Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-15T19:07:40.897Z Has data issue: false hasContentIssue false

30 - Advanced semiconductor quantum optics

Published online by Cambridge University Press:  05 January 2012

Mackillo Kira
Affiliation:
Philipps-Universität Marburg, Germany
Stephan W. Koch
Affiliation:
Philipps-Universität Marburg, Germany
Get access

Summary

The discussions in the previous chapters show that already the spontaneous emission, i.e., the simplest manifestation of the quantum-optical fluctuations, exhibits highly nontrivial features as soon as the quantum light is coupled to interacting many-body systems. We have seen, for example, that pronounced resonances in the semiconductor luminescence originate from a nontrivial mixture of exciton and plasma contributions in contrast to the simple transitions between the eigenstates of isolated atomic systems. As a consequence of the conservation laws inherent to the light–matter coupling, the photon emission induces rearrangements in the entire many-body system leading, e.g., to pronounced hole burning in the exciton distribution. As discussed in Chapter 29, this depletion of the optically active excitons leads to a reduction of the total radiative recombination and the appearance of nonthermal luminescence even when the electron–hole system is in quasiequilibrium. Already these observations show that the coupled quantum-optical and many-body interactions induce new intriguing phenomena that are not explainable by the concepts of traditional quantum optics or classical semiconductor physics alone.

The foundations of quantum optics are based on systematic investigations of simple systems interacting with few quantized light modes. In this context, one can evaluate and even measure the exact eigenstates or the density matrix with respect to both the photonic and the atomic degrees of freedom. In semiconductor systems, currently the investigations using one or a few quantum dots (QD) are closest to the atomic studies because, due to their discrete eigenstates, one can treat strongly confined quantum dots to some extent like artificial atoms.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Planck, M. (1901). Über das Gesetz der Energieverteilung im Normalspectrum (On the law of distribution of energy in the normal spectrum), Ann. Phys. 309, 553.CrossRefGoogle Scholar
Purcell, E. M. (1946). Spontaneous emission probabilities at radio frequencies, Phys. Rev. 69, 681.Google Scholar
Brown, R. Hanbury and Twiss, R. Q. (1956). A test of a new type of stellar interferometer on Sirius, Nature 178, 1046.CrossRefGoogle Scholar
Glauber, R. J. (1963). Coherent and incoherent states of the radiation field, Phys. Rev. 131, 2766.CrossRefGoogle Scholar
Jaynes, E. T. and Cummings, F. W. (1963). Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE 51, 89.CrossRefGoogle Scholar
Mollow, B. R. (1969). Power spectrum of light scattered by two-level systems, Phys. Rev. 188, 1969.CrossRefGoogle Scholar
Freedman, S. J. and Clauser, J. F. (1972). Experimental test of local hidden-variable theories, Phys. Rev. Lett. 28, 938.CrossRefGoogle Scholar
Carmichael, H. J. and Walls, D. F. (1976). A quantum-mechanical master equation treatment of the dynamical Stark effect, J. Phys. B 9, 1199.CrossRefGoogle Scholar
Kimble, H. J., Dagenais, M., and Mandel, L. (1977). Photon anti-bunching in resonance fluorescence, Phys. Rev. Lett. 39, 691.CrossRefGoogle Scholar
Caves, C. M. (1981). Quantum-mechanical noise in an interferometer, Phys. Rev. D 23, 1693.CrossRefGoogle Scholar
Aspect, A., Grangier, P., and Gérard, R. (1981). Experimental tests of realistic local theories via Bell's Theorem, Phys. Rev. Lett. 47, 460.CrossRefGoogle Scholar
