Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-10T18:00:05.221Z Has data issue: false hasContentIssue false

3 - Central concepts in quantum mechanics

Published online by Cambridge University Press:  05 January 2012

Mackillo Kira
Affiliation:
Philipps-Universität Marburg, Germany
Stephan W. Koch
Affiliation:
Philipps-Universität Marburg, Germany
Get access

Summary

In the early 1900s more and more experimental evidence was accumulated indicating that microscopic particles show wave-like properties in certain situations. These particle-wave features are very evident, e.g., in measurements where electrons are diffracted from a double slit to propagate toward a screen where they are detected. Based on the classical averaging of particles discussed in Section 1.2.2, one expects that the double slit only modulates the overall intensity, not the spatial distribution. Experimentally, however, one observes a nearly perfect interference pattern at the screen implying that the electrons exhibit wave averaging features such as discussed in Section 2.1.2. This behavior, originally unexpected for particle beams, persists even if the experiment is repeated such that only one electron at a time passes the double slit before it propagates to the detection screen. Thus, the wave aspect must be an inherent property of individual electrons and not an ensemble effect.

Another, independent argument for the failure of classical physics is that the electromagnetic analysis of atoms leads to the conclusion that the negatively charged electron(s) should collapse into the positively charged ion because the electron–ion system loses its energy due to the emission of radiation. As we will see, this problem can be solved by including the wave aspects of particles into the analysis. In particular, as discussed in Section 2.3.3, waves can never be localized to a point without increasing their momentum and energy beyond bounds.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Schiff, L. I. (1955). Quantum Mechanics, 2nd edition, New York, McGraw-Hill.Google Scholar
Davydov, A. S. (1976). Quantum Mechanics, 2nd edition, Oxford, Pergamon Press.Google Scholar
Messiah, A. (1999). Quantum Mechanics, New York, Dover.Google Scholar
Landau, L. D. and Lifschitz, E. M. (2003). Quantum Mechanics: Nonrelativistic Theory, 3rd edition, Amsterdam, Butterworth–Heinemann.Google Scholar
Merzbacher, E. (1998). Quantum Mechanics, 3rd edition, New York, Wiley & Sons.Google Scholar
Gasiorowicz, S. (2003). Quantum Physics, 3rd edition, Phoenix, Wiley & Sons.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×