Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-08T06:51:00.953Z Has data issue: false hasContentIssue false

2 - Determination of adatom movements

Published online by Cambridge University Press:  06 July 2010

Grazyna Antczak
Affiliation:
University of Wrocław, Poland; Leibniz Universität Hannover, Germany
Gert Ehrlich
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

Surface diffusion studies on single adsorbed entities, the focus of our presentation, had to await the development of techniques capable of revealing atoms. This was first accomplished by Müller roughly fifty years ago in 1956, with his invention of the field ion microscope (FIM). The natural extension of FIM was the development of the Atom Probe which allowed identification of chemical identities and control of composition for surfaces, but there also were earlier investigative methods, such as field emission microscopy, helium scattering, contact potential measurements and so on, which provided useful information about surface diffusion. Today there are newer techniques that have been shown to have the capability of revealing atoms. The scanning tunneling microscope (STM), devised by Binnig and Rohrer in 1983 is one of them. Less frequently used techniques, such as measurements of work function changes, perturbed angular correlation, or atomic beam scattering will also be mentioned, if only very briefly. Insights into diffusion phenomena on the atomic scale gained with the scanning tunneling microscope are certain to grow in number and importance. Both field ion and scanning tunneling microscopy have been covered extensively in the literature, and will also be described here in reference to diffusion studies. It should be noted that for examination of diffusion phenomena on clean surfaces by any of these techniques, good vacuum conditions are crucial.

Type
Chapter
Information
Surface Diffusion
Metals, Metal Atoms, and Clusters
, pp. 24 - 63
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Müller, E. W., Bahadur, K., Field ionization of gases at a metal surface and the resolution of the field ion microscope, Phys. Rev. 102 (1956) 624–631.CrossRefGoogle Scholar
Müller, E. W., Resolution of the atomic structure of a metal surface by the field ion microscope, J. Appl. Phys. 27 (1956) 474–476.CrossRefGoogle Scholar
Müller, E. W., Panitz, J. A., McLane, S. B., The atom-probe field ion microscope, Rev. Sci. Instrum. 39 (1968) 83–86.CrossRefGoogle Scholar
Gomer, R., Field Emission and Field Ionization (Harvard University Press, Cambridge, 1961).Google Scholar
Graham, A. P., The low energy dynamics of adsorbates on metal surfaces investigated with helium atom scattering, Surf. Sci. Repts. 49 (2003) 115–168.CrossRefGoogle Scholar
Naumovets, A. G., Vedula, Y. S., Surface diffusion of adsorbates, Surf. Sci. Rep. 4 (1985) 365–434.CrossRefGoogle Scholar
Binnig, G., Rohrer, H., Scanning tunneling microscopy, Helv. Phys. Acta 55 (1982) 726–735.Google Scholar