Walls, D. F. and Zoller, P. (1981). Reduced quantum fluctuations in resonance fluorescence, Phys. Rev. Lett. 47, 709.CrossRefGoogle Scholar
Scully, M. O. and Drühl, K. (1982). Quantum eraser: A proposed photon correlation experiment concerning observation and “delayed choice” in quantum mechanics, Phys. Rev. A 25, 2208.CrossRefGoogle Scholar
Walls, D. F. (1983). Squeezed states of light, Nature 306, 141.CrossRefGoogle Scholar
Slusher, R. E., Hollberg, L. W., Yurke, B. and Mertz, J. C. (1985). Observation of squeezed states generated by four-wave mixing in an optical cavity, Phys. Rev. Lett. 55, 2409.CrossRefGoogle Scholar
Meschede, D., Walther, H., and Müller, G. (1985). One-atom maser, Phys. Rev. Lett. 54, 551.CrossRefGoogle ScholarPubMed
Filipowicz, P., Javanainen, J., and Meystre, P. (1986). Theory of a microscopic maser, Phys. Rev. A 34, 3077.CrossRefGoogle ScholarPubMed
Wu, L.-A., Kimble, H. J., Hall, J. L., and Wu, H. (1986). Generation of squeezed states by parametric down conversion, Phys. Rev. Lett. 57, 2520.CrossRefGoogle ScholarPubMed
Hong, C. K., Ou, Z. Y., and Mandel, L. (1987). Measurement of subpicosecond time intervals between two photons by interference, Phys. Rev. Lett. 59, 2044.CrossRefGoogle ScholarPubMed
Loudon, R. and Knight, P. L. (1987). Squeezed light, J. Mod. Opt. 34, 709.CrossRefGoogle Scholar
Rempe, G., Walther, H., and Klein, N. (1987). Observation of quantum collapse and revival in a one-atom maser, Phys. Rev. Lett. 58, 353.CrossRefGoogle Scholar
Schleich, W. and Wheeler, J. A. (1987). Oscillations in photon distribution of squeezed states and interference in phase-space, Nature 326, 574.CrossRefGoogle Scholar
Vogel, K. and Risken, H. (1989). Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase, Phys. Rev. A 40, 2847.CrossRefGoogle ScholarPubMed
Boller, K. J., Imamoglu, A., and Harris, S. E. (1991). Observation of electromagnetically induced transparency, Phys. Rev. Lett. 66, 2593.CrossRefGoogle ScholarPubMed
Thompson, R. J., Rempe, G., and Kimble, H. J. (1992). Observation of normal-mode splitting for an atom in an optical cavity, Phys. Rev. Lett. 68, 1132.CrossRefGoogle Scholar
Smithey, D. T., Beck, M., Raymer, M. G. and Faridani, A. (1993). Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum, Phys. Rev. Lett. 70, 1244.CrossRefGoogle ScholarPubMed
Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring, in Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, Goldwasser, S., ed., Los Alamitos, CA, IEEE Computer Society.Google Scholar
Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., and Cornell, E. A. (1995). Observation of Bose–Einstein condensation in a dilute atomic vapor, Science 269, 198.CrossRefGoogle Scholar
Davis, K. B., Mewes, M.-O., Andrews, M. R., et al. (1995). Bose–Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett. 75, 3969.CrossRefGoogle Scholar
Cirac, J. I. and Zoller, P. (1995). Quantum computations with cold trapped ions, Phys. Rev. Lett. 74, 4091.CrossRefGoogle ScholarPubMed
Kwiat, P. G., Mattle, K., Weinfurter, H., et al. (1995). New high-intensity source of polarization-entangled photon pairs, Phys. Rev. Lett. 75, 4337.CrossRefGoogle ScholarPubMed
Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M., and Wineland, D. J. (1995). Demonstration of a fundamental quantum logic gate, Phys. Rev. Lett. 75, 4714.CrossRefGoogle ScholarPubMed
Brune, M., Schmidt-Kaler, F., Maali, A., et al. (1996). Quantum Rabi oscillation: A direct test of field quantization in a cavity, Phys. Rev. Lett. 76, 1800.CrossRefGoogle ScholarPubMed
