Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T13:07:01.530Z Has data issue: false hasContentIssue false

Chapter 20 - Developmental and Syndromic Disturbances of the Craniofacial Region

Published online by Cambridge University Press:  26 June 2017

Robert O. Greer
Affiliation:
University of Colorado, Denver
Robert E. Marx
Affiliation:
University of Miami
Sherif Said
Affiliation:
University of Colorado, Denver
Lori D. Prok
Affiliation:
University of Colorado, Denver
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Baldwin, DJ, Thayalan, K, Amrita, J, et al. Glial choristoma of the tongue: report of a case and clinicopathological features. Int J of Pediatr Dent, 2009, 19: 219221.Google Scholar
Martinez-Peῆuela, A, Quer, S, Beloqui, R. Glial choristoma of the middle ear: report of 2 cases. Otology and Neurology, 2011, 32: e26e27.Google Scholar
Strome, SE, McClatchey, K, Kileny, PR, et al. Neonatal choristoma of the tongue containing glial tissue. Diagnostic and surgical considerations. Int J Pediatr Otorhino Laryngol, 1995, 33: 265273.Google Scholar
Sun, LS, Zhi-Peng, S, Xu-Chen, MA. Glial choristoma in the oral and maxillofacial region. A clinicopathologic study of 6 cases. Arch Pathol Lab Med, 2008, 132: 984998.Google Scholar
Fan, SQ, Ou, YM, Liang, QC. Glial choristoma of the tongue: report of a case and review of the literature. Pediatr Surg Int, 2008, 24: 515519.Google Scholar
Takamizawa, S, Inoue, T, Ono, Y, et al. A case report of glial choristoma of the tongue. J Pediatr Surg, 2006, 41: e13e15.Google Scholar

Secondary Sources

Fordyce, JA. A peculiar affection of the mucous membrane of the lips and oral cavity. J Cutan Dis, 1896, 14: 413419.Google Scholar
Lee, JH, Lee, JH, NA HK: Clinicopathologic manifestations of patients with Fordyce’s spots. Ann Dermatol, 2012, 24: 103106.Google Scholar
Oliver, JH. Fordyce granules on the prolabia and oral mucous membranes of a selected population. SADJ, 2006, 61: 7274.Google Scholar
DeFelice, C, Patrini, S, Chitano, G. et al. Fordyce granules and hereditary non-polyposis colorectal cancer syndrome. Gut, 2005, 41: 12791282.Google Scholar
Miller, AS, McCrea, MW. Sebaceous gland adenoma of the buccal mucosa. J Oral Surg, 1968, 26: 593595.Google Scholar
Miller, ML, Harford, RR, Yeager, JK. Fox Fordyce disease treated with topical clindamycin solution. Arch Dermatol, 1995, 131: 11121113.Google Scholar
Siggers, DC. Cleidocranial dysostosis. Dev Med Child Neurol, 1975, 4: 522524.Google Scholar
Shen, Z, Chio, C, Chun, Z, et al. Cleidocranial dysplasia: Report of 3 cases and literature review. Clinical Pediatrics, 2009, 2: 194198.Google Scholar
Bufalino, A, Paranaiba, LMR, Gouvêa, AF, et al. Cleidocranial dysplasia: oral features and genetic analysis of 11 patients. Oral Diseases, 2012, 18: 184190.Google Scholar
Ducy, P, Zhang, R, Geoffroy, V, et al. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell, 1997, 89: 747754.Google Scholar
Komori, T. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res, 2010, 339: 189195.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology: A Rationale for Diagnosis and Treatment. Ed 2, Chicago: Quintessence Publishing Company, 2012, 231232.Google Scholar
Suda, N, Hattori, M, Kosaki, K, et al. Correlation between genotype and supernumerary tooth formation in cleidocranial dysplasia. Orthod Craniofac Res, 2010, 13: 197202.Google Scholar
Gorlin, RJ, Cohen, MN, Levin, LS. Syndromes of the Head and Neck. Ed 3, New York NY, Oxford University Press; 1990: 249253.Google Scholar
Jarvis, JL, Keats, TE. Cleidocranial dysostosis: a review of 40 new cases. Am J Roentgenol Radium Ther Nucl Med, 1974, 121: 516.Google Scholar
Perdigao, PF, Silva, ED, Sakurai, E, et al. Idiopathic bone cavity: a clinical, radiographic and histological study. Brit J Oral MG, 2003, 41: 407409.Google Scholar
Shigematsu, K, Fujita, W. Atypical simple bone cyst of the mandible. J Oral Maxillofac Surg, 1994, 23: 298299.Google Scholar
Manor, E, Kachko, L, Puterman, MB. Cystic lesions of the jaws: a clinicopathological study of 322 cases and review of the literature. Int J Med Sci, 2012, 9: 2026.Google Scholar
Patrikiou, A, Sepheriadouo-Mauropulou, G, Zambelis, G. Bilateral traumatic bone cysts of the mandible. Oral Surg, 1981, 51: 131133.Google Scholar
Zhu, L, Wang, X. Histological examination of the auricular cartilage and pseudocyst of the auricle. J Laryngol Otol, 1999, 106: 103104.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology: A Rationale for Diagnosis and Treatment. Ed 2, Chicago: Quintessence Publishing Company, 2012, 216217.Google Scholar
Velez, I, Siegel, MA, Mintz, SM et al. The relationship between idiopathic bone cavity and orthodontic tooth movement: analysis of 44 cases. Dentomaxillofac Radiol, 2010, 39: 162166.Google Scholar
Cortell-Ballester, I, Figueiredo, R, Berini-Aytes, L, et al. Traumatic bone cyst: a retrospective study of 21 cases. Med Oral Pathol Oral Cir Bucal 2009, 14: E239E243.Google Scholar
Kaffe, I, Littner, MM, Arensburg, B. The anterior buccal mandibular depression. Physical and radiologic features. Oral Surg Oral Med Oral Pathol, 1990, 69: 647654.Google Scholar
Apruzzese, D, Longoni, S. Stafne cyst in an anterior location. Oral Maxillofac Surg, 1999, 57: 333338.Google Scholar
Stafne, EC. Bone cavities situated near the angle of the mandible. J Am Dent Assoc, 1942, 29: 19691972.Google Scholar
Buchner, A, Carpenter, WM, Merrell, PW, et al. Anterior lingual salivary gland defect. Evaluation of twenty-four cases. Oral Surg Oral Med Oral Pathol, 1991, 71: 131136.Google Scholar
Shimizu, M, Osa, N, Okamura, K, et al. CT analysis of the Stafne’s bone defects of the mandible. Dentomaxillofac Radiol, 2006, 35: 95102.Google Scholar
Baughman, R. Testing your diagnostic skills. Case No. 2. Lingual mandibular salivary gland depression. Todays FDA, 2006, 18: 2023.Google Scholar
Sisman, Y, Miloglu, O, Sekerci, AE, et al. Radiographic evaluation of the prevalence of Stafne bone defect: a study from two centres in Turkey. Dentomaxillofacial Radiol, 2011, 35: 17.Google Scholar
Reye, RDK. A consideration of certain subdermal fibromatous tumors of infancy. J Pathol, 1956, 72: 149154.Google Scholar
Sotelo-Avilla, C, Bale, PM. Subdermal fibrous hamartomas of infancy: pathology of 40 cases and differential diagnosis. Pediatr Path, 1994, 14: 3952.Google Scholar
Paller, AS, Gonzalez-Grussi, F, Sherman, JO. Fibrous hamartomas of infancy: eight additional cases and a review of the literature. Arch Dermatol, 1989, 125: 8891.Google Scholar
Scott, DM, Pena, JR, Omura, E. Fibrous hamartomas of infancy. J Am Acad Dermatol, 1999, 41: 857858.Google Scholar
Westphal, SL, Bancila, E, Milgraum, SS. Fibrous hamartomas of infancy presenting as an inflamed epidermoid cyst. Pediatr Dermatol, 1990, 7: 157.Google Scholar
Boquot, JE, Gundlach, KKH. Odd tongues: the prevalence of common tongue lesions in 23,616 white Americans over 35 years of age. Quintessence Int, 1986, 17: 719730.Google Scholar
Ugar-Cankel, D, Denizci, S, Hocaoglu, J. Prevalence of tongue lesions among Turkish school children, Sandi Med, 2005, 26: 19621967.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology: A Rationale for Diagnosis and Treatment. Ed 2, Chicago: Quintessence Publishing Company, 2012, 99.Google Scholar
Mathew, AL, Pai, KM, Sholapurkar, AA, et al. The prevalence of oral mucosal lesions in patients visiting a dental school in Southern India. Indian J Dent Res, 2008, 19: 99103.Google Scholar
Koay, CL, Lim, JA, Siar, CH. The prevalence of tongue lesions in Malaysian dental out-patients from the Klang valley area. Oral Dis, 2011, 17: 210216.Google Scholar
Ohtani, J, Hoffman, WY, Vargevik, K. Team management and treatment outcomes for patients with hemifacial microsomia. Am J Orthodontics and Dentofacial Orthopedies, 2012, 141: 574581.Google Scholar
Poswillo, D. The pathogenesis of first and second bronchial arch syndrome. Oral Surg, Oral Med, Oral Pathol, 1973, 35: 301328.Google Scholar
Kelberman, D, Tyson, DC, Chandler, AM, et al. Hemifacial microsomia: progress to understanding the genetic basis of a complex malformation syndrome. Hum Genet 2001, 109: 638645.Google Scholar
Pruzansky, S. Not all dwarfed mandibles are alike. Birth Defects, 1969, 4: 120129.Google Scholar
Cousley, RR A comparison of two classification systems for hemifacial microsomia. Br J Oral Maxillof Surg, 1993, 31: 7882.Google Scholar
Zanardi, G, Parente, EV, Esteves, LS. Orthodontic and surgical treatment of a patient with hemifacial microsomia. Am J Orthodontics and Dentofacial Orthopedics, 2012, 141: 51305139.Google Scholar
Miranda, R, Barros, LM, Nogueira dos Santos, LA, et al. Clinical and imaging features in a patient with hemifacial hyperplasia. J Oral Sci, 2010, 52: 509512.Google Scholar
Bergman, JA. Primary hemifacial hypertrophy. Review and report of a case. Arch Otolaryngol, 1973, 97: 490494.Google Scholar
Yashimoto, H, Hano, H, Kobayashi, K, et al. Increased proliferative activity of osteoblasts in congenital hemifacial hypertrophy. Plast Reconstr Surg, 1998, 102: 16051610.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology: A Rationale for Diagnosis and Treatment. Ed 2, Quintessence Publishing Company, 2012, 240Google Scholar
Islam, MN, Bhattacharyya, I, Ojha, J, et al. Comparison between true and partial hemifacial hypertrophy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007, 104: 501509.Google Scholar
Azevedo, RA, Veronica, FS, Sarmento, VA, et al. Hemifacial hyperplasia. A case report. Quintessence Int, 2005, 36: 483486.Google Scholar
Wisniewski, SA, Trzeciak, WH. A new mutation resulting in the truncation of the TRAF6-interacting domain of XEDAR: a possible novel cause of hypohidrotic ectodermal dysplasia. J Med Genet, 2012, 49: 499501.Google Scholar
Clarke, A. Hypohidrotic ectodermal dysplasia. J Med Genet, 1987, 24: 659663.Google Scholar
Subramaniam, P, Neeraja, G. Witkop’s tooth and nail syndrome: a multifaceted approach to dental management. J Indian Soc Pedod Prev Dent, 2008, 26: 2225.Google Scholar
Lamartine, J. Towards a new classification of ectodermal dysplasias. Cin Exp Dermatol, 2003, 28: 351355.Google Scholar
Priolo, M, Lagana, C. Ectodermal dysplasia a new clinical-genetic classification. J Med Genet, 2001, 38: 579585.Google Scholar
Guckes, AD, Brahim, JS, McCarthy, GR, et al. Using endosseous dental implants for patients with ectodermal dysplasia. JADA, 1991, 122: 5962.Google Scholar
Ekstrand, K, Thomsson, M. Ectodermal dysplasia with partial anodontia: prosthetic treatment with implant prosthesis. J Dent Child, 1988, 4: 282284.Google Scholar
Smith, RA, Vargervik, K, Kearns, G, et al. Placement of an endosseous implant in a growing child with ectodermal dysplasia. Oral Surg Oral Med Oral Pathol, 1993, 75: 669673.Google Scholar
Urzua, B, Ortega-Pento, , Morales-Bozo, et al. Defining a new candidate gene for amelogenesis imperfecta: from molecular genetics to biochemistry. Biochem Genet, 2011, 49: 104121.Google Scholar
Stephanopoulos, G, Garefalaki, E, Lyroudia, K. Genes and related proteins involved in amelogenesis imperfect. J Dent Res, 2005, 84: 11171126.Google Scholar
Weinmann, JP, Svobcda, JF, Woods, RW. Hereditary disturbances of enamel formation and calcification. J Am Dent Assoc, 1945, 32: 397418.Google Scholar
Chaudhary, M, Dixit, S, Singh, A. Amelogenesis imperfecta: reporting of a case and review of the literature. J Oral Maxillofac Pathol, 2009, 13: 7077.Google Scholar
Witkop, CJ Jr. Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revisited: problems in classification. J Oral Pathol Med, 1989, 17: 547543.Google Scholar
Schulze, C. Erbbedingte strukturanomalicin menschlicher zahne. Acta Genet Med Gemellol, 1957, 7: 231235.Google Scholar
Kinney, H, Pople, JA, Driessen, CH, et al. Intrafibrillar mineral may be absent in dentinogenesis imperfecta type II. J Dental Res, 2001, 1:80: 15551559.Google Scholar
Thofakura, SR, Mah, J, Srinivasan, R, et al. The non collagenous dentin matrix proteins are involved in dentinogenesis imperfecta type II. J Dent Res 2000, 79: 835839.Google Scholar
Bhandari, S, Pannu, K. Dentinogenesis imperfecta: a review and case report of a family over four generations. Indian J Dent Res, 2008, 19: 357361.Google Scholar
Shields, ED, Bixler, D, El-Kafrawy, AM. A proposed classification of heritable human dentin defect with a description of a new entity. Arch Oral Biol, 1973, 18: 543553.Google Scholar
Levin, LS, Leaf, SH, Jemini, RJ, et al. Dentinogenesis imperfecta in the Brandywine isolate hereditary opalescent dentin in an Ashkenazic Jewish family. Oral Surg Oral Med Oral Pathol, 1985, 59: 608615.Google Scholar
Von Marschall, Z, Mok, S, Phillips, MD. Rough endoplasmic reticulum trafficking errors by different classes of mutant dentin sialophosphorprotein (DSPP) causes dominant negative effects in both dentinogenesis imperfecta and dentin dysplasia by encapping normal DSPP. J Bone Miner Res, 2012, 27: 13091321.Google Scholar
Buday, K. Beiträge zar Lehre der osteogenesis imperfect, 1895.Google Scholar
Sillence, DO, Senn, A, Danks, DM. Genetic heterogenicity in osteogenesis imperfecta. J Med Genet, 1979, 16: 101116.Google Scholar
Rosen, A, Modig, M, Larson, O. Orthognathic bimaxillary surgery in two patients with osteogenesis imperfecta and a review of the literature. Int J Oral Surg, 2011, 40: 866873.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology: A Rationale for Diagnosis and Treatment. Ed 2, Chicago: Quintessence Publishing Company, 2012, 232236.Google Scholar
Huber, MA. Osteogenesis imperfect. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007, 103: 314320.Google Scholar
Bergstrom, L. Osteogenesis imperfecta: otologic and maxillofacial aspects. Laryngoscope, 1977, 87: 142.Google Scholar
O’Connel, AC, Marini, JC. Evaluation of oral problems in an osteogenesis imperfect population. Oral SLurg Oral Med Oral Pathol Oral Radiol Endod, 1999, 87: 189196.Google Scholar
Kindelan, J, Tobin, M, Robert-Harry, RA. Orthodontic and orthognatic management of a patient with osteogenesis imperfect and dentinogenesis imperfect. A case report. J Orthod 2003, 30: 291296.Google Scholar
Marszalek, B, Wyojcicki, P, Kobus, K, et al. Clinical features, treatment and genetic background of Treacher Collins syndrome. J Appl Genet, 2002, 43: 223233.Google Scholar
Dixon, J, Edwards, SJ, Anderson, L. Identification of the complete coding sequence and genetic organization of the Treacher Collins syndrome gene. Genome Res, 1997, 7: 223234.Google Scholar
Rovin, S, Dachi, SF, Borenstein, DB, et al. Mandibulofacial dysostosis, a familial study of five generations. J Pediat, 1964, 65: 215221.Google Scholar
Jones, KL, Smith, DW, Harvey, MA, et al. Mandibulofacial dysostosis older paternal age and fresh gene mutation: data on additional disorders. J Pediat, 1975, 86: 8488.Google Scholar
LeMerrer, M, Cikuli, M, Ribier, J, et al. Acrofacial dysostosis. Am J Med Genet, 1989, 33: 318322.Google Scholar
Dixon, J, Trainor, MJ, Dixon, MJ. Treacher Collins syndrome. Orthodontics and Craniofacial Research, 2007, 10: 8895.Google Scholar
Horiuchi, K, Ariga, T, Fujioka, H, et al. Mutational analysis of the TCOF1 gene in 11 Japanese patients with Treacher Collins syndrome and mechanism of mutagenesis. J Med Genet, 2005, 134:363: 367.Google Scholar
Cohen, J, Ghezzi, F, Goncalves, L, et al. Prenatal sonographic diagnosis of Treacher Collins Syndrome: A case and review of the literature. Am J Perinatol, 1995, 12: 416419.Google Scholar
Cannon, AB. White nevus of the mucosa (naevus spongiosus albus mucosa) Arch Derm Syphiol, 1935, 31: 365373.Google Scholar
Hernandez-Martin, A, Fernandez-Lopez, E, deUnamuno, M. Diffuse whitening of the oral mucosa in a child. Pediatr Dermatol 1997, 14: 316320.Google Scholar
Naseem, S, Brady, R, McDonald, J. Diffuse white oral plaques. Clinical Infectious Diseases 2003, 36: 519520.Google Scholar
Jorgenson, RJ, Levin, LS. White sponge nevus. Arch Dermatol 1981, 117: 7376.Google Scholar
Allingham, RR, Seo, B, Rapersaud, E, et al. A duplication in chromosome 4q35 is associated with hereditary benign intraepithelial dyskeratosis. Am J Hum Genet 2001, 68: 491494.Google Scholar
