Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-08T06:51:18.045Z Has data issue: false hasContentIssue false

10 - Atomic pair interactions

Published online by Cambridge University Press:  06 July 2010

Grazyna Antczak
Affiliation:
University of Wrocław, Poland; Leibniz Universität Hannover, Germany
Gert Ehrlich
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

As is clear from the previous chapters, a considerable amount of information has become available about the diffusivity of metal atoms on metal surfaces. This knowledge will have an impact on understanding topics such as crystal growth and dissolution, annealing, sintering, as well as chemical surface reactions. We will not examine any of these important topics, but will instead focus on attempts to measure atomic surface interactions, as an example of effects which have become much clearer through gains in the knowledge of surface diffusion.

Interactions can be divided into two categories, direct, for example van der Waals, dipolar, as well as electronic interactions, and indirect, which are mediated by the substrate, such as coupling by electronic states, elastic effects, or vibrational coupling. In Chapters 8 and 9 we described the movement of clusters created mostly by direct interactions of adatoms. In this chapter we will concentrate on the second type of interactions, mediated by the lattice – indirect interactions. The theory of interactions between adsorbed atoms has been nicely reviewed by Einstein, so here we just want to point out that with two atoms in the gas phase, the wave function for a higher state will be confined to the vicinity of the core. Placed on a metal surface, however, quantum interference of wave functions enters and adatom waves combine with metal wave functions from the lattice. The contributions from two atoms may overlap, as shown in Fig. 10.1.

