Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-24T04:48:12.457Z Has data issue: false hasContentIssue false

Chapter 9 - Metabolic Diseases of the Kidney

Published online by Cambridge University Press:  01 March 2017

Xin Jin (Joseph) Zhou
Affiliation:
Baylor University Medical Center, Dallas
Zoltan G. Laszik
Affiliation:
University of California, San Francisco
Tibor Nadasdy
Affiliation:
Ohio State University
Vivette D. D'Agati
Affiliation:
Columbia University, New York
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tuttle, KR, Bakris, GL, Bilous, RW, et al. Diabetic kidney disease: a report from an ADA Consensus Conference. Am J Kidney Dis. 2014;64(4):510–33.Google Scholar
Parving, HH, Smidt, UM, Friisberg, B, Bonnevie-Nielsen, V, Andersen, AR. A prospective study of glomerular filtration rate and arterial blood pressure in insulin-dependent diabetics with diabetic nephropathy. Diabetologia. 1981;20(4):457–61.Google Scholar
Mazzucco, G, Bertani, T, Fortunato, M, et al. Different patterns of renal damage in type 2 diabetes mellitus: a multicentric study on 393 biopsies. Am J Kidney Dis. 2002;39(4):713–20.Google Scholar
System, USRD. 2014 Annual Data Report: Epidemiology of Kidney Disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2014.Google Scholar
Cowie, CC, Port, FK, Wolfe, RA, et al. Disparities in incidence of diabetic end-stage renal disease according to race and type of diabetes. N Engl J Med. 1989;321(16):1074–9.Google Scholar
Pugh, JA. The epidemiology of diabetic nephropathy. Diabetes Metab Rev. 1989;5(7):531–45.Google Scholar
Young, BA, Maynard, C, Boyko, EJ. Racial differences in diabetic nephropathy, cardiovascular disease, and mortality in a national population of veterans. Diabetes Care. 2003;26(8):2392–9.Google Scholar
Mogensen, CE, Schmitz, O. The diabetic kidney: from hyperfiltration and microalbuminuria to end-stage renal failure. Med Clin North Am. 1988;72(6):1465–92.Google Scholar
Tervaert, TW, Mooyaart, AL, Amann, K, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21(4):556–63.Google Scholar
Li, JJ, Kwak, SJ, Jung, DS, et al. Podocyte biology in diabetic nephropathy. Kidney Int. 2007;106(Suppl):S3642.Google Scholar
Dai, DF, Sasaki, K, Lin, MY, et al. Interstitial eosinophilic aggregates in diabetic nephropathy: allergy or not? Nephrol Dial Transplant. 2015;30(8):1370–6.Google Scholar
Bohle, A, Wehrmann, M, Bogenschutz, O, et al. The pathogenesis of chronic renal failure in diabetic nephropathy. Investigation of 488 cases of diabetic glomerulosclerosis. Pathol Res Pract. 1991;187(2–3):251–9.Google Scholar
Ainsworth, SK, Hirsch, HZ, Brackett, NC Jr, et al. Diabetic glomerulonephropathy: histopathologic, immunofluorescent, and ultrastructural studies of 16 cases. Hum Pathol. 1982;13(5):470–8.Google Scholar
Drummond, K, Mauer, M, International Diabetic Nephropathy Study Group. The early natural history of nephropathy in type 1 diabetes: II. Early renal structural changes in type 1 diabetes. Diabetes. 2002;51(5):1580–7.Google Scholar
Steffes, MW, Bilous, RW, Sutherland, DE, Mauer, SM. Cell and matrix components of the glomerular mesangium in type I diabetes. Diabetes. 1992;41(6):679–84.Google Scholar
Herrera, GA, Turbat-Herrera, EA. Renal diseases with organized deposits: an algorithmic approach to classification and clinicopathologic diagnosis. Arch Pathol Lab Med. 2010;134(4):512–31.Google Scholar
Markowitz, GS, Lin, J, Valeri, AM, et al. Idiopathic nodular glomerulosclerosis is a distinct clinicopathologic entity linked to hypertension and smoking. Hum Pathol. 2002;33(8):826–35.Google Scholar
Lin, J, Markowitz, GS, Valeri, AM, et al. Renal monoclonal immunoglobulin deposition disease: the disease spectrum. J Am Soc Nephrol. 2001;12(7):1482–92.Google Scholar
Rosenstock, JL, Markowitz, GS, Valeri, AM, et al. Fibrillary and immunotactoid glomerulonephritis: distinct entities with different clinical and pathologic features. Kidney Int. 2003;63(4):1450–61.Google Scholar
Haas, M, Racusen, LC, Bagnasco, SM. IgA-dominant postinfectious glomerulonephritis: a report of 13 cases with common ultrastructural features. Hum Pathol. 2008;39(9):1309–16.Google Scholar
Nasr, SH, Fidler, ME, Valeri, AM, et al. Postinfectious glomerulonephritis in the elderly. J Am Soc Nephrol. 2011;22(1):187–95.Google Scholar
Nasr, SH, Markowitz, GS, Whelan, JD, et al. IgA-dominant acute poststaphylococcal glomerulonephritis complicating diabetic nephropathy. Hum Pathol. 2003;34(12):1235–41.Google Scholar
Cossey, LN, Messias, N, Messias, E, Walker, PD, Silva, FG. Defining the spectrum of immunoglobulin A-dominant/codominant glomerular deposition in diabetic nephropathy. Hum Pathol. 2014;45(11):2294–301.Google Scholar