Chao, SC, Tsai, Y-M, Yang, MH, et al. A novel mutation in the keratin 4 gene causing white sponge naevus. Br J Dermatol 2003, 184: 11251128.Google Scholar
Sadeghi, EM, Witkop, CJ. The presence of Candida albicans in hereditary benign intraepithelial dyskeratosis. An ultrastructural observation. Oral Surg Oral Med Oral Pathol 1979, 48: 342346.Google Scholar
Greer, RO Jr. Oral manifestations of smokeless tobacco use. Otolaryngologic Clinics of North America, 2010, 44: 3156.Google Scholar
Lim, J, Ng, S. Oral tetracycline rinse improves symptoms of white sponge nevus. J Am Acad Dermatol, 1992, 26: 10031005.Google Scholar
Elliott, M, Bayly, R, Cole, T, Temple, IK, Maher, ER. Clinical features and natural history of Beckwith-Wiedemann syndrome: presentation of 74 new cases. Clinical Genetics, 1994, 46, 168174.Google Scholar
Thorburn, MJ, Wright, ES, Miller, CG, Smith-Read, EHL. Exomphalos-macroglossia-gigantism syndrome in Jamaican infants. American J Diseases of Children, 1970, 119: 316321.Google Scholar
Pettenati, MJ, Haines, JL, Higgins, RR, Wappner, RS, Palmer, CG, Weaver, DD. Wiedemann-Beckwith syndrome: presentation of clinical and cytogenetic data on 22 new cases and review of the literature. Human Genetics, 1986, 74: 143154.Google Scholar
DeBaun, MR, Niemitz, EL, McNeil, DE, Brandenburg, SA, Lee, MP, Feinberg, AP. Epigenetic alterations of H19 and L1T1 distinguish patients with Beckwith-Wiedemann syndrome with cancer and birth defects. Am J Human Genetics, 2002, 70: 604611.Google Scholar
Ullbro, C, Crossner, CG, Nederfors, T, Alfadley, A, Thestrup-Pedersen, K. Dermatological and oral findings in a cohort of 47 patients with Papillon-Lefevre syndrome. J Am Acad Dermatol, 2003, 48: 345351.Google Scholar
Cagli, NA, Hakki, SS, Darsun, R, et al. Clinical genetic, and biochemical findings in two siblings with Papillon-Lefévre syndrome. J Periodontal, 2005, 76: 23222329.Google Scholar
Wani, A, Devkar, N, Patole, M, Shouche, Y. Description of two new cathespin C gene mutations in patients with Papillon-Lefévre syndrome. J Peridontol, 2005, 76: 23222329.Google Scholar
Zadik, Y, Drucker, S, Pallmon, S. Migratory stomatitis (ectopic geographic tongue) on the floor of the mouth. J Am Acad Dermatol, 2011, 6: 459460.Google Scholar
Kvien, T, Glennas, A, Melby, K, Granfors, K, et al. Reactive arthritis: incidence, triggering agents and clinical presentation. J Rheumatology, 1994, 21: 115122.Google Scholar
Hill Gaston, JS, Lillicrap, MS. Arthritis associated with enteric infection. Clinical Rheumatology, 2003, 17: 219239.Google Scholar
Suhanga, J, Chakshu, A, Mohideen, K, et al. Cherubism combined with epilepsy, mental retardation and gingival fibromatosis. (Ramon syndrome): a case report. Head and Neck Pathol, 2010, 4: 12131.Google Scholar
Ramon, Y, Berman, W, Bubus, JJ. Gingival fibromatosis combined with Cherubism. Oral Surg, Oral Med, Oral Pathol, 1967, 24: 436448.Google Scholar
Hall, G. Kasabach-Merritt syndrome: pathogenesis and management. Br J Haematol, 2001, 112: 851862.Google Scholar
Kasabach, HH, Merritt, KK. Capillary hemangioma with extensive purpura: report of a case. Am J Dis Child, 1940, 59: 1063.Google Scholar
el-Dessouky, M, Azmy, A, Raine, P, Young, D. Kasabach-Merritt syndrome. J Pediatr Surg, 1998, 23: 109111.Google Scholar
Enjolras, O, Mulliken, J, Wassef, M, Frieden, I, Rieu, P, Burrows, P, Salhi, A, Léauté-Labrèze, C, Kozakewich, H. Residual lesions after Kasabach-Merritt phenomenon in 41 patients. J Am Acad Dermatol, 2000, 42: 224235.Google Scholar
Stone, J. Neurological rarity: Parry-Romberg syndrome. Practical Neurology, 2006, 6: 185188.Google Scholar
Leao, M, da Silva, ML. Progressive hemifacial atrophy with agenesis of the head and the caudate nucleus. J Med Genetics, 1994, 31: 969971.Google Scholar
Muchnik, RS, Aston, SJ, Rees, TD. Ocular manifestations and treatment of hemifacial atrophy. Am J Ophthalmology, 1979, 88: 889897.Google Scholar
Lewkonia, RM, Lowry, RB, Opitz, JM. Progressive hemifacial atrophy (Parry-Romberg syndrome): report with review of genetics and nosology. Am J Med Genetics, 1983, 14: 385390.Google Scholar
Inigo, F, Jimenez-Murat, Y, Arroyo, O, Fernandez, M, Ysunza, A. Restoration of facial contour in Romberg’s disease and hemifacial microsomia. Experience with 118 cases. Microsurgery, 2000, 20: 167172.Google Scholar
Shirley, MD, Tang, H, Gallione, CJ, et al. Sturge-Weber syndrome and Port-wine stains caused by somatic mutations in GNAQ. New England J Med, 2013, 368: 19711979.Google Scholar
Sturge, WA. A case of partial epilepsy, apparently due to a lesion of one of the vasomotor centres of the brain. Transactions of the Clinical Society of London, 1879, 12: 162.Google Scholar
Greenwood, M, Meechan, JG. General medicine and surgery for dental practitioners Part 4: Neurological disorders. Br Dent, 2003, 195: 1925.Google Scholar
Weber, FP. Right-sided hemi-hypertrophy resulting from right-sided congenital spastic hemiplegia, with a morbid condition of the left side of the brain, revealed by radiograms. J Neurology and Psychopathology (London), 1922, 3: 134139.Google Scholar
Kubota, M, Usami, I, Yamakawa, M, Tomita, Y, Haruta, T. Kawasaki disease with lymphadenopathy and fever as sole initial manifestations. J Paediatrics and Child Health, 2008, 44: 359362.Google Scholar
Scardina, GA, Fucà, G, Carini, F, et al. Oral necrotizing microvasculitis in a patient affected by Kawasaki disease. Medicina Oral, Patologia Oral Y Cirugia Buc, 2007, 12: E560E564.Google Scholar
Do, JH, Baek, JG, Kim, HJ, et al. Kawasaki disease presenting as parotitis in a 3 month old infant. Korean Circulation Journal, 2009, 39: 502504.Google Scholar
Michie, C, Kinsler, V, Tulloh, R, Davidson, S. Recurrent skin peeling following Kawasaki disease. Archives of Disease in Childhood, 2000, 83: 353355.Google Scholar
Gardner, EJ, Richards, RC. Multiple cutaneous and subcutaneous lesions occurring simultaneously with hereditary polyposis and osteomatosis. Am J Hum Genet, 1953, 5: 139147.Google Scholar
Knudsen, AL, Bisguard, ML, Bűlow, S. Attenuated familial adenomatous polyposis (AFAP). A review of the literature. Fam Cancer, 2003, 2: 4355.Google Scholar
Miyoshi, Y, Nagase, H, Ando, H, et al. Somatic mutations of the APC gene in colorectal tumors. Mutation in the cluster region in the APC gene. Hum Mol Genet, 1992, 1: 229233.Google Scholar
Saurin, JC, Chayvialle, JA, Ponchon, T. Management of duodenal adenomas in familial adenomatous polyposis. Fam Cancer, 2008, 7: 173177.Google Scholar
Lourenco, SV, Boggio, P, Suquyama, K, et al. Severe and relapsing upper lip enlargement in a 10 year old boy. Acta Paediatr, 2010, 99: 1958.Google Scholar
Rogers RS, . Melkersson-Rosenthal syndrome and orofacial granulomatosis. Dermatol Clin, 1996, 14: 371379.Google Scholar
Khouri, JM, Bohane, TD, Day, AS. Is orofacial granulomatosis in children a feature of Crohn’s disease. Acta Paediatr, 2005, 94: 501504.Google Scholar
Scully, C. Oral and Maxillofacial Medicine: The Basis of Diagnosis and Treatment. Ed 3, Edinburgh: Churchill Livingstone, 2013, 298301.Google Scholar
Saalman, R, Sundell, S, Kullberg-Lindhc, C, et al. Long standing oral mucosal lesions in solid organ transplanted children – a novel clinical entity. Transplantation, 2010, 89: 606.Google Scholar
Williams, PM, Greenberg, MS. Management of cheilitis granulomatosa. Oral Surg, Oral Med, Oral Pathol, 1991, 72: 436439.Google Scholar
Kano, Y, Shiohara, T, Yagita, A, et al. Treatment of recalcitrant cheilitis granulomatosa with metronid. J. Am Acad Dermatol, 1992, 27: 629630 (a3.1).Google Scholar
Haverman, CW, Sloan, TB, Sloan, RT. Multiple endocrine neoplasia syndrome type III: review and case report. Spec Care Dentist, 1995, 15: 102106.Google Scholar
Pasquali, D, Matteo, FM, Renzullo, A, et al. Multiple endocrine neoplasia of the old and the new: mini review. G Ghir, 2012, 33: 370373.Google Scholar
Kahn, MA, Cote, J, Gagel, RE. RET proto-oncogene mutation analysis in multiple endocrine neoplasia syndrome type 2B. Case report and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1996, 82: 288294.Google Scholar
Raue, F, Frank-Raue, K. Multiple endocrine neoplasia type 2. Fam Cancer, 2010, 9: 449457.Google Scholar
Camacho, CP, Huff, AO, Lindsey, SC. Early diagnosis of multiple endocrine neoplasia syndrome type 2B. A challenge for physicians. Arq Bras Endocrine Metabol, 2008, 52: 13931398.Google Scholar
Fox, E, Widemann, BC, Ckuk, MK, et al. Vandetanib in children and adolescents with multiple endocrine neoplasia type 2B associated medullary thyroid carcinoma. Clin Ca Res, 2013, 19: 42394248.Google Scholar
Mehta, A, Ricci, R, Widmer, U, et al. Fabry disease defined: baseline clinical manifestations of 366 patients in the Fabry outcome survey. European J Clinic Invest, 2004, 34: 236242.Google Scholar
Gutierrez-Solana, LG. Advances in the treatment of lysosomal diseases in infancy. Rev Neural, 2006, 5:suppl 1: 137144.Google Scholar
Gorlin, RJ, Sedano, HO. Stomatologic aspects of cutaneous diseases: angiokeratoma corporis diffusum (Fabry syndrome). J Dermatol Surg Oncol, 1979, 5: 180181.Google Scholar
Altarescu, G, Berri, R, Eiges, R, et al. Prevention of lysosomal storage diseases and derivation of mutant stem cell liner by preimplantation genetic diagnosis. Mol Biol Int, 2012, doi 10.1155/2012/97342 Epub 2012, Dec 26.Google Scholar
Surjushe, A, Jindal, S, Sao, P, et al. Anderson-Fabrys disease with marfanoid features. Indian J Dermatol Venereol, 2008, 74: 389391.Google Scholar
Prasad, SS, Radharani, C, Sinna, S, et al. Hereditary gingival fibromatosis with distinctive facies. J Contemp Dent Pract, 2012, 1: 892896.Google Scholar
Shi, J, Lin, W, Li, X, et al. Hereditary gingival fibromatous a true generation case and pathologenic mechanism research on progress of the disease. J Periodontol, 2011, 82: 10891095.Google Scholar
Avelar, RL, deLana Campos, GJ, deCarvalho-Bezerra Falcao, PG, et al. Hereditary gingival fibromatosis: a report of four cases in the same family. Quintessence Int, 2010, 41: 99102.Google Scholar
Breen, GH, Adante, R, Black, CC. Early onset of hereditary gingival fibromatosis in a 28-month-old. Pediatr Dent, 2009, 31: 286288.Google Scholar
Martelli, H Jr, Santos, SM, Guimaraes, AL, et al. Idiopathic gingival fibromatosis: description of two cases. Minerva Stomatol, 2010, 59: 143148.Google Scholar
Byers, PH, Murray, ML, et al. Heritable collagen disorders. The paradigm of Ehlers Danlos syndrome. J Invest Dermatol, 2012, 15: E6E11. doi: 10.1038/skinbio.2012.3.Google Scholar
Eder, J, Laccone, F, Rohbach, M, et al. A new COL3A1 mutation in Ehlers-Danlos syndrome type IV. Exp Dermatol, 2013, 22: 231234.Google Scholar
Mao, JR, Bristow, J. The Ehlers-Danlos syndrome: on beyond collagens. J Clin Invest, 2001, 107: 10631069.Google Scholar
Pinto, YM, Pals, G, Ziglstra, JG, et al. Ehlers-Danlos syndrome type IV. N Eng J Med, 2000, 343: 366368.Google Scholar
Yassin, OM, Rihani, FB. Multiple developmental dental anomalies and hypermobility type Ehlers-Danlos syndrome. J Clin Pediatr Dent, 2006, 30: 337341.Google Scholar
Calva, D, Howe, JR. Hamartomatous polyposis syndromes. Surg Clin North Am, 2008, 88: 779817.Google Scholar
Brosens, LA, Van Hatley, WA, Jansen, M, et al. Gastrointestinal polyposis syndromes. Current Mol Med, 2007, 7: 2946.Google Scholar
Hinds, R, Philp, C, Hyer, W, et al. Complications of childhood Peutz-Jegher’s syndrome. Implications for pediatric screening. J Pediatr Gastroenteral Nutr, 2004, 39: 219220.Google Scholar
Mehenni, H, Blouin, JL, Radhakrishna, U, et al. Peutz-Jeghers syndrome: confirmation of a linkage to chromosome 19p13.3 and identification of a potential second locus on 19p13.4. Am J Hum Genet, 1997, 61: 13271334.Google Scholar
McCarity, TJ, Amos, C. Peutz-Jegher’s syndrome: clinicopathology and molecular alterations. Cell Mol Life Sci, 2006, 63: 21352144.Google Scholar
Tovar, JA, Eizaquirre, I, Albert, A, et al. Peutz-Jegher’s syndroms in children: report of two cases and review of the literature. J Pediatr Surg, 1983, 18: 16.Google Scholar
Loeys, BL, Chen, J, Neptuine, ER. A syndroms of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 and TGFBR2. Nat Genet, 2005, 37: 275281.Google Scholar
Dean, JG. Marfan syndromes. Clinical diagnosis and management. European J Hum Genetics, 2007, 15: 724733.Google Scholar
deVries, BB, Pals, G, Odink, R, et al. Homozygosity for a FBN1 missence mutation clinical and molecular evidence for recessive Marfan syndrome. Eur J Hum Genet, 2007, 15: 930935.Google Scholar
Faivre, L, Gorlin, FJ, Wirtz, MK, et al. In frame fibrillin-1 gene deletion in autosomal dominant weill-marchesani syndrome. J Med Genet, 2003, 40: 3436.Google Scholar
Pyeitz, RE. The Marfan syndrome in childhood. Features, natural history and differential diagnosis. Prog Pediatric Cariol, 1996, 5: 151157.Google Scholar
Bolar, N, Van Laer, , Loeys, BL. Marfan syndrome: from gene to therapy. Curr Opin Pediatr, 2012, 24: 498504.Google Scholar
Cohen, MM Jr. Proteus syndrome: an update. Am J Med Genet C Seminar Med Genet, 2005, 137: 3852.Google Scholar
Hoey, SE, Eastwood, D, Monsell, , et al. Histopathological features of proteus syndrome. Clin Exp Dermatol, 2008, 33: 234238.Google Scholar
Happle, R. The manifold faces of proteus syndrome. Arch Dermatol, 2004, 140: 10011002.Google Scholar
Twede, JV, Turner, JT, Biesecker, LG, et al. Evolution of skin lesions in proteus syndrome. J Am Acad Dermatol, 2005, 52: 834838.Google Scholar
Cardoso, MT, deCarvalho, TB, Casulari, LA, et al. Proteus syndrome and somatic mosaigism of the chromosome 16. Panminerva Med, 2003, 45: 267271.Google Scholar
Lindhurst, MJ, Sapp, JC, Teer, JK, et al. A mosaic activating mutation in AKT1 associated with proteus syndrome. N Engl J Med, 2011, 365: 611619.Google Scholar
Bhupal, HK. Ramsay Hunt syndrome presenting in primary care. Practitioner, 2010, 254: 3335.Google Scholar
Kleinschmidt-DeMasters, BK, Gilden, DH. The expanding spectrum of herpes virus infections of the nervous system. Brainn Pthol, 2001, 11: 440451.Google Scholar
Sandoval, CC, Nunez, FA, Lizama, CM, et al. Ramsay Hunt syndrome in children: four cases and review. Rev Chilena Infectol, 2008, 25: 458464.Google Scholar
Ryer, EW, Lee, HY, Lee, SY, et al. Clinical manifestations and prognosis of patients with Ramsay Hunt syndrome. Am J Otolaryngol, 2011, 33: 313318.Google Scholar
Furuta, Y, Aizawa, H, Ohtani, F, et al. Varicella-Zoster virus reactivation on Ramsay Hunt syndrome. Ann Otol Rhinol Laryngol, 2004, 113: 700705.Google Scholar
Coffin, SE, Hodkinka, RL. Utility of direct immunofluorescence and virus culture for detection of varicella-zoster virus in skin lesions. J Clin Microiol, 1995, 33: 27922795.Google Scholar
Naganawa, S, Nakashima, T. Cutting edge of inner ear MRI. Acta Otolaryngol Supp, 2009, 560: 1521.Google Scholar
Uscategui, T, Doree, C, Chamberlain, IJ, et al. Antiviral therapy for Ramsay Hunt syndrome (herpes zoster oticus with facial palsy) in adults. Cochrane Data Base System Review, Oct 8 2008, doi: 10.1002/14651858.Google Scholar
deRu, JA, VanBenthem, PP. Combination therapy is preferable for patients with Ramsay Hunt syndrome. Oto Neurotol, 2011, 32: 852855.Google Scholar
Albers–Schonberg, H. Roetgenbilder einer seltenen knochennerkrankung. Muuch Med Wochenschr, 1904, 51: 365.Google Scholar
Start, Z, Savarirayan, R. Osteopetrosis. Orphanet J Rare Dis, 2009, 4: 5.Google Scholar
Tritelbaum, SL. Bone resorption by osteoclasts. Science, 2000, 289: 15041508.Google Scholar
Wada, T, Nakashima, T, Oliveria-dos-Santos, , et al. The molecular scatfold Bag 2 is a critical component of RANK signaling and osteoclastogenesis. Nat Med, 2005, 11: 394399.Google Scholar
Cleiren, E, Benichou, O, VanHul, E, et al. Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in CICN7 chloride channel gene. Hum Mol Genet, 2001, 10: 28612667.Google Scholar
Mazzolari, E, Forino, C, Razza, A, et al. A single-center experience in 20 patients with infantile malignant osteopetrosis. Am J Hematol, 2009, 84: 473479.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology: A Rationale for Diagnosis and Treatment. Chicago: Quintessence Publishing Company, 2012.Google Scholar