Type
Chapter
Information
Surface Diffusion
Metals, Metal Atoms, and Clusters
, pp. 696 - 734
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Einstein, T. L., in: Handbook of Surface Science, Unertl, W. N. (ed.), Interactions between adsorbate particles, (Elsevier, Amsterdam, New York, 1996), p. 577–650.Google Scholar
Grimley, T. B., The indirect interaction between atoms or molecules adsorbed on metals, Proc. Phys. Soc. 90 (1967) 751–764.CrossRefGoogle Scholar
Ehrlich, G., Watanabe, F., Atomic interactions on crystals: A review of quantitative experiments, Langmuir 7 (1991) 2555–2563.CrossRefGoogle Scholar
Koh, S. J., Adatom diffusion and interactions: Pd on W(110), Ph. D. Materials Science, University of Illinois at Urbana-Champaign, 1998.
Tsong, T. T., Field-ion microscope observations of indirect interaction between adatoms on metal surfaces, Phys. Rev. Lett. 31 (1973) 1207–1210.CrossRefGoogle Scholar
Friedel, J., Metallic alloys, Nuovo Cimento Supplement 7 (1958) 287–311.CrossRefGoogle Scholar
Graham, W. R., Ehrlich, G., Direct measurement of the pair distribution function for adatoms on a surface, Phys. Rev. Lett. 32 (1974) 1309–1311.CrossRefGoogle Scholar
Nishigaki, S., Nakamura, S., FIM observation of interactions between W atoms on W Surfaces, Jpn. J. Appl. Phys. 14 (1975) 769–777.CrossRefGoogle Scholar
Ayrault, G., Ehrlich, G., Surface self-diffusion on an fcc crystal: An atomic view, J. Chem. Phys. 60 (1974) 281–294.CrossRefGoogle Scholar
Bassett, D. W., Tice, D. R., in: The Physical Basis for Heterogeneous Catalysis, Drauglis, E., Jaffee, R. I. (eds.), Field ion microscopic studies of interactions between atoms adsorbed on tungsten(110) surfaces, (Plenum Press, New York, 1975), p. 231–245.CrossRefGoogle Scholar
Fink, H.-W., Faulian, K., Bauer, E., Evidence for nonmonotonic long-range interactions between adsorbed atoms, Phys. Rev. Lett. 44 (1980) 1008–1011.CrossRefGoogle Scholar
Casanova, R., Tsong, T. T., Pair interactions of metal atoms on a metal surface, Phys. Rev. B 22 (1980) 5590–5598.CrossRefGoogle Scholar
Tsong, T. T., Casanova, R., Direct measurement of pair energies in adatom-adatom interactions on a metal surface, Phys. Rev. B 24 (1981) 3063–3072.CrossRefGoogle Scholar
Stoop, L. C. A., A Monte Carlo calculation of lateral interactions in silver monolayers on W(110), Thin Solid Films 103 (1983) 375–398.CrossRefGoogle Scholar
Roelofs, L. D., Bellon, R. J., Multi–adatom interaction effects in a lattice gas model for Cu and Au adsorption on W(110), Surf. Sci. 223 (1989) 585–598.CrossRefGoogle Scholar
Gollisch, H., Adsorption of Cu, Ag and Au on W(110): A theoretical study based on a non-additive effective binding potential, Surf. Sci. 175 (1986) 249–262.CrossRefGoogle Scholar
Kolaczkiewicz, J., Bauer, E., The law of corresponding states for chemisorbed layers with attractive lateral interactions, Surf. Sci. 151 (1985) 333–350.CrossRefGoogle Scholar
Fink, H.-W., Ehrlich, G., Pair and trio interactions between adatoms: Re on W(110), J. Chem. Phys. 81 (1984) 4657–4665.CrossRefGoogle Scholar
Watanabe, F., Ehrlich, G., Direct mapping of adatom–adatom interactions, Phys. Rev. Lett. 62 (1989) 1146–1149.CrossRefGoogle ScholarPubMed
Watanabe, F., Ehrlich, G., Direct observations of pair interactions on a metal: Heteropairs on W(110), J. Chem. Phys. 95 (1991) 6075–6087.CrossRefGoogle Scholar
Stoneham, A. M., Elastic interactions between surface adatoms and between surface clusters, Solid State Comm. 24 (1977) 425–428.CrossRefGoogle Scholar
Kappus, W., Substrate strain induced interaction of adatoms on W(110), Z. Phys. B 38 (1980) 263–266.CrossRefGoogle Scholar
Watanabe, F., Ehrlich, G., Direct observation of interactions between identical adatoms: Ir-Ir and Re-Re on W(110), J. Chem. Phys. 96 (1992) 3191–3199.CrossRefGoogle Scholar
Bassett, D. W., Parsley, M. J., Field ion microscope observations of cluster formation in metal deposits on tungsten surfaces, Nature 221 (1969) 1046.CrossRefGoogle Scholar
Tice, D. R., Basset, D. W., Nucleation of platinum and iridium monolayer growth on (110) tungsten surfaces, Thin Solid Films 20 (1974) S37–40.CrossRefGoogle Scholar
Fink, H.-W., Ehrlich, G., Direct observations of overlayer structures on W(110), Surf. Sci. 110 (1981) L611–614.CrossRefGoogle Scholar
Chambers, R. S., Determination of cluster spacings in the FIM: iridium dimers on W(110), Surf. Sci. 246 (1991) 25–30.CrossRefGoogle Scholar
Bassett, D. W., Chung, C. K., Tice, D., Field ion microscope studies of atomic displacement processes on metal surfaces, La Vide 176 (1975) 39–43.Google Scholar
Dreyssé, H., Tomanek, D., Bennemann, K. H., Multi-adatom interactions on metal surfaces, Surf. Sci. 173 (1986) 538–554.CrossRefGoogle Scholar
Reed, D. A., Ehrlich, G., In-channel clusters: Rhenium on W(211), Surf. Sci. 151 (1985) 143–165.CrossRefGoogle Scholar
Xu, W., Adams, J. B., W adatom-adatom interactions on the W(110) surface, Surf. Sci. 339 (1995) 241–246.CrossRefGoogle Scholar
Breeman, M., Barkema, G. T., Langelaar, M. H., Boerma, D. O., Computer simulation of metal-on-metal epitaxy, Thin Solid Films 272 (1996) 195–207.CrossRefGoogle Scholar
Ackland, G. J., Tichy, G., Vitek, V., Finnis, M. W., Simple N-body potentials for the noble metals and nickel, Philos. Mag. A 56 (1987) 735–756.CrossRefGoogle Scholar
Kolaczkiewicz, J., Bauer, E., Desorption energy and lateral interaction energy in the adsorption systems of Rh, Pd, Ir and Pt on W(110), Surf. Sci. 374 (1997) 95–103.CrossRefGoogle Scholar