Nasr, SH, D’Agati, VD. IgA-dominant postinfectious glomerulonephritis: a new twist on an old disease. Nephron Clin Pract. 2011;119(1):c1825; discussion c6.Google Scholar
Ng, DP, Krolewski, AS. Molecular genetic approaches for studying the etiology of diabetic nephropathy. Curr Molec Med. 2005;5(5):509–25.Google Scholar
Olson, JL, Laszik, ZG. Diabetic nephropathy. 7th ed. Jennette, CJ, Olson, JL, Silva, FG, D’Agati, VD, editors. Philadelphia, PA: Wolters Kluwer; 2015.Google Scholar
Kanwar, YS, Sun, L, Xie, P, Liu, FY, Chen, S. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Ann Rev Pathol. 2011;6:395423.Google Scholar
Tan, AL, Forbes, JM, Cooper, ME. AGE, RAGE, and ROS in diabetic nephropathy. Semin Nephrol. 2007;27(2):130–43.Google Scholar
Mogensen, CE, Christensen, CK, Vittinghus, E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes. 1983;32(Suppl 2):6478.Google Scholar
Selby, JV, FitzSimmons, SC, Newman, JM, et al. The natural history and epidemiology of diabetic nephropathy. Implications for prevention and control. J Am Med Assoc. 1990;263(14):1954–60.Google Scholar
Mogensen, CE. Early glomerular hyperfiltration in insulin-dependent diabetics and late nephropathy. Scand J Clin Lab Invest. 1986;46(3):201–6.Google Scholar
Viberti, G, Keen, H. The patterns of proteinuria in diabetes mellitus. Relevance to pathogenesis and prevention of diabetic nephropathy. Diabetes. 1984;33(7):686–92.Google Scholar
Deckert, T, Feldt-Rasmussen, B, Borch-Johnsen, K, Jensen, T, Kofoed-Enevoldsen, A. Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia. 1989;32(4):219–26.Google Scholar
Mogensen, CE. Progression of nephropathy in long-term diabetics with proteinuria and effect of initial anti-hypertensive treatment. Scand J Clin Lab Invest. 1976;36(4):383–8.Google Scholar
Krolewski, AS, Canessa, M, Warram, JH, et al. Predisposition to hypertension and susceptibility to renal disease in insulin-dependent diabetes mellitus. N Engl J Med. 1988;318(3):140–5.Google Scholar
Grenfell, A, Watkins, PJ. Clinical diabetic nephropathy: natural history and complications. Clin Endocrinol Metab. 1986;15(4):783805.Google Scholar
Krolewski, AS, Warram, JH, Christlieb, AR, Busick, EJ, Kahn, CR. The changing natural history of nephropathy in type I diabetes. Am J Med. 1985;78(5):785–94.Google Scholar
Mogensen, CE, Schmitz, A, Christensen, CK. Comparative renal pathophysiology relevant to IDDM and NIDDM patients. Diabetes Metab Rev. 1988;4(5):453–83.Google Scholar
Pugh, JA, Medina, R, Ramirez, M. Comparison of the course to end-stage renal disease of type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetic nephropathy. Diabetologia. 1993;36(10):1094–8.Google Scholar
Bangstad, HJ, Osterby, R, Rudberg, S, et al. Kidney function and glomerulopathy over 8 years in young patients with Type I (insulin-dependent) diabetes mellitus and microalbuminuria. Diabetologia. 2002;45(2):253–61.Google Scholar
Mulec, H, Blohme, G, Grande, B, Bjorck, S. The effect of metabolic control on rate of decline in renal function in insulin-dependent diabetes mellitus with overt diabetic nephropathy. Nephrol Dial Transplant. 1998;13(3):651–5.Google Scholar
Parving, HH, Smidt, UM, Hommel, E, et al. Effective antihypertensive treatment postpones renal insufficiency in diabetic nephropathy. Am J Kidney Dis. 1993;22(1):188–95.Google Scholar
Hovind, P, Rossing, P, Tarnow, L, Smidt, UM, Parving, HH. Progression of diabetic nephropathy. Kidney Int. 2001;59(2):702–9.Google Scholar
Group, AC, Patel, A, MacMahon, S, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.Google Scholar
Parving, HH, Andersen, AR, Smidt, UM, Svendsen, PA. Early aggressive antihypertensive treatment reduces rate of decline in kidney function in diabetic nephropathy. Lancet. 1983;1(8335):1175–9.Google Scholar
Lewis, EJ, Hunsicker, LG, Bain, RP, Rohde, RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993;329(20):1456–62.Google Scholar
Branton, MH, Schiffmann, R, Sabnis, SG, et al. Natural history of Fabry renal disease: influence of alpha-galactosidase A activity and genetic mutations on clinical course. Medicine (Baltimore). 2002;81(2):122–38.Google Scholar
Poorthuis, BJ, Wevers, RA, Kleijer, WJ, et al. The frequency of lysosomal storage diseases in The Netherlands. Hum Genet. 1999;105(1–2):151–6.Google Scholar
Meikle, PJ, Hopwood, JJ, Clague, AE, Carey, WF. Prevalence of lysosomal storage disorders. J Am Med Assoc. 1999;281(3):249–54.Google Scholar
