Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-29T01:33:03.610Z Has data issue: false hasContentIssue false

7 - Nectar- and pollen-feeding by adult herbivorous insects

Published online by Cambridge University Press:  15 December 2009

Jörg Romeis
Affiliation:
Swiss Federal Research Station Switzerland
Erich Städler
Affiliation:
Swiss Federal Research Station Switzerland
Felix L. Wäckers
Affiliation:
Netherlands Institute of Ecology The Netherlands
F. L. Wäckers
Affiliation:
Netherlands Institute of Ecology
P. C. J. van Rijn
Affiliation:
Netherlands Institute of Ecology
J. Bruin
Affiliation:
Universiteit van Amsterdam
Get access

Summary

Introduction

Among herbivorous insects with a complete metamorphosis the larval and adult stages usually differ significantly in their biology, food requirements, and ecology (Schoonhoven et al. 1998). Often it is the larval stage that is strictly herbivorous, causing damage to a plant, whereas frequently the adult has a different diet, disperses, selects suitable environments (host plants), and reproduces. Studies on herbivore nutritional ecology generally focus on plant feeding by the damaging larval stages. However, the nutritional ecology and foraging behavior of adult stages can also be crucial to our understanding of plant–herbivore interactions. Both as pollinators and as parasites, adult herbivores can impose a strong selective force in the evolution of plant-provided food supplements (Brody 1997). Here we describe the use of plant-provided foods by adult herbivores to provide insight into this often neglected aspect of plant–herbivore interactions.

Adult insects carry over energy reserves and nutrients acquired during larval development. The level of these reserves can vary markedly among species and may be complemented with nutrients obtained through adult feeding (Boggs 1981, 1997a, b; Tsitsipis 1989; May 1992). Some species primarily depend on larval reserves throughout their adult life and require little or no additional feeding (Barbehenn et al. 1999). Such non-feeding adults are relatively common among Lepidoptera (Miller 1996) but have also been reported among Diptera (Drew and Yuval 2000). Females of some species receive nutrients during matings (Wheeler 1996).

Type
Chapter
Information
Plant-Provided Food for Carnivorous Insects
A Protective Mutualism and its Applications
, pp. 178 - 220
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aker, C. L. and Udovic, D.. 1981. Oviposition and pollination behaviour of the yucca moth, Tegiticula maculata (Lepidoptera: Proxididae), and its relation to the reproductive biology of Yucca whipplei (Agavaceae). Oecologia 459: 96–101.CrossRefGoogle Scholar
Akeson, W. R., Haskins, F. A., Gorz, H. J., and Manglitz, G. R.. 1970. Feeding response of the sweetclover weevil to various sugars and related compounds. Journal of Economic Entomology 63: 1079–1080.CrossRefGoogle Scholar
Alm, J., Ohnmeiss, T. E., Lanza, J., and Vriesenga, L.. 1990. Preference of cabbage white butterflies and honey bees for nectar that contains amino acids. Oecologia 84: 53–57.CrossRefGoogle ScholarPubMed
Aluja, M., Díaz-Fleischer, F., Papaj, D. R., Lagunes, G., and Sivinski, J.. 2001. Effects of age, diet, female density, and the host resource on egg load in Anastrepha ludens and Anastrepha obliqua (Diptera: Tephritidae). Journal of Insect Physiology 47: 975–988.CrossRefGoogle Scholar
Aluja, M., Jácome, I., Birke, A., Lozada, N. L., and Quintero, G.. 1993. Basic patterns of behavior in wild Anastrepha striata (Diptera: Tephritidae) flies under field-cage conditions. Annals of the Entomological Society of America 86: 776–793.CrossRefGoogle Scholar
Alzouma, I. and Huignard, J.. 1981. Données préliminaires sur la biologie et le comportement de ponte dans la nature de Bruchidius atrolineatus (Pic) (Coléoptère Bruchidae) dans une zone sud-sahélienne au Niger. Acta Oecologica, Oecologia Applicata 2: 391–400.Google Scholar
Andersson, S. 2003. Foraging responses in the butterflies Inachis io, Aglais urticae. (Nymphalidae), and Gonepteryx ramni (Pieridae) to floral scents. Chemoecology 13: 1–11.CrossRefGoogle Scholar
Angioy, A. M., Liscia, A., and Pietra, P.. 1978a. Effects of salt and sugar solutions on taste hairs of Ceratitis capitata Wied. Bollettino della Societá Italiana Biologia Sperimentale 54: 2108–2114.Google Scholar
Angioy, A. M., Liscia, A. and Pietra, P.. 1978b. The electrophysiological response of labellar and tarsal hairs of Dacus oleae Gmel. to salt and sugar stimulation. Bollettino della Societá Italiana Biologia Sperimentale 54:2115–2121.Google Scholar
Annis, B. and O'Keeffe, L. E.. 1984. Effect of pollen source on oogenesis in the pea weevil, Bruchus pisorum L. (Coleoptera: Bruchidae). Protection Ecology 6: 257–266.Google Scholar
Anstett, M. C. 1999. An experimental study of the interaction between the dwarf palm (Chamaerops humilis) and its floral visitor Derelomus chamaeropsis throughout the life cycle of the weevil. Acta Oecologica 20: 551–558.CrossRefGoogle Scholar
Averill, A. L. and Prokopy, R. J.. 1993. Foraging of Rhagoletis pomonella flies in relation to interactive food and fruit resources. Entomologia Experimentalis et Applicata 66: 179–185.CrossRefGoogle Scholar
Baggen, L. R. and Gurr, G. M.. 1998. The influence of food on Copidosoma koehleri (Hymenoptera: Encyrtidae), and the use of flowering plants as a habitat management tool to enhance biological control of potato moth, Phthorimaea operculella (Lepidoptera: Gelechiidae). Biological Control 11: 9–17.CrossRefGoogle Scholar
Baggen, L. R., Gurr, G. M., and Meats, A.. 1999. Flowers in tri-trophic systems: mechanisms allowing selective exploitation by insect natural enemies for conservation biological control. Entomologia Experimentalis et Applicata 91: 155–161.CrossRefGoogle Scholar
Baker, H. G., and I. Baker. 1975. Studies of nectar-constitution and pollinator-plant coevolution. In Gilbert, L. E. and Raven, P. H. (eds.) Coevolution of Animals and Plants. Austin, TX: University of Texas Press, pp. 100–140.Google Scholar
Baker H. G. and I. Baker. 1982. Chemical constituents of nectar in relation to pollination mechanisms and phylogeny. In Nitecki, M. H. (ed.) Biochemical Aspects of Evolutionary Biology. Chicago, IL: University of Chicago Press, pp. 131–171.Google Scholar
Baker, H. G., and I. Baker. 1983. Floral nectar sugar constituents in relation to pollinator type. In Jones, C. E. and Little, R. J. (eds.) Handbook of Experimental Pollination Biology. New York: Scientific and Academic Editions, pp. 117–141.Google Scholar
Barbehenn, R. V., J. C. Reese, and K. S. Hagen. 1999. The food of insects. In Huffaker, C. B. and Gutierrez, A. P. (eds.) Ecological Entomology, 2nd edn. New York: John Wiley, pp. 83–121.Google Scholar
Bateman, M. A. 1972. The ecology of fruit flies. Annual Review of Entomology 17: 493–518.CrossRefGoogle Scholar
Beach, R. M., Todd, J. W., and Baker, S. H. 1985. Nectaried and nectariless cotton cultivars as nectar sources for the adult soybean looper. Journal of Entomological Sciences 20: 233–236.CrossRefGoogle Scholar
Beenakkers, A. M. T., Horst, D. J., and Marrewijk, W. J. A.. 1984. Insect flight muscle metabolism. Insect Biochemistry 14: 243–260.CrossRefGoogle Scholar
Begon, M. and Parker, G. A.. 1986. Should egg size and clutch size decrease with age? Oikos 47: 293–302.CrossRefGoogle Scholar
Benedict, J. H., Wolfenbarger, D. A., Bryant, V. M. Jr., and George, D. M.. 1991. Pollens ingested by boll weevils (Coleoptera: Curculionidae) in southern Texas and northeastern Mexico. Journal of Economic Entomology 84: 126–131.CrossRefGoogle Scholar
Blaney, W. M. and Simmonds, M. S. J.. 1988. Food selection in adults and larvae of three species of Lepidoptera: a behavioural and electrophysiological study. Entomologia Experimentalis et Applicata 49: 111–121.CrossRefGoogle Scholar