Koh, S. J., Ehrlich, G., Pair- and many-atom interactions in the cohesion of surface clusters: Pdx and Irx on W(110), Phys. Rev. B 60 (1999) 5981–5990.CrossRefGoogle Scholar
Koh, S. J., Ehrlich, G., Atomic interactions and the stability of surface clusters, Mater. Res. Soc. Symp. Proc. 528 (1998) 37–43.CrossRefGoogle Scholar
Wahlström, E., Ekvall, I., Olin, H., Walldén, L., Long-range interaction between adatoms at the Cu(111) surface imaged by scanning tunnelling microscopy, Appl. Phys. A 66 (1998) S1107–1110.Google Scholar
Levanov, N. A., Katsnel'son, A. A., Moroz, A. É., Stepanyuk, V. S., Hergert, W., Kokko, K., Structure and stability of clusters on metal surfaces, Phys. Solid State 41 (1999) 1216–1221.CrossRefGoogle Scholar
Fichthorn, K., Scheffler, M., Island nucleation in thin-film epitaxy: A first-principles investigation, Phys. Rev. Lett. 84 (2000) 5371–5374.CrossRefGoogle ScholarPubMed
Bogicevic, A., Ovesson, S., Hyldgaard, P., Lundqvist, B. I., Brune, H., Jennison, D. R., Nature, strength, and consequences of indirect adsorbate interactions on metals, Phys. Rev. Lett. 85 (2000) 1910–1913.CrossRefGoogle ScholarPubMed
Kresse, G., Hafner, J., Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47 (1993) 558–561.CrossRefGoogle ScholarPubMed
Kresse, G., Hafner, J., Ab initio molecular dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B 49 (1994) 14251–14269.CrossRefGoogle ScholarPubMed
Kresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave set, Phys. Rev. B 54 (1996) 11169–11186.CrossRefGoogle ScholarPubMed
Polop, C., Hansen, H., Busse, C., Michely, T., Relevance of nonlocal adatom-adatom interactions in homoepitaxial growth, Phys. Rev. B 67 (2003) 193405 1–4.CrossRefGoogle Scholar
Repp, J., Moresco, F., Meyer, G., Rieder, K.-H., Hyldgard, P., Perrson, M., Substrate mediated long-range oscillatory interaction between adatoms, Phys. Rev. Lett. 85 (2000) 2981–2984.CrossRefGoogle ScholarPubMed
Fransson, J., Balatsky, A. V., Surface imaging of inelastic Friedel oscillations, Phys. Rev B 75 (2007) 195337 1–5.CrossRefGoogle Scholar
Hyldgaard, P., Persson, M., Long-ranged adsorbate-adsorbate interactions mediated by a surface-state band, J. Phys.: Condens. Matter 12 (2000) L13–19.Google Scholar
Knorr, N., Brune, H., Epple, M., Hirstein, A., Schneider, M. A., Kern, K., Long-range adsorbate interactions mediated by a two-dimensional electron gas, Phys. Rev. B 65 (2002) 115420 1–5.CrossRefGoogle Scholar
Hyldgaard, P., Einstein, T. L., Surface-state-mediated three-adsorbate interaction, Europhys. Lett. 59 (2002) 265–271.CrossRefGoogle Scholar
Hyldgaard, P., Einstein, T. L., Surface-state mediated three-adsorbate interaction: Electronic nature and nanoscale consequences, Surf. Sci. 532–535 (2003) 600–605.CrossRefGoogle Scholar
Hyldgaard, P., Einstein, T. L., Surface-state mediated three-adsorbate interaction: Exact and numerical results and simple asymptotic expression, Appl. Surf. Sci. 212–213 (2003) 856–860.CrossRefGoogle Scholar
Stepanyuk, V. S., Baranov, A. N., Tsivlin, D. V., Hergert, W., Bruno, P., Knorr, N., Schneider, M. A., Kern, K., Quantum interference and long-range adsorbate-adsorbate interactions, Phys. Rev. B 68 (2003) 205410 1–5.CrossRefGoogle Scholar
Stepanyuk, V. S., Hergert, W., Zeller, R., Dederichs, P. H., Magnetism of 3d, 4d, and 5d transition-metal impurities on Pd(001) and Pt(001) surfaces, Phys. Rev. B 53 (1996) 2121–2125.CrossRefGoogle ScholarPubMed
Stepanyuk, V. S., Hergert, W., Zeller, R., Dederichs, P. H., Imperfect magnetic nanostructures on a Ag(001) surface, Phys. Rev. B 59 (1999) 1681–1684.CrossRefGoogle Scholar
Wildberger, K., Stepanyuk, V. S., Lang, P., Zeller, R., Dederichs, P. H., Magnetic nanostructures: 4 d clusters on Ag(001), Phys. Rev. Lett. 75 (1995) 509–512.CrossRefGoogle Scholar
Koh, S. J., Ehrlich, G., Self-assembly of one-dimensional surface structures: Long-range interactions in the growth of Ir and Pd on W(110), Phys. Rev. Lett. 87 (2001) 106103 1–4.CrossRefGoogle Scholar
Silly, F., Pivetta, M., Ternes, M., Patthey, F., Pelz, J. P., Schneider, W.-D., Creation of an atomic superlattice by immersing metallic adatoms in a two-dimensional electron sea, Phys. Rev. Lett. 92 (2004) 016101 1–4.CrossRefGoogle Scholar
Negulyaev, N. N., Stepanyuk, V. S., Niebergall, L., Hergert, W., Fangohr, H., Bruno, P., Self-organization of Ce adatoms on Ag(111): A kinetic Monte Carlo study, Phys. Rev. B 74 (2006) 035421 1–5.CrossRefGoogle Scholar
Fu, T.-Y., Hwang, Y.-J., Tsong, T. T., Oscillatory adatom-adatom interactions of Pd adatoms on the W(211) surface, Surf. Sci. 566–568 (2004) 462–466.CrossRefGoogle Scholar
Fu, T.-Y., Wu, T. Y., Tsong, T. T., Oscillatory adatom–adatom interactions of 1D and 2D surface diffusion systems, Chin. J. Phys. 43 (2005) 124–131.Google Scholar
Luo, W., Fichthorn, K. A., First-principles study of substrate-mediated interactions on a compressed Ag(111) surface, Phys. Rev. B 72 (2005) 115433 1–8.CrossRefGoogle Scholar
Stasevich, T. J., Einstein, T. L., Stolbov, S., Extended lattice gas interactions of Cu on Cu(111) and Cu(001): Ab initio evaluation and implications, Phys. Rev. B 73 (2006) 115426 1–7.CrossRefGoogle Scholar
Tiwary, Y., Fichthorn, K. A., Interactions between Al atoms on Al(110) from first-principles calculations, Phys. Rev. B 75 (2007) 235451 1–8.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×