Sawada, K, Mizoguchi, K, Hishida, A, et al. Point mutation in the alpha-galactosidase A gene of atypical Fabry disease with only nephropathy. Clin Nephrol. 1996;45(5):289–94.Google Scholar
von Scheidt, W, Eng, CM, Fitzmaurice, TF, et al. An atypical variant of Fabry’s disease with manifestations confined to the myocardium. N Engl J Med. 1991;324(6):395–9.Google Scholar
Meehan, SM, Junsanto, T, Rydel, JJ, Desnick, RJ. Fabry disease: renal involvement limited to podocyte pathology and proteinuria in a septuagenarian cardiac variant. Pathologic and therapeutic implications. Am J Kidney Dis. 2004;43(1):164–71.Google Scholar
Nakao, S, Takenaka, T, Maeda, M, et al. An atypical variant of Fabry’s disease in men with left ventricular hypertrophy. N Engl J Med. 1995;333(5):288–93.Google Scholar
Nakao, S, Kodama, C, Takenaka, T, et al. Fabry disease: detection of undiagnosed hemodialysis patients and identification of a “renal variant” phenotype. Kidney Int. 2003;64(3):801–7.Google Scholar
Maier, EM, Osterrieder, S, Whybra, C, et al. Disease manifestations and X inactivation in heterozygous females with Fabry disease. Acta Paediatr Suppl. 2006;95(451):30–8.Google Scholar
Gupta, S, Ries, M, Kotsopoulos, S, Schiffmann, R. The relationship of vascular glycolipid storage to clinical manifestations of Fabry disease: a cross-sectional study of a large cohort of clinically affected heterozygous women. Medicine (Baltimore). 2005;84(5):261–8.Google Scholar
Mehta, A, Ricci, R, Widmer, U, et al. Fabry disease defined: baseline clinical manifestations of 366 patients in the Fabry Outcome Survey. Eur J Clin Invest. 2004;34(3):236–42.Google Scholar
Wang, RY, Lelis, A, Mirocha, J, Wilcox, WR. Heterozygous Fabry women are not just carriers, but have a significant burden of disease and impaired quality of life. Genet Med. 2007;9(1):3445.Google Scholar
Wilcox, WR, Oliveira, JP, Hopkin, RJ, et al. Females with Fabry disease frequently have major organ involvement: lessons from the Fabry Registry. Mol Genet Metab. 2008;93(2):112–28.Google Scholar
Gupta, V, El Ters, M, Kashani, K, Leung, N, Nasr, SH. Crystalglobulin-induced nephropathy. J Am Soc Nephrol. 2015;26(3):525–9.Google Scholar
Eng, CM, Fletcher, J, Wilcox, WR, et al. Fabry disease: baseline medical characteristics of a cohort of 1765 males and females in the Fabry Registry. J Inherit Metab Dis. 2007;30(2):184–92.Google Scholar
Glass, RB, Astrin, KH, Norton, KI, et al. Fabry disease: renal sonographic and magnetic resonance imaging findings in affected males and carrier females with the classic and cardiac variant phenotypes. J Comput Assist Tomogr. 2004;28(2):158–68.Google Scholar
Ries, M, Bettis, KE, Choyke, P, et al. Parapelvic kidney cysts: a distinguishing feature with high prevalence in Fabry disease. Kidney Int. 2004;66(3):978–82.Google Scholar
Okuda, S. Renal involvement in Fabry’s disease. Intern Med. 2000;39(8):601–2.Google Scholar
Banks, DE, Milutinovic, J, Desnick, RJ, et al. Silicon nephropathy mimicking Fabry’s disease. Am J Nephrol. 1983;3(5):279–84.Google Scholar
Albay, D, Adler, SG, Philipose, J, et al. Chloroquine-induced lipidosis mimicking Fabry disease. Mod Pathol. 2005;18(5):733–8.Google Scholar
Ries, M, Gal, A. Genotype–phenotype correlation in Fabry disease. In Fabry Disease: Perspectives from 5 Years of FOS. Mehta, A, Beck, M, Sunder-Plassmann, G, editors. Oxford: Oxford Pharmagenesis; 2006.Google Scholar
Breunig, F, Weidemann, F, Beer, M, et al. Fabry disease: diagnosis and treatment. Kidney Int. 2003;84(Suppl):S181–5.Google Scholar
Alroy, J, Sabnis, S, Kopp, JB. Renal pathology in Fabry disease. J Am Soc Nephrol. 2002;13(Suppl 2):S134–8.Google Scholar
Desnick, RJ, Brady, R, Barranger, J, et al. Fabry disease, an under-recognized multisystemic disorder: expert recommendations for diagnosis, management, and enzyme replacement therapy. Ann Intern Med. 2003;138(4):338–46.Google Scholar
Thurberg, BL, Rennke, H, Colvin, RB, et al. Globotriaosylceramide accumulation in the Fabry kidney is cleared from multiple cell types after enzyme replacement therapy. Kidney Int. 2002;62(6):1933–46.Google Scholar
Nagral, A. Gaucher disease. J Clin Exp Hepatol. 2014;4(1):3750.Google Scholar
Mehta, A. Epidemiology and natural history of Gaucher’s disease. Eur J Intern Med. 2006;17(Suppl):S25.Google Scholar
Zimran, A, Gelbart, T, Westwood, B, Grabowski, GA, Beutler, E. High frequency of the Gaucher disease mutation at nucleotide 1226 among Ashkenazi Jews. Am J Hum Genet. 1991;49(4):855–9.Google Scholar
Becker-Cohen, R, Elstein, D, Abrahamov, A, et al. A comprehensive assessment of renal function in patients with Gaucher disease. Am J Kidney Dis. 2005;46(5):837–44.Google Scholar
