and Gauss curvature surfaces, linear Weingarten surfaces and self-translating solitons of the mean curvature flow. Under mild assumptions on the prescribed function $\Phi$, we exhibit a classification result for rotational surfaces in the case that the underlying fully nonlinear PDE that governs these surfaces is elliptic or hyperbolic.
In this paper, we give the generic classification of the singularities of 3-parameter line congruences in $\mathbb {R}^{4}$. We also classify the generic singularities of normal and Blaschke (affine) normal congruences.
We present a representation formula for translating soliton surfaces to the mean curvature flow in Euclidean space
${\mathbb {R}}^{4}$
and give examples of conformal parameterisations for translating soliton surfaces.
A Simons type formula for submanifolds with parallel normalized mean curvature vector field (pnmc submanifolds) in the product spaces $M^{n}(c)\times \mathbb {R}$, where $M^{n}(c)$ is a space form with constant sectional curvature $c\in \{-1,1\}$, it is shown. As an application is obtained rigidity results for submanifolds with constant second mean curvature.
The purpose of this article is to prove a ‘Newton over Hodge’ result for finite characters on curves. Let X be a smooth proper curve over a finite field
$\mathbb {F}_q$
of characteristic
$p\geq 3$
and let
$V \subset X$
be an affine curve. Consider a nontrivial finite character
$\rho :\pi _1^{et}(V) \to \mathbb {C}^{\times }$
. In this article, we prove a lower bound on the Newton polygon of the L-function
$L(\rho ,s)$
. The estimate depends on monodromy invariants of
$\rho $
: the Swan conductor and the local exponents. Under certain nondegeneracy assumptions, this lower bound agrees with the irregular Hodge filtration introduced by Deligne. In particular, our result further demonstrates Deligne’s prediction that the irregular Hodge filtration would force p-adic bounds on L-functions. As a corollary, we obtain estimates on the Newton polygon of a curve with a cyclic action in terms of monodromy invariants.
For each $k\geq 3$, we construct a $1$-parameter family of complete properly Alexandrov-embedded minimal surfaces in the Riemannian product space $\mathbb {H}^2\times \mathbb {R}$ with genus $1$ and k embedded ends asymptotic to vertical planes. We also obtain complete minimal surfaces with genus $1$ and $2k$ ends in the quotient of $\mathbb {H}^2\times \mathbb {R}$ by an arbitrary vertical translation. They all have dihedral symmetry with respect to k vertical planes, as well as finite total curvature $-4k\pi $. Finally, we provide examples of complete properly Alexandrov-embedded minimal surfaces with finite total curvature with genus $1$ in quotients of $\mathbb {H}^2\times \mathbb {R}$ by the action of a hyperbolic or parabolic translation.
In this paper we are interested in comparing the spectra of two elliptic operators acting on a closed minimal submanifold of the Euclidean unit sphere. Using an approach introduced by Savo in [A Savo. Index Bounds for Minimal Hypersurfaces of the Sphere. Indiana Univ. Math. J. 59 (2010), 823-837.], we are able to compare the eigenvalues of the stability operator acting on sections of the normal bundle and the Hodge Laplacian operator acting on $1$-forms. As a byproduct of the technique and under a suitable hypothesis on the Ricci curvature of the submanifold we obtain that its first Betti's number is bounded from above by a multiple of the Morse index, which provide evidence for a well-known conjecture of Schoen and Marques & Neves in the setting of higher codimension.
Using the calculus of variations, we prove the following structure theorem for noise-stable partitions: a partition of n-dimensional Euclidean space into m disjoint sets of fixed Gaussian volumes that maximise their noise stability must be $(m-1)$-dimensional, if $m-1\leq n$. In particular, the maximum noise stability of a partition of m sets in $\mathbb {R}^{n}$ of fixed Gaussian volumes is constant for all n satisfying $n\geq m-1$. From this result, we obtain:
(i) A proof of the plurality is stablest conjecture for three candidate elections, for all correlation parameters $\rho $ satisfying $0<\rho <\rho _{0}$, where $\rho _{0}>0$ is a fixed constant (that does not depend on the dimension n), when each candidate has an equal chance of winning.
(ii) A variational proof of Borell’s inequality (corresponding to the case $m=2$).
The structure theorem answers a question of De–Mossel–Neeman and of Ghazi–Kamath–Raghavendra. Item (i) is the first proof of any case of the plurality is stablest conjecture of Khot-Kindler-Mossel-O’Donnell for fixed $\rho $, with the case $\rho \to L1^{-}$ being solved recently. Item (i) is also the first evidence for the optimality of the Frieze–Jerrum semidefinite program for solving MAX-3-CUT, assuming the unique games conjecture. Without the assumption that each candidate has an equal chance of winning in (i), the plurality is stablest conjecture is known to be false.
We prove that there are no regular algebraic hypersurfaces with non-zero constant mean curvature in the Euclidean space $\mathbb {R}^{n+1},\,\;n\geq 2,$ defined by polynomials of odd degree. Also we prove that the hyperspheres and the round cylinders are the only regular algebraic hypersurfaces with non-zero constant mean curvature in $\mathbb {R}^{n+1}, n\geq 2,$ defined by polynomials of degree less than or equal to three. These results give partial answers to a question raised by Barbosa and do Carmo.
We establish a one-to-one correspondence between, on the one hand, Finsler structures on the
$2$
-sphere with constant curvature
$1$
and all geodesics closed, and on the other hand, Weyl connections on certain spindle orbifolds whose symmetric Ricci curvature is positive definite and whose geodesics are all closed. As an application of our duality result, we show that suitable holomorphic deformations of the Veronese embedding
$\mathbb {CP}(a_1,a_2)\rightarrow \mathbb {CP}(a_1,(a_1+a_2)/2,a_2)$
of weighted projective spaces provide examples of Finsler
$2$
-spheres of constant curvature whose geodesics are all closed.
We consider the fractional elliptic problem:
where B1 is the unit ball in ℝN, N ⩾ 3, s ∈ (0, 1) and p > (N + 2s)/(N − 2s). We prove that this problem has infinitely many solutions with slow decay O(|x|−2s/(p−1)) at infinity. In addition, for each s ∈ (0, 1) there exists Ps > (N + 2s)/(N − 2s), for any (N + 2s)/(N − 2s) < p < Ps, the above problem has a solution with fast decay O(|x|2s−N). This result is the extension of the work by Dávila, del Pino, Musso and Wei (2008, Calc. Var. Partial Differ. Equ. 32, no. 4, 453–480) to the fractional case.
Le nombre chromatique relatif
$c_0(S)$
d’une surface compacte S à bord est défini comme la borne supérieure des nombres chromatiques des graphes plongés dans S avec tous leurs sommets sur
$\partial S$
. Cet invariant topologique a été introduit pour l’étude de la multiplicité de la première valeur propre de Steklov sur S. Dans cet article, on montre que
$c_0(S)$
est aussi pertinent pour l’étude des plongements polyédraux tendus de S en établissant deux résultats. Le premier est que s’il existe un plongement polyédral tendu de S dans
$\mathbb {R}^n$
qui n’est pas contenu dans un hyperplan, alors
$n\leq c_0(S)-1$
. Le second est que cette inégalité est optimale pour les surfaces de petit genre.
We show that for any n divisible by 3, almost all order-n Steiner triple systems admit a decomposition of almost all their triples into disjoint perfect matchings (that is, almost all Steiner triple systems are almost resolvable).