Binnig, G., Rohrer, H., Scanning tunneling microscopy, Surf. Sci. 126 (1983) 236–244.CrossRefGoogle Scholar
Hren, J. J., Ranganathan, S., Field-Ion Microscopy (Plenum Press, New York, 1968).CrossRefGoogle Scholar
Müller, E. W., Tsong, T. T., Field Ion Microscopy Principles and Applications (American Elsevier, New York, 1969).CrossRefGoogle Scholar
Bowkett, K. M., Smith, D. A., Field Ion Microscopy (North-Holland, Amsterdam, 1970).Google Scholar
Güntherodt, H.-J., Wiesendanger, R., Springer Series in Surface Sciences, Scanning Tunneling Microscopy (Springer-Verlag, Berlin, 1994).CrossRefGoogle Scholar
Güntherodt, H.-J., Wiesendanger, R., Springer Series in Surface Sciences, Scanning Tunneling Microscopy I (Springer-Verlag, Berlin, 1992).CrossRefGoogle Scholar
Wiesendanger, R., Güntherodt, H.-J., Springer Series in Surface Sciences, Scanning Tunneling Microscopy II, Berlin, 1992).CrossRefGoogle Scholar
Wiesendanger, R., Güntherodt, H.-J., Springer Series in Surface Sciences 29, Scanning Tunneling Microscopy III (Springer-Verlag, Berlin, 1993).CrossRefGoogle Scholar
Kalff, M., Comsa, G., Michely, T., How sensitive is epitaxial growth to adsorbates? Phys. Rev. Lett. 81 (1998) 1255–1258.CrossRefGoogle Scholar
Reed, D. A., Ehrlich, G., In-channel clusters: rhenium on W(211), Surf. Sci. 151 (1985) 143–165.CrossRefGoogle Scholar
Wang, S. C., Ehrlich, G., Self-adsorption sites on a close-packed surface: Ir on Ir(111), Phys. Rev. Lett. 62 (1989) 2297–2300.CrossRefGoogle Scholar
Graham, W. R., Ehrlich, G., Direct identification of atomic binding sites on a crystal, Surf. Sci. 45 (1974) 530–552.CrossRefGoogle Scholar
Averback, R. S., Seidman, D. N., Neon gas imaging of gold in the field ion microscope, Surf. Sci. 40 (1973) 249–263.CrossRefGoogle Scholar
Oostrom, A., Field ion microscopy, Acta Electronica 16 (1973) 59–71.Google Scholar
Nam, A. J., Teren, A., Lusby, T. A., Melmed, A. J., Benign making of sharp tips for STM and FIM: Pt, Ir, Au, Pd, and Rh, J. Vac. Sci. Technol. B 13 (1995) 1556–1559.CrossRefGoogle Scholar
Sakurai, T., Field ion microscopy of silicon, Surf. Sci. 86 (1979) 562–571.CrossRefGoogle Scholar
Adachi, T., Ariyasu, T., Field-ion microscopy of the Si(001) surface, Philos. Mag. A 66 (1992) 405–414.CrossRefGoogle Scholar
Janssen, J. A., Jones, J. P., The sharpening of field emitter tips by ion sputtering, J. Phys. D.: Appl. Phys. 4 (1971) 118–124.CrossRefGoogle Scholar
Antczak, G., Jóźwik, P., Atom movement on a dislocated surface, Langmuir 24 (2008) 9970–9973.CrossRefGoogle ScholarPubMed
Chambers, R. S., Ehrlich, G., Chemical identification of individual surface atoms in the atom probe, J. Vac. Sci. Technol. 13 (1976) 273–276.CrossRefGoogle Scholar
Wrigley, J. D., Ehrlich, G., Surface diffusion by an atomic exchange mechanism, Phys. Rev. Lett. 44 (1980) 661–663.CrossRefGoogle Scholar
Wrigley, J. D., Surface diffusion by an atomic exchange mechanism, Physics Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1982.