Santoro, D, Rosenbloom, BE, Cohen, AH. Gaucher disease with nephrotic syndrome: response to enzyme replacement therapy. Am J Kidney Dis. 2002;40(1):E4.Google Scholar
Chander, PN, Nurse, HM, Pirani, CL. Renal involvement in adult Gaucher’s disease after splenectomy. Arch Pathol Lab Med. 1979;103(9):440–5.Google Scholar
Morimura, Y, Hojo, H, Abe, M, Wakasa, H. Gaucher’s disease, type I (adult type), with massive involvement of the kidneys and lungs. Virchows Arch. 1994;425(5):537–40.Google Scholar
Reiner, CB. The Schultz histochemical reaction for cholesterol; observations on specificity and sensitivity. Lab Invest. 1953;2(2):140–51.Google Scholar
Lachmann, RH, Grant, IR, Halsall, D, Cox, TM. Twin pairs showing discordance of phenotype in adult Gaucher’s disease. Quart J Med. 2004;97(4):199204.Google Scholar
Biegstraaten, M, van Schaik, IN, Aerts, JM, et al. A monozygotic twin pair with highly discordant Gaucher phenotypes. Blood Cells Mol Dis. 2011;46(1):3941.Google Scholar
Ross, L. Gaucher’s cells in kidney glomeruli. Arch Pathol. 1969;87(2):164–7.Google Scholar
Weinreb, NJ, Deegan, P, Kacena, KA, et al. Life expectancy in Gaucher disease type 1. Am J Hematol. 2008;83(12):896900.Google Scholar
Saeedi, R, Li, M, Frohlich, J. A review on lecithin: cholesterolacyltransferase deficiency. Clin Biochem. 2015;48(7–8):472–5.Google Scholar
Calabresi, L, Pisciotta, L, Costantin, A, et al. The molecular basis of lecithin: cholesterolacyltransferase deficiency syndromes: a comprehensive study of molecular and biochemical findings in 13 unrelated Italian families. Arterioscler Thromb Vasc Biol. 2005;25(9):1972–8.Google Scholar
Hirashio, S, Izumi, K, Ueno, T, et al. Point mutation (C to T) of the LCAT gene resulting in A140C substitution. J Atheroscler Thromb. 2010;17(12):1297–301.Google Scholar
Hirashio, S, Ueno, T, Naito, T, Masaki, T. Characteristic kidney pathology, gene abnormality and treatments in LCAT deficiency. Clin Exp Nephrol. 2014;18(2):189–93.Google Scholar
Lager, DJ, Rosenberg, BF, Shapiro, H, Bernstein, J. Lecithin cholesterol acyltransferase deficiency: ultrastructural examination of sequential renal biopsies. Mod Pathol. 1991;4(3):331–5.Google Scholar
Magil, A, Chase, W, Frohlich, J. Unusual renal biopsy findings in a patient with familial lecithin: cholesterolacyltransferase deficiency. Hum Pathol. 1982;13(3):283–5.Google Scholar
Giotto, AP, Barron, B, de Diller, AB, et al. A honeycomb glomerular mesangial appearance on ultrastructural examination with minimal IgA deposition in a case of hepatic glomerulosclerosis: a case report. J Nephropathol. 2014;3(4):125–6.Google Scholar
Kunnen, S, Van Eck, M. Lecithin:cholesterolacyltransferase: old friend or foe in atherosclerosis? J Lipid Res. 2012;53(9):1783–99.Google Scholar
Albers, JJ, Chen, CH, Adolphson, JL. Lecithin:cholesterolacyltransferase (LCAT) mass; its relationship to LCAT activity and cholesterol esterification rate. J Lipid Res. 1981;22(8):1206–13.Google Scholar
Albers, JJ, Utermann, G. Genetic control of lecithin-cholesterol acyltransferase (LCAT): measurement of LCAT mass in a large kindred with LCAT deficiency. Am J Hum Genet. 1981;33(5):702–8.Google Scholar
Zhu, X, Herzenberg, AM, Eskandarian, M, et al. A novel in vivo lecithin-cholesterol acyltransferase (LCAT)-deficient mouse expressing predominantly LpX is associated with spontaneous glomerulopathy. Am J Pathol. 2004;165(4):1269–78.Google Scholar
Vaziri, ND. Dyslipidemia of chronic renal failure: the nature, mechanisms, and potential consequences. Am J Physiol Renal Physiol. 2006;290(2):F262–72.Google Scholar
Panescu, V, Grignon, Y, Hestin, D, et al. Recurrence of lecithin cholesterol acyltransferase deficiency after kidney transplantation. Nephrol Dial Transplant. 1997;12(11):2430–2.Google Scholar
Ayyobi, AF, McGladdery, SH, Chan, S, et al. Lecithin: cholesterol acyltransferase (LCAT) deficiency and risk of vascular disease: 25 year follow-up. Atherosclerosis. 2004;177(2):361–6.Google Scholar
Rousset, X, Vaisman, B, Auerbach, B, et al. Effect of recombinant human lecithin cholesterol acyltransferase infusion on lipoprotein metabolism in mice. J Pharmacol Exp Ther. 2010;335(1):140–8.Google Scholar
Stoekenbroek, RM, van den Bergh Weerman, MA, Hovingh, GK, et al. Familial LCAT deficiency: from renal replacement to enzyme replacement. Neth J Med. 2013;71(1):2931.Google Scholar
Saito, T, Sato, H, Kudo, K, et al. Lipoprotein glomerulopathy: glomerular lipoprotein thrombi in a patient with hyperlipoproteinemia. Am J Kidney Dis. 1989;13(2):148–53.Google Scholar