Blaney, W. M. and Simmonds, M. S. J.. 1990. A behavioural and electrophysiological study of the role of tarsal chemoreceptors in feeding by adults of Spodoptera, Heliothis virescens and Helicoverpa armigera. Journal of Insect Physiology 36: 743–756.CrossRefGoogle Scholar
Blaney, W. M. and Simmonds, M. S. J.. 1994. Effect of age on the responsiveness of peripheral chemosensory sensilla of the turnip root fly (Delia floralis). Entomologia Experimentalis et Applicata 70: 253–262.CrossRefGoogle Scholar
Boggs, C. L. 1981. Nutritional and life-history determinants of resource allocation in holometabolous insects. American Naturalist 117: 692–709.CrossRefGoogle Scholar
Boggs, C. L. 1986. Reproductive strategies of female butterflies: variation in and constraints on fecundity. Ecological Entomology 11: 7–15.CrossRefGoogle Scholar
Boggs, C. L. 1987. Ecology of nectar and pollen feeding in Lepidoptera. In Slansky, F. Jr. and Rodriguez, J. G. (eds.) Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates. New York: John Wiley, pp. 369–391.Google Scholar
Boggs, C. L. 1988. Rates of nectar feeding in butterflies: effects of sex, size, age and nectar concentration. Functional Ecology 2: 289–295.CrossRefGoogle Scholar
Boggs, C. L. 1990. A general model of the role of male-donated nutrients in female insects' reproduction. American Naturalist 136: 598–617.CrossRefGoogle Scholar
Boggs, C. L. 1995. Male nuptial gifts: phenotypic consequences and evolutionary implications. In Leather, S. R. and Hardic, J. (eds.) Insect Reproduction. Boca Raton, FL: CRC Press, pp. 215–242.Google Scholar
Boggs, C. L. 1997a. Reproductive allocation from reserves and income in butterfly species with differing adult diets. Ecology 78: 181–191.CrossRefGoogle Scholar
Boggs, C. L. 1997b. Dynamics of reproductive allocation from juvenile and adult feeding: radiotracer studies. Ecology 78: 192–202.CrossRefGoogle Scholar
Boggs, C. L., Smiley, J. T., and Gilbert, L. E.. 1981. Patterns of pollen exploitation by Heliconius butterflies. Oecologia 48: 284–289.CrossRefGoogle ScholarPubMed
Bowdan, E. 1984. Electrophysiological responses of tarsal contact chemoreceptors of the apple maggot fly Rhagoletis pomonella to salt, sucrose and oviposition-deterrent pheromone. Journal of Comparative Physiology A 154: 143–152.CrossRefGoogle Scholar
Brantjes, N. B. M. 1976. Riddles around the pollination of Melandrium album (Mill.) Garcke (Caryophyllaceae) during the oviposition by Hadena bicruris Hufn. (Noctuidae, Lepidoptera). II. Proceedings of the Royal Netherlands Academy of Sciences Series C 1: 127–141.Google Scholar
Brody, A. K. 1997. Effects of pollinators, herbivores, and seed predators on flowering phenology. Ecology 78: 1624–1631.CrossRefGoogle Scholar
Brommer, J. E. and Fred, M. S.. 1999. Movement of the apollo butterfly Parnassius apollo related to host plant and nectar plant species. Ecological Entomology 24: 125–131.CrossRefGoogle Scholar
Bronstein, J. L. and Hossaert-McKey, M.. 1996. Variation in reproductive success within a subtropical fig/pollinator mutualism. Journal of Biogeography 23: 433–446.CrossRefGoogle Scholar
Bronstein, J. L. and Ziv, Y.. 1997. Costs of two non-mutualistic species in a yucca/yucca moth mutualism. Oecologia 112: 379–385.CrossRefGoogle Scholar
Canato, C. M. and Zucoloto, F. S.. 1998. Feeding behaviour of Ceratitis capitata (Diptera, Tephritidae): influence of carbohydrate ingestion. Journal of Insect Physiology 44: 149–155.CrossRefGoogle Scholar
Cangussu, J. A. and Zucoloto, F. S.. 1992. Nutritional value and selection of different diets by adult Ceratitis capitata flies (Diptera, Tephritidae). Journal of Insect Physiology 38: 485–491.CrossRefGoogle Scholar
Carroll, A. L. and Quiring, D. T.. 1992. Sucrose ingestion by Zeiraphera canadensis Mut. and Free. (Lepidoptera: Tortricidae) increases longevity and lifetime fecundity but not oviposition rate. Canadian Entomologist 124: 335–340.CrossRefGoogle Scholar
Cate, J. R. and Skinner, J. L.. 1978. Fate and identification of pollen in the alimentary canal of the boll weevil, Anthonomus grandis. Southwestern Entomologist 3: 263–265.Google Scholar
Cheng, H. H. 1972. Oviposition and longevity of the dark-sided cutworm, Euxoa messoria (Lepidoptera: Noctuidae), in the laboratory. Canadian Entomologist 104: 919–925.CrossRefGoogle Scholar
Cinereski, J. E. and Chiang, H. C.. 1968. The pattern of movements of adults of the northern corn rootworm inside and outside of corn fields. Journal of Economic Entomology 61: 1531–1536.CrossRefGoogle Scholar
Clement, S. L. 1992. On the function of pea flower feeding by Bruchus pisorum. Entomologia Experimentalis et Applicata 63: 115–121.CrossRefGoogle Scholar
Cook, S. M., Murray, D. A., and Williams, I. H.. 2004. Do pollen beetles need pollen? The effect of pollen on oviposition, survival and development of a flower-feeding herbivore. Ecological Entomology 29: 164–173.CrossRefGoogle Scholar
Corbet, S. A. 2000. Butterfly nectaring flowers: butterfly morphology and flower form. Entomologia Experimentalis et Applicata 96: 289–298.CrossRefGoogle Scholar
Cresoni-Pereira, C. and Zucoloto, F. S.. 2001. Dietary self-selection and discrimination threshold in wild Anastrepha obliqua females (Diptera: Tephritidae). Journal of Insect Physiology 47: 1127–1132.CrossRefGoogle Scholar
Crowson, R. A. 1981. The Biology of the Coleoptera. London: Academic Press.Google Scholar
Cunningham, J. P., West, S. A., and Wright, D. J.. 1998. Learning in the nectar foraging behaviour of Helicoverpa armigera. Ecological Entomology 23: 363–369.CrossRefGoogle Scholar
David, W. A. L. and Gardiner, B. O. C.. 1962. Oviposition and the hatching of the eggs of Pieris brassicae (L.) in a laboratory culture. Bulletin of Entomological Research 53: 91–109.CrossRefGoogle Scholar
Delisle, J., McNeil, J. N., Underhill, E. W., and Barton, D.. 1989. Helianthus annuus pollen, an oviposition stimulant for the sunflower moth, Homoeosoma electellum. Entomologia Experimentalis et Applicata 50: 53–60.CrossRefGoogle Scholar
Dethier, V. G. 1976. The Hungry Fly. Cambridge, MA: Harvard University Press.Google Scholar
Dethier, V. G. and Hanson, F. E.. 1965. Taste papillae of blowfly. Journal of Cellular and Comparative Physiology 65: 93–100.CrossRefGoogle ScholarPubMed
DeVries, P. J. 1979. Pollen-feeding rainforest Parides and Battus butterflies in Costa Rica. Biotropica 11: 237–238.CrossRefGoogle Scholar
Deyrup, M. A. 1988. Pollen-feeding in Poecilognathus punctipennis (Diptera: Bombyliidae). Florida Entomologist 71: 597–605.CrossRefGoogle Scholar
Dobson, H. E. M. 1994. Floral volatiles in insect biology. In Bernays, E. A. (ed.) Insect–Plant Interactions. Boca Raton, FL: CRC Press, pp. 47–81.Google Scholar
Doucette, C. F. and Eide, P. M.. 1955. Influence of sugars on oviposition of narcissus bulb fly. Annals of the Entomological Society of America 48: 343–344.CrossRefGoogle Scholar
Dover, J. W. 1997. Conservation headlands: effects on butterfly distribution and behaviour. Agriculture, Ecosystems and Environment 63: 31–49.CrossRefGoogle Scholar
Downes, J. A. 1955. The food habits and description of Atrichopogon pollinivorus sp. n. (Diptera: Ceratopogonidae). Transactions of the Royal Entomological Society (London) 106: 439–453.CrossRefGoogle Scholar
Downes, W. L. and Dahlem, G. A.. 1987. Keys to the evolution of Diptera: role of Homoptera. Environmental Entomology 16: 847–854.CrossRefGoogle Scholar
Drew, R. A. I. and B. Yuval. 2000. The evolution of fruit fly feeding behavior. In Aluja, M. and Norrbom, A. L. (eds.) Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior. Boca Raton, FL: CRC Press, pp. 731–749.Google Scholar
Duan, J. J. and Prokopy, R. J.. 1993. Toward developing pesticide-treated spheres for controlling apple maggot flies, Rhagoletis pomonella (Walsh) (Dipt., Tephritidae). Journal of Applied Entomology 115: 176–184.CrossRefGoogle Scholar