Symposium on osteopetrosis: proceedings and abstracts of the first interactive symposium on osteopetrosis: Biology and therapy. Oct 23–24, 2003, Bethesda Maryland. USA J Bone Miner Res, 2004, 19: 1356–1375.Google Scholar
Armstrong, DG, Newfield, JY, Gillespie, R. Orthopedic management of osteopetrosis: results of a survey and review of the literature. J Pediatr Orthop, 1999, 19: 122132.Google Scholar
Lata, PHJ, Sharma, R, Parmar, M. Massive osteolysis of hemimandible: a case report. J Maxillofac Oral Surg, 2009, 8: 381383.Google Scholar
Lee, S, Finn, L, Sze, RW. Gorham Stout syndrome (disappearing bone disease): two additional case reports and a review of the literature. Arch Otolaryngol Head Neck Surg, 2003, 129: 13401343.Google Scholar
Hu, P, Yuan, XG, Chan, XY, et al. Gorham-Stout syndrome in mainland China: a case series of 67 patients and review of the literature. J Zhejiang Univ Sci B, 2013, 14: 729735.Google Scholar
Ruggieri, P, Montalti, M, Angelini, A, et al. Gorham-Stout disease: the experience of the Rizzoli Institute and review of the literature. Skeletal Radiol, 2011, 40: 13911397.Google Scholar
Dong, Q, Yafei, Z, Chuankong, S. Gorham-Stout syndrome affecting the left mandible: a case report. Exp Ther Med, 2013, 5: 162164.Google Scholar
Escande, C, Schouman, T, Francoise, G, et al. Histological features and management of a mandibular Gorham-Stout disease: a case report and review of maxillofacial cases in the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2008, 106: e30e37.Google Scholar
Silva, S. Gorham-Stout disease affecting both hands: stabilization during bisphosphonate treatment. Hand (NY), 2011, 6: 8589.Google Scholar
Zheng, MW, Yang, M, Qiu, JX, et al. Gorham-Stout syndrome presenting in a 5-year-old girl with successful bisphosphonate therapeutic effect. Exp Ther Med, 2012, 4: 449451.Google Scholar
Nir, V, Guralnik, L, Livnat, G. Propranolol as a treatment option in Gorham-Stout syndrome. A case report. Pediatr Pulmonol, 2014, 49: 417419.Google Scholar
Baldwin, DJ, Thayalan, K, Amrita, J, et al. Glial choristoma of the tongue: report of a case and clinicopathological features. Int J of Pediatr Dent, 2009, 19: 219221.Google Scholar
Martinez-Peῆuela, A, Quer, S, Beloqui, R. Glial choristoma of the middle ear: report of 2 cases. Otology and Neurology, 2011, 32: e26e27.Google Scholar
Strome, SE, McClatchey, K, Kileny, PR, et al. Neonatal choristoma of the tongue containing glial tissue. Diagnostic and surgical considerations. Int J Pediatr Otorhino Laryngol, 1995, 33: 265273.Google Scholar
Sun, LS, Zhi-Peng, S, Xu-Chen, MA. Glial choristoma in the oral and maxillofacial region. A clinicopathologic study of 6 cases. Arch Pathol Lab Med, 2008, 132: 984998.Google Scholar
Fan, SQ, Ou, YM, Liang, QC. Glial choristoma of the tongue: report of a case and review of the literature. Pediatr Surg Int, 2008, 24: 515519.Google Scholar
Takamizawa, S, Inoue, T, Ono, Y, et al. A case report of glial choristoma of the tongue. J Pediatr Surg, 2006, 41: e13e15.Google Scholar
Fordyce, JA. A peculiar affection of the mucous membrane of the lips and oral cavity. J Cutan Dis, 1896, 14: 413419.Google Scholar
Lee, JH, Lee, JH, NA HK: Clinicopathologic manifestations of patients with Fordyce’s spots. Ann Dermatol, 2012, 24: 103106.Google Scholar
Oliver, JH. Fordyce granules on the prolabia and oral mucous membranes of a selected population. SADJ, 2006, 61: 7274.Google Scholar
DeFelice, C, Patrini, S, Chitano, G. et al. Fordyce granules and hereditary non-polyposis colorectal cancer syndrome. Gut, 2005, 41: 12791282.Google Scholar
Miller, AS, McCrea, MW. Sebaceous gland adenoma of the buccal mucosa. J Oral Surg, 1968, 26: 593595.Google Scholar
Miller, ML, Harford, RR, Yeager, JK. Fox Fordyce disease treated with topical clindamycin solution. Arch Dermatol, 1995, 131: 11121113.Google Scholar
Siggers, DC. Cleidocranial dysostosis. Dev Med Child Neurol, 1975, 4: 522524.Google Scholar
Shen, Z, Chio, C, Chun, Z, et al. Cleidocranial dysplasia: Report of 3 cases and literature review. Clinical Pediatrics, 2009, 2: 194198.Google Scholar
Bufalino, A, Paranaiba, LMR, Gouvêa, AF, et al. Cleidocranial dysplasia: oral features and genetic analysis of 11 patients. Oral Diseases, 2012, 18: 184190.Google Scholar
Ducy, P, Zhang, R, Geoffroy, V, et al. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell, 1997, 89: 747754.Google Scholar
Komori, T. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res, 2010, 339: 189195.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology: A Rationale for Diagnosis and Treatment. Ed 2, Chicago: Quintessence Publishing Company, 2012, 231232.Google Scholar
Suda, N, Hattori, M, Kosaki, K, et al. Correlation between genotype and supernumerary tooth formation in cleidocranial dysplasia. Orthod Craniofac Res, 2010, 13: 197202.Google Scholar
Gorlin, RJ, Cohen, MN, Levin, LS. Syndromes of the Head and Neck. Ed 3, New York NY, Oxford University Press; 1990: 249253.Google Scholar
Jarvis, JL, Keats, TE. Cleidocranial dysostosis: a review of 40 new cases. Am J Roentgenol Radium Ther Nucl Med, 1974, 121: 516.Google Scholar
Perdigao, PF, Silva, ED, Sakurai, E, et al. Idiopathic bone cavity: a clinical, radiographic and histological study. Brit J Oral MG, 2003, 41: 407409.Google Scholar
Shigematsu, K, Fujita, W. Atypical simple bone cyst of the mandible. J Oral Maxillofac Surg, 1994, 23: 298299.Google Scholar
Manor, E, Kachko, L, Puterman, MB. Cystic lesions of the jaws: a clinicopathological study of 322 cases and review of the literature. Int J Med Sci, 2012, 9: 2026.Google Scholar
Patrikiou, A, Sepheriadouo-Mauropulou, G, Zambelis, G. Bilateral traumatic bone cysts of the mandible. Oral Surg, 1981, 51: 131133.Google Scholar
Zhu, L, Wang, X. Histological examination of the auricular cartilage and pseudocyst of the auricle. J Laryngol Otol, 1999, 106: 103104.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology: A Rationale for Diagnosis and Treatment. Ed 2, Chicago: Quintessence Publishing Company, 2012, 216217.Google Scholar
Velez, I, Siegel, MA, Mintz, SM et al. The relationship between idiopathic bone cavity and orthodontic tooth movement: analysis of 44 cases. Dentomaxillofac Radiol, 2010, 39: 162166.Google Scholar
Cortell-Ballester, I, Figueiredo, R, Berini-Aytes, L, et al. Traumatic bone cyst: a retrospective study of 21 cases. Med Oral Pathol Oral Cir Bucal 2009, 14: E239E243.Google Scholar
Kaffe, I, Littner, MM, Arensburg, B. The anterior buccal mandibular depression. Physical and radiologic features. Oral Surg Oral Med Oral Pathol, 1990, 69: 647654.Google Scholar
Apruzzese, D, Longoni, S. Stafne cyst in an anterior location. Oral Maxillofac Surg, 1999, 57: 333338.Google Scholar
Stafne, EC. Bone cavities situated near the angle of the mandible. J Am Dent Assoc, 1942, 29: 19691972.Google Scholar
Buchner, A, Carpenter, WM, Merrell, PW, et al. Anterior lingual salivary gland defect. Evaluation of twenty-four cases. Oral Surg Oral Med Oral Pathol, 1991, 71: 131136.Google Scholar
Shimizu, M, Osa, N, Okamura, K, et al. CT analysis of the Stafne’s bone defects of the mandible. Dentomaxillofac Radiol, 2006, 35: 95102.Google Scholar
Baughman, R. Testing your diagnostic skills. Case No. 2. Lingual mandibular salivary gland depression. Todays FDA, 2006, 18: 2023.Google Scholar
Sisman, Y, Miloglu, O, Sekerci, AE, et al. Radiographic evaluation of the prevalence of Stafne bone defect: a study from two centres in Turkey. Dentomaxillofacial Radiol, 2011, 35: 17.Google Scholar
Reye, RDK. A consideration of certain subdermal fibromatous tumors of infancy. J Pathol, 1956, 72: 149154.Google Scholar
Sotelo-Avilla, C, Bale, PM. Subdermal fibrous hamartomas of infancy: pathology of 40 cases and differential diagnosis. Pediatr Path, 1994, 14: 3952.Google Scholar
Paller, AS, Gonzalez-Grussi, F, Sherman, JO. Fibrous hamartomas of infancy: eight additional cases and a review of the literature. Arch Dermatol, 1989, 125: 8891.Google Scholar
Scott, DM, Pena, JR, Omura, E. Fibrous hamartomas of infancy. J Am Acad Dermatol, 1999, 41: 857858.Google Scholar
Westphal, SL, Bancila, E, Milgraum, SS. Fibrous hamartomas of infancy presenting as an inflamed epidermoid cyst. Pediatr Dermatol, 1990, 7: 157.Google Scholar
Boquot, JE, Gundlach, KKH. Odd tongues: the prevalence of common tongue lesions in 23,616 white Americans over 35 years of age. Quintessence Int, 1986, 17: 719730.Google Scholar
Ugar-Cankel, D, Denizci, S, Hocaoglu, J. Prevalence of tongue lesions among Turkish school children, Sandi Med, 2005, 26: 19621967.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology: A Rationale for Diagnosis and Treatment. Ed 2, Chicago: Quintessence Publishing Company, 2012, 99.Google Scholar
Mathew, AL, Pai, KM, Sholapurkar, AA, et al. The prevalence of oral mucosal lesions in patients visiting a dental school in Southern India. Indian J Dent Res, 2008, 19: 99103.Google Scholar
Koay, CL, Lim, JA, Siar, CH. The prevalence of tongue lesions in Malaysian dental out-patients from the Klang valley area. Oral Dis, 2011, 17: 210216.Google Scholar
Ohtani, J, Hoffman, WY, Vargevik, K. Team management and treatment outcomes for patients with hemifacial microsomia. Am J Orthodontics and Dentofacial Orthopedies, 2012, 141: 574581.Google Scholar
Poswillo, D. The pathogenesis of first and second bronchial arch syndrome. Oral Surg, Oral Med, Oral Pathol, 1973, 35: 301328.Google Scholar
Kelberman, D, Tyson, DC, Chandler, AM, et al. Hemifacial microsomia: progress to understanding the genetic basis of a complex malformation syndrome. Hum Genet 2001, 109: 638645.Google Scholar
Pruzansky, S. Not all dwarfed mandibles are alike. Birth Defects, 1969, 4: 120129.Google Scholar
Cousley, RR A comparison of two classification systems for hemifacial microsomia. Br J Oral Maxillof Surg, 1993, 31: 7882.Google Scholar
Zanardi, G, Parente, EV, Esteves, LS. Orthodontic and surgical treatment of a patient with hemifacial microsomia. Am J Orthodontics and Dentofacial Orthopedics, 2012, 141: 51305139.Google Scholar
Miranda, R, Barros, LM, Nogueira dos Santos, LA, et al. Clinical and imaging features in a patient with hemifacial hyperplasia. J Oral Sci, 2010, 52: 509512.Google Scholar
Bergman, JA. Primary hemifacial hypertrophy. Review and report of a case. Arch Otolaryngol, 1973, 97: 490494.Google Scholar
Yashimoto, H, Hano, H, Kobayashi, K, et al. Increased proliferative activity of osteoblasts in congenital hemifacial hypertrophy. Plast Reconstr Surg, 1998, 102: 16051610.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology: A Rationale for Diagnosis and Treatment. Ed 2, Quintessence Publishing Company, 2012, 240Google Scholar
Islam, MN, Bhattacharyya, I, Ojha, J, et al. Comparison between true and partial hemifacial hypertrophy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007, 104: 501509.Google Scholar
Azevedo, RA, Veronica, FS, Sarmento, VA, et al. Hemifacial hyperplasia. A case report. Quintessence Int, 2005, 36: 483486.Google Scholar
Wisniewski, SA, Trzeciak, WH. A new mutation resulting in the truncation of the TRAF6-interacting domain of XEDAR: a possible novel cause of hypohidrotic ectodermal dysplasia. J Med Genet, 2012, 49: 499501.Google Scholar
Clarke, A. Hypohidrotic ectodermal dysplasia. J Med Genet, 1987, 24: 659663.Google Scholar
Subramaniam, P, Neeraja, G. Witkop’s tooth and nail syndrome: a multifaceted approach to dental management. J Indian Soc Pedod Prev Dent, 2008, 26: 2225.Google Scholar
Lamartine, J. Towards a new classification of ectodermal dysplasias. Cin Exp Dermatol, 2003, 28: 351355.Google Scholar
Priolo, M, Lagana, C. Ectodermal dysplasia a new clinical-genetic classification. J Med Genet, 2001, 38: 579585.Google Scholar
Guckes, AD, Brahim, JS, McCarthy, GR, et al. Using endosseous dental implants for patients with ectodermal dysplasia. JADA, 1991, 122: 5962.Google Scholar
Ekstrand, K, Thomsson, M. Ectodermal dysplasia with partial anodontia: prosthetic treatment with implant prosthesis. J Dent Child, 1988, 4: 282284.Google Scholar
Smith, RA, Vargervik, K, Kearns, G, et al. Placement of an endosseous implant in a growing child with ectodermal dysplasia. Oral Surg Oral Med Oral Pathol, 1993, 75: 669673.Google Scholar
Urzua, B, Ortega-Pento, , Morales-Bozo, et al. Defining a new candidate gene for amelogenesis imperfecta: from molecular genetics to biochemistry. Biochem Genet, 2011, 49: 104121.Google Scholar
Stephanopoulos, G, Garefalaki, E, Lyroudia, K. Genes and related proteins involved in amelogenesis imperfect. J Dent Res, 2005, 84: 11171126.Google Scholar
Weinmann, JP, Svobcda, JF, Woods, RW. Hereditary disturbances of enamel formation and calcification. J Am Dent Assoc, 1945, 32: 397418.Google Scholar
Chaudhary, M, Dixit, S, Singh, A. Amelogenesis imperfecta: reporting of a case and review of the literature. J Oral Maxillofac Pathol, 2009, 13: 7077.Google Scholar
Witkop, CJ Jr. Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revisited: problems in classification. J Oral Pathol Med, 1989, 17: 547543.Google Scholar
Schulze, C. Erbbedingte strukturanomalicin menschlicher zahne. Acta Genet Med Gemellol, 1957, 7: 231235.Google Scholar
Kinney, H, Pople, JA, Driessen, CH, et al. Intrafibrillar mineral may be absent in dentinogenesis imperfecta type II. J Dental Res, 2001, 1:80: 15551559.Google Scholar
Thofakura, SR, Mah, J, Srinivasan, R, et al. The non collagenous dentin matrix proteins are involved in dentinogenesis imperfecta type II. J Dent Res 2000, 79: 835839.Google Scholar
Bhandari, S, Pannu, K. Dentinogenesis imperfecta: a review and case report of a family over four generations. Indian J Dent Res, 2008, 19: 357361.Google Scholar
Shields, ED, Bixler, D, El-Kafrawy, AM. A proposed classification of heritable human dentin defect with a description of a new entity. Arch Oral Biol, 1973, 18: 543553.Google Scholar
Levin, LS, Leaf, SH, Jemini, RJ, et al. Dentinogenesis imperfecta in the Brandywine isolate hereditary opalescent dentin in an Ashkenazic Jewish family. Oral Surg Oral Med Oral Pathol, 1985, 59: 608615.Google Scholar
Von Marschall, Z, Mok, S, Phillips, MD. Rough endoplasmic reticulum trafficking errors by different classes of mutant dentin sialophosphorprotein (DSPP) causes dominant negative effects in both dentinogenesis imperfecta and dentin dysplasia by encapping normal DSPP. J Bone Miner Res, 2012, 27: 13091321.Google Scholar
Buday, K. Beiträge zar Lehre der osteogenesis imperfect, 1895.Google Scholar
Sillence, DO, Senn, A, Danks, DM. Genetic heterogenicity in osteogenesis imperfecta. J Med Genet, 1979, 16: 101116.Google Scholar
Rosen, A, Modig, M, Larson, O. Orthognathic bimaxillary surgery in two patients with osteogenesis imperfecta and a review of the literature. Int J Oral Surg, 2011, 40: 866873.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology: A Rationale for Diagnosis and Treatment. Ed 2, Chicago: Quintessence Publishing Company, 2012, 232236.Google Scholar
Huber, MA. Osteogenesis imperfect. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007, 103: 314320.Google Scholar
Bergstrom, L. Osteogenesis imperfecta: otologic and maxillofacial aspects. Laryngoscope, 1977, 87: 142.Google Scholar
O’Connel, AC, Marini, JC. Evaluation of oral problems in an osteogenesis imperfect population. Oral SLurg Oral Med Oral Pathol Oral Radiol Endod, 1999, 87: 189196.Google Scholar
Kindelan, J, Tobin, M, Robert-Harry, RA. Orthodontic and orthognatic management of a patient with osteogenesis imperfect and dentinogenesis imperfect. A case report. J Orthod 2003, 30: 291296.Google Scholar
Marszalek, B, Wyojcicki, P, Kobus, K, et al. Clinical features, treatment and genetic background of Treacher Collins syndrome. J Appl Genet, 2002, 43: 223233.Google Scholar
Dixon, J, Edwards, SJ, Anderson, L. Identification of the complete coding sequence and genetic organization of the Treacher Collins syndrome gene. Genome Res, 1997, 7: 223234.Google Scholar
Rovin, S, Dachi, SF, Borenstein, DB, et al. Mandibulofacial dysostosis, a familial study of five generations. J Pediat, 1964, 65: 215221.Google Scholar
Jones, KL, Smith, DW, Harvey, MA, et al. Mandibulofacial dysostosis older paternal age and fresh gene mutation: data on additional disorders. J Pediat, 1975, 86: 8488.Google Scholar