Miller, M. K., Atom Probe Tomography: Analysis at the Atomic Level (Kluwer Academic, New York, 2000).CrossRefGoogle Scholar
Miller, M. K., Cerezo, A., Hetherington, M. G., Smith, G. D. W., Atom Probe Field Ion Microscopy (Clarendon Press, Oxford, 1996).Google Scholar
Tsong, T. T., Atom-probe Field Ion Microscopy: Field Ion Emission, and Surfaces and Interfaces at Atomic Resolution (Cambridge University Press, Cambridge, 1990).CrossRefGoogle Scholar
Miller, M. K., Smith, G. D. W., Atom Probe Microanalysis: Principles and Applications to Materials Problems (Materials Research Society, Pittsburgh, PA, 1989).Google Scholar
Good, R. H., Müller, E. W., in: Flügge, S. (ed.), Field emission, Handbuch der Physik, Vol. XXI–1 (Springer-Verlag, Berlin, 1956), p. 176–231.Google Scholar
Gomer, R., Diffusion of adsorbates on metal surfaces, Rep. Prog. Phys. 53 (1990) 917–1002.CrossRefGoogle Scholar
Beben, J., Kleint, C., Meclewski, R., Improved adsorbate fluctuation measurements and their explanation by different diffusion mechanisms: I. Arguments in favor of single adatom surface diffusion, Surf. Sci. 213 (1989) 438–450.CrossRefGoogle Scholar
Blaszczyszyn, R., Kleint, C., Effect of preadsorbed Ni atoms upon the potassium diffusion on the W(112) plane, Surf. Sci. 253 (1991) 129–136.CrossRefGoogle Scholar
Biernat, T., Kleint, C., Meclewski, R., Surface diffusion of lithium across and along atomic rows on the W(211) plane, Appl. Surf. Sci. 67 (1993) 206–210.CrossRefGoogle Scholar
Smoluchowski, M. v., Studien über Molekularstatistik von Emulsionen und deren Zusammenhang mit der Brown'schen Bewegung, Sitzber. Akad. Wiss. Wien Math. Naturw. Kl. 123 (1914) 2381–2405.Google Scholar
Smoluchowski, M. v., Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, Physik. Zeitschr. 17 (1916) 557–571, 585–599.Google Scholar
Timm, G. W., Ziel, A., Noise in field emission diodes, Physica 32 (1966) 1333–1344.CrossRefGoogle Scholar
Kleint, C., Surface diffusion model of adsorption-induced field emission flicker noise I. Theory, Surf. Sci. 25 (1971) 394–410.CrossRefGoogle Scholar
Kleint, C., Surface diffusion model of adsorption-induced field emission flicker noise II. Experiments, Surf. Sci. 25 (1971) 411–434.CrossRefGoogle Scholar
Chen, J.-R., Gomer, R., Mobility of oxygen on the (110) plane of tungsten, Surf. Sci. 79 (1979) 413–444.CrossRefGoogle Scholar
Young, R., Ward, J., Scire, F., The topographiner: An instrument for measuring surface microtopography, Rev. Sci. Instrum. 43 (1972) 999–1011.CrossRefGoogle Scholar
Teague, E. C., Room temperature gold-vacuum-gold tunneling experiments, J. Res. Natl. Bur. Stand. 91 (1986) 171–233.CrossRefGoogle Scholar
Binnig, G., Rohrer, H., Gerber, C., Weibel, E., Surface studies by scanning tunneling microscopy, Phys. Rev. Lett. 49 (1982) 57–61.CrossRefGoogle Scholar
Golovchenko, J. A., The tunneling microscope: a new look at the atomic world, Science 232 (1986) 48–53.CrossRefGoogle Scholar
Linderoth, T. R., Horch, S., Laegsgaard, E., Stensgaard, I., Besenbacher, F., Surface diffusion of Pt on Pt(110): Arrhenius behavior of long jumps, Phys. Rev. Lett. 78 (1997) 4978–4981.CrossRefGoogle Scholar
Morgenstern, K., Rieder, K.-H., Long-range interaction of copper atoms and copper dimers on Ag(111), New J. Phys. 7 (2005) 139 1–11.CrossRefGoogle Scholar
Giessibl, F., Quate, C. F., Exploring the nanoworld with atomic force microscopy, Physi. Today 59 (2006) 44–50.CrossRefGoogle Scholar
Godhew, P. J., Practical Methods in Electron Microscopy (North-Holland Publishing Company, Amsterdam, 1972).Google Scholar
Liu, R., Chemisorption on perfect surfaces and structural defects, Materials Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1977.