Elliott, N. C., Gustin, R. D., and Hanson, S. L.. 1990. Influence of adult diet on the reproductive biology and survival of the western corn rootworm, Diabrotica virgifera virgifera. Entomologia Experimentalis et Applicata 56: 15–21.CrossRefGoogle Scholar
Engelmann, F. 1970. The Physiology of Insect Reproduction. Oxford, UK: Pergamon Press.Google Scholar
Erhardt, A. 1991. Nectar sugar and amino acid preferences of Battus philenor (Lepidoptera, Papilionidae). Ecological Entomology 16: 425–434.CrossRefGoogle Scholar
Erhardt, A. 1992. Preferences and non-preferences for nectar constituents in Ornithoptera priamus poseidon (Lepidoptera, Papilionidae). Oecologia 90: 581–585.CrossRefGoogle Scholar
Erhardt, A. 1995. Ecology and conservation of alpine Lepidoptera. In Pullin, A. S. (ed.) Ecology and Conservation of Butterflies. London: Chapman and Hall, pp. 258–276.CrossRefGoogle Scholar
Erhardt, A. and Baker, I.. 1990. Pollen amino acids: an additional diet for a nectar feeding butterfly? Plant Systematics and Evolution 169: 111–121.CrossRefGoogle Scholar
Erhardt, A. and Rusterholz, H. P.. 1998. Do peacock butterflies (Inachis io L.) detect and prefer nectar amino acids and other nitrogenous compounds? Oecologia 117: 536–542.CrossRefGoogle ScholarPubMed
Erhardt, A. and J. A. Thomas. 1991. Lepidoptera as indicators of change in the semi-natural grasslands of lowland and upland Europe. In Collins, M. and Thomas, J. A. (eds.) The Conservation of Insects and Their Habitats. London: Academic Press, pp. 213–236.Google Scholar
Esquivel, J. F. and Lingren, P. D.. 2002. Citrus pollen retention by adult Helicoverpa zea (Lepidoptera: Noctuidae) after exposure to citrus blooms. Journal of Economic Entomology 95: 1174–1178.CrossRefGoogle ScholarPubMed
Faegri, K. and Pijl, L.. 1979. The Principles of Pollination Ecology, 3rd edn. Oxford, UK: Pergamon Press.Google Scholar
Finch, S. 1971. The fecundity of the cabbage root fly Erioischia brassicae under field conditions. Entomologia Experimentalis et Applicata 14: 147–160.CrossRefGoogle Scholar
Finch, S. 1974. Sugars available from flowers visited by the adult cabbage root fly, Erioischia brassicae (Bch.) (Diptera, Anthomyiidae). Bulletin of Entomological Research 64: 257–263.CrossRefGoogle Scholar
Finch, S. and Coaker, T. H.. 1969. Comparison of the nutritive values of carbohydrates and related compounds to Erioischia brassicae. Entomologia Experimentalis et Applicata 12: 441–453.CrossRefGoogle Scholar
Finch, S., Eckenrode, C. J., and Cadoux, M. E.. 1986. Behaviour of onion maggot (Diptera: Anthomyiidae) in commercial onion fields treated regularly with parathion sprays. Journal of Economic Entomology 79: 107–113.CrossRefGoogle Scholar
Fox, C. W. 1993. Multiple mating, lifetime fecundity and female mortality of the bruchid beetle Callosobruchus maculatus (Coleoptera: Bruchidae). Functional Ecology 7: 203–208.CrossRefGoogle Scholar
Free, J. B. and Williams, I. H.. 1978. The responses of the pollen beetle, Meligethes aeneus, and the seed weevil, Ceuthorhynchus assimilis, to oilseed rape, Brassicae napus, and other plants. Journal of Applied Ecology 15: 761–774.CrossRefGoogle Scholar
Frings, H. and Frings, M.. 1956. The loci of contact chemoreceptors involved in feeding reactions in certain Lepidoptera. Biological Bulletin 110: 291–299.CrossRefGoogle Scholar
Fritzsche, R. 1957. Zur Biologie und Ökologie der Rapsschädlinge aus der Gattung Meligethes. Zeitschrift für angewandte Entomologie 40: 222–280.CrossRefGoogle Scholar
Galun, R. 1989. Phagostimulation of the mediterranean fruit fly, Ceratitis capitata by ribonucleotides and related compounds. Entomologia Experimentalis et Applicata 50: 133–139.CrossRefGoogle Scholar
Galun, R., S. Gothilf, S. Blondheim, and A. Lachman., 1980. Responses of the Mediterranean fruit fly Ceratitis capitata to amino acids. Proc. 16th Int. Congr. of Entomology, Japan, pp. 55–63.
Gilbert, L. E. 1972. Pollen feeding and reproductive biology of Heliconius butterflies. Proceedings of the National Academy of Sciences of the USA 69: 1403–1407.CrossRefGoogle ScholarPubMed
Gilbert, L. E. and Singer, M. C.. 1975. Butterfly ecology. Annual Review of Ecology and Systematics 6: 365–397.CrossRefGoogle Scholar
Gothilf, S., Galun, R., and Bar-Zeev, M.. 1971. Taste reception in the Mediterranean fruit fly: electrophysiological and behavioural studies. Journal of Insect Physiology 17: 1371–1384.CrossRefGoogle Scholar
Gottsberger, G. 1977. Some aspects of beetle pollination in the evolution of flowering plants. Plant Systematics and Evolution Suppl. 1: 211–216.Google Scholar
Gottsberger, G. 1989. Comments on flower evolution and beetle pollination in the genera Annona and Rollinia (Annonaceae). Plant Systematics and Evolution 167: 189–194.CrossRefGoogle Scholar
Grimaldi, D. 1999. The co-radiations of pollinating insects and angiosperms in the Cretaceous. Annals of the Missouri Botanical Garden 86: 373–406.CrossRefGoogle Scholar
Grossmueller, D. W. and Lederhouse, R. C.. 1987. The role of nectar source distribution in the habitat use and oviposition by the tiger swallowtail butterfly. Journal of the Lepidopterists' Society 41: 159–165.Google Scholar
Gu, H. and Danthanarayana, W.. 1990. The role of availability of food and water to the adult Epiphyas postvittana, the light brown apple moth, in its reproductive performance. Entomologia Experimentalis et Applicata 54: 101–108.CrossRefGoogle Scholar
Gunn, A. and Gatehouse, A. G.. 1985. Effects of the availability of food and water on reproduction in the African armyworm, Spodoptera exempta. Physiological Entomology 10: 53–63.CrossRefGoogle Scholar
Gurr, G. M., H. F. Van Emden, and S. D. Wratten. 1998. Habitat manipulation and natural enemy efficacy: implications for the control of pests. In Barbosa, P. (ed.) Conservation Biological Control. San Diego, CA: Academic Press, pp. 155–183.Google Scholar
Hardee, D. D., Jones, G. D., and Adams, L. C.. 1999. Emergence, movement, and host plants of boll weevils (Coleoptera: Curculionidae) in the Delta of Mississippi. Journal of Economic Entomology 92: 130–139.CrossRefGoogle Scholar
Haslett, J. R. 1983. A photographic account of pollen digestion by adult hoverflies. Physiological Entomology 8: 167–171.CrossRefGoogle Scholar
Haynes, J. W. and Smith, J. W.. 1992. Longevity of laboratory-reared boll weevils (Coleoptera: Curculionidae) offered honey bee-collected pollen and plants unrelated to cotton. Journal of Entomological Sciences 27: 366–374.CrossRefGoogle Scholar
Hendrichs, J. and J. Reyes. 1987. Reproductive behaviour and post-mating female guarding in the monophagous multivoltine Dacus longistylus (Diptera: Tephritidae) in southern Egypt. In Economopoulos, A. P. (ed.) Fruit Flies. Amsterdam, the Netherlands: Elsevier Science, pp. 303–313.Google Scholar
Hendrichs, J., Katsoyannos, B. I., Papaj, D. R., and Prokopy, R. J.. 1991. Sex differences in movement between natural feeding and mating sites and tradeoffs between food consumption, mating success and predator evasion in Mediterranean fruit flies (Diptera: Tephritidae). Oecologia 86: 223–231.CrossRefGoogle Scholar
Hendrichs, J., Fletcher, B. S., and Prokopy, R. J.. 1993. Feeding behaviour of Rhagoletis pomonella flies (Diptera, Tephritidae): effect of initial food quantity and quality on food foraging, handling costs, and bubbling. Journal of Insect Behaviour 6: 43–64.CrossRefGoogle Scholar
Hill, C. J. 1989. The effect of adult diet on the biology of butterflies. II. The common crow butterfly, Euploea core corinna. Oecologia 81: 258–266.CrossRefGoogle Scholar
Hill, C. J. and Pierce, N. E.. 1989. The effect of adult diet on the biology of butterflies. I. The common imperial blue, Jalmenus evagoras. Oecologia 81: 249–257.CrossRefGoogle ScholarPubMed
Hill, R. E. and Mayo, Z. B.. 1980. Distribution and abundance of corn rootworm species as influenced by topography and crop rotation in eastern Nebraska. Environmental Entomology 9: 122–127.CrossRefGoogle Scholar