LeMerrer, M, Cikuli, M, Ribier, J, et al. Acrofacial dysostosis. Am J Med Genet, 1989, 33: 318322.Google Scholar
Dixon, J, Trainor, MJ, Dixon, MJ. Treacher Collins syndrome. Orthodontics and Craniofacial Research, 2007, 10: 8895.Google Scholar
Horiuchi, K, Ariga, T, Fujioka, H, et al. Mutational analysis of the TCOF1 gene in 11 Japanese patients with Treacher Collins syndrome and mechanism of mutagenesis. J Med Genet, 2005, 134:363: 367.Google Scholar
Cohen, J, Ghezzi, F, Goncalves, L, et al. Prenatal sonographic diagnosis of Treacher Collins Syndrome: A case and review of the literature. Am J Perinatol, 1995, 12: 416419.Google Scholar
Cannon, AB. White nevus of the mucosa (naevus spongiosus albus mucosa) Arch Derm Syphiol, 1935, 31: 365373.Google Scholar
Hernandez-Martin, A, Fernandez-Lopez, E, deUnamuno, M. Diffuse whitening of the oral mucosa in a child. Pediatr Dermatol 1997, 14: 316320.Google Scholar
Naseem, S, Brady, R, McDonald, J. Diffuse white oral plaques. Clinical Infectious Diseases 2003, 36: 519520.Google Scholar
Jorgenson, RJ, Levin, LS. White sponge nevus. Arch Dermatol 1981, 117: 7376.Google Scholar
Allingham, RR, Seo, B, Rapersaud, E, et al. A duplication in chromosome 4q35 is associated with hereditary benign intraepithelial dyskeratosis. Am J Hum Genet 2001, 68: 491494.Google Scholar
Chao, SC, Tsai, Y-M, Yang, MH, et al. A novel mutation in the keratin 4 gene causing white sponge naevus. Br J Dermatol 2003, 184: 11251128.Google Scholar
Sadeghi, EM, Witkop, CJ. The presence of Candida albicans in hereditary benign intraepithelial dyskeratosis. An ultrastructural observation. Oral Surg Oral Med Oral Pathol 1979, 48: 342346.Google Scholar
Greer, RO Jr. Oral manifestations of smokeless tobacco use. Otolaryngologic Clinics of North America, 2010, 44: 3156.Google Scholar
Lim, J, Ng, S. Oral tetracycline rinse improves symptoms of white sponge nevus. J Am Acad Dermatol, 1992, 26: 10031005.Google Scholar
Elliott, M, Bayly, R, Cole, T, Temple, IK, Maher, ER. Clinical features and natural history of Beckwith-Wiedemann syndrome: presentation of 74 new cases. Clinical Genetics, 1994, 46, 168174.Google Scholar
Thorburn, MJ, Wright, ES, Miller, CG, Smith-Read, EHL. Exomphalos-macroglossia-gigantism syndrome in Jamaican infants. American J Diseases of Children, 1970, 119: 316321.Google Scholar
Pettenati, MJ, Haines, JL, Higgins, RR, Wappner, RS, Palmer, CG, Weaver, DD. Wiedemann-Beckwith syndrome: presentation of clinical and cytogenetic data on 22 new cases and review of the literature. Human Genetics, 1986, 74: 143154.Google Scholar
DeBaun, MR, Niemitz, EL, McNeil, DE, Brandenburg, SA, Lee, MP, Feinberg, AP. Epigenetic alterations of H19 and L1T1 distinguish patients with Beckwith-Wiedemann syndrome with cancer and birth defects. Am J Human Genetics, 2002, 70: 604611.Google Scholar
Ullbro, C, Crossner, CG, Nederfors, T, Alfadley, A, Thestrup-Pedersen, K. Dermatological and oral findings in a cohort of 47 patients with Papillon-Lefevre syndrome. J Am Acad Dermatol, 2003, 48: 345351.Google Scholar
Cagli, NA, Hakki, SS, Darsun, R, et al. Clinical genetic, and biochemical findings in two siblings with Papillon-Lefévre syndrome. J Periodontal, 2005, 76: 23222329.Google Scholar
Wani, A, Devkar, N, Patole, M, Shouche, Y. Description of two new cathespin C gene mutations in patients with Papillon-Lefévre syndrome. J Peridontol, 2005, 76: 23222329.Google Scholar
Zadik, Y, Drucker, S, Pallmon, S. Migratory stomatitis (ectopic geographic tongue) on the floor of the mouth. J Am Acad Dermatol, 2011, 6: 459460.Google Scholar
Kvien, T, Glennas, A, Melby, K, Granfors, K, et al. Reactive arthritis: incidence, triggering agents and clinical presentation. J Rheumatology, 1994, 21: 115122.Google Scholar
Hill Gaston, JS, Lillicrap, MS. Arthritis associated with enteric infection. Clinical Rheumatology, 2003, 17: 219239.Google Scholar
Suhanga, J, Chakshu, A, Mohideen, K, et al. Cherubism combined with epilepsy, mental retardation and gingival fibromatosis. (Ramon syndrome): a case report. Head and Neck Pathol, 2010, 4: 12131.Google Scholar
Ramon, Y, Berman, W, Bubus, JJ. Gingival fibromatosis combined with Cherubism. Oral Surg, Oral Med, Oral Pathol, 1967, 24: 436448.Google Scholar
Hall, G. Kasabach-Merritt syndrome: pathogenesis and management. Br J Haematol, 2001, 112: 851862.Google Scholar
Kasabach, HH, Merritt, KK. Capillary hemangioma with extensive purpura: report of a case. Am J Dis Child, 1940, 59: 1063.Google Scholar
el-Dessouky, M, Azmy, A, Raine, P, Young, D. Kasabach-Merritt syndrome. J Pediatr Surg, 1998, 23: 109111.Google Scholar
Enjolras, O, Mulliken, J, Wassef, M, Frieden, I, Rieu, P, Burrows, P, Salhi, A, Léauté-Labrèze, C, Kozakewich, H. Residual lesions after Kasabach-Merritt phenomenon in 41 patients. J Am Acad Dermatol, 2000, 42: 224235.Google Scholar
Stone, J. Neurological rarity: Parry-Romberg syndrome. Practical Neurology, 2006, 6: 185188.Google Scholar
Leao, M, da Silva, ML. Progressive hemifacial atrophy with agenesis of the head and the caudate nucleus. J Med Genetics, 1994, 31: 969971.Google Scholar
Muchnik, RS, Aston, SJ, Rees, TD. Ocular manifestations and treatment of hemifacial atrophy. Am J Ophthalmology, 1979, 88: 889897.Google Scholar
Lewkonia, RM, Lowry, RB, Opitz, JM. Progressive hemifacial atrophy (Parry-Romberg syndrome): report with review of genetics and nosology. Am J Med Genetics, 1983, 14: 385390.Google Scholar
Inigo, F, Jimenez-Murat, Y, Arroyo, O, Fernandez, M, Ysunza, A. Restoration of facial contour in Romberg’s disease and hemifacial microsomia. Experience with 118 cases. Microsurgery, 2000, 20: 167172.Google Scholar
Shirley, MD, Tang, H, Gallione, CJ, et al. Sturge-Weber syndrome and Port-wine stains caused by somatic mutations in GNAQ. New England J Med, 2013, 368: 19711979.Google Scholar
Sturge, WA. A case of partial epilepsy, apparently due to a lesion of one of the vasomotor centres of the brain. Transactions of the Clinical Society of London, 1879, 12: 162.Google Scholar
Greenwood, M, Meechan, JG. General medicine and surgery for dental practitioners Part 4: Neurological disorders. Br Dent, 2003, 195: 1925.Google Scholar
Weber, FP. Right-sided hemi-hypertrophy resulting from right-sided congenital spastic hemiplegia, with a morbid condition of the left side of the brain, revealed by radiograms. J Neurology and Psychopathology (London), 1922, 3: 134139.Google Scholar
Kubota, M, Usami, I, Yamakawa, M, Tomita, Y, Haruta, T. Kawasaki disease with lymphadenopathy and fever as sole initial manifestations. J Paediatrics and Child Health, 2008, 44: 359362.Google Scholar
Scardina, GA, Fucà, G, Carini, F, et al. Oral necrotizing microvasculitis in a patient affected by Kawasaki disease. Medicina Oral, Patologia Oral Y Cirugia Buc, 2007, 12: E560E564.Google Scholar
Do, JH, Baek, JG, Kim, HJ, et al. Kawasaki disease presenting as parotitis in a 3 month old infant. Korean Circulation Journal, 2009, 39: 502504.Google Scholar
Michie, C, Kinsler, V, Tulloh, R, Davidson, S. Recurrent skin peeling following Kawasaki disease. Archives of Disease in Childhood, 2000, 83: 353355.Google Scholar
Gardner, EJ, Richards, RC. Multiple cutaneous and subcutaneous lesions occurring simultaneously with hereditary polyposis and osteomatosis. Am J Hum Genet, 1953, 5: 139147.Google Scholar
Knudsen, AL, Bisguard, ML, Bűlow, S. Attenuated familial adenomatous polyposis (AFAP). A review of the literature. Fam Cancer, 2003, 2: 4355.Google Scholar
Miyoshi, Y, Nagase, H, Ando, H, et al. Somatic mutations of the APC gene in colorectal tumors. Mutation in the cluster region in the APC gene. Hum Mol Genet, 1992, 1: 229233.Google Scholar
Saurin, JC, Chayvialle, JA, Ponchon, T. Management of duodenal adenomas in familial adenomatous polyposis. Fam Cancer, 2008, 7: 173177.Google Scholar
Lourenco, SV, Boggio, P, Suquyama, K, et al. Severe and relapsing upper lip enlargement in a 10 year old boy. Acta Paediatr, 2010, 99: 1958.Google Scholar
Rogers RS, . Melkersson-Rosenthal syndrome and orofacial granulomatosis. Dermatol Clin, 1996, 14: 371379.Google Scholar
Khouri, JM, Bohane, TD, Day, AS. Is orofacial granulomatosis in children a feature of Crohn’s disease. Acta Paediatr, 2005, 94: 501504.Google Scholar
Scully, C. Oral and Maxillofacial Medicine: The Basis of Diagnosis and Treatment. Ed 3, Edinburgh: Churchill Livingstone, 2013, 298301.Google Scholar
Saalman, R, Sundell, S, Kullberg-Lindhc, C, et al. Long standing oral mucosal lesions in solid organ transplanted children – a novel clinical entity. Transplantation, 2010, 89: 606.Google Scholar
Williams, PM, Greenberg, MS. Management of cheilitis granulomatosa. Oral Surg, Oral Med, Oral Pathol, 1991, 72: 436439.Google Scholar
Kano, Y, Shiohara, T, Yagita, A, et al. Treatment of recalcitrant cheilitis granulomatosa with metronid. J. Am Acad Dermatol, 1992, 27: 629630 (a3.1).Google Scholar
Haverman, CW, Sloan, TB, Sloan, RT. Multiple endocrine neoplasia syndrome type III: review and case report. Spec Care Dentist, 1995, 15: 102106.Google Scholar
Pasquali, D, Matteo, FM, Renzullo, A, et al. Multiple endocrine neoplasia of the old and the new: mini review. G Ghir, 2012, 33: 370373.Google Scholar
Kahn, MA, Cote, J, Gagel, RE. RET proto-oncogene mutation analysis in multiple endocrine neoplasia syndrome type 2B. Case report and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1996, 82: 288294.Google Scholar
Raue, F, Frank-Raue, K. Multiple endocrine neoplasia type 2. Fam Cancer, 2010, 9: 449457.Google Scholar
Camacho, CP, Huff, AO, Lindsey, SC. Early diagnosis of multiple endocrine neoplasia syndrome type 2B. A challenge for physicians. Arq Bras Endocrine Metabol, 2008, 52: 13931398.Google Scholar
Fox, E, Widemann, BC, Ckuk, MK, et al. Vandetanib in children and adolescents with multiple endocrine neoplasia type 2B associated medullary thyroid carcinoma. Clin Ca Res, 2013, 19: 42394248.Google Scholar
Mehta, A, Ricci, R, Widmer, U, et al. Fabry disease defined: baseline clinical manifestations of 366 patients in the Fabry outcome survey. European J Clinic Invest, 2004, 34: 236242.Google Scholar
Gutierrez-Solana, LG. Advances in the treatment of lysosomal diseases in infancy. Rev Neural, 2006, 5:suppl 1: 137144.Google Scholar
Gorlin, RJ, Sedano, HO. Stomatologic aspects of cutaneous diseases: angiokeratoma corporis diffusum (Fabry syndrome). J Dermatol Surg Oncol, 1979, 5: 180181.Google Scholar
Altarescu, G, Berri, R, Eiges, R, et al. Prevention of lysosomal storage diseases and derivation of mutant stem cell liner by preimplantation genetic diagnosis. Mol Biol Int, 2012, doi 10.1155/2012/97342 Epub 2012, Dec 26.Google Scholar
Surjushe, A, Jindal, S, Sao, P, et al. Anderson-Fabrys disease with marfanoid features. Indian J Dermatol Venereol, 2008, 74: 389391.Google Scholar
Prasad, SS, Radharani, C, Sinna, S, et al. Hereditary gingival fibromatosis with distinctive facies. J Contemp Dent Pract, 2012, 1: 892896.Google Scholar
Shi, J, Lin, W, Li, X, et al. Hereditary gingival fibromatous a true generation case and pathologenic mechanism research on progress of the disease. J Periodontol, 2011, 82: 10891095.Google Scholar
Avelar, RL, deLana Campos, GJ, deCarvalho-Bezerra Falcao, PG, et al. Hereditary gingival fibromatosis: a report of four cases in the same family. Quintessence Int, 2010, 41: 99102.Google Scholar
Breen, GH, Adante, R, Black, CC. Early onset of hereditary gingival fibromatosis in a 28-month-old. Pediatr Dent, 2009, 31: 286288.Google Scholar
Martelli, H Jr, Santos, SM, Guimaraes, AL, et al. Idiopathic gingival fibromatosis: description of two cases. Minerva Stomatol, 2010, 59: 143148.Google Scholar
Byers, PH, Murray, ML, et al. Heritable collagen disorders. The paradigm of Ehlers Danlos syndrome. J Invest Dermatol, 2012, 15: E6E11. doi: 10.1038/skinbio.2012.3.Google Scholar
Eder, J, Laccone, F, Rohbach, M, et al. A new COL3A1 mutation in Ehlers-Danlos syndrome type IV. Exp Dermatol, 2013, 22: 231234.Google Scholar
Mao, JR, Bristow, J. The Ehlers-Danlos syndrome: on beyond collagens. J Clin Invest, 2001, 107: 10631069.Google Scholar
Pinto, YM, Pals, G, Ziglstra, JG, et al. Ehlers-Danlos syndrome type IV. N Eng J Med, 2000, 343: 366368.Google Scholar
Yassin, OM, Rihani, FB. Multiple developmental dental anomalies and hypermobility type Ehlers-Danlos syndrome. J Clin Pediatr Dent, 2006, 30: 337341.Google Scholar
Calva, D, Howe, JR. Hamartomatous polyposis syndromes. Surg Clin North Am, 2008, 88: 779817.Google Scholar
Brosens, LA, Van Hatley, WA, Jansen, M, et al. Gastrointestinal polyposis syndromes. Current Mol Med, 2007, 7: 2946.Google Scholar
Hinds, R, Philp, C, Hyer, W, et al. Complications of childhood Peutz-Jegher’s syndrome. Implications for pediatric screening. J Pediatr Gastroenteral Nutr, 2004, 39: 219220.Google Scholar
Mehenni, H, Blouin, JL, Radhakrishna, U, et al. Peutz-Jeghers syndrome: confirmation of a linkage to chromosome 19p13.3 and identification of a potential second locus on 19p13.4. Am J Hum Genet, 1997, 61: 13271334.Google Scholar
McCarity, TJ, Amos, C. Peutz-Jegher’s syndrome: clinicopathology and molecular alterations. Cell Mol Life Sci, 2006, 63: 21352144.Google Scholar
Tovar, JA, Eizaquirre, I, Albert, A, et al. Peutz-Jegher’s syndroms in children: report of two cases and review of the literature. J Pediatr Surg, 1983, 18: 16.Google Scholar
Loeys, BL, Chen, J, Neptuine, ER. A syndroms of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 and TGFBR2. Nat Genet, 2005, 37: 275281.Google Scholar
Dean, JG. Marfan syndromes. Clinical diagnosis and management. European J Hum Genetics, 2007, 15: 724733.Google Scholar
deVries, BB, Pals, G, Odink, R, et al. Homozygosity for a FBN1 missence mutation clinical and molecular evidence for recessive Marfan syndrome. Eur J Hum Genet, 2007, 15: 930935.Google Scholar
Faivre, L, Gorlin, FJ, Wirtz, MK, et al. In frame fibrillin-1 gene deletion in autosomal dominant weill-marchesani syndrome. J Med Genet, 2003, 40: 3436.Google Scholar
Pyeitz, RE. The Marfan syndrome in childhood. Features, natural history and differential diagnosis. Prog Pediatric Cariol, 1996, 5: 151157.Google Scholar
Bolar, N, Van Laer, , Loeys, BL. Marfan syndrome: from gene to therapy. Curr Opin Pediatr, 2012, 24: 498504.Google Scholar
Cohen, MM Jr. Proteus syndrome: an update. Am J Med Genet C Seminar Med Genet, 2005, 137: 3852.Google Scholar
Hoey, SE, Eastwood, D, Monsell, , et al. Histopathological features of proteus syndrome. Clin Exp Dermatol, 2008, 33: 234238.Google Scholar
Happle, R. The manifold faces of proteus syndrome. Arch Dermatol, 2004, 140: 10011002.Google Scholar
Twede, JV, Turner, JT, Biesecker, LG, et al. Evolution of skin lesions in proteus syndrome. J Am Acad Dermatol, 2005, 52: 834838.Google Scholar
Cardoso, MT, deCarvalho, TB, Casulari, LA, et al. Proteus syndrome and somatic mosaigism of the chromosome 16. Panminerva Med, 2003, 45: 267271.Google Scholar
Lindhurst, MJ, Sapp, JC, Teer, JK, et al. A mosaic activating mutation in AKT1 associated with proteus syndrome. N Engl J Med, 2011, 365: 611619.Google Scholar
Bhupal, HK. Ramsay Hunt syndrome presenting in primary care. Practitioner, 2010, 254: 3335.Google Scholar
Kleinschmidt-DeMasters, BK, Gilden, DH. The expanding spectrum of herpes virus infections of the nervous system. Brainn Pthol, 2001, 11: 440451.Google Scholar
Sandoval, CC, Nunez, FA, Lizama, CM, et al. Ramsay Hunt syndrome in children: four cases and review. Rev Chilena Infectol, 2008, 25: 458464.Google Scholar
Ryer, EW, Lee, HY, Lee, SY, et al. Clinical manifestations and prognosis of patients with Ramsay Hunt syndrome. Am J Otolaryngol, 2011, 33: 313318.Google Scholar
Furuta, Y, Aizawa, H, Ohtani, F, et al. Varicella-Zoster virus reactivation on Ramsay Hunt syndrome. Ann Otol Rhinol Laryngol, 2004, 113: 700705.Google Scholar
Coffin, SE, Hodkinka, RL. Utility of direct immunofluorescence and virus culture for detection of varicella-zoster virus in skin lesions. J Clin Microiol, 1995, 33: 27922795.Google Scholar
Naganawa, S, Nakashima, T. Cutting edge of inner ear MRI. Acta Otolaryngol Supp, 2009, 560: 1521.Google Scholar
