Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-08T06:49:22.117Z Has data issue: false hasContentIssue false

3 - Atomic events in surface diffusion

Published online by Cambridge University Press:  06 July 2010

Grazyna Antczak
Affiliation:
University of Wrocław, Poland; Leibniz Universität Hannover, Germany
Gert Ehrlich
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

With background information about the kinetic and experimental aspects of surface diffusion in hand we will now turn our attention to the atomistics of diffusion about which much has been learned through modern instrumentation. The usual picture of surface diffusion, which seems to agree at least qualitatively with experiments on diffusivities, is that atoms carry out random jumps between nearest-neighbor sites. Is this picture correct? Has it been tested in reasonable experiments? What can be said about the jumps which move an atom in surface diffusion? What is the nature of the sites at which atoms are bound? These are among the topics that will be considered at length now.

In these matters the geometry of the various surfaces studied plays an important role, and at the very start we therefore show hard-sphere models of planes that will emerge as significant. Presented first are channeled surfaces, bcc (211) and (321) in Fig. 3.1, as well as fcc(110), (311), and (331) in Fig. 3.2. These are followed in Fig. 3.3 by fcc(100) and (111) and bcc(100), (110), and (111) planes in Fig. 3.4. Their structures are sometimes quite similar, but their diffusion behavior may be quite different.

Adatom binding sites

Location

Where on a surface are metal adatoms bonded? That is an important question for understanding how atoms progress over a surface in diffusion. LEED has been very important in providing information about the geometry of adsorbed layers.

Type
Chapter
Information
Surface Diffusion
Metals, Metal Atoms, and Clusters
, pp. 64 - 182
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Watson, P. R., Hove, M. A., Herman, K., Atlas of surface structures, based on the NIST structure database (SSB), J. Phys. Chem. Ref. Data Monograph 5, 1994.Google Scholar
Morgenstern, K., Fast scanning tunneling microscopy as a tool to understand changes on metal surfaces: from nanostructures to single atoms, Phys. Stat. Sol. 242 (2005) 773–796.CrossRefGoogle Scholar
Stroscio, J. A., Celotta, R. J., Controlling the dynamics of a single atom in lateral atom manipulation, Science 306 (2004) 242–247.CrossRefGoogle ScholarPubMed
Graham, W. R., Ehrlich, G., Direct identification of atomic binding sites on a crystal, Surf. Sci. 45 (1974) 530–552.CrossRefGoogle Scholar
Flahive, P. G., Graham, W. R., Surface site geometry and diffusion characteristics of single Ni atoms on W(111), Thin Solid Films 51 (1978) 175–184.CrossRefGoogle Scholar
Flahive, P. G., Graham, W. R., The determination of single atom surface site geometry on W(111), W(211) and W(321), Surf. Sci. 91 (1980) 463–488.CrossRefGoogle Scholar
Xu, W., Adams, J. B., W single adatom diffusion on W surfaces, Surf. Sci. 319 (1994) 58–67.CrossRefGoogle Scholar
Fink, H.-W., Atomistik der Monolagenbildung: Direkte Beobachtung an Rhenium auf Wolfram, Physics Ph.D. Thesis, Technical University of Munich, 1982.
Fink, H.-W., Ehrlich, G., Pair and trio interactions between adatoms: Re on W(110), J. Chem. Phys. 81 (1984) 4657–4665.CrossRefGoogle Scholar
Fink, H.-W., in: Diffusion at Interfaces – Microscopic Concepts, Grunze, M., Kreuzer, H. J., Weimer, J. J. (eds.), Direct observation of atomic motion on surfaces, (Springer-Verlag, Berlin, 1988), p. 75–91.CrossRefGoogle Scholar
Antczak, G., Ehrlich, G., Long jumps in diffusion of iridium on W(110), Phys. Rev. B 71 (2005) 115422 1–9.CrossRefGoogle Scholar
Spisák, D., Hafner, J., Diffusion of Fe atoms on W surfaces and Fe/W films and along surface steps, Phys. Rev. B 70 (2004) 195426 1–13.CrossRefGoogle Scholar
Spisák, D., Hafner, J., Diffusion mechanisms for iron on tungsten, Surf. Sci. 584 (2005) 55–61.CrossRefGoogle Scholar
Dennler, S., Hafner, J., First-principles study of ultrathin Mn films on W surfaces. II. Surface diffusion, Phys. Rev. B 72 (2005) 214414 1–9.Google Scholar
Fijak, R., Jurczyszyn, L., Antczak, G., Adatom self-diffusion on W(110), in preparation (2009).
Tung, R. T., Graham, W. R., Single atom self-diffusion on nickel surfaces, Surf. Sci. 97 (1980) 73–87.CrossRefGoogle Scholar
Wang, S. C., Ehrlich, G., Self-adsorption sites on a close-packed surface: Ir on Ir(111), Phys. Rev. Lett. 62 (1989) 2297–2300.CrossRefGoogle Scholar
Wang, S. C., Ehrlich, G., Imaging and diffusion of individual iridium adatoms on Ir(111), Surf. Sci. 224 (1989) L997–1003.CrossRefGoogle Scholar
Wang, S. C., Ehrlich, G., Determination of atomic binding sites on the fcc(111) plane, Surf. Sci. 246 (1991) 37–42.CrossRefGoogle Scholar
Wang, S. C., Ehrlich, G., Atom condensation on an atomically smooth surface: Ir, Re, W, and Pd on Ir(111), J. Chem. Phys. 94 (1991) 4071–4074.CrossRefGoogle Scholar
Ehrlich, G., An atomic view of crystal growth, Appl. Phys. A 55 (1992) 403–410.CrossRefGoogle Scholar