Hocking, B. 1953. The intrinsic rate and speed of flight of insects. Transactions of the Royal Entomological Society London 104: 223–346.Google Scholar
Hollister, B. and Mullin, C. A.. 1998. Behavioral and electrophysiological dose-response relationships in adult western corn rootworm (Diabrotica virgifera virgifera LeConte) for host pollen amino acids. Journal of Insect Physiology 44: 463–470.CrossRefGoogle ScholarPubMed
Hollister, B. and Mullin, C. A.. 1999. Isolation and identification of primary metabolite feeding stimulants for adult western corn rootworm, Diabrotica virgifera virgifera LeConte, from host pollens. Journal of Chemical Ecology 25: 1263–1280.CrossRefGoogle Scholar
Howell, J. F. 1981. Codling moth: the effect of adult diet on longevity, fecundity, fertility, and mating. Journal of Economic Entomology 74: 13–18.CrossRefGoogle Scholar
Inouye, D. W. 1980. The terminology of floral larceny. Ecology 61: 1251–1253.CrossRefGoogle Scholar
Inouye, D. W. and Waller, G. D.. 1984. Responses of honey bees (Apis mellifera) to amino acid solutions mimicking floral nectars. Ecology 65: 618–625.CrossRefGoogle Scholar
Isely, D. 1928. Oviposition of the boll weevil in relation to food. Journal of Economic Entomology 21: 152–155.CrossRefGoogle Scholar
Jácome, I., Aluja, M., and Liedo, P.. 1999. Impact of adult diet on demographic and population parameters of the tropical fruit fly Anastrepha serpentina (Diptera: Tephritidae). Bulletin of Entomological Research 89: 165–175.CrossRefGoogle Scholar
Janzen, D. 1979. How to be a fig. Annual Review of Ecology and Systematics 10: 13–51.CrossRefGoogle Scholar
Jayanth, K. P., Mohandas, S., Asokan, R., and Visalakshy, P. N. G.. 1993. Parthenium pollen induced feeding by Zygogramma bicolorata (Coleoptera: Chrysomelidae) on sunflower (Helianthus annuus) (Compositae). Bulletin of Entomological Research 83: 595–598.CrossRefGoogle Scholar
Jennersten, O. 1984. Flower visitation and pollination efficiency of some European butterflies. Oecologia 63: 80–89.CrossRefGoogle ScholarPubMed
Jensen, R. L., Newsom, L. D., and Gibbens, J.. 1974. The soybean looper: effects of adult nutrition on oviposition, mating frequency, and longevity. Journal of Economic Entomology 67: 467–470.CrossRefGoogle ScholarPubMed
Johnson, J. B. and Stafford, M. P.. 1985. Adult Noctuidae feeding on aphid honeydew and a discussion of honeydew feeding by adult Lepidoptera. Journal of the Lepidopterists' Society 39: 321–327.Google Scholar
Jones, G. D. and Coppedge, J. R.. 1999. Foraging resources of boll weevils (Coleoptera: Curculionidae). Journal of Economic Entomology 92: 860–869.CrossRefGoogle Scholar
Jones, G. D. and Coppedge, J. R.. 2000. Foraging resources of adult Mexican corn rootworm (Coleoptera: Chrysomelidae) in Bell County, Texas. Journal of Economic Entomology 93: 636–643.CrossRefGoogle ScholarPubMed
Jones, R. W. 1997. Pollen feeding by the boll weevil (Coleoptera: Curculionidae) following cotton harvest in east central Texas. Southwestern Entomologist 22: 419–429.Google Scholar
Jones, R. W., Cate, J. R., Hernandez, E. Martinez, and Sosa, E. Salgado. 1993. Pollen feeding and survival of the boll weevil (Coleoptera: Curculionidae) on selected plant species in northeastern Mexico. Environmental Entomology 22: 99–108.CrossRefGoogle Scholar
Josens, R. B. and Farina, W. M.. 2001. Nectar feeding by the hovering hawk moth Macroglossum stellatarum: intake rate as a function of viscosity and concentration of sucrose solutions. Journal of Comparative Physiology A 187: 661–665.CrossRefGoogle ScholarPubMed
Judd, G. J. R. and Borden, J. H.. 1991. Sensory interaction during trap-finding by female onion flies: implications for ovipositional host-plant finding. Entomologia Experimentalis et Applicata 58: 239–249.CrossRefGoogle Scholar
Kaib, M. 1974. Die Fleisch- und Blumenduftrezeptoren auf der Antenne der Schmeissfliege Calliphora vicina. Journal of Comparative Physiology 95: 105–121.CrossRefGoogle Scholar
Karban, R. 1997. Neighbourhood affects a plant's risk of herbivory and subsequent success. Ecological Entomology 22: 433–439.CrossRefGoogle Scholar
Karlsson, B. 1994. Feeding habits and change in body composition with age in three nymphalid butterfy species. Oikos 69: 224–230.CrossRefGoogle Scholar
Kästner, A. 1929. Untersuchungen zur Lebensweise und Bekämpfung der Zwiebelfliege (Hylemyia antiqua Meigen). II. Morphologie und Biologie. Zeitschrift für Morphologie und Ökologie der Tiere 15: 363–422.CrossRefGoogle Scholar
Katsoyannos, B. I. 1989. Response to shape, size and colour. In Robinson, A. S. and Hooper, G. (eds.) Fruit Flies, Their Biology, Natural Enemies and Control, vol. 3A. Amsterdam, the Netherlands: Elsevier, pp. 307–324.Google Scholar
Kazi, A. S. 1976. Studies on the field habits of adult melon fruit fly Dacus (Strumeta) cucurbitae, Coquillet. Pakistan Journal of Scientific and Industrial Research 19: 71–76.Google Scholar
Keiser, I. and Schneider, E. L.. 1969. Need for immediate sugar and ability to withstand thirst by newly emerged oriental fruit flies, melon flies, and mediterranean fruit flies untreated or sexually sterilized with gamma radiation. Journal of Economic Entomology 62: 539–540.CrossRefGoogle Scholar
Kelber, A. and Pfaff, M.. 1997. Spontaneous and learned preferences for visual flower features in a diurnal hawkmoth. Israel Journal of Plant Sciences 45: 235–245.CrossRefGoogle Scholar
Kevan, P. G., and H. G. Baker. 1999. Insects on flowers. In Huffaker, C. B. and Gutierrez, A. P. (eds.) Ecological Entomology, 2nd edn. New York: John Wiley, pp. 553–584.Google Scholar
Kim, J. H. and Mullin, C. A.. 1998. Structure–phagostimulatory relationships for amino acids in adult western corn rootworm, Diabrotica virgifera virgifera. Journal of Chemical Ecology 24: 1499–1511.CrossRefGoogle Scholar
Kingsolver, J. G. and Daniel, T. L.. 1979. On the mechanics and energetics of nectar feeding in butterflies. Journal of Theoretical Biology 76: 167–179.CrossRefGoogle ScholarPubMed
Kirk, W. D. J. 1984. Pollen-feeding in thrips (Insecta: Thysanoptera). Journal of Zoology 204: 107–117.CrossRefGoogle Scholar
Kirk, W. D. J. 1997. Feeding. In Lewis, T. (ed.) Thrips as Crop Pests. Wallingford, UK: CAB International, pp. 119–174.Google Scholar
Koptur, S. and Lawton, J. H.. 1988. Interactions among vetches bearing extrafloral nectaries, their biotic protective agents, and herbivores. Ecology 69: 278–283.CrossRefGoogle Scholar
Körting, A. 1940. Zur Biologie und Bekämpfung der Möhrenfliege. Arbeiten über physiologische und angewandte Entomologie aus Berlin-Dahlem 7: 209–232.Google Scholar
Kozhantshikov, I. W. 1938. Carbohydrate and fat metabolism in adult Lepidoptera. Bulletin of Entomological Research 29: 103–114.CrossRefGoogle Scholar
Krenn, H. W. and Penz, C. M.. 1998. Mouthparts of Heliconius butterflies (Lepidoptera: Nymphalidae): a search for anatomical adaptations to pollen-feeding behavior. International Journal of Insect Morphology and Embryology 27: 301–309.CrossRefGoogle Scholar
Krupnick, G. A. and Weis, A. E.. 1999. The effect of floral herbivory on male and female reproductive success in Isomeris arborea. Ecology 80: 135–149.CrossRefGoogle Scholar
Krupnick, G. A., Weis, A. E., and Campbell, D. R.. 1999. The consequences of floral herbivory for pollinator service to Isomeris arborea. Ecology 80: 125–134.CrossRefGoogle Scholar
Kusano, T. and Adachi, H.. 1969. Proboscis extending time on distilled water, sugars and salts and their nutritive value in the cabbage butterfly (Pieris rapae crucivora). Kontyû 36: 427–436.Google Scholar
Kusano, T. and Nishide, K.. 1978. Digestion and utilization of carbohydrates in the cabbage butterfly, Pieris rapae crucivora Boisduval. Kontyû 46: 302–311.Google Scholar