Saito, T, Matsunaga, A, Ito, K, Nakashima, H. Topics in lipoprotein glomerulopathy: an overview. Clin Exp Nephrol. 2014;18(2):214–7.Google Scholar
Bomback, AS, Song, H, D’Agati, VD, et al. A new apolipoprotein E mutation, apoE Las Vegas, in a European-American with lipoprotein glomerulopathy. Nephrol Dial Transplant. 2010;25(10):3442–6.Google Scholar
Boumendjel, R, Papari, M, Gonzalez, M. A rare case of lipoprotein glomerulopathy in a white man: an emerging entity in Asia, rare in the white population. Arch Pathol Lab Med. 2010;134(2):279–82.Google Scholar
Meyrier, A, Dairou, F, Callard, P, Mougenot, B. Lipoprotein glomerulopathy: first case in a white European. Nephrol Dial Transplant. 1995;10(4):546–9.Google Scholar
Pasquariello, A, Pasquariello, G, Innocenti, M, et al. Lipoprotein glomerulopathy: first report of 2 not consanguineous Italian men from the same town. J Nephrol. 2011;24(3):381–5.Google Scholar
Rovin, BH, Roncone, D, McKinley, A, et al. APOE Kyoto mutation in European Americans with lipoprotein glomerulopathy. N Engl J Med. 2007;357(24):2522–4.Google Scholar
Faraggiana, T, Churg, J. Renal lipidoses: a review. Hum Pathol. 1987;18(7):661–79.Google Scholar
Chen, HP, Liu, ZH, Gong, RJ, et al. Lipoprotein glomerulopathy: clinical features and pathological characteristics in Chinese. Chin Med J (Engl). 2004;117(10):1513–7.Google Scholar
Watanabe, Y, Ozaki, I, Yoshida, F, et al. A case of nephrotic syndrome with glomerular lipoprotein deposition with capillary ballooning and mesangiolysis. Nephron. 1989;51(2):265–70.Google Scholar
Foster, K, Matsunaga, A, Matalon, R, et al. A rare cause of posttransplantation nephrotic syndrome. Am J Kidney Dis. 2005;45(6):1132–8.Google Scholar
Saito, T, Matsunaga, A, Oikawa, S. Impact of lipoprotein glomerulopathy on the relationship between lipids and renal diseases. Am J Kidney Dis. 2006;47(2):199211.Google Scholar
Ogawa, T, Maruyama, K, Hattori, H, et al. A new variant of apolipoprotein E (apo E Maebashi) in lipoprotein glomerulopathy. Pediatr Nephrol. 2000;14(2):149–51.Google Scholar
Oikawa, S, Matsunaga, A, Saito, T, et al. Apolipoprotein E Sendai (arginine 145–>proline): a new variant associated with lipoprotein glomerulopathy. J Am Soc Nephrol. 1997;8(5):820–3.Google Scholar
Ando, M, Sasaki, J, Hua, H, et al. A novel 18-amino acid deletion in apolipoprotein E associated with lipoprotein glomerulopathy. Kidney Int. 1999;56(4):1317–23.Google Scholar
Saito, T, Oikawa, S, Sato, H, et al. Lipoprotein glomerulopathy: significance of lipoprotein and ultrastructural features. Kidney Int. 1999;71(Suppl):S3741.Google Scholar
Tsimihodimos, V, Elisaf, M. Lipoprotein glomerulopathy. Curr Opin Lipidol. 2011;22(4):262–9.Google Scholar
Ishigaki, Y, Oikawa, S, Suzuki, T, et al. Virus-mediated transduction of apolipoprotein E (ApoE)-sendai develops lipoprotein glomerulopathy in ApoE-deficient mice. J Biol Chem. 2000;275(40):31269–73.Google Scholar
Ieiri, N, Hotta, O, Taguma, Y. Resolution of typical lipoprotein glomerulopathy by intensive lipid-lowering therapy. Am J Kidney Dis. 2003;41(1):244–9.Google Scholar
Arai, T, Yamashita, S, Yamane, M, et al. Disappearance of intraglomerular lipoprotein thrombi and marked improvement of nephrotic syndrome by bezafibrate treatment in a patient with lipoprotein glomerulopathy. Atherosclerosis. 2003;169(2):293–9.Google Scholar
Matsunaga, A, Furuyama, M, Hashimoto, T, et al. Improvement of nephrotic syndrome by intensive lipid-lowering therapy in a patient with lipoprotein glomerulopathy. Clin Exp Nephrol. 2009;13(6):659–62.Google Scholar
Xin, Z, Zhihong, L, Shijun, L, et al. Successful treatment of patients with lipoprotein glomerulopathy by protein A immunoadsorption: a pilot study. Nephrol Dial Transplant. 2009;24(3):864–9.Google Scholar
Miyata, T, Sugiyama, S, Nangaku, M, et al. Apolipoprotein E2/E5 variants in lipoprotein glomerulopathy recurred in transplanted kidney. J Am Soc Nephrol. 1999;10(7):1590–5.Google Scholar
Mourad, G, Djamali, A, Turc-Baron, C, Cristol, JP. Lipoprotein glomerulopathy: a new cause of nephrotic syndrome after renal transplantation. Nephrol Dial Transplant. 1998;13(5):1292–4.Google Scholar
Andrews, PA, O’Donnell, PJ, Dilly, SA, Snowden, SA, Bewick, M. Recurrence of lipoprotein glomerulopathy after renal transplantation. Nephrol Dial Transplant. 1997;12(11):2442–4.Google Scholar
Chou, JY, Jun, HS, Mansfield, BC. Glycogen storage disease type I and G6Pase-beta deficiency: etiology and therapy. Nature Rev Endocrinol. 2010;6(12):676–88.Google Scholar
Froissart, R, Piraud, M, Boudjemline, AM, et al. Glucose-6-phosphatase deficiency. Orphanet J Rare Dis. 2011;6:27.Google Scholar