Wang, S. C., Ehrlich, G., Atomic behavior at individual binding sites: Ir, Re, and W on Ir(111), Phys. Rev. Lett. 68 (1992) 1160–1163.CrossRefGoogle Scholar
Brune, H., Wintterlin, J., Ertl, G., Behm, R. J., Direct imaging of adsorption sites and local electronic bond effects on a metal surface: C/Al(111), Europhys. Lett. 13 (1990) 123–128.CrossRefGoogle Scholar
Liu, C. L., Cohen, J. M., Adams, J. B., Voter, A. F., EAM study of surface self-diffusion of single adatoms of fcc metals Ni, Cu, Al, Ag, Au, Pd, and Pt, Surf. Sci. 253 (1991) 334–344.CrossRefGoogle Scholar
Gölzhäuser, A., Ehrlich, G., Atom movement and binding on surface clusters: Pt on Pt(111) clusters, Phys. Rev. Lett. 77 (1996) 1334–1337.CrossRefGoogle ScholarPubMed
Gölzhäuser, A., Ehrlich, G., Direct observation of platinum atoms on Pt(111) clusters, Z. Phys. Chem. 202 (1997) 59–74.CrossRefGoogle Scholar
Feibelman, P. J., Nelson, J. S., Kellogg, G. L., Energetics of Pt adsorption on Pt(111), Phys. Rev. B 49 (1994) 10548–10556.CrossRefGoogle Scholar
Mortensen, J. J., Hammer, B., Nielsen, O. H., Jacobsen, K. W., Nørskov, J. K., in: Elementary Processes in Excitations and Reactions on Solid Surfaces, Okiji, A., Kasai, H., Makoshi, K. (eds.), Density functional theory study of self-diffusion on the (111) surfaces of Ni, Pd, Pt, Cu, Ag and Au, (Springer-Verlag, Berlin, 1996), p. 173–182.CrossRefGoogle Scholar
Repp, J., Meyer, G., Rieder, K.-H., Hyldgaard, P., Site determination and thermally assisted tunneling in homogeneous nucleation, Phys. Rev. Lett. 91 (2003) 206102 1–4.CrossRefGoogle Scholar
Marinica, M.-C., Barreteau, C., Desjonqueres, M.-C., Spanjaard, D., Influence of short-range adatom-adatom interactions on the surface diffusion of Cu on Cu(111), Phys. Rev. B 70 (2004) 075415 1–14.CrossRefGoogle Scholar
Mishin, Y., Mehl, M. J., Papaconstantopoulos, D. A., Voter, A. F., Kress, J. D., Structural stability and lattice defects in copper: Ab initio, tight binding, and embedded-atom calculations, Phys. Rev. B 63 (2001) 224106 1–16.CrossRefGoogle Scholar
Morgenstern, K., Rieder, K.-H., Long-range interaction of copper adatoms and copper dimers on Ag(111), New J. Phys. 7 (2005) 139 1–11.CrossRefGoogle Scholar
Goldstein, J. T., Ehrlich, G., Atom and cluster diffusion on Re(0001), Surf. Sci. 443 (1999) 105–115.CrossRefGoogle Scholar
Fink, H.-W., Ehrlich, G., Lattice steps and adatom binding on W(211), Surf. Sci. 143 (1984) 125–144.CrossRefGoogle Scholar
Ehrlich, G., Atomic events at lattice steps and clusters: A direct view of crystal growth processes, Surf. Sci. 331/333 (1995) 865–877.CrossRefGoogle Scholar
Kellogg, G. L., Diffusion of individual platinum atoms on single-crystal surfaces of rhodium, Phys. Rev. B 48 (1993) 11305–11312.CrossRefGoogle Scholar
Fu, T.-Y., Wu, H.-T., Tsong, T. T., Energetics of surface atomic processes near a lattice step, Phys. Rev. B 58 (1998) 2340–2346.CrossRefGoogle Scholar
Oh, S.-M., Kyuno, K., Wang, S. C., Ehrlich, G., Step-edge versus interior barriers to atom incorporation at lattice steps, Phys. Rev. B 67 (2003) 075413 1–7.CrossRefGoogle Scholar
Smirnov, A. S., Negulyaev, N. N., Niebergall, L., Hergert, W., Saletsky, A. M., Stepanyuk, V. S., Effect of quantum confinement of surface electrons on an atomic motion on nanoislands: Ab initio calculation and Kinetic Monte Carlo simulations, Phys. Rev. B 78 (2008) 041405(R) 1–4.CrossRefGoogle Scholar
Bassett, D. W., Webber, P. R., Diffusion of single adatoms of platinum, iridium and gold on platinum surfaces, Surf. Sci. 70 (1978) 520–531.CrossRefGoogle Scholar
Halicioglu, T., An atomistic calculation of two-dimensional diffusion of a Pt adatom on a Pt(110) surface, Surf. Sci. 79 (1979) L346–348.CrossRefGoogle Scholar
Halicioglu, T., Pound, G. M., A calculation of the diffusion energies for adatoms on surfaces of FCC metals, Thin Solid Films 57 (1979) 241–245.CrossRefGoogle Scholar
DeLorenzi, G., Jacucci, G., Pontikis, V., in: Proc. ICSS-4 and ECOSS-3, Cannes, Degras, D. A., Costa, M. (eds.), Simulation par la dynamique moléculaire de la diffusion des adatomes et adlacunes sur les terrasses (100), (110) et (111) des gaz rares dans les solides, 1980, p. 54.
DeLorenzi, G., Jacucci, G., Pontikis, V., Diffusion of adatoms and vacancies on otherwise perfect surfaces: A molecular dynamics study, Surf. Sci. 116 (1982) 391–413.CrossRefGoogle Scholar
Mruzik, M. R., Pound, G. M., A molecular dynamics study of surface diffusion, J. Phys. F 11 (1981) 1403–1422.CrossRefGoogle Scholar
Garofalini, S. H., Halicioglu, T., Mechanism for the self-diffusion of Au and Ir adatoms on Pt(110) surface, Surf. Sci. 104 (1981) 199–204.CrossRefGoogle Scholar
Wrigley, J. D., Ehrlich, G., Surface diffusion by an atomic exchange mechanism, Phys. Rev. Lett. 44 (1980) 661–663.CrossRefGoogle Scholar
Müller, E. W., Panitz, J. A., McLane, S. B., The atom-probe field ion microscope, Rev. Sci. Instrum. 39 (1968) 83–86.CrossRefGoogle Scholar
Wrigley, J. D., Surface diffusion by an atomic exchange mechanism, Physics Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1982.
Tung, R. T., Atomic structure and interactions at single crystal metal surfaces, Physics Ph.D. Thesis, University of Pennsylvania, Philadelphia, 1981.