Kusano, T. and Sato, H.. 1980. The sensitivity of tarsal chemoreceptors for sugars in the cabbage butterfly, Pieris rapae crucivora Boisduval. Applied Entomology and Zoology 15: 385–391.CrossRefGoogle Scholar
Labandeira, C. C. 1998. How old is the flower and the fly? Science 280: 57–59.CrossRefGoogle Scholar
Lance, D. R., Elliott, N. C., and Hein, G. L.. 1989. Flight activity of Diabrotica spp. at the borders of cornfields and its relation to ovarian stage in D. barberi. Entomologia Experimentalis et Applicata 50: 61–67.CrossRefGoogle Scholar
Landis, D. A., Wratten, S. D., and Gurr, G. M.. 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology 45: 175–201.CrossRefGoogle ScholarPubMed
Lanza, J. and Krauss, B. R.. 1984. Detection of amino acids in artificial nectars by two tropical ants Leptothorax and Monomorium. Oecologia 63: 423–425.CrossRefGoogle ScholarPubMed
Larson, B. M. H., Kevan, P. G., and Inouye, D. W.. 2001. Flies and flowers: taxonomic diversity of anthophiles and pollinators. Canadian Entomologist 133: 439–465.CrossRefGoogle Scholar
Leahy, T. C. and Andow, D. A.. 1994. Egg weight, fecundity, and longevity are increased by adult feeding in Ostrinia nubilalis (Lepidoptera: Pyralidae). Annals of the Entomological Society of America 87: 342–349.CrossRefGoogle Scholar
Lederhouse, R. C., Ayres, M. P., and Scriber, J. M.. 1990. Adult nutrition affects male virility in Papilio glaucus L. Functional Ecology 4: 743–751.CrossRefGoogle Scholar
Metayer, M., , M.-H.Pham-Delegue, , Thiery, D., and Masson, C.. 1993. Influence of host- and non-host plant pollen on the calling and oviposition behaviour of the European sunflower moth Homoeosoma nebulellum (Lepidoptera: Pyralidae). Acta Oecologica 14: 619–626.Google Scholar
Leroi, B. 1978. Alimentation des adultes d'Acanthoscelides obtectus Say (Coléoptère, Bruchidae): influence sur la longévité et la production ovarienne des individus vierges. Annales de Zoologie–Écologie Animale 10: 559–567.Google Scholar
Lewis, A. C. 1993. Learning and the evolution of resources: pollinators and flower morphology. In Papaj, D. R. and Lewis, A. C. (eds.) Insect Learning. New York: Chapman and Hall, pp. 219–242.CrossRefGoogle Scholar
Lin, S. and Mullin, C. A.. 1999. Lipid, polyamide, and flavonol phagostimulants for adult western corn rootworm from sunflower (Helianthus annuus L.) pollen. Journal of Agricultural and Food Chemistry 47: 1223–1229.CrossRefGoogle ScholarPubMed
Lopez, J. D. Jr., T. N. Shaver, and P. D. Lingren. 1994. Evaluation of feeding stimulants for adult Helicoverpa zea. Proc. Beltwide Cotton Production Res. Conf., National Cotton Council, Memphis, TN, pp. 920–924.
Ludwig, K. A. and Hill, R. E.. 1975. Comparison of gut contents of adult western and northern corn rootworms in northeast Nebraska. Environmental Entomology 4: 435–438.CrossRefGoogle Scholar
Lukefahr, M. J. and Martin, D. F.. 1964. The effects of various larval and adult diets on the fecundity and longevity of the bollworm, tobacco budworm, and cotton leafwom. Journal of Economic Entomology 57: 233–235.CrossRefGoogle Scholar
Lukefahr, M. J. and Rhyne, C.. 1960. Effects of nectariless cottons on populations of three lepidopterous species. Journal of Economic Entomology 53: 242–244.CrossRefGoogle Scholar
Lukefahr, M. J., Martin, D. F., and Meyer, J. R.. 1965. Plant resistance to five Lepidoptera attacking cotton. Journal of Economic Entomology 58: 516–518.CrossRefGoogle Scholar
Malavasi, A., Morgante, J. S., and Prokopy, R. J.. 1983. Distribution and activities of Anastrepha fraterculus (Diptera: Tephritidae) flies on host and non-host trees. Annals of the Entomological Society of America 76: 286–292.CrossRefGoogle Scholar
Masters, A. R. 1991. Dual role of pyrrolizide alkaloids in nectar. Journal of Chemical Ecology 17: 195–205.CrossRefGoogle ScholarPubMed
May, P. G. 1985. Nectar uptake rates and optimal nectar concentrations of two butterfly species. Oecologia 66: 381–386.CrossRefGoogle ScholarPubMed
May, P. G. 1992. Flower selection and the dynamics of lipid reserves in two nectarivorous butterflies. Ecology 73: 2181–2191.CrossRefGoogle Scholar
McAlpine, J. F. 1981. Morphology and terminology: adults. In McAlpine, J. F., Peterson, B. V., Shewell, G. E., et al. (eds.) Manual of Nearctic Diptera, vol. 1, Monograph no. 27. Ottawa: Research Branch Agriculture Canada, pp. 9–63.Google Scholar
McDonald, R. S. and Borden, J. H.. 1996. Dietary constraints on sexual activity, mating success, and survivorship of male Delia antiqua. Entomologia Experimentalis et Applicata 81: 243–250.CrossRefGoogle Scholar
McEwen, P. K. and Liber, H.. 1995. The effect of adult nutrition on the fecundity and longevity of the olive moth Prays oleae (Bern.). Journal of Applied Entomology 119: 291–294.CrossRefGoogle Scholar
McKibben, G. H., Thompson, M. J., Parrott, W. L., Thompson, A. C., and Lusby, W. R.. 1985. Identification of feeding stimulants for boll weevils from cotton buds and anthers. Journal of Chemical Ecology 11: 1229–1238.CrossRefGoogle ScholarPubMed
McLeod, D. G. R. 1964. Nutrition and feeding behavior of the adult onion maggot, Hylemya antiqua. Journal of Economic Entomology 57: 845–847.CrossRefGoogle Scholar
McQuate, G. T., Jones, G. D., and Sylva, C. D.. 2003. Assessment of corn pollen as a food source for two tephritid fruit fly species. Environmental Entomology 32: 141–150.CrossRefGoogle Scholar
Metcalf, R. L., Lampman, R. L., and Lewis, P. A.. 1998. Comparative kairomonal chemical ecology of diabroticite beetles (Coleoptera: Chrysomelidae: Galerucinae: Luperini: Diabroticina) in a reconstituted tallgrass prairie ecosystem. Journal of Economic Entomology 91: 881–890.CrossRefGoogle Scholar
Mevi-Schütz, J. and Erhardt, A.. 2002. Can Inachis io detect nectar amino acids at low concentrations? Physiological Entomology 27: 256–260.CrossRefGoogle Scholar
Mevi-Schütz, J. and Erhardt, A.. 2003a. Larval nutrition affects female nectar amino acid preference in the map butterfly (Araschnia levana). Ecology 84: 2788–2794.CrossRefGoogle Scholar
Mevi-Schütz, J. and Erhardt, A. 2003b. Mating frequency influences nectar amino acid preference of Pieris napi. Proceedings of the Royal Society of London Series B 271: 153–158.CrossRefGoogle Scholar
Mevi-Schütz, J. and Erhardt, A.. 2003c. Effects of nectar amino acids on fecundity of the wall brown butterfly (Lasiommata megera L.). Basic and Applied Ecology 4: 413–421.CrossRefGoogle Scholar
Mevi-Schütz, J., Goverde, M., and Erhardt, A.. 2003. Effects of fertilization and elevated CO2 on larval food and butterfly nectar amino acid preference in Coenonympha pamphilus L. Behavioral Ecology and Sociobiology 54: 36–43.CrossRefGoogle Scholar
Miller, W. E. 1987. Spruce budworm (Lepidoptera: Tortricidae): role of adult imbibing in reproduction. Environmental Entomology 16: 1291–1295.CrossRefGoogle Scholar
Miller, W. E. 1988. European corn borer reproduction: effects of honey in imbibed water. Journal of the Lepidopterists' Society 42: 138–143.Google Scholar
Miller, W. E. 1989. Reproductive enhancement by adult feeding: effects of honeydew in imbibed water of spruce budworm. Journal of the Lepidopterists' Society 43: 167–177.Google Scholar
Miller, W. E. 1996. Population behaviour and adult feeding capability in Lepidoptera. Environmental Entomology 25: 213–226.CrossRefGoogle Scholar
Mitchell, B. K. 1985. Specificity of an amino acid-sensitive cell in the adult Colorado beetle, Leptinotarsa decemlineata. Physiological Entomology 10: 421–429.CrossRefGoogle Scholar
Mitchell, B. K. and Harrison, G. D.. 1984. Characterization of galeal chemosensilla in the adult Colorado potato beetle, Leptinotarsa decemlineata. Physiological Entomology 9: 49–56.CrossRefGoogle Scholar
Moeser, J. and S. Vidal. 2001. Alternative food resources for adult Diabrotica virgifera virgifera in southern Hungary. Proc. 21st. IOBC/IWGO Conference and 7th Diabrotica subgroup meeting, Venice, Italy, pp. 19–24.