Uscategui, T, Doree, C, Chamberlain, IJ, et al. Antiviral therapy for Ramsay Hunt syndrome (herpes zoster oticus with facial palsy) in adults. Cochrane Data Base System Review, Oct 8 2008, doi: 10.1002/14651858.Google Scholar
deRu, JA, VanBenthem, PP. Combination therapy is preferable for patients with Ramsay Hunt syndrome. Oto Neurotol, 2011, 32: 852855.Google Scholar
Albers–Schonberg, H. Roetgenbilder einer seltenen knochennerkrankung. Muuch Med Wochenschr, 1904, 51: 365.Google Scholar
Start, Z, Savarirayan, R. Osteopetrosis. Orphanet J Rare Dis, 2009, 4: 5.Google Scholar
Tritelbaum, SL. Bone resorption by osteoclasts. Science, 2000, 289: 15041508.Google Scholar
Wada, T, Nakashima, T, Oliveria-dos-Santos, , et al. The molecular scatfold Bag 2 is a critical component of RANK signaling and osteoclastogenesis. Nat Med, 2005, 11: 394399.Google Scholar
Cleiren, E, Benichou, O, VanHul, E, et al. Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in CICN7 chloride channel gene. Hum Mol Genet, 2001, 10: 28612667.Google Scholar
Mazzolari, E, Forino, C, Razza, A, et al. A single-center experience in 20 patients with infantile malignant osteopetrosis. Am J Hematol, 2009, 84: 473479.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology: A Rationale for Diagnosis and Treatment. Chicago: Quintessence Publishing Company, 2012.Google Scholar
Symposium on osteopetrosis: proceedings and abstracts of the first interactive symposium on osteopetrosis: Biology and therapy. Oct 23–24, 2003, Bethesda Maryland. USA J Bone Miner Res, 2004, 19: 1356–1375.Google Scholar
Armstrong, DG, Newfield, JY, Gillespie, R. Orthopedic management of osteopetrosis: results of a survey and review of the literature. J Pediatr Orthop, 1999, 19: 122132.Google Scholar
Lata, PHJ, Sharma, R, Parmar, M. Massive osteolysis of hemimandible: a case report. J Maxillofac Oral Surg, 2009, 8: 381383.Google Scholar
Lee, S, Finn, L, Sze, RW. Gorham Stout syndrome (disappearing bone disease): two additional case reports and a review of the literature. Arch Otolaryngol Head Neck Surg, 2003, 129: 13401343.Google Scholar
Hu, P, Yuan, XG, Chan, XY, et al. Gorham-Stout syndrome in mainland China: a case series of 67 patients and review of the literature. J Zhejiang Univ Sci B, 2013, 14: 729735.Google Scholar
Ruggieri, P, Montalti, M, Angelini, A, et al. Gorham-Stout disease: the experience of the Rizzoli Institute and review of the literature. Skeletal Radiol, 2011, 40: 13911397.Google Scholar
Dong, Q, Yafei, Z, Chuankong, S. Gorham-Stout syndrome affecting the left mandible: a case report. Exp Ther Med, 2013, 5: 162164.Google Scholar
Escande, C, Schouman, T, Francoise, G, et al. Histological features and management of a mandibular Gorham-Stout disease: a case report and review of maxillofacial cases in the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2008, 106: e30e37.Google Scholar
Silva, S. Gorham-Stout disease affecting both hands: stabilization during bisphosphonate treatment. Hand (NY), 2011, 6: 8589.Google Scholar
Zheng, MW, Yang, M, Qiu, JX, et al. Gorham-Stout syndrome presenting in a 5-year-old girl with successful bisphosphonate therapeutic effect. Exp Ther Med, 2012, 4: 449451.Google Scholar
Nir, V, Guralnik, L, Livnat, G. Propranolol as a treatment option in Gorham-Stout syndrome. A case report. Pediatr Pulmonol, 2014, 49: 417419.Google Scholar
Baldwin, DJ, Thayalan, K, Amrita, J, et al. Glial choristoma of the tongue: report of a case and clinicopathological features. Int J of Pediatr Dent, 2009, 19: 219221.Google Scholar
Martinez-Peῆuela, A, Quer, S, Beloqui, R. Glial choristoma of the middle ear: report of 2 cases. Otology and Neurology, 2011, 32: e26e27.Google Scholar
Strome, SE, McClatchey, K, Kileny, PR, et al. Neonatal choristoma of the tongue containing glial tissue. Diagnostic and surgical considerations. Int J Pediatr Otorhino Laryngol, 1995, 33: 265273.Google Scholar
Sun, LS, Zhi-Peng, S, Xu-Chen, MA. Glial choristoma in the oral and maxillofacial region. A clinicopathologic study of 6 cases. Arch Pathol Lab Med, 2008, 132: 984998.Google Scholar
Fan, SQ, Ou, YM, Liang, QC. Glial choristoma of the tongue: report of a case and review of the literature. Pediatr Surg Int, 2008, 24: 515519.Google Scholar
Takamizawa, S, Inoue, T, Ono, Y, et al. A case report of glial choristoma of the tongue. J Pediatr Surg, 2006, 41: e13e15.Google Scholar
Fordyce, JA. A peculiar affection of the mucous membrane of the lips and oral cavity. J Cutan Dis, 1896, 14: 413419.Google Scholar
Lee, JH, Lee, JH, NA HK: Clinicopathologic manifestations of patients with Fordyce’s spots. Ann Dermatol, 2012, 24: 103106.Google Scholar
Oliver, JH. Fordyce granules on the prolabia and oral mucous membranes of a selected population. SADJ, 2006, 61: 7274.Google Scholar
DeFelice, C, Patrini, S, Chitano, G. et al. Fordyce granules and hereditary non-polyposis colorectal cancer syndrome. Gut, 2005, 41: 12791282.Google Scholar
Miller, AS, McCrea, MW. Sebaceous gland adenoma of the buccal mucosa. J Oral Surg, 1968, 26: 593595.Google Scholar
Miller, ML, Harford, RR, Yeager, JK. Fox Fordyce disease treated with topical clindamycin solution. Arch Dermatol, 1995, 131: 11121113.Google Scholar
Siggers, DC. Cleidocranial dysostosis. Dev Med Child Neurol, 1975, 4: 522524.Google Scholar
Shen, Z, Chio, C, Chun, Z, et al. Cleidocranial dysplasia: Report of 3 cases and literature review. Clinical Pediatrics, 2009, 2: 194198.Google Scholar
Bufalino, A, Paranaiba, LMR, Gouvêa, AF, et al. Cleidocranial dysplasia: oral features and genetic analysis of 11 patients. Oral Diseases, 2012, 18: 184190.Google Scholar
Ducy, P, Zhang, R, Geoffroy, V, et al. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell, 1997, 89: 747754.Google Scholar
Komori, T. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res, 2010, 339: 189195.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology: A Rationale for Diagnosis and Treatment. Ed 2, Chicago: Quintessence Publishing Company, 2012, 231232.Google Scholar
Suda, N, Hattori, M, Kosaki, K, et al. Correlation between genotype and supernumerary tooth formation in cleidocranial dysplasia. Orthod Craniofac Res, 2010, 13: 197202.Google Scholar
Gorlin, RJ, Cohen, MN, Levin, LS. Syndromes of the Head and Neck. Ed 3, New York NY, Oxford University Press; 1990: 249253.Google Scholar
Jarvis, JL, Keats, TE. Cleidocranial dysostosis: a review of 40 new cases. Am J Roentgenol Radium Ther Nucl Med, 1974, 121: 516.Google Scholar
Perdigao, PF, Silva, ED, Sakurai, E, et al. Idiopathic bone cavity: a clinical, radiographic and histological study. Brit J Oral MG, 2003, 41: 407409.Google Scholar
Shigematsu, K, Fujita, W. Atypical simple bone cyst of the mandible. J Oral Maxillofac Surg, 1994, 23: 298299.Google Scholar
Manor, E, Kachko, L, Puterman, MB. Cystic lesions of the jaws: a clinicopathological study of 322 cases and review of the literature. Int J Med Sci, 2012, 9: 2026.Google Scholar
Patrikiou, A, Sepheriadouo-Mauropulou, G, Zambelis, G. Bilateral traumatic bone cysts of the mandible. Oral Surg, 1981, 51: 131133.Google Scholar
Zhu, L, Wang, X. Histological examination of the auricular cartilage and pseudocyst of the auricle. J Laryngol Otol, 1999, 106: 103104.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology: A Rationale for Diagnosis and Treatment. Ed 2, Chicago: Quintessence Publishing Company, 2012, 216217.Google Scholar
Velez, I, Siegel, MA, Mintz, SM et al. The relationship between idiopathic bone cavity and orthodontic tooth movement: analysis of 44 cases. Dentomaxillofac Radiol, 2010, 39: 162166.Google Scholar
Cortell-Ballester, I, Figueiredo, R, Berini-Aytes, L, et al. Traumatic bone cyst: a retrospective study of 21 cases. Med Oral Pathol Oral Cir Bucal 2009, 14: E239E243.Google Scholar
Kaffe, I, Littner, MM, Arensburg, B. The anterior buccal mandibular depression. Physical and radiologic features. Oral Surg Oral Med Oral Pathol, 1990, 69: 647654.Google Scholar
Apruzzese, D, Longoni, S. Stafne cyst in an anterior location. Oral Maxillofac Surg, 1999, 57: 333338.Google Scholar
Stafne, EC. Bone cavities situated near the angle of the mandible. J Am Dent Assoc, 1942, 29: 19691972.Google Scholar
Buchner, A, Carpenter, WM, Merrell, PW, et al. Anterior lingual salivary gland defect. Evaluation of twenty-four cases. Oral Surg Oral Med Oral Pathol, 1991, 71: 131136.Google Scholar
Shimizu, M, Osa, N, Okamura, K, et al. CT analysis of the Stafne’s bone defects of the mandible. Dentomaxillofac Radiol, 2006, 35: 95102.Google Scholar
Baughman, R. Testing your diagnostic skills. Case No. 2. Lingual mandibular salivary gland depression. Todays FDA, 2006, 18: 2023.Google Scholar
Sisman, Y, Miloglu, O, Sekerci, AE, et al. Radiographic evaluation of the prevalence of Stafne bone defect: a study from two centres in Turkey. Dentomaxillofacial Radiol, 2011, 35: 17.Google Scholar
Reye, RDK. A consideration of certain subdermal fibromatous tumors of infancy. J Pathol, 1956, 72: 149154.Google Scholar
Sotelo-Avilla, C, Bale, PM. Subdermal fibrous hamartomas of infancy: pathology of 40 cases and differential diagnosis. Pediatr Path, 1994, 14: 3952.Google Scholar
Paller, AS, Gonzalez-Grussi, F, Sherman, JO. Fibrous hamartomas of infancy: eight additional cases and a review of the literature. Arch Dermatol, 1989, 125: 8891.Google Scholar
Scott, DM, Pena, JR, Omura, E. Fibrous hamartomas of infancy. J Am Acad Dermatol, 1999, 41: 857858.Google Scholar
Westphal, SL, Bancila, E, Milgraum, SS. Fibrous hamartomas of infancy presenting as an inflamed epidermoid cyst. Pediatr Dermatol, 1990, 7: 157.Google Scholar
Boquot, JE, Gundlach, KKH. Odd tongues: the prevalence of common tongue lesions in 23,616 white Americans over 35 years of age. Quintessence Int, 1986, 17: 719730.Google Scholar
Ugar-Cankel, D, Denizci, S, Hocaoglu, J. Prevalence of tongue lesions among Turkish school children, Sandi Med, 2005, 26: 19621967.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology: A Rationale for Diagnosis and Treatment. Ed 2, Chicago: Quintessence Publishing Company, 2012, 99.Google Scholar
Mathew, AL, Pai, KM, Sholapurkar, AA, et al. The prevalence of oral mucosal lesions in patients visiting a dental school in Southern India. Indian J Dent Res, 2008, 19: 99103.Google Scholar
Koay, CL, Lim, JA, Siar, CH. The prevalence of tongue lesions in Malaysian dental out-patients from the Klang valley area. Oral Dis, 2011, 17: 210216.Google Scholar
Ohtani, J, Hoffman, WY, Vargevik, K. Team management and treatment outcomes for patients with hemifacial microsomia. Am J Orthodontics and Dentofacial Orthopedies, 2012, 141: 574581.Google Scholar
Poswillo, D. The pathogenesis of first and second bronchial arch syndrome. Oral Surg, Oral Med, Oral Pathol, 1973, 35: 301328.Google Scholar
Kelberman, D, Tyson, DC, Chandler, AM, et al. Hemifacial microsomia: progress to understanding the genetic basis of a complex malformation syndrome. Hum Genet 2001, 109: 638645.Google Scholar
Pruzansky, S. Not all dwarfed mandibles are alike. Birth Defects, 1969, 4: 120129.Google Scholar
Cousley, RR A comparison of two classification systems for hemifacial microsomia. Br J Oral Maxillof Surg, 1993, 31: 7882.Google Scholar
Zanardi, G, Parente, EV, Esteves, LS. Orthodontic and surgical treatment of a patient with hemifacial microsomia. Am J Orthodontics and Dentofacial Orthopedics, 2012, 141: 51305139.Google Scholar
Miranda, R, Barros, LM, Nogueira dos Santos, LA, et al. Clinical and imaging features in a patient with hemifacial hyperplasia. J Oral Sci, 2010, 52: 509512.Google Scholar
Bergman, JA. Primary hemifacial hypertrophy. Review and report of a case. Arch Otolaryngol, 1973, 97: 490494.Google Scholar
Yashimoto, H, Hano, H, Kobayashi, K, et al. Increased proliferative activity of osteoblasts in congenital hemifacial hypertrophy. Plast Reconstr Surg, 1998, 102: 16051610.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology: A Rationale for Diagnosis and Treatment. Ed 2, Quintessence Publishing Company, 2012, 240Google Scholar
Islam, MN, Bhattacharyya, I, Ojha, J, et al. Comparison between true and partial hemifacial hypertrophy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007, 104: 501509.Google Scholar
Azevedo, RA, Veronica, FS, Sarmento, VA, et al. Hemifacial hyperplasia. A case report. Quintessence Int, 2005, 36: 483486.Google Scholar
Wisniewski, SA, Trzeciak, WH. A new mutation resulting in the truncation of the TRAF6-interacting domain of XEDAR: a possible novel cause of hypohidrotic ectodermal dysplasia. J Med Genet, 2012, 49: 499501.Google Scholar
Clarke, A. Hypohidrotic ectodermal dysplasia. J Med Genet, 1987, 24: 659663.Google Scholar
Subramaniam, P, Neeraja, G. Witkop’s tooth and nail syndrome: a multifaceted approach to dental management. J Indian Soc Pedod Prev Dent, 2008, 26: 2225.Google Scholar
Lamartine, J. Towards a new classification of ectodermal dysplasias. Cin Exp Dermatol, 2003, 28: 351355.Google Scholar
Priolo, M, Lagana, C. Ectodermal dysplasia a new clinical-genetic classification. J Med Genet, 2001, 38: 579585.Google Scholar
Guckes, AD, Brahim, JS, McCarthy, GR, et al. Using endosseous dental implants for patients with ectodermal dysplasia. JADA, 1991, 122: 5962.Google Scholar
Ekstrand, K, Thomsson, M. Ectodermal dysplasia with partial anodontia: prosthetic treatment with implant prosthesis. J Dent Child, 1988, 4: 282284.Google Scholar
Smith, RA, Vargervik, K, Kearns, G, et al. Placement of an endosseous implant in a growing child with ectodermal dysplasia. Oral Surg Oral Med Oral Pathol, 1993, 75: 669673.Google Scholar
Urzua, B, Ortega-Pento, , Morales-Bozo, et al. Defining a new candidate gene for amelogenesis imperfecta: from molecular genetics to biochemistry. Biochem Genet, 2011, 49: 104121.Google Scholar
Stephanopoulos, G, Garefalaki, E, Lyroudia, K. Genes and related proteins involved in amelogenesis imperfect. J Dent Res, 2005, 84: 11171126.Google Scholar
Weinmann, JP, Svobcda, JF, Woods, RW. Hereditary disturbances of enamel formation and calcification. J Am Dent Assoc, 1945, 32: 397418.Google Scholar
Chaudhary, M, Dixit, S, Singh, A. Amelogenesis imperfecta: reporting of a case and review of the literature. J Oral Maxillofac Pathol, 2009, 13: 7077.Google Scholar
Witkop, CJ Jr. Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revisited: problems in classification. J Oral Pathol Med, 1989, 17: 547543.Google Scholar
Schulze, C. Erbbedingte strukturanomalicin menschlicher zahne. Acta Genet Med Gemellol, 1957, 7: 231235.Google Scholar
Kinney, H, Pople, JA, Driessen, CH, et al. Intrafibrillar mineral may be absent in dentinogenesis imperfecta type II. J Dental Res, 2001, 1:80: 15551559.Google Scholar
Thofakura, SR, Mah, J, Srinivasan, R, et al. The non collagenous dentin matrix proteins are involved in dentinogenesis imperfecta type II. J Dent Res 2000, 79: 835839.Google Scholar
Bhandari, S, Pannu, K. Dentinogenesis imperfecta: a review and case report of a family over four generations. Indian J Dent Res, 2008, 19: 357361.Google Scholar
Shields, ED, Bixler, D, El-Kafrawy, AM. A proposed classification of heritable human dentin defect with a description of a new entity. Arch Oral Biol, 1973, 18: 543553.Google Scholar
Levin, LS, Leaf, SH, Jemini, RJ, et al. Dentinogenesis imperfecta in the Brandywine isolate hereditary opalescent dentin in an Ashkenazic Jewish family. Oral Surg Oral Med Oral Pathol, 1985, 59: 608615.Google Scholar
Von Marschall, Z, Mok, S, Phillips, MD. Rough endoplasmic reticulum trafficking errors by different classes of mutant dentin sialophosphorprotein (DSPP) causes dominant negative effects in both dentinogenesis imperfecta and dentin dysplasia by encapping normal DSPP. J Bone Miner Res, 2012, 27: 13091321.Google Scholar
Buday, K. Beiträge zar Lehre der osteogenesis imperfect, 1895.Google Scholar
Sillence, DO, Senn, A, Danks, DM. Genetic heterogenicity in osteogenesis imperfecta. J Med Genet, 1979, 16: 101116.Google Scholar
Rosen, A, Modig, M, Larson, O. Orthognathic bimaxillary surgery in two patients with osteogenesis imperfecta and a review of the literature. Int J Oral Surg, 2011, 40: 866873.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology: A Rationale for Diagnosis and Treatment. Ed 2, Chicago: Quintessence Publishing Company, 2012, 232236.Google Scholar