Ekstein, J, Rubin, BY, Anderson, SL, et al. Mutation frequencies for glycogen storage disease Ia in the Ashkenazi Jewish population. Am JMed Genet Part A. 2004;129A(2):162–4.Google Scholar
Rake, JP, Visser, G, Labrune, P, et al. Glycogen storage disease type I: diagnosis, management, clinical course and outcome. Results of the European Study on Glycogen Storage Disease Type I (ESGSD I). Eur J Pediatr. 2002;161(Suppl 1):S2034.Google Scholar
Melis, D, Fulceri, R, Parenti, G, et al. Genotype/phenotype correlation in glycogen storage disease type 1b: a multicentre study and review of the literature. Eur J Pediatr. 2005;164(8):501–8.Google Scholar
Chou, JY, Matern, D, Mansfield, BC, Chen, YT. Type I glycogen storage diseases: disorders of the glucose-6-phosphatase complex. Curr Molec Med. 2002;2(2):121–43.Google Scholar
Chen, YT. Type I glycogen storage disease: kidney involvement, pathogenesis and its treatment. Pediatr Nephrol. 1991;5(1):71–6.Google Scholar
Chen, YT, Coleman, RA, Scheinman, JI, Kolbeck, PC, Sidbury, JB. Renal disease in type I glycogen storage disease. N Engl J Med. 1988;318(1):711.Google Scholar
Obara, K, Saito, T, Sato, H, et al. Renal histology in two adult patients with type I glycogen storage disease. Clin Nephrol. 1993;39(2):5964.Google Scholar
Yokoyama, K, Hayashi, H, Hinoshita, F, et al. Renal lesion of type Ia glycogen storage disease: the glomerular size and renal localization of apolipoprotein. Nephron. 1995;70(3):348–52.Google Scholar
Verani, R, Bernstein, J. Renal glomerular and tubular abnormalities in glycogen storage disease type I. Arch Pathol Lab Med. 1988;112(3):271–4.Google Scholar
Lei, KJ, Pan, CJ, Shelly, LL, Liu, JL, Chou, JY. Identification of mutations in the gene for glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1a. J Clin Invest. 1994;93(5):1994–9.Google Scholar
Lei, KJ, Shelly, LL, Pan, CJ, Sidbury, JB, Chou, JY. Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease type 1a. Science. 1993;262(5133):580–3.Google Scholar
Gerin, I, Veiga-da-Cunha, M, Achouri, Y, Collet, JF, Van Schaftingen, E. Sequence of a putative glucose 6-phosphate translocase, mutated in glycogen storage disease type Ib. FEBS Lett. 1997;419(2–3):235–8.Google Scholar
Hiraiwa, H, Pan, CJ, Lin, B, Moses, SW, Chou, JY. Inactivation of the glucose 6-phosphate transporter causes glycogen storage disease type 1b. J Biol Chem. 1999;274(9):5532–6.Google Scholar
Herlitz, LC, D’Agati, VD, Markowitz, GS. Crystalline nephropathies. Arch Pathol Lab Med. 2012;136(7):713–20.Google Scholar
Gahl, WA, Thoene, JG, Schneider, JA. Cystinosis. N Engl J Med. 2002;347(2):111–21.Google Scholar
Bois, E, Feingold, J, Frenay, P, Briard, ML. Infantile cystinosis in France: genetics, incidence, geographic distribution. J Med Genet. 1976;13(6):434–8.Google Scholar
Manz, F, Gretz, N. Cystinosis in the Federal Republic of Germany. Coordination and analysis of the data. J Inherit Metab Dis. 1985;8(1):24.Google Scholar
Middleton, R, Bradbury, M, Webb, N, O’Donoghue, D, Van’t Hoff, W. Cystinosis. A clinicopathological conference. “From toddlers to twenties and beyond” Adult–Paediatric Nephrology Interface Meeting, Manchester 2001. Nephrol Dial Transplant. 2003;18(12):2492–5.Google Scholar
Wilmer, MJ, Schoeber, JP, van den Heuvel, LP, Levtchenko, EN. Cystinosis: practical tools for diagnosis and treatment. Pediatr Nephrol. 2011;26(2):205–15.Google Scholar
Servais, A, Moriniere, V, Grunfeld, JP, et al. Late-onset nephropathic cystinosis: clinical presentation, outcome, and genotyping. Clin J Am Soc Nephrol. 2008;3(1):2735.Google Scholar
Midgley, JP, El-Kares, R, Mathieu, F, Goodyer, P. Natural history of adolescent-onset cystinosis. Pediatr Nephrol. 2011;26(8):1335–7.Google Scholar
Emma, F, Nesterova, G, Langman, C, et al. Nephropathic cystinosis: an international consensus document. Nephrol Dial Transplant. 2014;29(Suppl 4):iv8794.Google Scholar
Mahoney, CP, Striker, GE. Early development of the renal lesions in infantile cystinosis. Pediatr Nephrol. 2000;15(1–2):50–6.Google Scholar
Bonsib, SM, Horvath, F Jr. Multinucleated podocytes in a child with nephrotic syndrome and Fanconi’s syndrome: A unique clue to the diagnosis. Am J Kidney Dis. 1999;34(5):966–71.Google Scholar
Nagata, M, Yamaguchi, Y, Komatsu, Y, Ito, K. Mitosis and the presence of binucleate cells among glomerular podocytes in diseased human kidneys. Nephron. 1995;70(1):6871.Google Scholar
Larsen, CP, Walker, PD, Thoene, JG. The incidence of atubular glomeruli in nephropathic cystinosis renal biopsies. Mol Genet Metab. 2010;101(4):417–20.Google Scholar