Deutsch, D., Ekert, A., Josza, R., et al. (1996). Quantum privacy amplification and the security of quantum cryptography over noisy channels, Phys. Rev. Lett. 77, 2818.CrossRefGoogle ScholarPubMed
Vedral, V., Plenio, M. B., Rippin, M. A., and Knight, P. L. (1997). Quantifying entanglement, Phys. Rev. Lett. 78, 2275.CrossRefGoogle Scholar
Milburn, G. J., Corney, J., Wright, E. M., and Walls, D. F. (1997). Quantum dynamics of an atomic Bose–Einstein condensate in a double-well potential, Phys. Rev. A 55, 4318.CrossRefGoogle Scholar
Bouwmeester, D., Pan, J.-W., Mattle, K., et al. (1997). Experimental quantum teleportation, Nature 390, 575.CrossRefGoogle Scholar
Furusawa, A., Sorensen, J. L., Braunstein, S. L., et al. (1998). Unconditional quantum teleportation, Science 282, 706.CrossRefGoogle ScholarPubMed
Hau, L. VestergaardHarris, S. E., Dutton, Z., and Behrooz, C. H. (1999). Light speed reduction to 17 metres per second in an ultracold atomic gas, Nature 397, 594.CrossRefGoogle Scholar
Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W., and Bloch, I. (2002). Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature 415, 39.CrossRefGoogle Scholar
Bigelow, M. S., Lepeshkin, N. N., and Boyd, R. W. (2003). Superluminal and slow light propagation in a room-temperature solid, Science 301, 200.CrossRefGoogle Scholar
Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J., and Grangier, P. (2006). Generating optical Schrödinger kittens for quantum information processing, Science 312, 83.CrossRefGoogle ScholarPubMed
Kubanek, A., Koch, M., Sames, C., et al. (2009). Photon-by-photon feedback control of a single-atom trajectory, Nature 462, 898.CrossRefGoogle ScholarPubMed
Hammerer, K., Sorensen, A. S., and Polzik, E. S. (2010). Quantum interface between light and atomic ensembles, Rev. Mod. Phys. 82, 1041.CrossRefGoogle Scholar
Machida, S., Yamamoto, Y., and Itaya, Y. (1987). Observation of amplitude squeezing in a constant-current-driven semiconductor laser, Phys. Rev. Lett. 58, 1000.CrossRefGoogle Scholar
Langer, V., Stolz, H., and Osten, W. (1990). Observation of quantum beats in the resonance fluorescence of free excitons, Phys. Rev. Lett. 64, 854.CrossRefGoogle ScholarPubMed
Weisbuch, C., Nishioka, M., Ishikawa, A., and Arakawa, Y. (1992). Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett. 69, 3314.CrossRefGoogle Scholar
Kira, M., Jahnke, F., Koch, S. W., et al. (1997). Quantum theory of nonlinear semiconductor microcavity luminescence explaining “Boser” experiments, Phys. Rev. Lett. 79, 5170.CrossRefGoogle Scholar
Bonadeo, N. H., Erland, J., Gammon, D., et al. (1998). Coherent optical control of the quantum state of a single quantum dot, Science 282, 1473.CrossRefGoogle ScholarPubMed
Kira, M., Jahnke, F., and Koch, S. W. (1999a). Quantum theory of secondary emission in optically excited semiconductor quantum wells, Phys. Rev. Lett. 82, 3544.CrossRefGoogle Scholar
Imamoglu, A., Awschalom, D. D., Burkard, G., et al. (1999). Quantum information processing using quantum dot spins and cavity QED, Phys. Rev. Lett. 83, 4204.CrossRefGoogle Scholar
Kira, M., Jahnke, F., Hoyer, W., and Koch, S. W. (1999). Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures, Prog. Quantum Electron. 23, 189.CrossRefGoogle Scholar
Lee, Y.-S., Norris, T. B., Kira, M., et al. (1999). Quantum correlations and intraband coherences in semiconductor cavity QED, Phys. Rev. Lett. 83, 5338.CrossRefGoogle Scholar
Savvidis, P. G., Baumberg, J. J., Stevenson, R. M., et al. (2000). Angle-resonant stimulated polariton simplifier, Phys. Rev. Lett. 84, 1547.CrossRefGoogle Scholar
Biolatti, E., Iotti, R. C., Zanardi, P., and Rossi, F. (2000). Quantum information processing with semiconductor macroatoms, Phys. Rev. Lett. 85, 5647.CrossRefGoogle ScholarPubMed