Kellogg, G. L., Field-ion microscope observations of surface self-diffusion and atomic interactions on Pt, Microbeam Analysis 1986 (1986) 399–402.Google Scholar
Chen, C. L., Tsong, T. T., Self-diffusion on the reconstructed and nonreconstructed Ir(110) Surfaces, Phys. Rev. Lett. 66 (1991) 1610–1613.CrossRefGoogle ScholarPubMed
Kellogg, G. L., Direct observations of adatom-surface-atom replacement: Pt on Ni(110), Phys. Rev. Lett. 67 (1991) 216–219.CrossRefGoogle Scholar
Chen, C. L., Tsong, T. T., Zhang, L. H., Yu, Z. W., Atomic replacement and adatom diffusion: Re on Ir surfaces, Phys. Rev. B 46 (1992) 7803–7807.CrossRefGoogle Scholar
Pedemonte, L., Tatarek, R., Bracco, G., Surface self-diffusion at intermediate temperature: The Ag(110) case, Phys. Rev. B 66 (2002) 045414 1–5.CrossRefGoogle Scholar
Gravil, P. A., Holloway, S., Exchange mechanisms for self-diffusion on aluminum surfaces, Surf. Sci. 310 (1994) 267–272.CrossRefGoogle Scholar
Stumpf, R., Scheffler, M., Ab initio calculations of energies and self-diffusion on flat and stepped surfaces of aluminum and their implications on crystal growth, Phys. Rev. B 53 (1996) 4958–4973.CrossRefGoogle Scholar
Sun, Y.-J., Li, J.-M., Self-diffusion mechanisms of adatom on Al(001), (011) and (111) surfaces, Chin. Phys. Lett. 20 (2003) 269–272.Google Scholar
Liu, C. L., Adams, J. B., Diffusion mechanisms on Ni surfaces, Surf. Sci. 265 (1992) 262–272.CrossRefGoogle Scholar
Stoltze, P., Simulation of surface defects, J. Phys.: Condens. Matter 6 (1994) 9495–9517.Google Scholar
Ndongmouo, U. T., Hontinfinde, F., Diffusion and growth on fcc(110) metal surfaces: a computational study, Surf. Sci. 571 (2004) 89–101.CrossRefGoogle Scholar
Hansen, L., Stoltze, P., Jacobsen, K. W., Nørskov, J. K., Self-diffusion on Copper Surfaces, Phys. Rev. B 44 (1991) 6523–6526.CrossRefGoogle Scholar
Mottet, C., Ferrando, R., Hontinfinde, F., Levi, A. C., A Monte Carlo simulation of submonolayer homoepitaxial growth on Ag(110) and Cu(110), Surf. Sci. 417 (1998) 220–237.CrossRefGoogle Scholar
Evangelakis, G. A., Papageorgiou, D. G., Kallinteris, G. C., Lekka, C. E., Papanicolaou, N. I., Self-diffusion processes of copper adatom on Cu(110) surface by molecular dynamics simulations, Vacuum 50 (1998) 165–169.CrossRefGoogle Scholar
Montalenti, F., Ferrando, R., Jumps and concerted moves in Cu, Ag, and Au(110) adatom self-diffusion, Phys. Rev. B 59 (1999) 5881–5891.CrossRefGoogle Scholar
Durukanoglu, S., Trushin, O. S., Rahman, T. S., Effect of step-step separation on surface diffusion processes, Phys. Rev. B 73 (2006) 125426 1–6.CrossRefGoogle Scholar
Perkins, L. S., DePristo, A. E., Self-diffusion of adatoms on fcc(110) surfaces, Surf. Sci. 317 (1994) L1152–1156.CrossRefGoogle Scholar
Hontinfinde, F., Ferrando, R., Levi, A. C., Diffusion processes relevant to the epitaxial growth of Ag on Ag(110), Surf. Sci. 366 (1996) 306–316.CrossRefGoogle Scholar
Shiang, K.-D., Wei, C. M., Tsong, T. T., A molecular dynamics study of self-diffusion on metal surfaces, Surf. Sci. 301 (1994) 136–150.CrossRefGoogle Scholar
Chang, C. M., Wei, C. M., Chen, S. P., Modeling of Ir adatoms on Ir surfaces, Phys. Rev. B 54 (1996) 17083–17096.CrossRefGoogle ScholarPubMed
Villarba, M., Jónsson, H., Diffusion mechanisms relevant to metal crystal growth: Pt/Pt(111), Surf. Sci. 317 (1994) 15–36.CrossRefGoogle Scholar
Ndongmouo, U. T., Hontinfinde, F., Ferrando, R., Numerical study of the stability of (111) and (331) microfacets on Au, Pt, and Ir(110) surfaces, Phys. Rev. B 72 (2005) 115412 1–8.CrossRefGoogle Scholar
Karimi, M., Vidali, G., Dalins, I., Energetics of the formation and migration of defects in Pb(110), Phys. Rev. B 48 (1993) 8986–8992.CrossRefGoogle Scholar
DeLorenzi, G., Jacucci, G., The migration of point defects on bcc surfaces using a metallic pair potential, Surf. Sci. 164 (1985) 526–542.CrossRefGoogle Scholar
Price, D. L., Singwi, K. S., Tosi, M. P., Lattice dynamics of alkali metals in the self-consistent screening theory, Phys. Rev. B 2 (1970) 2983–2999.CrossRefGoogle Scholar
Price, D. L., Effects of a volume-dependent potential on equilibrium properties of liquid sodium, Phys. Rev. A 4 (1971) 358–363.CrossRefGoogle Scholar
Kellogg, G. L., Feibelman, P. J., Surface self-diffusion on Pt(001) by an atomic exchange mechanism, Phys. Rev. Lett. 64 (1990) 3143–3146.CrossRefGoogle ScholarPubMed
Chen, C., Tsong, T. T., Displacement distribution and atomic jump direction in diffusion of Ir atoms on the Ir(001) surface, Phys. Rev. Lett. 64 (1990) 3147–3150.CrossRefGoogle ScholarPubMed
Kellogg, G. L., Temperature dependence of surface self-diffusion on Pt(001), Surf. Sci. 246 (1991) 31–36.CrossRefGoogle Scholar
Kellogg, G. L., Wright, A. F., Daw, M. S., Surface diffusion and adatom-induced substrate relaxations of Pt, Pd, and Ni atoms on Pt(001), J. Vac. Sci. Technol. A 9 (1991) 1757–1760.CrossRefGoogle Scholar
Tsong, T. T., Chen, C. L., Atomic replacement and vacancy formation and annihilation on iridium surfaces, Nature 355 (1992) 328–331.CrossRefGoogle Scholar
Kellogg, G. L., Surface diffusion of Pt adatoms on Ni surfaces, Surf. Sci. 266 (1992) 18–23.CrossRefGoogle Scholar
Friedl, A., Schütz, O., Müller, K., Self-diffusion on iridium (100). A structure investigation by field-ion microscopy, Surf. Sci. 266 (1992) 24–29.CrossRefGoogle Scholar
Fu, T.-Y., Tsong, T. T., Structure and diffusion of small Ir and Rh clusters on Ir(001) surfaces, Surf. Sci. 421 (1999) 157–166.CrossRefGoogle Scholar