Huber, MA. Osteogenesis imperfect. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007, 103: 314320.Google Scholar
Bergstrom, L. Osteogenesis imperfecta: otologic and maxillofacial aspects. Laryngoscope, 1977, 87: 142.Google Scholar
O’Connel, AC, Marini, JC. Evaluation of oral problems in an osteogenesis imperfect population. Oral SLurg Oral Med Oral Pathol Oral Radiol Endod, 1999, 87: 189196.Google Scholar
Kindelan, J, Tobin, M, Robert-Harry, RA. Orthodontic and orthognatic management of a patient with osteogenesis imperfect and dentinogenesis imperfect. A case report. J Orthod 2003, 30: 291296.Google Scholar
Marszalek, B, Wyojcicki, P, Kobus, K, et al. Clinical features, treatment and genetic background of Treacher Collins syndrome. J Appl Genet, 2002, 43: 223233.Google Scholar
Dixon, J, Edwards, SJ, Anderson, L. Identification of the complete coding sequence and genetic organization of the Treacher Collins syndrome gene. Genome Res, 1997, 7: 223234.Google Scholar
Rovin, S, Dachi, SF, Borenstein, DB, et al. Mandibulofacial dysostosis, a familial study of five generations. J Pediat, 1964, 65: 215221.Google Scholar
Jones, KL, Smith, DW, Harvey, MA, et al. Mandibulofacial dysostosis older paternal age and fresh gene mutation: data on additional disorders. J Pediat, 1975, 86: 8488.Google Scholar
LeMerrer, M, Cikuli, M, Ribier, J, et al. Acrofacial dysostosis. Am J Med Genet, 1989, 33: 318322.Google Scholar
Dixon, J, Trainor, MJ, Dixon, MJ. Treacher Collins syndrome. Orthodontics and Craniofacial Research, 2007, 10: 8895.Google Scholar
Horiuchi, K, Ariga, T, Fujioka, H, et al. Mutational analysis of the TCOF1 gene in 11 Japanese patients with Treacher Collins syndrome and mechanism of mutagenesis. J Med Genet, 2005, 134:363: 367.Google Scholar
Cohen, J, Ghezzi, F, Goncalves, L, et al. Prenatal sonographic diagnosis of Treacher Collins Syndrome: A case and review of the literature. Am J Perinatol, 1995, 12: 416419.Google Scholar
Cannon, AB. White nevus of the mucosa (naevus spongiosus albus mucosa) Arch Derm Syphiol, 1935, 31: 365373.Google Scholar
Hernandez-Martin, A, Fernandez-Lopez, E, deUnamuno, M. Diffuse whitening of the oral mucosa in a child. Pediatr Dermatol 1997, 14: 316320.Google Scholar
Naseem, S, Brady, R, McDonald, J. Diffuse white oral plaques. Clinical Infectious Diseases 2003, 36: 519520.Google Scholar
Jorgenson, RJ, Levin, LS. White sponge nevus. Arch Dermatol 1981, 117: 7376.Google Scholar
Allingham, RR, Seo, B, Rapersaud, E, et al. A duplication in chromosome 4q35 is associated with hereditary benign intraepithelial dyskeratosis. Am J Hum Genet 2001, 68: 491494.Google Scholar
Chao, SC, Tsai, Y-M, Yang, MH, et al. A novel mutation in the keratin 4 gene causing white sponge naevus. Br J Dermatol 2003, 184: 11251128.Google Scholar
Sadeghi, EM, Witkop, CJ. The presence of Candida albicans in hereditary benign intraepithelial dyskeratosis. An ultrastructural observation. Oral Surg Oral Med Oral Pathol 1979, 48: 342346.Google Scholar
Greer, RO Jr. Oral manifestations of smokeless tobacco use. Otolaryngologic Clinics of North America, 2010, 44: 3156.Google Scholar
Lim, J, Ng, S. Oral tetracycline rinse improves symptoms of white sponge nevus. J Am Acad Dermatol, 1992, 26: 10031005.Google Scholar
Elliott, M, Bayly, R, Cole, T, Temple, IK, Maher, ER. Clinical features and natural history of Beckwith-Wiedemann syndrome: presentation of 74 new cases. Clinical Genetics, 1994, 46, 168174.Google Scholar
Thorburn, MJ, Wright, ES, Miller, CG, Smith-Read, EHL. Exomphalos-macroglossia-gigantism syndrome in Jamaican infants. American J Diseases of Children, 1970, 119: 316321.Google Scholar
Pettenati, MJ, Haines, JL, Higgins, RR, Wappner, RS, Palmer, CG, Weaver, DD. Wiedemann-Beckwith syndrome: presentation of clinical and cytogenetic data on 22 new cases and review of the literature. Human Genetics, 1986, 74: 143154.Google Scholar
DeBaun, MR, Niemitz, EL, McNeil, DE, Brandenburg, SA, Lee, MP, Feinberg, AP. Epigenetic alterations of H19 and L1T1 distinguish patients with Beckwith-Wiedemann syndrome with cancer and birth defects. Am J Human Genetics, 2002, 70: 604611.Google Scholar
Ullbro, C, Crossner, CG, Nederfors, T, Alfadley, A, Thestrup-Pedersen, K. Dermatological and oral findings in a cohort of 47 patients with Papillon-Lefevre syndrome. J Am Acad Dermatol, 2003, 48: 345351.Google Scholar
Cagli, NA, Hakki, SS, Darsun, R, et al. Clinical genetic, and biochemical findings in two siblings with Papillon-Lefévre syndrome. J Periodontal, 2005, 76: 23222329.Google Scholar
Wani, A, Devkar, N, Patole, M, Shouche, Y. Description of two new cathespin C gene mutations in patients with Papillon-Lefévre syndrome. J Peridontol, 2005, 76: 23222329.Google Scholar
Zadik, Y, Drucker, S, Pallmon, S. Migratory stomatitis (ectopic geographic tongue) on the floor of the mouth. J Am Acad Dermatol, 2011, 6: 459460.Google Scholar
Kvien, T, Glennas, A, Melby, K, Granfors, K, et al. Reactive arthritis: incidence, triggering agents and clinical presentation. J Rheumatology, 1994, 21: 115122.Google Scholar
Hill Gaston, JS, Lillicrap, MS. Arthritis associated with enteric infection. Clinical Rheumatology, 2003, 17: 219239.Google Scholar
Suhanga, J, Chakshu, A, Mohideen, K, et al. Cherubism combined with epilepsy, mental retardation and gingival fibromatosis. (Ramon syndrome): a case report. Head and Neck Pathol, 2010, 4: 12131.Google Scholar
Ramon, Y, Berman, W, Bubus, JJ. Gingival fibromatosis combined with Cherubism. Oral Surg, Oral Med, Oral Pathol, 1967, 24: 436448.Google Scholar
Hall, G. Kasabach-Merritt syndrome: pathogenesis and management. Br J Haematol, 2001, 112: 851862.Google Scholar
Kasabach, HH, Merritt, KK. Capillary hemangioma with extensive purpura: report of a case. Am J Dis Child, 1940, 59: 1063.Google Scholar
el-Dessouky, M, Azmy, A, Raine, P, Young, D. Kasabach-Merritt syndrome. J Pediatr Surg, 1998, 23: 109111.Google Scholar
Enjolras, O, Mulliken, J, Wassef, M, Frieden, I, Rieu, P, Burrows, P, Salhi, A, Léauté-Labrèze, C, Kozakewich, H. Residual lesions after Kasabach-Merritt phenomenon in 41 patients. J Am Acad Dermatol, 2000, 42: 224235.Google Scholar
Stone, J. Neurological rarity: Parry-Romberg syndrome. Practical Neurology, 2006, 6: 185188.Google Scholar
Leao, M, da Silva, ML. Progressive hemifacial atrophy with agenesis of the head and the caudate nucleus. J Med Genetics, 1994, 31: 969971.Google Scholar
Muchnik, RS, Aston, SJ, Rees, TD. Ocular manifestations and treatment of hemifacial atrophy. Am J Ophthalmology, 1979, 88: 889897.Google Scholar
Lewkonia, RM, Lowry, RB, Opitz, JM. Progressive hemifacial atrophy (Parry-Romberg syndrome): report with review of genetics and nosology. Am J Med Genetics, 1983, 14: 385390.Google Scholar
Inigo, F, Jimenez-Murat, Y, Arroyo, O, Fernandez, M, Ysunza, A. Restoration of facial contour in Romberg’s disease and hemifacial microsomia. Experience with 118 cases. Microsurgery, 2000, 20: 167172.Google Scholar
Shirley, MD, Tang, H, Gallione, CJ, et al. Sturge-Weber syndrome and Port-wine stains caused by somatic mutations in GNAQ. New England J Med, 2013, 368: 19711979.Google Scholar
Sturge, WA. A case of partial epilepsy, apparently due to a lesion of one of the vasomotor centres of the brain. Transactions of the Clinical Society of London, 1879, 12: 162.Google Scholar
Greenwood, M, Meechan, JG. General medicine and surgery for dental practitioners Part 4: Neurological disorders. Br Dent, 2003, 195: 1925.Google Scholar
Weber, FP. Right-sided hemi-hypertrophy resulting from right-sided congenital spastic hemiplegia, with a morbid condition of the left side of the brain, revealed by radiograms. J Neurology and Psychopathology (London), 1922, 3: 134139.Google Scholar
Kubota, M, Usami, I, Yamakawa, M, Tomita, Y, Haruta, T. Kawasaki disease with lymphadenopathy and fever as sole initial manifestations. J Paediatrics and Child Health, 2008, 44: 359362.Google Scholar
Scardina, GA, Fucà, G, Carini, F, et al. Oral necrotizing microvasculitis in a patient affected by Kawasaki disease. Medicina Oral, Patologia Oral Y Cirugia Buc, 2007, 12: E560E564.Google Scholar
Do, JH, Baek, JG, Kim, HJ, et al. Kawasaki disease presenting as parotitis in a 3 month old infant. Korean Circulation Journal, 2009, 39: 502504.Google Scholar
Michie, C, Kinsler, V, Tulloh, R, Davidson, S. Recurrent skin peeling following Kawasaki disease. Archives of Disease in Childhood, 2000, 83: 353355.Google Scholar
Gardner, EJ, Richards, RC. Multiple cutaneous and subcutaneous lesions occurring simultaneously with hereditary polyposis and osteomatosis. Am J Hum Genet, 1953, 5: 139147.Google Scholar
Knudsen, AL, Bisguard, ML, Bűlow, S. Attenuated familial adenomatous polyposis (AFAP). A review of the literature. Fam Cancer, 2003, 2: 4355.Google Scholar
Miyoshi, Y, Nagase, H, Ando, H, et al. Somatic mutations of the APC gene in colorectal tumors. Mutation in the cluster region in the APC gene. Hum Mol Genet, 1992, 1: 229233.Google Scholar
Saurin, JC, Chayvialle, JA, Ponchon, T. Management of duodenal adenomas in familial adenomatous polyposis. Fam Cancer, 2008, 7: 173177.Google Scholar
Lourenco, SV, Boggio, P, Suquyama, K, et al. Severe and relapsing upper lip enlargement in a 10 year old boy. Acta Paediatr, 2010, 99: 1958.Google Scholar
Rogers RS, . Melkersson-Rosenthal syndrome and orofacial granulomatosis. Dermatol Clin, 1996, 14: 371379.Google Scholar
Khouri, JM, Bohane, TD, Day, AS. Is orofacial granulomatosis in children a feature of Crohn’s disease. Acta Paediatr, 2005, 94: 501504.Google Scholar
Scully, C. Oral and Maxillofacial Medicine: The Basis of Diagnosis and Treatment. Ed 3, Edinburgh: Churchill Livingstone, 2013, 298301.Google Scholar
Saalman, R, Sundell, S, Kullberg-Lindhc, C, et al. Long standing oral mucosal lesions in solid organ transplanted children – a novel clinical entity. Transplantation, 2010, 89: 606.Google Scholar
Williams, PM, Greenberg, MS. Management of cheilitis granulomatosa. Oral Surg, Oral Med, Oral Pathol, 1991, 72: 436439.Google Scholar
Kano, Y, Shiohara, T, Yagita, A, et al. Treatment of recalcitrant cheilitis granulomatosa with metronid. J. Am Acad Dermatol, 1992, 27: 629630 (a3.1).Google Scholar
Haverman, CW, Sloan, TB, Sloan, RT. Multiple endocrine neoplasia syndrome type III: review and case report. Spec Care Dentist, 1995, 15: 102106.Google Scholar
Pasquali, D, Matteo, FM, Renzullo, A, et al. Multiple endocrine neoplasia of the old and the new: mini review. G Ghir, 2012, 33: 370373.Google Scholar
Kahn, MA, Cote, J, Gagel, RE. RET proto-oncogene mutation analysis in multiple endocrine neoplasia syndrome type 2B. Case report and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1996, 82: 288294.Google Scholar
Raue, F, Frank-Raue, K. Multiple endocrine neoplasia type 2. Fam Cancer, 2010, 9: 449457.Google Scholar
Camacho, CP, Huff, AO, Lindsey, SC. Early diagnosis of multiple endocrine neoplasia syndrome type 2B. A challenge for physicians. Arq Bras Endocrine Metabol, 2008, 52: 13931398.Google Scholar
Fox, E, Widemann, BC, Ckuk, MK, et al. Vandetanib in children and adolescents with multiple endocrine neoplasia type 2B associated medullary thyroid carcinoma. Clin Ca Res, 2013, 19: 42394248.Google Scholar
Mehta, A, Ricci, R, Widmer, U, et al. Fabry disease defined: baseline clinical manifestations of 366 patients in the Fabry outcome survey. European J Clinic Invest, 2004, 34: 236242.Google Scholar
Gutierrez-Solana, LG. Advances in the treatment of lysosomal diseases in infancy. Rev Neural, 2006, 5:suppl 1: 137144.Google Scholar
Gorlin, RJ, Sedano, HO. Stomatologic aspects of cutaneous diseases: angiokeratoma corporis diffusum (Fabry syndrome). J Dermatol Surg Oncol, 1979, 5: 180181.Google Scholar
Altarescu, G, Berri, R, Eiges, R, et al. Prevention of lysosomal storage diseases and derivation of mutant stem cell liner by preimplantation genetic diagnosis. Mol Biol Int, 2012, doi 10.1155/2012/97342 Epub 2012, Dec 26.Google Scholar
Surjushe, A, Jindal, S, Sao, P, et al. Anderson-Fabrys disease with marfanoid features. Indian J Dermatol Venereol, 2008, 74: 389391.Google Scholar
Prasad, SS, Radharani, C, Sinna, S, et al. Hereditary gingival fibromatosis with distinctive facies. J Contemp Dent Pract, 2012, 1: 892896.Google Scholar
Shi, J, Lin, W, Li, X, et al. Hereditary gingival fibromatous a true generation case and pathologenic mechanism research on progress of the disease. J Periodontol, 2011, 82: 10891095.Google Scholar
Avelar, RL, deLana Campos, GJ, deCarvalho-Bezerra Falcao, PG, et al. Hereditary gingival fibromatosis: a report of four cases in the same family. Quintessence Int, 2010, 41: 99102.Google Scholar
Breen, GH, Adante, R, Black, CC. Early onset of hereditary gingival fibromatosis in a 28-month-old. Pediatr Dent, 2009, 31: 286288.Google Scholar
Martelli, H Jr, Santos, SM, Guimaraes, AL, et al. Idiopathic gingival fibromatosis: description of two cases. Minerva Stomatol, 2010, 59: 143148.Google Scholar
Byers, PH, Murray, ML, et al. Heritable collagen disorders. The paradigm of Ehlers Danlos syndrome. J Invest Dermatol, 2012, 15: E6E11. doi: 10.1038/skinbio.2012.3.Google Scholar
Eder, J, Laccone, F, Rohbach, M, et al. A new COL3A1 mutation in Ehlers-Danlos syndrome type IV. Exp Dermatol, 2013, 22: 231234.Google Scholar
Mao, JR, Bristow, J. The Ehlers-Danlos syndrome: on beyond collagens. J Clin Invest, 2001, 107: 10631069.Google Scholar
Pinto, YM, Pals, G, Ziglstra, JG, et al. Ehlers-Danlos syndrome type IV. N Eng J Med, 2000, 343: 366368.Google Scholar
Yassin, OM, Rihani, FB. Multiple developmental dental anomalies and hypermobility type Ehlers-Danlos syndrome. J Clin Pediatr Dent, 2006, 30: 337341.Google Scholar
Calva, D, Howe, JR. Hamartomatous polyposis syndromes. Surg Clin North Am, 2008, 88: 779817.Google Scholar
Brosens, LA, Van Hatley, WA, Jansen, M, et al. Gastrointestinal polyposis syndromes. Current Mol Med, 2007, 7: 2946.Google Scholar
Hinds, R, Philp, C, Hyer, W, et al. Complications of childhood Peutz-Jegher’s syndrome. Implications for pediatric screening. J Pediatr Gastroenteral Nutr, 2004, 39: 219220.Google Scholar
Mehenni, H, Blouin, JL, Radhakrishna, U, et al. Peutz-Jeghers syndrome: confirmation of a linkage to chromosome 19p13.3 and identification of a potential second locus on 19p13.4. Am J Hum Genet, 1997, 61: 13271334.Google Scholar
McCarity, TJ, Amos, C. Peutz-Jegher’s syndrome: clinicopathology and molecular alterations. Cell Mol Life Sci, 2006, 63: 21352144.Google Scholar
Tovar, JA, Eizaquirre, I, Albert, A, et al. Peutz-Jegher’s syndroms in children: report of two cases and review of the literature. J Pediatr Surg, 1983, 18: 16.Google Scholar
Loeys, BL, Chen, J, Neptuine, ER. A syndroms of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 and TGFBR2. Nat Genet, 2005, 37: 275281.Google Scholar
Dean, JG. Marfan syndromes. Clinical diagnosis and management. European J Hum Genetics, 2007, 15: 724733.Google Scholar
deVries, BB, Pals, G, Odink, R, et al. Homozygosity for a FBN1 missence mutation clinical and molecular evidence for recessive Marfan syndrome. Eur J Hum Genet, 2007, 15: 930935.Google Scholar
Faivre, L, Gorlin, FJ, Wirtz, MK, et al. In frame fibrillin-1 gene deletion in autosomal dominant weill-marchesani syndrome. J Med Genet, 2003, 40: 3436.Google Scholar
Pyeitz, RE. The Marfan syndrome in childhood. Features, natural history and differential diagnosis. Prog Pediatric Cariol, 1996, 5: 151157.Google Scholar
Bolar, N, Van Laer, , Loeys, BL. Marfan syndrome: from gene to therapy. Curr Opin Pediatr, 2012, 24: 498504.Google Scholar
Cohen, MM Jr. Proteus syndrome: an update. Am J Med Genet C Seminar Med Genet, 2005, 137: 3852.Google Scholar
Hoey, SE, Eastwood, D, Monsell, , et al. Histopathological features of proteus syndrome. Clin Exp Dermatol, 2008, 33: 234238.Google Scholar
Happle, R. The manifold faces of proteus syndrome. Arch Dermatol, 2004, 140: 10011002.Google Scholar
Twede, JV, Turner, JT, Biesecker, LG, et al. Evolution of skin lesions in proteus syndrome. J Am Acad Dermatol, 2005, 52: 834838.Google Scholar