Jackson, JD, Smith, FG, Litman, NN, Yuile, CL, Latta, H. The Fanconi syndrome with cystinossis. Electron microscopy of renal biopsy specimens from five patients. Am J Med. 1962;33:893910.Google Scholar
Kalatzis, V, Antignac, C. New aspects of the pathogenesis of cystinosis. Pediatr Nephrol. 2003;18(3):207–15.Google Scholar
Shotelersuk, V, Larson, D, Anikster, Y, et al. CTNS mutations in an American-based population of cystinosis patients. Am J Hum Genet. 1998;63(5):1352–62.Google Scholar
Attard, M, Jean, G, Forestier, L, et al. Severity of phenotype in cystinosis varies with mutations in the CTNS gene: predicted effect on the model of cystinosin. Hum Mol Genet. 1999;8(13):2507–14.Google Scholar
Kalatzis, V, Nevo, N, Cherqui, S, Gasnier, B, Antignac, C. Molecular pathogenesis of cystinosis: effect of CTNS mutations on the transport activity and subcellular localization of cystinosin. Hum Mol Genet. 2004;13(13):1361–71.Google Scholar
Chevalier, RL, Forbes, MS. Generation and evolution of atubular glomeruli in the progression of renal disorders. J Am Soc Nephrol. 2008;19(2):197206.Google Scholar
Nesterova, G, Gahl, W. Nephropathic cystinosis: late complications of a multisystemic disease. Pediatr Nephrol. 2008;23(6):863–78.Google Scholar
Gahl, WA, Balog, JZ, Kleta, R. Nephropathic cystinosis in adults: natural history and effects of oral cysteamine therapy. Ann Intern Med. 2007;147(4):242–50.Google Scholar
Gahl, WA. Early oral cysteamine therapy for nephropathic cystinosis. Eur J Pediatr. 2003;162(Suppl 1):S3841.Google Scholar
Gahl, WA, Reed, GF, Thoene, JG, et al. Cysteamine therapy for children with nephropathic cystinosis. N Engl J Med. 1987;316(16):971–7.Google Scholar
Markello, TC, Bernardini, IM, Gahl, WA. Improved renal function in children with cystinosis treated with cysteamine. N Engl J Med. 1993;328(16):1157–62.Google Scholar
Bollee, G, Harambat, J, Bensman, A, et al. Adenine phosphoribosyltransferase deficiency. Clin J Am Soc Nephrol. 2012;7(9):1521–7.Google Scholar
Kamatani, N, Terai, C, Kuroshima, S, Nishioka, K, Mikanagi, K. Genetic and clinical studies on 19 families with adenine phosphoribosyltransferase deficiencies. Hum Genet. 1987;75(2):163–8.Google Scholar
Simmonds, HA. 2,8-Dihydroxyadenine lithiasis. Clin Chim Acta. 1986;160(2):103–8.Google Scholar
Bollee, G, Dollinger, C, Boutaud, L, et al. Phenotype and genotype characterization of adenine phosphoribosyltransferase deficiency. J Am Soc Nephrol. 2010;21(4):679–88.Google Scholar
Fujimori, S, Akaoka, I, Sakamoto, K, et al. Common characteristics of mutant adenine phosphoribosyltransferases from four separate Japanese families with 2,8-dihydroxyadenine urolithiasis associated with partial enzyme deficiencies. Hum Genet. 1985;71(2):171–6.Google Scholar
Edvardsson, V, Palsson, R, Olafsson, I, Hjaltadottir, G, Laxdal, T. Clinical features and genotype of adenine phosphoribosyltransferase deficiency in Iceland. Am J Kidney Dis. 2001;38(3):473–80.Google Scholar
Nasr, SH, Sethi, S, Cornell, LD, et al. Crystalline nephropathy due to 2,8-dihydroxyadeninuria: an under-recognized cause of irreversible renal failure. Nephrol Dial Transplant. 2010;25(6):1909–15.Google Scholar
Gelb, AB, Fye, KH, Tischfield, JA, et al. Renal insufficiency secondary to 2,8-dihydroxyadenine urolithiasis. Hum Pathol. 1992;23(9):1081–5.Google Scholar
Zaidan, M, Palsson, R, Merieau, E, et al. Recurrent 2,8-dihydroxyadenine nephropathy: a rare but preventable cause of renal allograft failure. Am J Transplant. 2014;14(11):2623–32.Google Scholar
Benedetto, B, Madden, R, Kurbanov, A, et al. Adenine phosphoribosyltransferase deficiency and renal allograft dysfunction. Am J Kidney Dis. 2001;37(5):E37.Google Scholar
Kaartinen, K, Hemmila, U, Salmela, K, et al. Adenine phosphoribosyltransferase deficiency as a rare cause of renal allograft dysfunction. J Am Soc Nephrol. 2014;25(4):671–4.Google Scholar
Liapis, H, Gaut, JP, Tomaszewski, JE, Arend, LJ. Pyelonephritis and Other Direct Renal Infections, Reflux Nephropathy, Hydronephrosis, Hypercalcemia, and Nephrolithiasis. 7th ed. Jennette, CJ, Olson, JL, Silva, FG, D’Agati, VD, editors. Philadelphia, PA: Wolters Kluwer; 2015: 1039–110.Google Scholar
Markowitz, GS, Nasr, SH, Klein, P, et al. Renal failure due to acute nephrocalcinosis following oral sodium phosphate bowel cleansing. Hum Pathol. 2004;35(6):675–84.Google Scholar
Wiech, T, Hopfer, H, Gaspert, A, et al. Histopathological patterns of nephrocalcinosis: a phosphate type can be distinguished from a calcium type. Nephrol Dial Transplant. 2012;27(3):1122–31.Google Scholar