Stumpf, R., Scheffler, M., Theory of self-diffusion at and growth of Al(111), Phys. Rev. Lett. 72 (1994) 254–257.CrossRefGoogle Scholar
Li, J.-M., Zhang, P.-H., Yang, J.-L., Liu, L., Theoretical study of adatom self-diffusion on metallic fcc{100} surfaces, Chin. Phys. Lett. 14 (1997) 768–771.Google Scholar
Trushin, O. S., Salo, P., Alatalo, M., Ala-Nissila, T., Atomic mechanisms of cluster diffusion on metal fcc(100) surfaces, Surf. Sci. 482–485 (2001) 365–369.CrossRefGoogle Scholar
Papanicolaou, N. I., Papathanakos, V. C., Papageorgiou, D. G., Self-diffusion on Al(100) and Al(111) surfaces by molecular-dynamics simulation, Physica B 296 (2001) 259–263.CrossRefGoogle Scholar
Fordell, T., Salo, P., Alatalo, M., Self-diffusion on fcc (100) metal surfaces: Comparison of different approximations, Phys. Rev. B 65 (2002) 233408 1–4.CrossRefGoogle Scholar
Valkealahti, S., Manninen, M., Diffusion on aluminum-cluster surfaces and the cluster growth, Phys. Rev. B 57 (1998) 15533–15540.CrossRefGoogle Scholar
Ovesson, S., Bogicevic, A., Wahnstrom, G., Lundqvist, B. I., Neglected adsorbate interactions behind diffusion prefactor anomalies on metals, Phys. Rev. B 64 (2001) 125423 1–11.CrossRefGoogle Scholar
Agrawal, P. M., Rice, B. M., Thompson, D. L., Predicting trends in rate parameters for self-diffusion on FCC metal surfaces, Surf. Sci. 515 (2002) 21–35.CrossRefGoogle Scholar
Perkins, L. S., DePristo, A. E., Self-diffusion mechanisms for adatoms on fcc (100) surfaces, Surf. Sci. 294 (1993) 67–77.CrossRefGoogle Scholar
Perkins, L. S., DePristo, A. E., The influence of lattice distortion on atomic self-diffusion on fcc(001) surfaces: Ni, Cu, Pd, Ag, Surf. Sci. 325 (1995) 169–176.CrossRefGoogle Scholar
Boisvert, G., Lewis, L. J., Yelon, A., Many-body nature of the Meyer-Neidel compensation law for diffusion, Phys. Rev. Lett. 75 (1995) 469–472.CrossRefGoogle ScholarPubMed
Merikoski, J., Vattulainen, I., Heinonen, J., Ala-Nissila, T., Effect of kinks and concerted diffusion mechanisms on mass transport and growth on stepped metal surfaces, Surf. Sci. 387 (1997) 167–182.CrossRefGoogle Scholar
Chang, C. M., Wei, C. M., Hafner, J., Self-diffusion of adatoms on Ni(100) surfaces, J. Phys.: Condens. Matter 13 (2001) L321–328.Google Scholar
Chang, C. M., Wei, C. M., Self-diffusion of adatoms and dimers on fcc(100) surfaces, Chin. J. Phys. 43 (2005) 169–175.Google Scholar
Flahive, P. G., Graham, W. R., Pair potential calculations of single atom self-diffusion activation energies, Surf. Sci. 91 (1980) 449–462.CrossRefGoogle Scholar
Sanders, D. E., DePristo, A. E., Predicted diffusion rates on fcc (001) metal surfaces for adsorbate/substrate combinations of Ni, Cu, Rh, Pd, Ag, Pt, Au, Surf. Sci. 260 (1992) 116–128.CrossRefGoogle Scholar
Shiang, K.-D., Molecular dynamics simulation of adatom diffusion on metal surfaces, J. Chem. Phys. 99 (1993) 9994–10000.CrossRefGoogle Scholar
Shi, Z.-P., Zhang, Z., Swan, A. K., Wendelken, J. F., Dimer shearing as a novel mechanism for cluster diffusion and dissociation on metal (100) surfaces, Phys. Rev. Lett. 76 (1996) 4927–4930.CrossRefGoogle ScholarPubMed
Mehl, H., Biham, O., Furman, I., Karimi, M., Models for adatom diffusion on fcc (001) metal surfaces, Phys. Rev. B 60 (1999) 2106–2116.CrossRefGoogle Scholar
Davydov, S. Y., Calculation of the activation energy for surface self-diffusion of transition-metal atoms, Phys. Solid State 41 (1999) 8–10.CrossRefGoogle Scholar
Black, J. E., Tian, Z.-J., Complicated exchange-mediated diffusion mechanisms in and on a Cu(100) substrate at high temperatures, Phys. Rev. Lett. 71 (1993) 2445–2448.CrossRefGoogle ScholarPubMed
Cohen, J. M., Long range adatom diffusion mechanism on fcc (100) EAM modeled materials, Surf. Sci. Lett. 306 (1994) L545–549.CrossRefGoogle Scholar
Lee, C., Barkema, G. T., Breeman, M., Pasquarello, A., Car, R., Diffusion mechanism of Cu adatoms on a Cu(001) surface, Surf. Sci. 306 (1994) L575–578.CrossRefGoogle Scholar
Karimi, M., Tomkowski, T., Vidali, G., Biham, O., Diffusion of Cu on Cu surface, Phys. Rev. B 52 (1995) 5364–5374.CrossRefGoogle Scholar
Boisvert, G., Lewis, L. J., Self-diffusion of adatoms, dimers, and vacancies on Cu(100), Phys. Rev. B 56 (1997) 7643–7655.CrossRefGoogle Scholar
Evangelakis, G. A., Papanicolaou, N. I., Adatom self-diffusion processes on (001) copper surfaces by molecular dynamics, Surf. Sci. 347 (1996) 376–386.CrossRefGoogle Scholar
Trushin, O. S., Kokko, K., Salo, P. T., Hergert, W., Kotrla, M., Step roughening effect on adatom diffusion, Phys. Rev. B 56 (1997) 12135–12138.CrossRefGoogle Scholar
Boisvert, G., Mousseau, N., Lewis, L. J., Surface diffusion coefficients by thermodynamic integration: Cu on Cu(100), Phys. Rev. B 58 (1998) 12667–12670.CrossRefGoogle Scholar
Adams, J. B., Wang, Z., Li, Y., Modeling Cu thin film growth, Thin Solid Films 365 (2000) 201–210.CrossRefGoogle Scholar
Pentcheva, R., Ab initio study of microscopic processes in the growth of Co on Cu(001), Appl. Phys. A 80 (2005) 971–975.CrossRefGoogle Scholar
Kürpick, U., Kara, A., Rahman, T. S., Role of lattice vibrations in adatom diffusion, Phys. Rev. Lett. 78 (1997) 1086–1089.CrossRefGoogle Scholar
Wynblatt, P., Gjostein, N. A., A calculation of relaxation, migration and formation energies for surface defects in copper, Surf. Sci. 12 (1968) 109–127.CrossRefGoogle Scholar
Liu, C.-L., Energetics of diffusion processes during nucleation and growth for the Cu/Cu(100) system, Surf. Sci. 316 (1994) 294–302.CrossRefGoogle Scholar