Cardoso, MT, deCarvalho, TB, Casulari, LA, et al. Proteus syndrome and somatic mosaigism of the chromosome 16. Panminerva Med, 2003, 45: 267271.Google Scholar
Lindhurst, MJ, Sapp, JC, Teer, JK, et al. A mosaic activating mutation in AKT1 associated with proteus syndrome. N Engl J Med, 2011, 365: 611619.Google Scholar
Bhupal, HK. Ramsay Hunt syndrome presenting in primary care. Practitioner, 2010, 254: 3335.Google Scholar
Kleinschmidt-DeMasters, BK, Gilden, DH. The expanding spectrum of herpes virus infections of the nervous system. Brainn Pthol, 2001, 11: 440451.Google Scholar
Sandoval, CC, Nunez, FA, Lizama, CM, et al. Ramsay Hunt syndrome in children: four cases and review. Rev Chilena Infectol, 2008, 25: 458464.Google Scholar
Ryer, EW, Lee, HY, Lee, SY, et al. Clinical manifestations and prognosis of patients with Ramsay Hunt syndrome. Am J Otolaryngol, 2011, 33: 313318.Google Scholar
Furuta, Y, Aizawa, H, Ohtani, F, et al. Varicella-Zoster virus reactivation on Ramsay Hunt syndrome. Ann Otol Rhinol Laryngol, 2004, 113: 700705.Google Scholar
Coffin, SE, Hodkinka, RL. Utility of direct immunofluorescence and virus culture for detection of varicella-zoster virus in skin lesions. J Clin Microiol, 1995, 33: 27922795.Google Scholar
Naganawa, S, Nakashima, T. Cutting edge of inner ear MRI. Acta Otolaryngol Supp, 2009, 560: 1521.Google Scholar
Uscategui, T, Doree, C, Chamberlain, IJ, et al. Antiviral therapy for Ramsay Hunt syndrome (herpes zoster oticus with facial palsy) in adults. Cochrane Data Base System Review, Oct 8 2008, doi: 10.1002/14651858.Google Scholar
deRu, JA, VanBenthem, PP. Combination therapy is preferable for patients with Ramsay Hunt syndrome. Oto Neurotol, 2011, 32: 852855.Google Scholar
Albers–Schonberg, H. Roetgenbilder einer seltenen knochennerkrankung. Muuch Med Wochenschr, 1904, 51: 365.Google Scholar
Start, Z, Savarirayan, R. Osteopetrosis. Orphanet J Rare Dis, 2009, 4: 5.Google Scholar
Tritelbaum, SL. Bone resorption by osteoclasts. Science, 2000, 289: 15041508.Google Scholar
Wada, T, Nakashima, T, Oliveria-dos-Santos, , et al. The molecular scatfold Bag 2 is a critical component of RANK signaling and osteoclastogenesis. Nat Med, 2005, 11: 394399.Google Scholar
Cleiren, E, Benichou, O, VanHul, E, et al. Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in CICN7 chloride channel gene. Hum Mol Genet, 2001, 10: 28612667.Google Scholar
Mazzolari, E, Forino, C, Razza, A, et al. A single-center experience in 20 patients with infantile malignant osteopetrosis. Am J Hematol, 2009, 84: 473479.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology: A Rationale for Diagnosis and Treatment. Chicago: Quintessence Publishing Company, 2012.Google Scholar
Symposium on osteopetrosis: proceedings and abstracts of the first interactive symposium on osteopetrosis: Biology and therapy. Oct 23–24, 2003, Bethesda Maryland. USA J Bone Miner Res, 2004, 19: 1356–1375.Google Scholar
Armstrong, DG, Newfield, JY, Gillespie, R. Orthopedic management of osteopetrosis: results of a survey and review of the literature. J Pediatr Orthop, 1999, 19: 122132.Google Scholar
Lata, PHJ, Sharma, R, Parmar, M. Massive osteolysis of hemimandible: a case report. J Maxillofac Oral Surg, 2009, 8: 381383.Google Scholar
Lee, S, Finn, L, Sze, RW. Gorham Stout syndrome (disappearing bone disease): two additional case reports and a review of the literature. Arch Otolaryngol Head Neck Surg, 2003, 129: 13401343.Google Scholar
Hu, P, Yuan, XG, Chan, XY, et al. Gorham-Stout syndrome in mainland China: a case series of 67 patients and review of the literature. J Zhejiang Univ Sci B, 2013, 14: 729735.Google Scholar
Ruggieri, P, Montalti, M, Angelini, A, et al. Gorham-Stout disease: the experience of the Rizzoli Institute and review of the literature. Skeletal Radiol, 2011, 40: 13911397.Google Scholar
Dong, Q, Yafei, Z, Chuankong, S. Gorham-Stout syndrome affecting the left mandible: a case report. Exp Ther Med, 2013, 5: 162164.Google Scholar
Escande, C, Schouman, T, Francoise, G, et al. Histological features and management of a mandibular Gorham-Stout disease: a case report and review of maxillofacial cases in the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2008, 106: e30e37.Google Scholar
Silva, S. Gorham-Stout disease affecting both hands: stabilization during bisphosphonate treatment. Hand (NY), 2011, 6: 8589.Google Scholar
Zheng, MW, Yang, M, Qiu, JX, et al. Gorham-Stout syndrome presenting in a 5-year-old girl with successful bisphosphonate therapeutic effect. Exp Ther Med, 2012, 4: 449451.Google Scholar
Nir, V, Guralnik, L, Livnat, G. Propranolol as a treatment option in Gorham-Stout syndrome. A case report. Pediatr Pulmonol, 2014, 49: 417419.Google Scholar
Baldwin, DJ, Thayalan, K, Amrita, J, et al. Glial choristoma of the tongue: report of a case and clinicopathological features. Int J of Pediatr Dent, 2009, 19: 219221.Google Scholar
Martinez-Peῆuela, A, Quer, S, Beloqui, R. Glial choristoma of the middle ear: report of 2 cases. Otology and Neurology, 2011, 32: e26e27.Google Scholar
Strome, SE, McClatchey, K, Kileny, PR, et al. Neonatal choristoma of the tongue containing glial tissue. Diagnostic and surgical considerations. Int J Pediatr Otorhino Laryngol, 1995, 33: 265273.Google Scholar
Sun, LS, Zhi-Peng, S, Xu-Chen, MA. Glial choristoma in the oral and maxillofacial region. A clinicopathologic study of 6 cases. Arch Pathol Lab Med, 2008, 132: 984998.Google Scholar
Fan, SQ, Ou, YM, Liang, QC. Glial choristoma of the tongue: report of a case and review of the literature. Pediatr Surg Int, 2008, 24: 515519.Google Scholar
Takamizawa, S, Inoue, T, Ono, Y, et al. A case report of glial choristoma of the tongue. J Pediatr Surg, 2006, 41: e13e15.Google Scholar
Fordyce, JA. A peculiar affection of the mucous membrane of the lips and oral cavity. J Cutan Dis, 1896, 14: 413419.Google Scholar
Lee, JH, Lee, JH, NA HK: Clinicopathologic manifestations of patients with Fordyce’s spots. Ann Dermatol, 2012, 24: 103106.Google Scholar
Oliver, JH. Fordyce granules on the prolabia and oral mucous membranes of a selected population. SADJ, 2006, 61: 7274.Google Scholar
DeFelice, C, Patrini, S, Chitano, G. et al. Fordyce granules and hereditary non-polyposis colorectal cancer syndrome. Gut, 2005, 41: 12791282.Google Scholar
Miller, AS, McCrea, MW. Sebaceous gland adenoma of the buccal mucosa. J Oral Surg, 1968, 26: 593595.Google Scholar
Miller, ML, Harford, RR, Yeager, JK. Fox Fordyce disease treated with topical clindamycin solution. Arch Dermatol, 1995, 131: 11121113.Google Scholar
Siggers, DC. Cleidocranial dysostosis. Dev Med Child Neurol, 1975, 4: 522524.Google Scholar
Shen, Z, Chio, C, Chun, Z, et al. Cleidocranial dysplasia: Report of 3 cases and literature review. Clinical Pediatrics, 2009, 2: 194198.Google Scholar
Bufalino, A, Paranaiba, LMR, Gouvêa, AF, et al. Cleidocranial dysplasia: oral features and genetic analysis of 11 patients. Oral Diseases, 2012, 18: 184190.Google Scholar
Ducy, P, Zhang, R, Geoffroy, V, et al. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell, 1997, 89: 747754.Google Scholar
Komori, T. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res, 2010, 339: 189195.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology: A Rationale for Diagnosis and Treatment. Ed 2, Chicago: Quintessence Publishing Company, 2012, 231232.Google Scholar
Suda, N, Hattori, M, Kosaki, K, et al. Correlation between genotype and supernumerary tooth formation in cleidocranial dysplasia. Orthod Craniofac Res, 2010, 13: 197202.Google Scholar
Gorlin, RJ, Cohen, MN, Levin, LS. Syndromes of the Head and Neck. Ed 3, New York NY, Oxford University Press; 1990: 249253.Google Scholar
Jarvis, JL, Keats, TE. Cleidocranial dysostosis: a review of 40 new cases. Am J Roentgenol Radium Ther Nucl Med, 1974, 121: 516.Google Scholar
Perdigao, PF, Silva, ED, Sakurai, E, et al. Idiopathic bone cavity: a clinical, radiographic and histological study. Brit J Oral MG, 2003, 41: 407409.Google Scholar
Shigematsu, K, Fujita, W. Atypical simple bone cyst of the mandible. J Oral Maxillofac Surg, 1994, 23: 298299.Google Scholar
Manor, E, Kachko, L, Puterman, MB. Cystic lesions of the jaws: a clinicopathological study of 322 cases and review of the literature. Int J Med Sci, 2012, 9: 2026.Google Scholar
Patrikiou, A, Sepheriadouo-Mauropulou, G, Zambelis, G. Bilateral traumatic bone cysts of the mandible. Oral Surg, 1981, 51: 131133.Google Scholar
Zhu, L, Wang, X. Histological examination of the auricular cartilage and pseudocyst of the auricle. J Laryngol Otol, 1999, 106: 103104.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology: A Rationale for Diagnosis and Treatment. Ed 2, Chicago: Quintessence Publishing Company, 2012, 216217.Google Scholar
Velez, I, Siegel, MA, Mintz, SM et al. The relationship between idiopathic bone cavity and orthodontic tooth movement: analysis of 44 cases. Dentomaxillofac Radiol, 2010, 39: 162166.Google Scholar
Cortell-Ballester, I, Figueiredo, R, Berini-Aytes, L, et al. Traumatic bone cyst: a retrospective study of 21 cases. Med Oral Pathol Oral Cir Bucal 2009, 14: E239E243.Google Scholar
Kaffe, I, Littner, MM, Arensburg, B. The anterior buccal mandibular depression. Physical and radiologic features. Oral Surg Oral Med Oral Pathol, 1990, 69: 647654.Google Scholar
Apruzzese, D, Longoni, S. Stafne cyst in an anterior location. Oral Maxillofac Surg, 1999, 57: 333338.Google Scholar
Stafne, EC. Bone cavities situated near the angle of the mandible. J Am Dent Assoc, 1942, 29: 19691972.Google Scholar
Buchner, A, Carpenter, WM, Merrell, PW, et al. Anterior lingual salivary gland defect. Evaluation of twenty-four cases. Oral Surg Oral Med Oral Pathol, 1991, 71: 131136.Google Scholar
Shimizu, M, Osa, N, Okamura, K, et al. CT analysis of the Stafne’s bone defects of the mandible. Dentomaxillofac Radiol, 2006, 35: 95102.Google Scholar
Baughman, R. Testing your diagnostic skills. Case No. 2. Lingual mandibular salivary gland depression. Todays FDA, 2006, 18: 2023.Google Scholar
Sisman, Y, Miloglu, O, Sekerci, AE, et al. Radiographic evaluation of the prevalence of Stafne bone defect: a study from two centres in Turkey. Dentomaxillofacial Radiol, 2011, 35: 17.Google Scholar
Reye, RDK. A consideration of certain subdermal fibromatous tumors of infancy. J Pathol, 1956, 72: 149154.Google Scholar
Sotelo-Avilla, C, Bale, PM. Subdermal fibrous hamartomas of infancy: pathology of 40 cases and differential diagnosis. Pediatr Path, 1994, 14: 3952.Google Scholar
Paller, AS, Gonzalez-Grussi, F, Sherman, JO. Fibrous hamartomas of infancy: eight additional cases and a review of the literature. Arch Dermatol, 1989, 125: 8891.Google Scholar
Scott, DM, Pena, JR, Omura, E. Fibrous hamartomas of infancy. J Am Acad Dermatol, 1999, 41: 857858.Google Scholar
Westphal, SL, Bancila, E, Milgraum, SS. Fibrous hamartomas of infancy presenting as an inflamed epidermoid cyst. Pediatr Dermatol, 1990, 7: 157.Google Scholar
Boquot, JE, Gundlach, KKH. Odd tongues: the prevalence of common tongue lesions in 23,616 white Americans over 35 years of age. Quintessence Int, 1986, 17: 719730.Google Scholar
Ugar-Cankel, D, Denizci, S, Hocaoglu, J. Prevalence of tongue lesions among Turkish school children, Sandi Med, 2005, 26: 19621967.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology: A Rationale for Diagnosis and Treatment. Ed 2, Chicago: Quintessence Publishing Company, 2012, 99.Google Scholar
Mathew, AL, Pai, KM, Sholapurkar, AA, et al. The prevalence of oral mucosal lesions in patients visiting a dental school in Southern India. Indian J Dent Res, 2008, 19: 99103.Google Scholar
Koay, CL, Lim, JA, Siar, CH. The prevalence of tongue lesions in Malaysian dental out-patients from the Klang valley area. Oral Dis, 2011, 17: 210216.Google Scholar
Ohtani, J, Hoffman, WY, Vargevik, K. Team management and treatment outcomes for patients with hemifacial microsomia. Am J Orthodontics and Dentofacial Orthopedies, 2012, 141: 574581.Google Scholar
Poswillo, D. The pathogenesis of first and second bronchial arch syndrome. Oral Surg, Oral Med, Oral Pathol, 1973, 35: 301328.Google Scholar
Kelberman, D, Tyson, DC, Chandler, AM, et al. Hemifacial microsomia: progress to understanding the genetic basis of a complex malformation syndrome. Hum Genet 2001, 109: 638645.Google Scholar
Pruzansky, S. Not all dwarfed mandibles are alike. Birth Defects, 1969, 4: 120129.Google Scholar
Cousley, RR A comparison of two classification systems for hemifacial microsomia. Br J Oral Maxillof Surg, 1993, 31: 7882.Google Scholar
Zanardi, G, Parente, EV, Esteves, LS. Orthodontic and surgical treatment of a patient with hemifacial microsomia. Am J Orthodontics and Dentofacial Orthopedics, 2012, 141: 51305139.Google Scholar
Miranda, R, Barros, LM, Nogueira dos Santos, LA, et al. Clinical and imaging features in a patient with hemifacial hyperplasia. J Oral Sci, 2010, 52: 509512.Google Scholar
Bergman, JA. Primary hemifacial hypertrophy. Review and report of a case. Arch Otolaryngol, 1973, 97: 490494.Google Scholar
Yashimoto, H, Hano, H, Kobayashi, K, et al. Increased proliferative activity of osteoblasts in congenital hemifacial hypertrophy. Plast Reconstr Surg, 1998, 102: 16051610.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology: A Rationale for Diagnosis and Treatment. Ed 2, Quintessence Publishing Company, 2012, 240Google Scholar
Islam, MN, Bhattacharyya, I, Ojha, J, et al. Comparison between true and partial hemifacial hypertrophy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007, 104: 501509.Google Scholar
Azevedo, RA, Veronica, FS, Sarmento, VA, et al. Hemifacial hyperplasia. A case report. Quintessence Int, 2005, 36: 483486.Google Scholar
Wisniewski, SA, Trzeciak, WH. A new mutation resulting in the truncation of the TRAF6-interacting domain of XEDAR: a possible novel cause of hypohidrotic ectodermal dysplasia. J Med Genet, 2012, 49: 499501.Google Scholar
Clarke, A. Hypohidrotic ectodermal dysplasia. J Med Genet, 1987, 24: 659663.Google Scholar
Subramaniam, P, Neeraja, G. Witkop’s tooth and nail syndrome: a multifaceted approach to dental management. J Indian Soc Pedod Prev Dent, 2008, 26: 2225.Google Scholar
Lamartine, J. Towards a new classification of ectodermal dysplasias. Cin Exp Dermatol, 2003, 28: 351355.Google Scholar
Priolo, M, Lagana, C. Ectodermal dysplasia a new clinical-genetic classification. J Med Genet, 2001, 38: 579585.Google Scholar
Guckes, AD, Brahim, JS, McCarthy, GR, et al. Using endosseous dental implants for patients with ectodermal dysplasia. JADA, 1991, 122: 5962.Google Scholar
Ekstrand, K, Thomsson, M. Ectodermal dysplasia with partial anodontia: prosthetic treatment with implant prosthesis. J Dent Child, 1988, 4: 282284.Google Scholar
Smith, RA, Vargervik, K, Kearns, G, et al. Placement of an endosseous implant in a growing child with ectodermal dysplasia. Oral Surg Oral Med Oral Pathol, 1993, 75: 669673.Google Scholar
Urzua, B, Ortega-Pento, , Morales-Bozo, et al. Defining a new candidate gene for amelogenesis imperfecta: from molecular genetics to biochemistry. Biochem Genet, 2011, 49: 104121.Google Scholar
Stephanopoulos, G, Garefalaki, E, Lyroudia, K. Genes and related proteins involved in amelogenesis imperfect. J Dent Res, 2005, 84: 11171126.Google Scholar
Weinmann, JP, Svobcda, JF, Woods, RW. Hereditary disturbances of enamel formation and calcification. J Am Dent Assoc, 1945, 32: 397418.Google Scholar
Chaudhary, M, Dixit, S, Singh, A. Amelogenesis imperfecta: reporting of a case and review of the literature. J Oral Maxillofac Pathol, 2009, 13: 7077.Google Scholar
Witkop, CJ Jr. Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revisited: problems in classification. J Oral Pathol Med, 1989, 17: 547543.Google Scholar
Schulze, C. Erbbedingte strukturanomalicin menschlicher zahne. Acta Genet Med Gemellol, 1957, 7: 231235.Google Scholar
Kinney, H, Pople, JA, Driessen, CH, et al. Intrafibrillar mineral may be absent in dentinogenesis imperfecta type II. J Dental Res, 2001, 1:80: 15551559.Google Scholar