Ell, C., Brick, P., Hübner, M., Lee, E. S., et al. (2000). Quantum correlations in the nonperturbative regime of semiconductor microcavities, Phys. Rev. Lett. 85, 5392.CrossRefGoogle ScholarPubMed
Michler, P., Kiraz, A., Becher, C., et al. (2000). A quantum dot single-photon turnstile device, Science 290, 2282.CrossRefGoogle ScholarPubMed
Hoyer, W., Kira, M., Koch, S. W., et al. (2004). Control of entanglement between photon and quantum well, Phys. Rev. Lett. 93, 067401.CrossRefGoogle Scholar
Reithmaier, J. P., Sek, G., Löffler, A., et al. (2004). Strong coupling in a single quantum dot-semiconductor microcavity system, Nature 432, 197.CrossRefGoogle Scholar
Yoshie, T., Scherer, A., Hendrickson, J., et al. (2004). Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature 432, 200.CrossRefGoogle Scholar
Ku, P.-C., Sedgwick, F., Chang-Hasnain, C. J., et al. (2004). Slow light in semiconductor quantum wells, Optics Lett. 29, 229.CrossRefGoogle ScholarPubMed
Kira, M. and Koch, S. W. (2006a). Quantum-optical spectroscopy of semiconductors, Phys. Rev. A 73, 013813.CrossRefGoogle Scholar
Koch, S. W., Kira, M., Khitrova, G., and Gibbs, H. M. (2006). Semiconductor excitons in new light, Nature Mat. 5, 523.CrossRefGoogle ScholarPubMed
Kasprzak, J., Richard, M., Kundermann, S., et al. (2006). Bose–Einstein condensation of exciton polaritons, Nature 443, 409.CrossRefGoogle ScholarPubMed
Kira, M. and Koch, S. W. (2006). Many-body correlations and excitonic effects in semiconductor spectroscopy, Prog. Quantum Electr. 30, 155.CrossRefGoogle Scholar
Stevenson, R. M., Young, R. J., Atkinson, P., et al. (2006). A semiconductor source of triggered entangled photon pairs, Nature 439, 179.CrossRefGoogle ScholarPubMed
Akopian, N., Lindner, N. H., Poem, E., et al. (2006). Entangled photon pairs from semiconductor quantum dots, Phys. Rev. Lett. 96, 130501.CrossRefGoogle ScholarPubMed
Gibbs, H. M., Khitrova, G., Kira, M., Koch, S. W., and Scherer, A. (2006). Vacuum Rabi splitting in semiconductors, Nature Phys. 2, 81.Google Scholar
Feldtmann, T., Schneebeli, L., Kira, M., and Koch, S. W. (2006). Quantum theory of light emission from a semiconductor quantum-dot, Phys. Rev. B 73, 155319.CrossRefGoogle Scholar
Ulrich, S. M., Gies, C., Ates, S., et al. (2007). Photon statistics of semiconductor microcavity lasers, Phys. Rev. Lett. 98, 043906.CrossRefGoogle ScholarPubMed
Schneebeli, L., Kira, M., and Koch, S. W. (2008). Characterization of strong light–matter coupling in semiconductor quantum-dot microcavities via photon-statistics spectroscopy, Phys. Rev. Lett. 101, 097401.CrossRefGoogle ScholarPubMed
Wiersig, J., Gies, C., Jahnke, F., et al. (2009). Direct observation of correlations between individual photon emission events of a microcavity laser, Nature 460, 245.CrossRefGoogle ScholarPubMed
Günter, G., Anappara, A. A., Hees, J., et al. (2009). Sub-cycle switch-on of ultrastrong light–matter interaction, Nature 458, 178.CrossRefGoogle ScholarPubMed
Feldtmann, T., Kira, M., and Koch, S. W. (2010). Theoretical analysis of higher-order phonon sidebands in semiconductor luminescence spectra, J. Luminescence 130, 107.CrossRefGoogle Scholar
Carmele, A., Richter, M., Chow, W. W., and Knorr, A. (2010). Antibunching of thermal radiation by a room-temperature phonon bath: A numerically solvable model for a strongly interacting light–matter-reservoir system, Phys. Rev. Lett. 104, 156801.CrossRefGoogle ScholarPubMed
Smith, R. P., Wahlstrand, J. K., Funk, A. C., et al. (2010). Extraction of many-body configurations from nonlinear absorption in semiconductor quantum wells, Phys. Rev. Lett. 104, 247401.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×