Antczak, G., Ehrlich, G., Long jumps in diffusion of iridium on W(110), Phys. Rev. B 71 (2005) 115422 1–9.CrossRefGoogle Scholar
Wang, S. C., Ehrlich, G., Imaging and diffusion of individual iridium adatoms on Ir(111), Surf. Sci. 224 (1989) L997–1003.CrossRefGoogle Scholar
Fink, H.-W., Ehrlich, G., Pair and trio interactions between adatoms: Re on W(110), J. Chem. Phys. 81 (1984) 4657–4665.CrossRefGoogle Scholar
Desai, P. D., Chu, T. K., James, H. M., Ho, C. Y., Electrical resistivity of selected elements, J. Phys. Chem. Ref. Data 13 (1984) 1069–1096.CrossRefGoogle Scholar
Stolt, K., Graham, W. R., Ehrlich, G., Surface diffusion of individual atoms and dimers: Re on W(211), J. Chem. Phys. 65 (1976) 3206–3222.CrossRefGoogle Scholar
Wang, S. C., Ehrlich, G., Adatom diffusion on W(211): Re, W, Mo, Ir and Rh, Surf. Sci. 206 (1988) 451–474.CrossRefGoogle Scholar
Lovisa, M. F., Ehrlich, G., Quantitative determinations of the temperature dependence of diffusion phenomena in the FIM, Surf. Sci. 246 (1991) 43–49.CrossRefGoogle Scholar
Grizzi, O., Shi, M., Bu, H., Rabalais, J. W., Hochmann, P., Time of flight scattering and recoiling spectrometry. I. Structure of the W(211) surface, Phys. Rev. B 40 (1989) 10127–10146.CrossRefGoogle ScholarPubMed
Davis, H. L., Wang, G.-C., Registry relaxation of the W(211) surface – a (1 × 1) reconstruction, Bull. Am. Phys. Soc. 29 (1984) 221.Google Scholar
Antczak, G., Long jumps in one-dimensional surface self-diffusion: Rebound transitions, Phys. Rev. B 73 (2006) 033406 1–4.CrossRefGoogle Scholar
Oh, S.-M., Kyuno, K., Koh, S. J., Ehrlich, G., Atomic jumps in surface self-diffusion:W on W(110), Phys. Rev. B 66 (2002) 233406 1–4.CrossRefGoogle Scholar
Morgenstern, K., Fast scanning tunneling microscopy as a tool to understand changes on metal surfaces: from nanostructures to single atoms, Phys. Stat. Sol. 242 (2005) 773–796.CrossRefGoogle Scholar
Knorr, N., Brune, H., Epple, M., Hirstein, A., Schneider, M. A., Kern, K., Long-range adsorbate interactions mediated by a two-dimensional electron gas, Phys. Rev. B 65 (2002) 115420 1–5.CrossRefGoogle Scholar
Fransson, J., Balatsky, A. V., Surface imaging of inelastic Friedel oscillations, Phys. Rev. B 75 (2007) 195337 1–5.CrossRefGoogle Scholar
Chan, H. Y. H., Dev, K., Seebauer, E. G., Vacancy charging on Si(100)-(2 × 1): Consequences for surface diffusion and STM imaging, Phys. Rev. B 67 (2003) 035311 1–7.CrossRefGoogle Scholar
Dev, K., Seebauer, E. G., Vacancy charging on Si(111)-(7 × 7) investigated by density functional theory, Surf. Sci. 538 (2003) L495–499.CrossRefGoogle Scholar
Swartzentruber, B. S., Direct measurement of surface diffusion using atom-tracking scanning tunneling microscopy, Phys. Rev. Lett. 76 (1996) 459–462.CrossRefGoogle ScholarPubMed
Repp, J., Moresco, F., Meyer, G., Rieder, K.-H., Hyldgard, P., Perrson, M., Substrate mediated long-range oscillatory interaction between adatoms, Phys. Rev. Lett. 85 (2000) 2981–2984.CrossRefGoogle ScholarPubMed
Repp, J., Meyer, G., Rieder, K.-H., Hyldgaard, P., Site determination and thermally assisted tunneling in homogeneous nucleation, Phys. Rev. Lett. 91 (2003) 206102 1–4.CrossRefGoogle Scholar