Kumar, P. V., Raul, J. S., Warakomski, S. J., Fichthorn, K. A., Smart Monte Carlo for accurate simulation of rare-event dynamics: Diffusion of adsorbed species on solid surfaces, J. Chem. Phys. 105 (1996) 686–695.CrossRefGoogle Scholar
Xie, Q., Dynamics of adatom self-diffusion and island morphology evolution at a Cu(100) surface, Phys. Stat. Sol. B 207 (1998) 153–170.3.0.CO;2-1>CrossRefGoogle Scholar
Biham, O., Furman, I., Karimi, M., Vidali, G., Kennett, R., Zeng, H., Models for diffusion and island growth in metal monolayers, Surf. Sci. 400 (1998) 29–43.CrossRefGoogle Scholar
Jahma, M. O., Rusanen, M., Karim, A., Koponen, I. T., Ala-Nissila, T., Rahman, T. S., Diffusion and submonolayer island growth during hyperthermal deposition on Cu(100) and Cu(111), Surf. Sci. 598 (2005) 246–252.CrossRefGoogle Scholar
Yildirim, H., Kara, A., Durukanoglu, S., Rahman, T. S., Calculated pre-exponential factors and energetics for adatom hopping on terraces and steps of Cu(100) and Cu(110), Surf. Sci. 600 (2006) 484–492.CrossRefGoogle Scholar
Kürpick, U., Self-diffusion on (100), (110), and (111) surfaces of Ni and Cu: A detailed study of prefactors and activation energies, Phys. Rev. B 64 (2001) 075418 1–7.CrossRefGoogle Scholar
Kürpick, U., Rahman, T. S., Vibrational free energy contribution to self-diffusion on Ni(100), Cu(100) and Ag(100), Surf. Sci. 383 (1997) 137–148.CrossRefGoogle Scholar
Kürpick, U., Rahman, T. S., Diffusion processes relevant to homoepitaxial growth on Ag(100), Phys. Rev. B 57 (1998) 2482–2492.CrossRefGoogle Scholar
Yu, B. D., Scheffler, M., Anisotropy of growth of the close-packed surfaces of silver, Phys. Rev. Lett. 77 (1996) 1095–1098.CrossRefGoogle ScholarPubMed
Feibelman, P. J., Stumpf, R., Adsorption-induced lattice relaxation and diffusion by concerted substitution, Phys. Rev. B 59 (1999) 5892–5897.CrossRefGoogle Scholar
Evteev, A. V., Kosilov, A. T., Solyanik, S. A., Atomic mechanisms and kinetics of self-diffusion on the Pd(001) surface, Phys. Solid State 46 (2004) 1781–1784.CrossRefGoogle Scholar
Yu, B. D., Scheffler, M., Ab initio study of step formation and self-diffusion on Ag(100), Phys. Rev. B 55 (1997) 13916–13924.CrossRefGoogle Scholar
Nelson, R. C., Einstein, T. L., Khare, S. V., Reus, P. J., Energetics of steps, kinks, and defects on Ag{100} and Ag{111} using the embedded atom method, and some consequences, Surf. Sci. 295 (1993) 462–484.CrossRefGoogle Scholar
Chvoj, Z., Ghosh, C., Rahman, T. S., Tringides, M. C., Prefactors for interlayer diffusion on Ag/Ag(111), J. Phys.: Condens. Matter 15 (2003) 5223–5230.Google Scholar
Lynden-Bell, R. M., Migration of adatoms on the (100) surface of face-centered-cubic metals, Surf. Sci. 259 (1991) 129–138.CrossRefGoogle Scholar
Zhuang, J., Liu, L., Adatom self-diffusion on Pt(100) surface by an ad-dimer migrating, Science in China A 43 (2000) 1108–1113.CrossRefGoogle Scholar
Boisvert, G., Lewis, L. J., Self-diffusion on low-index metallic surfaces: Ag and Au(100) and (111), Phys. Rev. B 54 (1996) 2880–2889.CrossRefGoogle Scholar
Müller, J. E., Ibach, H., Migration of point defects at charged Cu, Ag, and Au(100) surfaces, Phys. Rev. B 74 (2006) 085408 1–10.CrossRefGoogle Scholar
Feibelman, P. J., Diffusion Path for an Al Adatom on Al(001), Phys. Rev. Lett. 65 (1990) 729–732.CrossRefGoogle Scholar
Ferrando, R., Correlated jump-exchange processes in the diffusion of Ag on Ag(110), Phys. Rev. Lett. 76 (1996) 4195–4198.CrossRefGoogle Scholar
Haftel, M. I., Surface reconstruction of platinum and gold and the embedded-atom method, Phys. Rev. B 48 (1993) 2611–2622.CrossRefGoogle Scholar
Haftel, M. I., Rosen, M., Franklin, T., Hettermann, M., Molecular dynamics observations of the interdiffusion and Stranski-Krastanov growth in the early film deposition of Au on Ag(100), Phys. Rev. Lett. 72 (1994) 1858–1861.CrossRefGoogle Scholar
Haftel, M. I., Rosen, M., Molecular-dynamics description of early film deposition of Au on Ag(110), Phys. Rev. B 51 (1995) 4426–4434.CrossRefGoogle Scholar
Haftel, M. I., Rosen, M., New ballistically and thermally activated exchange processes in the vapor deposition of Au on Ag(111): a molecular dynamics study, Surf. Sci. 407 (1998) 16–26.CrossRefGoogle Scholar
Xiao, W., Greaney, P. A., Chrzan, D. C., Adatom transport on strained Cu(001): Surface crowdions, Phys. Rev. Lett. 90 (2003) 146102 1–4.CrossRefGoogle ScholarPubMed
Xiao, W., Greaney, P. A., Chrzan, D. C., Pt adatom diffusion on strained Pt(001), Phys. Rev. B 70 (2004) 033402 1–4.CrossRefGoogle Scholar
Wang, Y. X., Pan, Z. Y., Li, Z. J., Wei, Q., Zang, L. K., Zhang, Z. X., Effect of tensile strain on adatom diffusion on Cu(111) surface, Surf. Sci. 545 (2003) 137–142.CrossRefGoogle Scholar
Passerone, D., Parrinello, M., Action-derived molecular dynamics in the study of rare events, Phys. Rev. Lett. 87 (2001) 108302 1–4.CrossRefGoogle Scholar
Kim, S. Y., Lee, I.-H., Jun, S., Transition-pathway models of atomic diffusion on fcc metal surfaces. I. Flat surfaces, Phys. Rev. B 76 (2007) 245407 1–15.Google Scholar
Brune, H., Bromann, K., Röder, H., Kern, K., Jacobsen, J., Stoltze, P., Jacobsen, K., Nørskov, J., Effect of strain on surface diffusion and nucleation, Phys. Rev. B 52 (1995) R 14380–14383.CrossRefGoogle ScholarPubMed
Brune, H., Röder, H., Boragno, C., Kern, K., Strain relief at hexagonal-close-packed interfaces, Phys. Rev. B 49 (1994) 2997–3000.CrossRefGoogle ScholarPubMed