Moore, R. A. and Singer, M. C.. 1987. Effects of maternal age and adult diet on egg weight in the butterfly Euphydryas editha. Ecological Entomology 12: 401–408.CrossRefGoogle Scholar
Mullin, C. A., Chyb, S., Eichenseer, H., Hollister, B., and Frazier, J. L.. 1994. Neuroreceptor mechanisms in insect gustation: a pharmacological approach. Journal of Insect Physiology 40: 913–931.CrossRefGoogle Scholar
Murphy, D. D. 1983. Nectar sources as constraints on the distribution of egg masses by the checkerspot butterfly, Euphydryas chalcedona (Lepidoptera: Nymphalidae). Environmental Entomology 12: 463–466.CrossRefGoogle Scholar
Murphy, D. D., Launer, W. E., and Ehrlich, P. R.. 1983. The role of adult feeding in egg production and population dynamics of the checkerspot butterfly Euphydryas editha. Oecologia 56: 257–263.CrossRefGoogle ScholarPubMed
Murphy, D. D., Menninger, M. S., and Ehrlich, P. R.. 1984. Nectar source distribution as a determinant of oviposition host species in Euphydryas chalcedona. Oecologia 62: 269–271.CrossRefGoogle ScholarPubMed
Naranjo, S. E. 1991. Movement of corn rootworm beetles, Diabrotica spp. (Coleoptera: Chrysomelidae), at cornfield boundaries in relation to sex, reproductive status, and crop phenology. Environmental Entomology 20: 230–240.CrossRefGoogle Scholar
Naranjo, S. E. and Sawyer, A. J.. 1987. Reproductive biology and survival of Diabrotica barberi (Coleoptera: Chrysomelidae): effect of temperature, food, and seasonal time of emergence. Annals of the Entomological Society of America 80: 841–848.CrossRefGoogle Scholar
Nicolson, S. W. 1994. Pollen feeding in the eucalypt nectar fly, Drosophila flavohirta. Physiological Entomology 19: 58–60.CrossRefGoogle Scholar
Nishida, T. 1958. Extrafloral glandular secretions, a food source for certain insects. Proceedings of the Hawaiian Entomological Society 16: 379–386.Google Scholar
Nolte, H.-W. 1959. Untersuchungen zum Farbensehen des Rapsglanzkäfers (Meligethes aeneus F.). I. Die Reaktion des Rapsglanzkäfers auf Farben und die ökologische Bedeutung des Farbensehens. Biologisches Zentralblatt 78: 63–107.Google Scholar
Norris, M. J. 1936. The feeding habits of the adult Lepidoptera Heteroneura. Transactions of the Royal Entomological Society (London) 85: 61–90.CrossRefGoogle Scholar
O'Brian, D. M., Boggs, C. L., and Fogel, M. L.. 2003. Pollen feeding in the butterfly Heliconius charitonia: isotopic evidence for essential amino acid tranfer from pollen to eggs. Proceedings of the Royal Society of London Series B 270: 2631–2636.CrossRefGoogle Scholar
O'Brian, D. M., Fogel, M. L., and Boggs, C. L.. 2002. Renewable and nonrenewable resources: amino acid turnover and allocation to reproduction in Lepidoptera. Proceedings of the National Academy of Sciences of the USA 99: 4413–4418.CrossRefGoogle Scholar
O'Brian, D. M., Schrag, D. P., and Rio, C. Martínez del. 2000. Allocation to reproduction in a hawkmoth: a quantitative analysis using stable carbon isotopes. Ecology 81: 2822–2831.CrossRefGoogle Scholar
Ohsaki, N. 1979. Comparative population studies of three Pieris butterflies, P. rapae, P. melete and P. napi, living in the same area. I. Ecological requirements for habitat resources in the adults. Researches on Population Ecology 20: 278–296.CrossRefGoogle Scholar
Ômura, H. and Honda, K.. 2003. Feeding responses of adult butterflies, Nymphalis xanthomelas, Kanisca canace, and Vanessa indica, to components in tree sap and rotting fruits: synergistic effects of ethanol and acetic acid on sugar responsiveness. Journal of Insect Physiology 49: 1031–1038.CrossRefGoogle ScholarPubMed
Penz, C. M. and Krenn, H. W.. 2000. Behavioural adaptions to pollen-feeding in Heliconius butterflies (Nymphalidae, Heliconiinae): an experiment using Lantana flowers. Journal of Insect Behavior 13: 865–880.CrossRefGoogle Scholar
Pesho, G. R. and Houten, R. J.. 1982. Pollen and sexual maturation of the pea weevil (Coleoptera: Bruchidae). Annals of the Entomological Society of America 75: 439–443.CrossRefGoogle Scholar
Peterson, M. A. 1997. Host plant phenology and butterfly dispersal: causes and consequences of uphill movement. Ecology 78: 167–180.CrossRefGoogle Scholar
Petherbridge, F. R., Wright, D. W., and Davies, P. G.. 1942. Investigations on the biology and control of the carrot fly. Annals of Applied Biology 29: 380–392.CrossRefGoogle Scholar
Pettersson, M. W. 1992. Taking a chance on moths: oviposition by Delia flavifrons (Diptera: Anthomyiidae) on the flowers of bladder campion, Silene vulgaris (Caryophyllaceae). Ecological Entomology 17: 57–62.CrossRefGoogle Scholar
Pivnick, K. A. and McNeil, J. N.. 1987. Diel patterns of activity of Thymelicus lineola adults (Lepidoptera: Hesperiidae) in relation to weather. Ecological Entomology 12: 197–207.CrossRefGoogle Scholar
Porter, K., C. A. Steel, and J. A. Thomas. 1992. Butterflies and communities. In Dennis, R. L. H. (ed.) The Ecology of Butterflies in Britain. Oxford, UK: Oxford University Press, pp. 139–177.Google Scholar
Proctor, M., Yeo, P., and Lack, A.. 1996. The Natural History of Pollination. London: HarperCollins.Google Scholar
Prokopy, R. J., Duan, J. J., and Vargas, R. I.. 1996. Potential for host range expansion in Ceratitis capitata flies: impact of proximity of adult food to egg-laying sites. Ecological Entomology 21: 295–299.CrossRefGoogle Scholar
Ramaswamy, S. B. 1987. Behavioural responses of Heliothis virescens (Lepidoptera: Noctuidae) to stimulation with sugars. Journal of Insect Physiology 33: 755–760.CrossRefGoogle Scholar
Rana, R. L. and Charlet, L. D.. 1997. Feeding behavior and egg maturation of the red and gray sunflower seed weevils (Coleoptera: Curculionidae) on cultivated sunflower. Annals of the Entomological Society of America 90: 693–699.CrossRefGoogle Scholar
Raubenheimer, D. and Simpson, S. J.. 1999. Integrating nutrition: a geometrical approach. Entomologia Experimentalis et Applicata 91: 67–82.CrossRefGoogle Scholar
Raulston, J. R., Pair, S. D., Lingren, P. D., Hendrix, W. H. III, and Shaver, T. N.. 1998. The role of population dynamics in the development of control strategies for adult Helicoverpa zea and other Noctuidae. Southwestern Entomologist (suppl.) 21: 25–35.Google Scholar
Rickson, F. R., Cresti, M., and Beach, J. H.. 1990. Plant cells which aid in pollen digestion within a beetle's gut. Oecologia 82: 424–426.CrossRefGoogle ScholarPubMed
Rockstein, M. and J. Miquel. 1973. Aging in insects. In Rockstein, M. (ed.) The Physiology of Insecta, vol. I, 2nd edn. New York: Academic Press, pp. 371–478.Google Scholar
Rogers, , , C. E. 1985. Extrafloral nectar: entomological implications. Bulletin of the Entomological Society of America 31: 15–20.CrossRefGoogle Scholar