Morgenstern, K., Braun, K.-F., Rieder, K.-H., Direct imaging of Cu dimer formation, motion, and interaction with Cu atoms on Ag(111), Phys. Rev. Lett. 93 (2004) 056102 1–4.CrossRefGoogle Scholar
Brune, H., Microscopic view of epitaxial metal growth: Nucleation and aggregation, Surf. Sci. Rep. 31 (1998) 121–230.CrossRefGoogle Scholar
Kyuno, K., Ehrlich, G., Cluster diffusion and dissociation in the kinetics of layer growth: An atomic view, Phys. Rev. Lett. 84 (2000) 2658–2661.CrossRefGoogle Scholar
Venables, J. A., Nucleation calculations in a pair-binding model, Phys. Rev. B 36 (1987) 4153–4162.CrossRefGoogle Scholar
Brune, H., Bales, G. S., Jacobsen, H., Boragno, C., Kern, K., Measuring surface diffusion from nucleation island densities, Phys. Rev. B 60 (1999) 5991–6006.CrossRefGoogle Scholar
Rosenfeld, G., Morgenstern, K., Esser, M., Comsa, G., Dynamics and stability of nanostructures on metal surfaces, Appl. Phys. A (1999) 489–496.CrossRefGoogle Scholar
Bott, M., Hohage, M., Morgenstern, M., Michely, T., Comsa, G., New approach for determination of diffusion parameters of adatoms, Phys. Rev. Lett. 76 (1996) 1304–1307.CrossRefGoogle ScholarPubMed
Koch, R., Schulz, J. J., Rieder, K. H., Scanning tunneling microscopy artifact and real structure: Steps of Ag(110), Europhys. Lett. 48 (1999) 554–560.CrossRefGoogle Scholar
Haug, K., Zhang, Z., John, D., Walters, C. F., Zehner, D. M., Plummer, W. E., Effects of hydrogen in Ni(100) submonolayer homoepitaxy, Phys. Rev. B 55 (1997) R10233–10236.CrossRefGoogle Scholar
Michely, T., Krug, J., in: Islands, Mounds and Atoms (Springer-Verlag, Berlin, 2004), Section 2.1.CrossRefGoogle Scholar
Kuipers, L., Palmer, R. E., Influence of island mobility on island size distribution in surface growth, Phys. Rev. B 53 (1996) R7646–7649.CrossRefGoogle Scholar
Ratsch, C., Smilauer, P., Zangwill, A., Vvedensky, D. D., Submonolayer epitaxy without a critical nucleus, Surf. Sci. 329 (1995) L599–604.CrossRefGoogle Scholar
Stroscio, J. A., Pierce, D. T., Scaling of diffusion-mediated island growth in iron-on-iron homoepitaxy, Phys. Rev. B 49 (1994) 8522–8525.CrossRefGoogle ScholarPubMed
Ratsch, C., Scheffler, M., Density-functional theory calculations of hopping rates of surface diffusion, Phys. Rev. B 58 (1998) 13163–13166.CrossRefGoogle Scholar
Fichthorn, K., Scheffler, M., Island nucleation in thin-film epitaxy: A first-principles investigation, Phys. Rev. Lett. 84 (2000) 5371–5374.CrossRefGoogle ScholarPubMed
Bogicevic, A., Ovesson, S., Hyldgaard, P., Lundqvist, B. I., Brune, H., Jennison, D. R., Nature, strength, and consequences of indirect adsorbate interactions on metals, Phys. Rev. Lett. 85 (2000) 1910–1913.CrossRefGoogle ScholarPubMed
Ovesson, S., Bogicevic, A., Wahnstrom, G., Lundqvist, B. I., Neglected adsorbate interactions behind diffusion prefactor anomalies on metals, Phys. Rev. B 64 (2001) 125423 1–11.CrossRefGoogle Scholar
Barth, J. V., Brune, H., Fischer, B., Weckesser, J., Kern, K., Dynamics of surface migration in the weak corrugation regime, Phys. Rev. Lett. 84 (2000) 1732–1735.CrossRefGoogle ScholarPubMed