Ratsch, C., Seitsonen, A. P., Scheffler, M., Strain dependence of surface diffusion: Ag on Ag(111) and Pt(111), Phys. Rev. B 55 (1997) 6750–6753.CrossRefGoogle Scholar
Meyer, J. A., Vrijmoeth, J., Vegt, H. A., Vlieg, E., Behm, R. J., Importance of the additional step-edge barrier in determining film morphology during epitaxial growth, Phys. Rev. B 51 (1995) 14790–14793.CrossRefGoogle ScholarPubMed
Yu, B. D., Scheffler, M., Physical origin of exchange diffusion on fcc(100) metal surfaces, Phys. Rev. B 56 (1997) R15569–15572.CrossRefGoogle Scholar
Schroeder, M., Wolf, D. E., Diffusion on strained surfaces, Surf. Sci. 375 (1997) 129–140.CrossRefGoogle Scholar
Liu, Y. B., Sun, D. Y., Gong, X. G., Local strain induced anisotropic diffusion on (23 × √3)-Au(111) surface, Surf. Sci. 498 (2002) 337–342.CrossRefGoogle Scholar
Ercolessi, F., Parinello, M., Tosatti, E., Au(100) reconstruction in the glue model, Surf. Sci. 177 (1986) 314–328.CrossRefGoogle Scholar
Ercolessi, F., Parrinello, M., Tosatti, E., Simulation of gold in the glue model, Phil. Mag. A 58 (1988) 213–226.CrossRefGoogle Scholar
Tully, J. C., Gilmer, G. H., Shugard, M., Molecular dynamics of surface diffusion. I. The motion of adatoms and clusters, J. Chem. Phys. 71 (1979) 1630–1642.CrossRefGoogle Scholar
Voter, A. F., Doll, J. D., Dynamical corrections to transition state theory for multistate systems: Surface self-diffusion in the rare-event regime, J. Chem. Phys. 82 (1985) 80–92.CrossRefGoogle Scholar
Sanders, D. E., DePristo, A. E., A non-unique relationship between potential energy surface barrier and dynamical diffusion barrier: fcc(111) metal surface, Surf. Sci. 264 (1992) L169–176.CrossRefGoogle Scholar
Ferrando, R., Spadacini, R., Tommei, G. E., Kramer's problem in periodic potentials: Jump rate and jump lengths, Phys. Rev. E 48 (1993) 2437–2451.CrossRefGoogle Scholar
Georgievskii, Y., Pollak, E., Semiclassical theory of activated diffusion, Phys. Rev. E 49 (1994) 5098–5102.CrossRefGoogle ScholarPubMed
Georgievskii, Y., Pollak, E., Long hops of an adatom on a surface, Surf. Sci. 355 (1996) L366–370.CrossRefGoogle Scholar
Chen, L. Y., Ying, S. C., Solution of the Langevin equation for rare event rates using a path integral formalism, Phys. Rev. B 60 (1999) 16965–16971.CrossRefGoogle Scholar
Ellis, J., Toennies, J. P., A molecular dynamics simulation of the diffusion of sodium on a Cu(001) surface, Surf. Sci. 317 (1994) 99–108.CrossRefGoogle Scholar
Azzouz, M., Kreuzer, H. J., Shegelski, M. R. A., Long jumps in surface diffusion: A microscopic derivation of the jump frequencies, Phys. Rev. Lett. 80 (1998) 1477–1480.CrossRefGoogle Scholar
Ferrón, J., Gómez, L., Miguel, J. J., Miranda, R., Nonstochastic behavior of atomic surface diffusion on Cu(111) down to low temperatures, Phys. Rev. Lett. 93 (2004) 166107 1–4.CrossRefGoogle ScholarPubMed
Ferrón, J., Miranda, R., Miguel, J. J., Atomic jumps during surface diffusion, Phys. Rev. B 79 (2009) 245407 1–9.CrossRefGoogle Scholar
Beausoleil, A., Desjonquères, P., Rocheford, A., Effects of long jumps, reversible aggregation, and Meyer-Neldel rule on submonolayer epitaxial growth, Phys. Rev. E 78 (2008) 021604 1–18.CrossRefGoogle ScholarPubMed
Wang, S. C., Wrigley, J. D., Ehrlich, G., Atomic jump lengths in surface diffusion: Re, Mo, Ir, and Rh on W(211), J. Chem. Phys. 91 (1989) 5087–5096.CrossRefGoogle Scholar
Senft, D. C., Ehrlich, G., Long jumps in surface diffusion: One-dimensional migration of isolated adatoms, Phys. Rev. Lett. 74 (1995) 294–297.CrossRefGoogle Scholar
Senft, D. C., Long Jumps in Surface Diffusion on Tungsten(211), Materials Science Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana, 1994.
Senft, D. C., Atomic jump length in surface diffusion: Experiment and theory, Appl. Surf. Sci. 94/95 (1996) 231237.CrossRefGoogle Scholar
Linderoth, T. R., Horch, S., Laegsgaard, E., Stensgaard, I., Besenbacher, F., Surface diffusion of Pt on Pt(110): Arrhenius behavior of long jumps, Phys. Rev. Lett. 78 (1997) 4978–4981.CrossRefGoogle Scholar
Montalenti, F., Ferrando, R., Competing mechanisms in adatom diffusion on a channeled surface: Jumps versus metastable walks, Phys. Rev. B 58 (1998) 3617–3620.CrossRefGoogle Scholar
Rosato, V., Guillope, M., Legrand, B., Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model, Philos. Mag. A 59 (1997) 321–336.CrossRefGoogle Scholar
Cleri, F., Rosato, V., Tight-binding potentials for transition metals and alloys, Phys. Rev. B 48 (1993) 22–33.CrossRefGoogle ScholarPubMed
Lorensen, H. T., Nørskov, J. K., Jacobsen, K. W., Mechanism of self-diffusion on Pt(110), Phys. Rev. B 60 (1999) R5149–5152.CrossRefGoogle Scholar
Oh, S.-M., Koh, S. J., Kyuno, K., Ehrlich, G., Non-nearest-neighbor jumps in 2D diffusion: Pd on W(110), Phys. Rev. Lett. 88 (2002) 236102 1–4.CrossRefGoogle Scholar
Oh, S.-M., Kyuno, K., Koh, S. J., Ehrlich, G., Atomic jumps in surface self-diffusion:W on W(110), Phys. Rev. B 66 (2002) 233406 1–4.CrossRefGoogle Scholar
Antczak, G., Ehrlich, G., Long jump rates in surface diffusion: W on W(110), Phys. Rev. Lett. 92 (2004) 166105 1–4.CrossRefGoogle Scholar
Antczak, G., Ehrlich, G., Jump processes in surface diffusion, Surf. Sci. Rep. 62 (2007) 39–61.CrossRefGoogle Scholar
Antczak, G., Long jumps in one-dimensional surface self-diffusion: Rebound transitions, Phys. Rev. B 73 (2006) 033406 1–4.CrossRefGoogle Scholar
DeLorenzi, G., Dynamics of Atom Jumps on Surfaces, 1989, www. lanl.gov/orgs/t/tl/surface_diffusion.