Romeis, J. and Wäckers, F. L.. 2000. Feeding responses by female Pieris brassicae butterflies to carbohydrates and amino acids. Physiological Entomology 25: 247–253.CrossRefGoogle Scholar
Romeis, J. and Wäckers, F. L.. 2002. Nutritional suitability of individual carbohydrates and amino acids for adult Pieris brassicae. Physiological Entomology 27: 148–156.CrossRefGoogle Scholar
Ross, D. W., Pree, D. J., and Toews, D. P.. 1977. Digestive enzyme activity in the gut of the adult apple maggot, Rhagoletis pomonella. Annals of the Entomological Society of America 70: 417–422.CrossRefGoogle Scholar
Roulston, T. H. and Cane, J. H.. 2000. Pollen nutritional content and digestibility for animals. Plant Systematics and Evolution 222: 187–209.CrossRefGoogle Scholar
Rusterholz, H. P. and Erhardt, A.. 1997. Preferences for nectar sugars in the peacock butterfly, Inachis io. Ecological Entomology 22: 220–224.CrossRefGoogle Scholar
Rusterholz, H. P. and Erhardt, A.. 2000. Can nectar properties explain sex-specific flower preferences in the adonis blue butterfly Lysandra bellargus? Ecological Entomology 25: 81–90.CrossRefGoogle Scholar
Ruther, J. and Thiemann, K.. 1997. Response of the pollen beetle Meligethes aenus to volatiles emitted by intact plants and conspecifics. Entomologia Experimentalis et Applicata 84: 183–188.CrossRefGoogle Scholar
Salama, H. S., Khalifa, A., Azmy, N., and Sharaby, A.. 1984. Gustation in the lepidopterous moth Spodoptera littoralis (Boisd.). Zoologische Jahrbücher, Abteilung für allgemeine Zoologie und Physiologie der Tiere 88: 165–178.Google Scholar
Samuelson, G. A. 1994. Pollen consumption and digestion by leaf beetles. In Jolivet, P. H., Cox, M. L., and Petitpierre, E. (eds.) Novel Aspects of the Biology of Chrysomelidae. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 179–183.CrossRefGoogle Scholar
Scherer, C. and Kolb, G.. 1987. Behavioural experiments on the visual processing of colour stimuli in Pieris brassicae L. (Lepidoptera). Journal of Comparative Physiology A 160: 645–656.CrossRefGoogle Scholar
Schmidt, J. M. and Friend, W. G.. 1991. Ingestion and diet destination in the mosquito Culiseta inornata: effects of carbohydrate configuration. Journal of Insect Physiology 37: 817–828.CrossRefGoogle Scholar
Scholz, J. and Dörner, H. J.. 1976. Untersuchungen über das Auftreten, die Schadwirkung und die Bekämpfung des Ackerbohnenkäfers in Ackerbohnenbeständen der Bezirke Halle und Leipzig. Nachrichtenblatt für den Pflanzenschutz in der DDR 30: 212–216.Google Scholar
Schoonhoven, L. M., Jermy, T., and Loon, J. J. A.. 1998. Insect–Plant Biology: From Physiology to Evolution. London: Chapman and Hall.CrossRefGoogle Scholar
Schuster, M. F., and M. Calderón. 1986. Interactions of host plant resistant genotypes and beneficial insects in cotton ecosystems. In Boethel, D. J. and Eikenbarry, R. D. (eds.) Interactions of Plant Resistance and Parasitoids and Predators of Insects. Chichester, UK: Ellis Horwood, pp. 84–97.Google Scholar
Schuster, M. F., Lukefahr, M. J., and Maxwell, F. G.. 1976. Impact of nectariless cotton on plant bugs and natural enemies. Journal of Economic Entomology 69: 400–402.CrossRefGoogle Scholar
Shanks, C. H. and Doss, R. P.. 1987. Feeding responses by adults of five species of weevils (Coleoptera, Curculionidae) to sucrose and sterols. Annals of the Entomological Society of America 80: 41–46.CrossRefGoogle Scholar
Sharp, J. L. and Chambers, D. L.. 1984. Consumption of carbohydrates, proteins, and amino acids by Anastrepha suspensa (Loew) (Diptera: Tephritidae) in the laboratory. Environmental Entomology 13: 768–773.CrossRefGoogle Scholar
Shelly, T. E., Kennelly, S. S., and McInnis, D. O.. 2002. Effect of adult diet on signaling activity, mate attraction, and mating success in male Mediterranean fruit flies (Diptera: Tephritidae). Florida Entomologist 85: 150–155.CrossRefGoogle Scholar
Shorey, H. H. 1963. The biology of Trichoplusia ni (Lepidoptera: Noctuidae). II. Factors affecting adult fecundity and longevity. Annals of the Entomological Society of America 56: 476–480.CrossRefGoogle Scholar
Shreeve, T. G. 1992. Adult behaviour. In Dennis, R. L. H. (ed.) The Ecology of Butterflies in Britain. Oxford, UK: Oxford Universitry Press, pp. 22–45.Google Scholar
Siddappaji, C. and Gowda, T. K. S.. 1980. Rhizobial nodules eating insect – Rivellia sp. – a new pest of pulse crops in India. Current Research 9: 122–123.Google Scholar
Siegfried, B. D. and Mullin, C. A.. 1990. Effects of alternative host plants on longevity, oviposition, and emergence of western and northern corn rootworms (Coleoptera: Chrysomelidae). Environmental Entomology 19: 474–480.CrossRefGoogle Scholar
Skevington, J. H., and Dang, P. T.. 2002. Exploring the diversity of flies (Diptera). Biodiversity 3: 3–27.CrossRefGoogle Scholar
Städler, E. 1971. An improved mass-rearing method of the carrot rust fly, Psila rosae (Diptera: Psilidae). Canadian Entomologist 103: 1033–1038.CrossRefGoogle Scholar
Städler, E. 1978. Chemoreception of host plant chemicals by ovipositing females of Delia (Hylemya) brassicae. Entomologia Experimentalis et Applicata 24: 711–720.CrossRefGoogle Scholar
Städler, E. and Schöni, R.. 1991. High sensitivity to sodium in the sugar chemoreceptor of the cherry fruit fly after emergence. Physiological Entomology 16: 117–129.CrossRefGoogle Scholar
Städler, E. and Seabrook, W. D.. 1975. Chemoreceptors on the proboscis of the female eastern spruce budworm: electrophysiological study. Entomologia Experimentalis et Applicata 18: 153–160.CrossRefGoogle Scholar
Stensmyr, M. C., Urru, I., Collu, I., et al. 2002. Rotting smell of dead-horse arum flowers. Nature 420: 625.CrossRefGoogle Scholar
Stoffolano, J. G. Jr. 1995. Regulation of a carbohydrate meal in the adult Diptera, Lepidoptera, and Hymenoptera. In Chapman, R. F. and Boer, G. (eds.) Regulatory Mechanisms in Insect Feeding. New York: Chapman and Hall, pp. 210–247.CrossRefGoogle Scholar
Swirski, E., Izhar, Y., Wysoki, M., Gurevitz, E., and Greenberg, S.. 1980. Integrated control of the long-tailed mealybug, Pseudococcus longispinus (Hom, Pseudococcidae), in avocado plantations in Israel. Entomophaga 25: 415–426.CrossRefGoogle Scholar
Tahhan, O. and Emden, H. F.. 1989. Biology of Bruchus dentipes Baudi (Coleoptera: Bruchidae) on Vicia faba and a method to obtain gravid females during the imaginal quiescence period. Bulletin of Entomological Research 79: 201–210.CrossRefGoogle Scholar
Takakura, K. 1999. Active female courtship behaviour and male nutritional contribution to female fecundity in Bruchidius dorsalis (Fahraeus) (Coleoptera: Bruchidae). Researches on Population Ecology 41: 269–273.CrossRefGoogle Scholar
Takakura, K. 2004. The nutritional contribution of males affects the feeding behaviour and spatial distribution of females in a bruchid beetle, Bruchidius dorsalis. Journal of Ethology 22: 37–42.CrossRefGoogle Scholar