Michely, T., Langenkamp, W., Hansen, H., Busse, C., Comment on “Dynamics of surface migration in the weak corrugation regime”, Phys. Rev. Lett. 86 (2001) 2695–2695.CrossRefGoogle Scholar
Busse, C., Langenkamp, W., Polop, C., Petersen, A., Hansen, H., Linke, U., Feibelman, P. J., Michely, T., Dimer binding energies on fcc(111) metal surfaces, Surf. Sci. 539 (2003) L560–566.CrossRefGoogle Scholar
Venables, J. A., Brune, H., Capture numbers in the presence of repulsive adsorbate interactions, Phys. Rev. B 66 (2002) 195404 1–16.CrossRefGoogle Scholar
Loburets, A. T., Naumovets, A. G., Vedula, Y. S., Surface diffusion of lithium on (011) face of tungsten, Surf. Sci. 120 (1982) 347–366.CrossRefGoogle Scholar
Klas, T., Fink, R., Krausch, G., Platzer, R., Voigt, J., Wesche, R., Schatz, G., Isolated indium atoms on copper surfaces: a perturbed γ–γ angular correlation study, Surf. Sci. 216 (1989) 270–302.CrossRefGoogle Scholar
Krausch, G., Fink, R., Jacobs, K., Kohl, U., Lohmüller, J., Luckscheiter, B., Platzer, R., Runge, B.-U., Wöhrmann, U., Schatz, G., Surface and interface studies with perturbed angular correlations, Hyperfine Interactions 78 (1993) 261–280.CrossRefGoogle Scholar
Bée, M., Quasielastic Neutron Scattering, (IOP Publishing, Bristol, 1988).Google Scholar
Vogl, G., Sladecek, M., Dattagupta, S., Probing single jumps of surface atoms, Phys. Rev. Lett. 99 (2007) 155902 1–4.CrossRefGoogle ScholarPubMed
Daw, M. S., Baskes, M. I., Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B 29 (1984) 6443–6453.CrossRefGoogle Scholar
Adams, J. B., Foiles, S. M., Wolfer, W. G., Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method, J. Mater. Res. 4 (1989) 102–112.CrossRefGoogle Scholar
Voter, A. F. and Chen, S. P., Accurate interatomic potentials for Ni, Al and Ni3Al, Mater. Res. Soc. Symp. Proc. 82 (1987) 175–180.CrossRefGoogle Scholar
Jacobsen, K. W., Nørskov, J. K., Puska, M. J., Interatomic interactions in the effective-medium theory, Phys. Rev. B 35 (1987) 7423–7442.CrossRefGoogle ScholarPubMed
Jacobsen, K. W., Bonding in Metallic Systems: An effective-medium approach, Comments Cond. Mater. Phys. 14 (1988) 129–161.Google Scholar
Ercolessi, F., Parrinello, M., Tosatti, E., Simulation of gold in the glue model, Philos. Mag. A 58 (1988) 213–226.CrossRefGoogle Scholar
Stave, M. S., Sanders, D. E., Raeker, T. J., DePristo, A. E., Corrected effective medium method. V. Simplifications for molecular dynamics and Monte Carlo simulations, J. Chem. Phys. 93 (1990) 4413–4426.CrossRefGoogle Scholar
Rosato, V., Guillope, M., Legrand, B., Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model, Philos. Mag. A 59 (1989) 321–336.CrossRefGoogle Scholar
Guillope, M., Legrand, B., (110) Surface stability in noble metals, Surf. Sci. 215 (1989) 577–595.CrossRefGoogle Scholar
Cleri, F., Rosato, V., Tight-binding potentials for transition metals and alloys, Phys. Rev. B 48 (1993) 22–33.CrossRefGoogle ScholarPubMed
Sutton, A. P., Chen, J., Long-range Finnis-Sinclair potentials, Philos. Mag. Lett. 61 (1990) 139–146.CrossRefGoogle Scholar