Antczak, G., Kinetics of atom rebounding in surface self-diffusion, Phys. Rev. B 74 (2006) 153406 1–3.CrossRefGoogle Scholar
Fink, H.-W., Ehrlich, G., Rhenium on W(110): Structure and mobility of higher clusters, Surf. Sci. 150 (1985) 419–429.CrossRefGoogle Scholar
Wang, S. C., Kürpick, U., Ehrlich, G., Surface diffusion of compact and other clusters: Irx on Ir(111), Phys. Rev. Lett. 81 (1998) 4923–4926.CrossRefGoogle Scholar
Schunack, M., Linderoth, T. R., Rosei, F., Laegsgaard, E., Stensgaard, I., Besenbacher, F., Long jumps in the surface diffusion of large molecules, Phys. Rev. Lett. 88 (2002) 156102 1–4.CrossRefGoogle ScholarPubMed
Marinica, M.-C., Barreteau, C., Spanjaard, D., Desjonquères, M.-C., Diffusion rates of Cu adatoms on Cu(111) in the presence of an adisland nucleated at fcc or hcp sites, Phys. Rev. B 72 (2005) 115402 1–16.CrossRefGoogle Scholar
Cabrera, N. B., The structure of crystal surfaces, Discussions Faraday Soc. 28 (1959) 16–22.CrossRefGoogle Scholar
Zwanzig, R. W., Collision of a gas atom with a cold surface, J. Chem. Phys. 32 (1960) 1173–1177.CrossRefGoogle Scholar
Ehrlich, G., in: Metal Surfaces: Structure, Energetics and Kinetics, Adsorption and surface structure, (ASM, Metals Park, Ohio, 1963), p. 221–258.Google Scholar
Ehrlich, G., An atomic view of adsorption, Brit. J. Appl. Phys. 15 (1964) 349–364.CrossRefGoogle Scholar
McCarroll, B., Ehrlich, G., Trapping and Energy Transfer in Atomic Collisions with a Crystal Surface, J. Chem. Phys. 38 (1963) 523–532.CrossRefGoogle Scholar
Ehrlich, G., in: Proc. 9th Internat'l Vacuum Cong. and 5th Internat'l Conf. on Solid Surfaces, Invited Speakers' Volume, deSegovia, J. L. (ed.), Layer growth – an atomic picture, (ASEVA, Madrid, 1983), p. 3–16.Google Scholar
Gurney, T., Hutchinson, F., Young, R. D., Condensation of tungsten on tungsten in atomic detail: Observations with the field-ion microscope, J. Chem. Phys. 42 (1965) 3939–3942.CrossRefGoogle Scholar
Young, R. D., Schubert, D. C., Condensation of tungsten on tungsten in atomic detail: Monte Carlo and statistical calculations vs experiment, J. Chem. Phys. 42 (1965) 3943–3950.CrossRefGoogle Scholar
Tully, J. C., Stochastic-trajectory simulations of gas–surface interactions: Xe on Pt(111), Faraday Discuss. Chem. Soc. 80 (1985) 291–298.CrossRefGoogle Scholar
Schneider, M., Rahman, A., Schuller, I., Role of relaxation in epitaxial growth: A molecular-dynamics study, Phys. Rev. Lett. 55 (1985) 604–606.CrossRefGoogle ScholarPubMed
Sanders, D. E., Halstead, D. M., DePristo, A. E., Metal/metal homoepitaxy on fcc(111) and fcc(001) surfaces: Deposition and scattering from small islands, J. Vac. Sci. Technol. A 10 (1992) 1986–1992.CrossRefGoogle Scholar
Fink, H.-W., Mono-atomic tips for scanning tunneling microscopy, IBM J. Res. Develop. 30 (1986) 460–465.CrossRefGoogle Scholar
Fink, H.-W., Point source for ions and electrons, Physica Scripta 38 (1988) 260–263.CrossRefGoogle Scholar
Egelhoff, W. F., Jacob, I., Reflection high-energy electron diffraction (RHEED) oscillations at 77 K, Phys. Rev. Lett. 62 (1989) 921–924.CrossRefGoogle ScholarPubMed
Koziol, C., Lilienkamp, G., Bauer, E., Intensity oscillations in reflection high-energy electron diffraction during molecular beam epitaxy of Ni on W(110), Appl. Phys. Lett. 51 (1987) 901–903.CrossRefGoogle Scholar
Flynn-Sanders, D. K., Evans, J. W., Thiel, P. A., Homoepitaxial growth on Pd(100), Surf. Sci. 289 (1993) 75–84.CrossRefGoogle Scholar
Evans, J. W., Sanders, D. E., Thiel, P. A., DePristo, A. E., Low-temperature epitaxial growth of thin metal films, Phys. Rev. B 41 (1990) 5410–5413.CrossRefGoogle ScholarPubMed
Sanders, D. E., DePristo, A. E., Metal/metal homoepitaxy on fcc(001) surfaces: Is there transient mobility of adsorbed atoms?Surf. Sci. 254 (1991) 341–353.CrossRefGoogle Scholar
Weiss, P. S., Eigler, D. M., Adsorption and accommodation of Xe on Pt{111}, Phys. Rev. Lett. 69 (1992) 2240–2243.CrossRefGoogle ScholarPubMed
Eigler, D. M., Schweizer, E. K., Positioning single atoms with a scanning tunnelling microscope, Nature 344 (1990) 524–526.CrossRefGoogle Scholar
Ernst, H. J., Fabre, F., Lapujoulade, J., Growth of Cu on Cu(100), Surf. Sci. 275 (1992) L682–684.CrossRefGoogle Scholar
Bedrossian, P., Poelsema, B., Rosenfeld, G., Jorritsma, L. C., Lipkin, N. N., Comsa, G., Electron density contour smoothing for epitaxial Ag islands on Ag(100), Surf. Sci. 334 (1995) 1–9.CrossRefGoogle Scholar
Blandin, P., Massobrio, C., Diffusion properties and collisional dynamics of Ag adatoms and dimers on Pt(111), Surf. Sci. 279 (1992) L219–224.CrossRefGoogle Scholar
DeLorenzi, G., Ehrlich, G., Energy transfer in atom condensation on a crystal, Surf. Sci. Lett. 293 (1993) L900–907.Google Scholar
Wang, S. C., Ehrlich, G., Atom condensation at lattice steps and clusters, Phys. Rev. Lett. 71 (1993) 4174–4177.CrossRefGoogle ScholarPubMed
Kellogg, G. L., Experimental observation of ballistic atom exchange on metal surfaces, Phys. Rev. Lett. 76 (1996) 98–101.CrossRefGoogle ScholarPubMed
Liu, C.-L., Adams, J. B., Diffusion behavior of single adatoms near and at steps during growth of metallic thin films on Ni surfaces, Surf. Sci. 294 (1993) 197–210.CrossRefGoogle Scholar
Jacobsen, J., Jacobsen, K. W., Stoltze, P., Nørskov, J. K., Island shape-induced transition from 2D to 3D growth for Pt/Pt(111), Phys. Rev. Lett. 74 (1995) 2295–2298.CrossRefGoogle Scholar