Desmeules, S, Bergeron, MJ, Isenring, P. Acute phosphate nephropathy and renal failure. N Engl J Med. 2003;349(10):1006–7.Google Scholar
Feinstein, S, Becker-Cohen, R, Rinat, C, Frishberg, Y. Hyperphosphatemia is prevalent among children with nephrotic syndrome and normal renal function. Pediatr Nephrol. 2006;21(10):1406–12.Google Scholar
Theodoropoulos, DS, Shawker, TH, Heinrichs, C, Gahl, WA. Medullary nephrocalcinosis in nephropathic cystinosis. Pediatr Nephrol. 1995;9(4):412–8.Google Scholar
Cochat, P, Deloraine, A, Rotily, M, et al. Epidemiology of primary hyperoxaluria type 1. Societe de Nephrologie and the Societe de Nephrologie Pediatrique. Nephrol Dial Transplant. 1995;10(Suppl 8):37.Google Scholar
van Woerden, CS, Groothoff, JW, Wanders, RJ, Davin, JC, Wijburg, FA. Primary hyperoxaluria type 1 in The Netherlands: prevalence and outcome. Nephrol Dial Transplant. 2003;18(2):273–9.Google Scholar
Lieske, JC, Monico, CG, Holmes, WS, et al. International registry for primary hyperoxaluria. Am J Nephrol. 2005;25(3):290–6.Google Scholar
Cochat, P, Koch Nogueira, PC, Mahmoud, MA, et al. Primary hyperoxaluria in infants: medical, ethical, and economic issues. J Pediatr. 1999;135(6):746–50.Google Scholar
Hoppe, B. An update on primary hyperoxaluria. Nat Rev Nephrol. 2012;8(8):467–75.Google Scholar
van der Hoeven, SM, van Woerden, CS, Groothoff, JW. Primary hyperoxaluria type 1, a too often missed diagnosis and potentially treatable cause of end-stage renal disease in adults: results of the Dutch cohort. Nephrol Dial Transplant. 2012;27(10):3855–62.Google Scholar
Cochat, P, Rumsby, G. Primary hyperoxaluria. N Engl J Med. 2013;369(7):649–58.Google Scholar
Belostotsky, R, Seboun, E, Idelson, GH, et al. Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am J Hum Genet. 2010;87(3):392–9.Google Scholar
Lorenz, EC, Michet, CJ, Milliner, DS, Lieske, JC. Update on oxalate crystal disease. Curr Rheumatol Rep. 2013;15(7):340.Google Scholar
Milliner, DS, Wilson, DM, Smith, LH. Clinical expression and long-term outcomes of primary hyperoxaluria types 1 and 2. J Nephrol. 1998;11(Suppl 1):56–9.Google Scholar
Howard, SC, Jones, DP, Pui, CH. The tumor lysis syndrome. N Engl J Med. 2011;364(19):1844–54.Google Scholar
Fathallah-Shaykh, SA, Cramer, MT. Uric acid and the kidney. Pediatr Nephrol. 2014;29(6):9991008.Google Scholar
Neogi, T. Clinical practice. Gout. N Engl J Med. 2011;364(5):443–52.Google Scholar
Becker, MA, Jolly, M. Hyperuricemia and associated diseases. Rheum Dis Clin North Am. 2006;32(2):275–93, vvi.Google Scholar
Bellomo, G, Venanzi, S, Verdura, C, et al. Association of uric acid with change in kidney function in healthy normotensive individuals. Am J Kidney Dis. 2010;56(2):264–72.Google Scholar
Obermayr, RP, Temml, C, Gutjahr, G, et al. Elevated uric acid increases the risk for kidney disease. J Am Soc Nephrol. 2008;19(12):2407–13.Google Scholar
Yamada, T, Fukatsu, M, Suzuki, S, Wada, T, Joh, T. Elevated serum uric acid predicts chronic kidney disease. Am J Med Sci. 2011;342(6):461–6.Google Scholar
Nickeleit, V, Mihatsch, MJ. Uric acid nephropathy and end-stage renal disease – review of a non-disease. Nephrol Dial Transplant. 1997;12(9):1832–8.Google Scholar
Torres, RJ, Puig, JG. Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch–Nyhan syndrome. Orphanet J Rare Dis. 2007;2:48.Google Scholar
Sperling, O. Hereditary renal hypouricemia. Mol Genet Metab. 2006;89(1–2):14–8.Google Scholar
Hochberg, J, Cairo, MS. Tumor lysis syndrome: current perspective. Haematologica. 2008;93(1):913.Google Scholar
Pui, CH, Mahmoud, HH, Wiley, JM, et al. Recombinant urate oxidase for the prophylaxis or treatment of hyperuricemia in patients With leukemia or lymphoma. J Clin Oncol. 2001;19(3):697704.Google Scholar
Hochberg, J, Cairo, MS. Rasburicase: future directions in tumor lysis management. Expert Opin Biol Ther. 2008;8(10):1595–604.Google Scholar
Hummel, M, Reiter, S, Adam, K, Hehlmann, R, Buchheidt, D. Effective treatment and prophylaxis of hyperuricemia and impaired renal function in tumor lysis syndrome with low doses of rasburicase. Eur J Haematol. 2008;80(4):331–6.Google Scholar
Nasr, SH, Milliner, DS, Wooldridge, TD, Sethi, S. Triamterene crystalline nephropathy. Am J Kidney Dis. 2014;63(1):148–52.Google Scholar
Cho, ME, Kopp, JB. Fabry disease in the era of enzyme replacement therapy: a renal perspective. Pediatr Nephrol. 2004;19(6):583–93.Google Scholar
Eckardt, KU, Alper, SL, Antignac, C, et al. Autosomal dominant tubulointerstitial kidney disease: diagnosis, classification, and management-A KDIGO consensus report. Kidney Int. 2015;88(4):676–83.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×