Bulou, H., Lucas, O., Kibaly, M., Goyhenex, C., Long-time scale molecular dynamics study of Co diffusion on the Au(111) surface, Comput. Mater. Sci. 27 (2003) 181–185.CrossRefGoogle Scholar
Bulou, H., Massobrio, C., Dynamical behavior of Co adatoms on the herringbone reconstructed surface of Au(111), Superlattices Microstruct. 36 (2004) 305–313.CrossRefGoogle Scholar
Xu, W., Adams, J. B., Fourth moment approximation to tight binding: Application to bcc metals, Surf. Sci. 301 (1994) 371–385.CrossRefGoogle Scholar
Hohenberg, P., Kohn, W., Inhomogeneous electron gas, Phys. Rev. 136 (1964) B 864–871.CrossRefGoogle Scholar
Kohn, W., Sham, L. J., Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965) A 1133–1138.CrossRefGoogle Scholar
Kresse, G., Hafner, J., Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47 (1993) 558–561.CrossRefGoogle ScholarPubMed
Kresse, G., Hafner, J., Ab initio molecular dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B 49 (1994) 14251–14269.CrossRefGoogle ScholarPubMed
Kresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave set, Phys. Rev. B 54 (1996) 11169–11186.CrossRefGoogle ScholarPubMed
Kresse, G., Furthmüller, J., Efficiency of ab-initio total energy calculations for metal and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15–50.CrossRefGoogle Scholar
Kresse, G., Joubert, J., From ultrasoft pseudopotentials to the projector augmernted-wave method, Phys. Rev. B 59 (1999) 1758–1775.CrossRefGoogle Scholar
Demkov, A. A., Ortega, J., Sankey, O. F., Grumbach, M. P., Electronic structure approach for complex silicas, Phys. Rev. B 52 (1995) 1618–1630.CrossRefGoogle ScholarPubMed
Sankey, O. F., Niklewski, D. J., Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems, Phys. Rev. B 40 (1989) 3979–3995.CrossRefGoogle ScholarPubMed
Jelinek, P., Wang, H., Lewis, J. P., Sankey, O. F., Ortega, J., Multicenter approach to the exchange-correlation interactions in ab initio tight-binding methods, Phys. Rev. B 71 (2005) 235101 1–9.CrossRefGoogle Scholar
Lewis, J. P., Glaesemann, K. R., Voth, G. A., Fritsch, J., Demkov, A. A., Ortega, J., Sankey, O., Further developments in the local-orbital density-functional-theory tight-binding method, Phys. Rev. B 64 (2001) 195103 1–10.CrossRefGoogle Scholar
Yildirim, H., Kara, A., Rahman, T. S., Orgin of quasi-constant pre-exponential factors for adatom diffusion of Cu and Ag surfaces, Phys. Rev. B 76 (2007) 165421 1–10.CrossRefGoogle Scholar
Kong, L. T., Lewis, L. J., Surface diffusion coefficient: Substrate dynamics matters, Phys. Rev. B 77 (2008) 165422 1–5.CrossRefGoogle Scholar
Kong, L. T., Lewis, L. J., Transition state theory of the preexponential factors for self-diffusion on Cu, Ag, and Ni surfaces, Phys. Rev. B 74 (2006) 073412 1–4.CrossRefGoogle Scholar
Antczak, G., Ehrlich, G., Jump processes in surface diffusion, Surf. Sci. Rep. 62 (2007) 39–61.CrossRefGoogle Scholar
Antczak, G., Ehrlich, G., Long jump rates in surface diffusion: W on W(110), Phys. Rev. Lett. 92 (2004) 166105 1–4.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×