Hitzke, A., Hugenschmidt, M. B., Behm, R. J., Low temperature Ni atom adsorption on the Au(110)-(1×2) surface, Surf. Sci. 389 (1997) 8–18.CrossRefGoogle Scholar
Vandoni, G., Félix, C., Monot, R., Buttet, J., Harbich, W., Neighbor driven mobility of silver adatoms on Pd(100) measured by thermal helium scattering, Surf. Sci. 320 (1994) L63–67.CrossRefGoogle Scholar
Félix, C., Vandoni, G., Harbich, W., Buttet, J., Monot, R., Surface mobility of Ag on Pd(100) measured by specular helium scattering, Phys. Rev. B 54 (1996) 17039–17050.CrossRefGoogle ScholarPubMed
Gilmore, C. M., Sprague, J. A., A molecular dynamics study of transient processes during deposition on (001) metal surfaces, J. Vac. Sci. Technol. A 13 (1995) 1160–1164.CrossRefGoogle Scholar
Gilmore, C. M., Sprague, J. A., Molecular-dynamics simulation of the energetic deposition of Ag thin films, Phys. Rev. B 44 (1991) 8950–8957.CrossRefGoogle ScholarPubMed
Villarba, M., Jónsson, H., Atomic exchange processes in sputter deposition of Pt on Pt(111), Surf. Sci. 324 (1995) 35–46.CrossRefGoogle Scholar
Canepa, M., Terreni, S., Cantini, P., Campora, A., Mattera, L., Initial growth morphology in a heteroepitaxial system at low temperatures: Fe on Ag(100), Phys. Rev. B 56 (1997) 4233–4242.CrossRefGoogle Scholar
Yue, Y., Ho, Y. K., Pan, Z. Y., Low-temperature epitaxy and transient diffusion mechanisms on Cu(100), Europhys. Lett. 40 (1997) 453–457.CrossRefGoogle Scholar
Yue, Y., Ho, Y. K., Pan, Z. Y., Molecular-dynamics study of transient-diffusion mechanisms in low-temperature epitaxial growth, Phys. Rev. B 57 (1998) 6685–6688.CrossRefGoogle Scholar
Brune, H., Bales, G. S., Jacobsen, H., Boragno, C., Kern, K., Measuring surface diffusion from nucleation island densities, Phys. Rev. B 60 (1999) 5991–6006.CrossRefGoogle Scholar
Michely, T., Krug, J., in: Islands, Mounds and Atoms, (Springer-Verlag, Berlin, 2004), Section 2.1.CrossRefGoogle Scholar
Brune, H., Wintterlin, J., Behm, R. J., Ertl, G., Surface migration of “hot” adatoms in the course of dissociative chemisorption of oxygen on Al(111), Phys. Rev. Lett. 68 (1992) 624–626.CrossRefGoogle Scholar
Brune, H., Wintterlin, J., Trost, J., Ertl, G., Wiechers, J., Behm, R. J., Interaction of oxygen with Al(111) studied by scanning tunneling microscopy, J. Chem. Phys. 99 (1993) 2128–2148.CrossRefGoogle Scholar
Engdahl, C., Wahnström, G., Transient hyperthermal diffusion following dissociative chemisorption: a molecular dynamics study, Surf. Sci. 312 (1994) 429–440.CrossRefGoogle Scholar
Jacobsen, J., Hammer, B., Jacobsen, K. W., Nørskov, J. K., Electronic structure, total energies, and STM images of clean and oxygen-covered Al(111), Phys. Rev. B 52 (1995) 14954–14962.CrossRefGoogle Scholar
Wintterlin, J., Schuster, R., Ertl, G., Existence of a “hot” atom mechanism for the dissociation of O2 on Pt(111), Phys. Rev. Lett. 77 (1996) 123–126.CrossRefGoogle Scholar
Wahnström, G., Lee, A. B., Strömquist, J., Motion of “hot” oxygen adatoms on corrugated metal surfaces, J. Chem. Phys. 105 (1996) 326–336.CrossRefGoogle Scholar
Briner, B. G., Doering, M., Rust, H.-P., Bradshaw, A. M., Mobility and trapping of molecules during oxygen adsorption on Cu(110), Phys. Rev. Lett. 78 (1997) 1516–1519.CrossRefGoogle Scholar
Stipe, B. C., Rezaei, M. A., Ho, W., Atomistic studies of O2 dissociation on Pt(111) induced by photons, electrons, and by heating, J. Chem. Phys. 107 (1997) 6443–6447.CrossRefGoogle Scholar
Diebold, U., Hebenstreit, W., Leonardelli, G., Schmid, M., Varga, P., High transient mobility of chlorine on TiO2(110): Evidence for “cannon-ball” trajectories of hot adsorbates, Phys. Rev. Lett. 81 (1998) 405–408.CrossRefGoogle Scholar
Fishlock, T. W., Pethica, J. B., Jones, F. H., Egdell, R. G., Foord, J. S., Interaction of chlorine with nickel (110) studied by scanning tunnelling microscopy, Surf. Sci. 377–379 (1997) 629–633.CrossRefGoogle Scholar
Hla, S. W., Lacovig, P., Comelli, G., Baraldi, A., Kiskinova, M., Rosei, R., Orientational anisotropy in oxygen dissociation on Rh(110), Phys. Rev. B 60 (1999) 7800–7803.CrossRefGoogle Scholar
Schmid, M., Leonardelli, G., Tscheliesznig, R., Biedermann, A., Varga, P., Oxygen adsorption on Al(111): low transient mobility, Surf. Sci. 478 (2001) L355–362.CrossRefGoogle Scholar
Komrowski, A. J., Sexton, J. Z., Kummel, A. C., Binetti, M., Weisze, O., Hasselbrink, E., Oxygen abstraction from dioxygen on the Al(111) surface, Phys. Rev. Lett. 87 (2001) 246103 1–4.CrossRefGoogle ScholarPubMed
Li, Y. L., Pullman, D. P., Yang, J. J., Tsekouras, A. A., Gosalvez, D. B., Laughlin, K. B., Zhang, Z., Schulberg, M. T., Gladstone, D. J., McGonigal, M., Ceyer, S. T., Experimental verification of a new mechanism for dissociative chemisorption: Atom abstraction, Phys. Rev. Lett. 74 (1995) 2603–2606.CrossRefGoogle ScholarPubMed
Schintke, S., Messerli, S., Morgenstern, K., Nieminen, J., Schneider, W.-D., Far-ranged transient motion of “hot” oxygen atoms upon dissociation, J. Chem. Phys. 114 (2001) 4206–4209.CrossRefGoogle Scholar
Rose, M. K., Borg, A., Dunphy, J. C., Mitsui, T., Ogletree, D. F., Salmeron, M., Chemisorption of atomic oxygen on Pd(111) studied by STM, Surf. Sci. 561 (2004) 69–78.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×