Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-18T15:27:11.648Z Has data issue: false hasContentIssue false

9 - System Hamiltonian in the generalized Coulomb gauge

Published online by Cambridge University Press:  05 January 2012

Mackillo Kira
Affiliation:
Philipps-Universität Marburg, Germany
Stephan W. Koch
Affiliation:
Philipps-Universität Marburg, Germany
Get access

Summary

As discussed in the previous chapter, we adopt the Coulomb gauge for all our further investigations starting from the many-body Hamiltonian (8.86) and the mode expansion (8.87). Before we proceed to quantize the Hamiltonian, we want to make sure that our analysis is focused on the nontrivial quantum phenomena. Thus, we first have to identify and efficiently deal with the trivial parts of the problem.

Often, the experimental conditions are chosen such that only a subset of all the electrons in a solid interacts strongly with the transversal electromagnetic fields while the remaining electrons and the ions are mostly passive. To describe theoretically such a situation in an efficient way, it is desirable to separate the dynamics of reactive electrons from the almost inert particles that merely produce a background contribution. This background can often be modeled as an optically passive response that is frequency independent and does not lead to light absorption.

In this chapter, we show how the passive background contributions can be systematically identified and included in the description. As the first step, we introduce the generalized Coulomb gauge to eliminate the scalar potential and to express the mode functions and the canonical variables. This leads us to a new Hamiltonian with altered Coulomb potential and mode functions. This generalized Hamiltonian allows us to efficiently describe optically active many-body systems in the presence of an optically passive background.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barford, W. (2005). Electronic and Optical Properties of Conjugate Polymers, Oxford, Oxford University Press.Google Scholar
Groß, A. (2009). Theoretical Surface Science, Berlin, Springer.CrossRefGoogle Scholar
Baer, M. (2006). Beyond Born–Oppenheimer: Canonical Intersections and Electronic Nonadiabatic Coupling Terms, Hoboken, NJ, Wiley & Sons.CrossRefGoogle Scholar
Kanwal, R. P. (2006). Generalized Functions: Theory and Technique, 2nd edition, Boston, Birkhäuser.Google Scholar
Arfken, G. B. and Weber, H. J. (2005). Mathematical Methods for Physicists, 6th edition, New York, Elsevier.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×