Thien, L. B. 1980. Patterns of pollination in the primitive angiosperms. Biotropica 12: 1–13.CrossRefGoogle Scholar
Thien, L. B., Bernhardt, P., Gibbs, G. W., et al. 1985. The pollination of Zygogynum (Winteraceae) by a moth, Sabatinca (Micropterigidae): an ancient association. Science 227: 540–543.CrossRefGoogle Scholar
Tingle, F. C. and Mitchell, E. R.. 1992. Attraction of Heliothis virescens (F.) (Lepidoptera: Noctuidae) to volatiles from extracts of cotton flowers. Journal of Chemical Ecology 18: 907–914.CrossRefGoogle ScholarPubMed
Tooker, J. F., Reagel, P. F., and Hanks, L. M.. 2002. Nectar sources of day-flying Lepidoptera of central Illinois. Annals of the Entomological Society of America 95: 84–96.CrossRefGoogle Scholar
Topper, C. P. 1987. Nocturnal behaviour of adults of Heliothis armigera (Hübner) (Lepidoptera: Noctuidae) in the Sudan Gezira and pest control implications. Bulletin of Entomological Research 77: 541–554.CrossRefGoogle Scholar
Tran, B. and Huignard, J.. 1992. Interactions between photoperiod and food affect the termination of reproductive diapause in Bruchus rufimanus (Boh.), (Coleoptera, Bruchidae). Journal of Insect Physiology 38: 633–642.CrossRefGoogle Scholar
Tsiropoulos, G. J. 1977. Reproduction and survival of the adult Dacus oleae feeding on pollens and honeydew. Environmental Entomology 6: 390–392.CrossRefGoogle Scholar
Tsiropoulos, G. J. 1978. Holidic diets and nutritional requirements for survival and reproduction of the adult walnut husk fly. Journal of Insect Physiology 24: 239–242.CrossRefGoogle Scholar
Tsiropoulos, G. J. 1980a. Major nutritional requirements of adult Dacus oleae. Annals of the Entomological Society of America 73: 251–253.CrossRefGoogle Scholar
Tsiropoulos, G. J. 1980b. Carbohydrate utilization by normal and γ-sterilized Dacus oleae. Journal of Insect Physiology 26: 633–637.CrossRefGoogle Scholar
Tsiropoulos, G. J. 1983. The importance of dietary amino acids on the reproduction and longevity of adult Dacus oleae (Gmelin) (Diptera Tephritidae). Archives Internationales de Physiologie et de Biochimie 91: 159–164.Google Scholar
Tsiropoulos, G. J. 1984. Effect of specific phagostimulants on adult Dacus oleae feeding behaviour. In: Fruit Flies of Economic Importance 84, Proc. CEC/IOBC ad-hoc meeting, Hamburg, pp. 95–98.
Tsitsipis, J. A. 1989. Nutrition: requirements. In Robinson, A. S. and Hooper, G. (eds.) Fruit Flies, Their Biology, Natural Enemies and Control, vol. 3A. Amsterdam, the Netherlands: Elsevier, pp. 103–119.Google Scholar
Turlings, T. C. J. and F. L. Wäckers. 2004. Recruitment of predators and parasitoids by herbivore-injured plants. In Cardé, R. T. and Millar, J. (eds.) Advances in Insect Chemical Ecology. Cambridge, UK: Cambridge University Press, pp. 21–75.CrossRefGoogle Scholar
Vijaysegaran, S., Walter, G. H., and Drew, R. A. I.. 1997. Mouthpart structure, feeding mechanisms, and natural food sources of adult Bactrocera (Diptera: Tephritidae). Annals of the Entomological Society of America 90: 184–201.CrossRefGoogle Scholar
Wacht, S., Lunau, K., and Hansen, K.. 2000. Chemosensory control of pollen ingestion in the hoverfly Eristalis tenax by labellar taste hairs. Journal of Comparative Physiology A 186: 193–203.CrossRefGoogle ScholarPubMed
Wäckers, F. L. 1999. Gustatory response by the hymenopteran parasitoid Cotesia glomerata to a range of nectar and honeydew sugars. Journal of Chemical Ecology 25: 2863–2877.CrossRefGoogle Scholar
Wäckers, F. L. 2001. A comparison of nectar- and honeydew sugars with respect to their utilization by the hymenopteran parasitoid Cotesia glomerata. Journal of Insect Physiology 47:1077–1084.CrossRefGoogle ScholarPubMed
Wäckers, F. L., Zuber, D., Wunderlin, R., and Keller, F.. 2001. The effect of herbivory on the temporal and spatial dynamics of extrafloral nectar production. Annals of Botany 87: 365–370.CrossRefGoogle Scholar
Wada, A., Isobe, Y., Yamaguchi, S., Yamaoka, R., and Ozaki, M.. 2001. Taste-enhancing effects of glycine on the sweetness of glucose: a gustatory aspect of symbiosis between the ant, Camponotus japonicus, and the larvae of the lycaenid butterfly, Niphanda fusca. Chemical Senses 26: 983–992.CrossRefGoogle ScholarPubMed
Waldbauer, G. P., Marciano, A. P., and Pathak, P. K.. 1980. Life-span and fecundity of adult rice leaf folders, Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae), on sugar sources, including honeydew from the brown plant hopper, Nilaparvata lugens (Stal) (Hemiptera: Delpacidae). Bulletin of Entomological Research 70: 65–71.CrossRefGoogle Scholar
Watt, W. B., Hoch, P. C., and Mills, S. G.. 1974. Nectar resource use by Colias butterflies. Oecologia 14: 353–374.CrossRefGoogle ScholarPubMed
Weis, I. 1930. Versuche über die Geschmacksrezeption durch die Tarsen des Admirals, Pyrameis atalanta L. Zeitschrift für vergleichende Physiologie 12: 206–248.Google Scholar
Wheeler, D. 1996. The role of nourishment in oogenesis. Annual Review of Entomology 41: 407–431.CrossRefGoogle ScholarPubMed
Wickman, P.-O. and Karlsson, B.. 1987. Changes in egg colour, egg weight and oviposition rate with the number of eggs laid by wild females of the small heath butterfly, Coenonympha pamphilus. Ecological Entomology 12: 109–114.CrossRefGoogle Scholar
Wiesenborn, W. D. and Baker, T. C.. 1990. Upwind flight to cotton flowers by Pectinophora gossypiella (Lepidoptera: Gelechiidae). Environmental Entomology 19: 490–493.CrossRefGoogle Scholar
Wiklund, C. 1977. Oviposition, feeding and spatial separation of breeding and foraging habitats in a population of Leptidea sinapis (Lepidoptera). Oikos 28: 56–68.CrossRefGoogle Scholar
Wiklund, C. and Åhrberg, C.. 1978. Host plants, nectar source plants and habitat selection of males and females of Anthocharis cardamines (Lepidoptera). Oikos 31: 169–183.CrossRefGoogle Scholar
Wiklund, C. and Karlsson, B.. 1984. Egg size variation in satyrid butterflies: adaptive vs. historical, ‘Bauplan’, and mechanistic explanations. Oikos 43: 391–400.CrossRefGoogle Scholar
Wiklund, C. and Persson, A.. 1983. Fecundity, and the relation of egg weight variation to offspring fitness in the speckled wood butterfly Pararge aegeria, or why don't butterfly females lay more eggs? Oikos 40: 53–63.CrossRefGoogle Scholar
Wiklund, C., Eriksson, T., and Lundberg, H.. 1979. The wood white butterfly Leptidea sinapis and its nectar plants: a case of mutualism or parasitism? Oikos 33: 358–362.CrossRefGoogle Scholar
Willers, J. L., Schneider, J. C., and Ramaswamy, S. B.. 1987. Fecundity, longevity and caloric patterns in female Heliothis virescens: changes with age due to flight and supplemental carbohydrate. Journal of Insect Physiology 33: 803–808.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×