Thofakura, SR, Mah, J, Srinivasan, R, et al. The non collagenous dentin matrix proteins are involved in dentinogenesis imperfecta type II. J Dent Res 2000, 79: 835839.Google Scholar
Bhandari, S, Pannu, K. Dentinogenesis imperfecta: a review and case report of a family over four generations. Indian J Dent Res, 2008, 19: 357361.Google Scholar
Shields, ED, Bixler, D, El-Kafrawy, AM. A proposed classification of heritable human dentin defect with a description of a new entity. Arch Oral Biol, 1973, 18: 543553.Google Scholar
Levin, LS, Leaf, SH, Jemini, RJ, et al. Dentinogenesis imperfecta in the Brandywine isolate hereditary opalescent dentin in an Ashkenazic Jewish family. Oral Surg Oral Med Oral Pathol, 1985, 59: 608615.Google Scholar
Von Marschall, Z, Mok, S, Phillips, MD. Rough endoplasmic reticulum trafficking errors by different classes of mutant dentin sialophosphorprotein (DSPP) causes dominant negative effects in both dentinogenesis imperfecta and dentin dysplasia by encapping normal DSPP. J Bone Miner Res, 2012, 27: 13091321.Google Scholar
Buday, K. Beiträge zar Lehre der osteogenesis imperfect, 1895.Google Scholar
Sillence, DO, Senn, A, Danks, DM. Genetic heterogenicity in osteogenesis imperfecta. J Med Genet, 1979, 16: 101116.Google Scholar
Rosen, A, Modig, M, Larson, O. Orthognathic bimaxillary surgery in two patients with osteogenesis imperfecta and a review of the literature. Int J Oral Surg, 2011, 40: 866873.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology: A Rationale for Diagnosis and Treatment. Ed 2, Chicago: Quintessence Publishing Company, 2012, 232236.Google Scholar
Huber, MA. Osteogenesis imperfect. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2007, 103: 314320.Google Scholar
Bergstrom, L. Osteogenesis imperfecta: otologic and maxillofacial aspects. Laryngoscope, 1977, 87: 142.Google Scholar
O’Connel, AC, Marini, JC. Evaluation of oral problems in an osteogenesis imperfect population. Oral SLurg Oral Med Oral Pathol Oral Radiol Endod, 1999, 87: 189196.Google Scholar
Kindelan, J, Tobin, M, Robert-Harry, RA. Orthodontic and orthognatic management of a patient with osteogenesis imperfect and dentinogenesis imperfect. A case report. J Orthod 2003, 30: 291296.Google Scholar
Marszalek, B, Wyojcicki, P, Kobus, K, et al. Clinical features, treatment and genetic background of Treacher Collins syndrome. J Appl Genet, 2002, 43: 223233.Google Scholar
Dixon, J, Edwards, SJ, Anderson, L. Identification of the complete coding sequence and genetic organization of the Treacher Collins syndrome gene. Genome Res, 1997, 7: 223234.Google Scholar
Rovin, S, Dachi, SF, Borenstein, DB, et al. Mandibulofacial dysostosis, a familial study of five generations. J Pediat, 1964, 65: 215221.Google Scholar
Jones, KL, Smith, DW, Harvey, MA, et al. Mandibulofacial dysostosis older paternal age and fresh gene mutation: data on additional disorders. J Pediat, 1975, 86: 8488.Google Scholar
LeMerrer, M, Cikuli, M, Ribier, J, et al. Acrofacial dysostosis. Am J Med Genet, 1989, 33: 318322.Google Scholar
Dixon, J, Trainor, MJ, Dixon, MJ. Treacher Collins syndrome. Orthodontics and Craniofacial Research, 2007, 10: 8895.Google Scholar
Horiuchi, K, Ariga, T, Fujioka, H, et al. Mutational analysis of the TCOF1 gene in 11 Japanese patients with Treacher Collins syndrome and mechanism of mutagenesis. J Med Genet, 2005, 134:363: 367.Google Scholar
Cohen, J, Ghezzi, F, Goncalves, L, et al. Prenatal sonographic diagnosis of Treacher Collins Syndrome: A case and review of the literature. Am J Perinatol, 1995, 12: 416419.Google Scholar
Cannon, AB. White nevus of the mucosa (naevus spongiosus albus mucosa) Arch Derm Syphiol, 1935, 31: 365373.Google Scholar
Hernandez-Martin, A, Fernandez-Lopez, E, deUnamuno, M. Diffuse whitening of the oral mucosa in a child. Pediatr Dermatol 1997, 14: 316320.Google Scholar
Naseem, S, Brady, R, McDonald, J. Diffuse white oral plaques. Clinical Infectious Diseases 2003, 36: 519520.Google Scholar
Jorgenson, RJ, Levin, LS. White sponge nevus. Arch Dermatol 1981, 117: 7376.Google Scholar
Allingham, RR, Seo, B, Rapersaud, E, et al. A duplication in chromosome 4q35 is associated with hereditary benign intraepithelial dyskeratosis. Am J Hum Genet 2001, 68: 491494.Google Scholar
Chao, SC, Tsai, Y-M, Yang, MH, et al. A novel mutation in the keratin 4 gene causing white sponge naevus. Br J Dermatol 2003, 184: 11251128.Google Scholar
Sadeghi, EM, Witkop, CJ. The presence of Candida albicans in hereditary benign intraepithelial dyskeratosis. An ultrastructural observation. Oral Surg Oral Med Oral Pathol 1979, 48: 342346.Google Scholar
Greer, RO Jr. Oral manifestations of smokeless tobacco use. Otolaryngologic Clinics of North America, 2010, 44: 3156.Google Scholar
Lim, J, Ng, S. Oral tetracycline rinse improves symptoms of white sponge nevus. J Am Acad Dermatol, 1992, 26: 10031005.Google Scholar
Elliott, M, Bayly, R, Cole, T, Temple, IK, Maher, ER. Clinical features and natural history of Beckwith-Wiedemann syndrome: presentation of 74 new cases. Clinical Genetics, 1994, 46, 168174.Google Scholar
Thorburn, MJ, Wright, ES, Miller, CG, Smith-Read, EHL. Exomphalos-macroglossia-gigantism syndrome in Jamaican infants. American J Diseases of Children, 1970, 119: 316321.Google Scholar
Pettenati, MJ, Haines, JL, Higgins, RR, Wappner, RS, Palmer, CG, Weaver, DD. Wiedemann-Beckwith syndrome: presentation of clinical and cytogenetic data on 22 new cases and review of the literature. Human Genetics, 1986, 74: 143154.Google Scholar
DeBaun, MR, Niemitz, EL, McNeil, DE, Brandenburg, SA, Lee, MP, Feinberg, AP. Epigenetic alterations of H19 and L1T1 distinguish patients with Beckwith-Wiedemann syndrome with cancer and birth defects. Am J Human Genetics, 2002, 70: 604611.Google Scholar
Ullbro, C, Crossner, CG, Nederfors, T, Alfadley, A, Thestrup-Pedersen, K. Dermatological and oral findings in a cohort of 47 patients with Papillon-Lefevre syndrome. J Am Acad Dermatol, 2003, 48: 345351.Google Scholar
Cagli, NA, Hakki, SS, Darsun, R, et al. Clinical genetic, and biochemical findings in two siblings with Papillon-Lefévre syndrome. J Periodontal, 2005, 76: 23222329.Google Scholar
Wani, A, Devkar, N, Patole, M, Shouche, Y. Description of two new cathespin C gene mutations in patients with Papillon-Lefévre syndrome. J Peridontol, 2005, 76: 23222329.Google Scholar
Zadik, Y, Drucker, S, Pallmon, S. Migratory stomatitis (ectopic geographic tongue) on the floor of the mouth. J Am Acad Dermatol, 2011, 6: 459460.Google Scholar
Kvien, T, Glennas, A, Melby, K, Granfors, K, et al. Reactive arthritis: incidence, triggering agents and clinical presentation. J Rheumatology, 1994, 21: 115122.Google Scholar
Hill Gaston, JS, Lillicrap, MS. Arthritis associated with enteric infection. Clinical Rheumatology, 2003, 17: 219239.Google Scholar
Suhanga, J, Chakshu, A, Mohideen, K, et al. Cherubism combined with epilepsy, mental retardation and gingival fibromatosis. (Ramon syndrome): a case report. Head and Neck Pathol, 2010, 4: 12131.Google Scholar
Ramon, Y, Berman, W, Bubus, JJ. Gingival fibromatosis combined with Cherubism. Oral Surg, Oral Med, Oral Pathol, 1967, 24: 436448.Google Scholar
Hall, G. Kasabach-Merritt syndrome: pathogenesis and management. Br J Haematol, 2001, 112: 851862.Google Scholar
Kasabach, HH, Merritt, KK. Capillary hemangioma with extensive purpura: report of a case. Am J Dis Child, 1940, 59: 1063.Google Scholar
el-Dessouky, M, Azmy, A, Raine, P, Young, D. Kasabach-Merritt syndrome. J Pediatr Surg, 1998, 23: 109111.Google Scholar
Enjolras, O, Mulliken, J, Wassef, M, Frieden, I, Rieu, P, Burrows, P, Salhi, A, Léauté-Labrèze, C, Kozakewich, H. Residual lesions after Kasabach-Merritt phenomenon in 41 patients. J Am Acad Dermatol, 2000, 42: 224235.Google Scholar
Stone, J. Neurological rarity: Parry-Romberg syndrome. Practical Neurology, 2006, 6: 185188.Google Scholar
Leao, M, da Silva, ML. Progressive hemifacial atrophy with agenesis of the head and the caudate nucleus. J Med Genetics, 1994, 31: 969971.Google Scholar
Muchnik, RS, Aston, SJ, Rees, TD. Ocular manifestations and treatment of hemifacial atrophy. Am J Ophthalmology, 1979, 88: 889897.Google Scholar
Lewkonia, RM, Lowry, RB, Opitz, JM. Progressive hemifacial atrophy (Parry-Romberg syndrome): report with review of genetics and nosology. Am J Med Genetics, 1983, 14: 385390.Google Scholar
Inigo, F, Jimenez-Murat, Y, Arroyo, O, Fernandez, M, Ysunza, A. Restoration of facial contour in Romberg’s disease and hemifacial microsomia. Experience with 118 cases. Microsurgery, 2000, 20: 167172.Google Scholar
Shirley, MD, Tang, H, Gallione, CJ, et al. Sturge-Weber syndrome and Port-wine stains caused by somatic mutations in GNAQ. New England J Med, 2013, 368: 19711979.Google Scholar
Sturge, WA. A case of partial epilepsy, apparently due to a lesion of one of the vasomotor centres of the brain. Transactions of the Clinical Society of London, 1879, 12: 162.Google Scholar
Greenwood, M, Meechan, JG. General medicine and surgery for dental practitioners Part 4: Neurological disorders. Br Dent, 2003, 195: 1925.Google Scholar
Weber, FP. Right-sided hemi-hypertrophy resulting from right-sided congenital spastic hemiplegia, with a morbid condition of the left side of the brain, revealed by radiograms. J Neurology and Psychopathology (London), 1922, 3: 134139.Google Scholar
Kubota, M, Usami, I, Yamakawa, M, Tomita, Y, Haruta, T. Kawasaki disease with lymphadenopathy and fever as sole initial manifestations. J Paediatrics and Child Health, 2008, 44: 359362.Google Scholar
Scardina, GA, Fucà, G, Carini, F, et al. Oral necrotizing microvasculitis in a patient affected by Kawasaki disease. Medicina Oral, Patologia Oral Y Cirugia Buc, 2007, 12: E560E564.Google Scholar
Do, JH, Baek, JG, Kim, HJ, et al. Kawasaki disease presenting as parotitis in a 3 month old infant. Korean Circulation Journal, 2009, 39: 502504.Google Scholar
Michie, C, Kinsler, V, Tulloh, R, Davidson, S. Recurrent skin peeling following Kawasaki disease. Archives of Disease in Childhood, 2000, 83: 353355.Google Scholar
Gardner, EJ, Richards, RC. Multiple cutaneous and subcutaneous lesions occurring simultaneously with hereditary polyposis and osteomatosis. Am J Hum Genet, 1953, 5: 139147.Google Scholar
Knudsen, AL, Bisguard, ML, Bűlow, S. Attenuated familial adenomatous polyposis (AFAP). A review of the literature. Fam Cancer, 2003, 2: 4355.Google Scholar
Miyoshi, Y, Nagase, H, Ando, H, et al. Somatic mutations of the APC gene in colorectal tumors. Mutation in the cluster region in the APC gene. Hum Mol Genet, 1992, 1: 229233.Google Scholar
Saurin, JC, Chayvialle, JA, Ponchon, T. Management of duodenal adenomas in familial adenomatous polyposis. Fam Cancer, 2008, 7: 173177.Google Scholar
Lourenco, SV, Boggio, P, Suquyama, K, et al. Severe and relapsing upper lip enlargement in a 10 year old boy. Acta Paediatr, 2010, 99: 1958.Google Scholar
Rogers RS, . Melkersson-Rosenthal syndrome and orofacial granulomatosis. Dermatol Clin, 1996, 14: 371379.Google Scholar
Khouri, JM, Bohane, TD, Day, AS. Is orofacial granulomatosis in children a feature of Crohn’s disease. Acta Paediatr, 2005, 94: 501504.Google Scholar
Scully, C. Oral and Maxillofacial Medicine: The Basis of Diagnosis and Treatment. Ed 3, Edinburgh: Churchill Livingstone, 2013, 298301.Google Scholar
Saalman, R, Sundell, S, Kullberg-Lindhc, C, et al. Long standing oral mucosal lesions in solid organ transplanted children – a novel clinical entity. Transplantation, 2010, 89: 606.Google Scholar
Williams, PM, Greenberg, MS. Management of cheilitis granulomatosa. Oral Surg, Oral Med, Oral Pathol, 1991, 72: 436439.Google Scholar
Kano, Y, Shiohara, T, Yagita, A, et al. Treatment of recalcitrant cheilitis granulomatosa with metronid. J. Am Acad Dermatol, 1992, 27: 629630 (a3.1).Google Scholar
Haverman, CW, Sloan, TB, Sloan, RT. Multiple endocrine neoplasia syndrome type III: review and case report. Spec Care Dentist, 1995, 15: 102106.Google Scholar
Pasquali, D, Matteo, FM, Renzullo, A, et al. Multiple endocrine neoplasia of the old and the new: mini review. G Ghir, 2012, 33: 370373.Google Scholar
Kahn, MA, Cote, J, Gagel, RE. RET proto-oncogene mutation analysis in multiple endocrine neoplasia syndrome type 2B. Case report and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1996, 82: 288294.Google Scholar
Raue, F, Frank-Raue, K. Multiple endocrine neoplasia type 2. Fam Cancer, 2010, 9: 449457.Google Scholar
Camacho, CP, Huff, AO, Lindsey, SC. Early diagnosis of multiple endocrine neoplasia syndrome type 2B. A challenge for physicians. Arq Bras Endocrine Metabol, 2008, 52: 13931398.Google Scholar
Fox, E, Widemann, BC, Ckuk, MK, et al. Vandetanib in children and adolescents with multiple endocrine neoplasia type 2B associated medullary thyroid carcinoma. Clin Ca Res, 2013, 19: 42394248.Google Scholar
Mehta, A, Ricci, R, Widmer, U, et al. Fabry disease defined: baseline clinical manifestations of 366 patients in the Fabry outcome survey. European J Clinic Invest, 2004, 34: 236242.Google Scholar
Gutierrez-Solana, LG. Advances in the treatment of lysosomal diseases in infancy. Rev Neural, 2006, 5:suppl 1: 137144.Google Scholar
Gorlin, RJ, Sedano, HO. Stomatologic aspects of cutaneous diseases: angiokeratoma corporis diffusum (Fabry syndrome). J Dermatol Surg Oncol, 1979, 5: 180181.Google Scholar
Altarescu, G, Berri, R, Eiges, R, et al. Prevention of lysosomal storage diseases and derivation of mutant stem cell liner by preimplantation genetic diagnosis. Mol Biol Int, 2012, doi 10.1155/2012/97342 Epub 2012, Dec 26.Google Scholar
Surjushe, A, Jindal, S, Sao, P, et al. Anderson-Fabrys disease with marfanoid features. Indian J Dermatol Venereol, 2008, 74: 389391.Google Scholar
Prasad, SS, Radharani, C, Sinna, S, et al. Hereditary gingival fibromatosis with distinctive facies. J Contemp Dent Pract, 2012, 1: 892896.Google Scholar
Shi, J, Lin, W, Li, X, et al. Hereditary gingival fibromatous a true generation case and pathologenic mechanism research on progress of the disease. J Periodontol, 2011, 82: 10891095.Google Scholar
Avelar, RL, deLana Campos, GJ, deCarvalho-Bezerra Falcao, PG, et al. Hereditary gingival fibromatosis: a report of four cases in the same family. Quintessence Int, 2010, 41: 99102.Google Scholar
Breen, GH, Adante, R, Black, CC. Early onset of hereditary gingival fibromatosis in a 28-month-old. Pediatr Dent, 2009, 31: 286288.Google Scholar
Martelli, H Jr, Santos, SM, Guimaraes, AL, et al. Idiopathic gingival fibromatosis: description of two cases. Minerva Stomatol, 2010, 59: 143148.Google Scholar
Byers, PH, Murray, ML, et al. Heritable collagen disorders. The paradigm of Ehlers Danlos syndrome. J Invest Dermatol, 2012, 15: E6E11. doi: 10.1038/skinbio.2012.3.Google Scholar
Eder, J, Laccone, F, Rohbach, M, et al. A new COL3A1 mutation in Ehlers-Danlos syndrome type IV. Exp Dermatol, 2013, 22: 231234.Google Scholar
Mao, JR, Bristow, J. The Ehlers-Danlos syndrome: on beyond collagens. J Clin Invest, 2001, 107: 10631069.Google Scholar
Pinto, YM, Pals, G, Ziglstra, JG, et al. Ehlers-Danlos syndrome type IV. N Eng J Med, 2000, 343: 366368.Google Scholar
Yassin, OM, Rihani, FB. Multiple developmental dental anomalies and hypermobility type Ehlers-Danlos syndrome. J Clin Pediatr Dent, 2006, 30: 337341.Google Scholar
Calva, D, Howe, JR. Hamartomatous polyposis syndromes. Surg Clin North Am, 2008, 88: 779817.Google Scholar
Brosens, LA, Van Hatley, WA, Jansen, M, et al. Gastrointestinal polyposis syndromes. Current Mol Med, 2007, 7: 2946.Google Scholar
Hinds, R, Philp, C, Hyer, W, et al. Complications of childhood Peutz-Jegher’s syndrome. Implications for pediatric screening. J Pediatr Gastroenteral Nutr, 2004, 39: 219220.Google Scholar
Mehenni, H, Blouin, JL, Radhakrishna, U, et al. Peutz-Jeghers syndrome: confirmation of a linkage to chromosome 19p13.3 and identification of a potential second locus on 19p13.4. Am J Hum Genet, 1997, 61: 13271334.Google Scholar
McCarity, TJ, Amos, C. Peutz-Jegher’s syndrome: clinicopathology and molecular alterations. Cell Mol Life Sci, 2006, 63: 21352144.Google Scholar
Tovar, JA, Eizaquirre, I, Albert, A, et al. Peutz-Jegher’s syndroms in children: report of two cases and review of the literature. J Pediatr Surg, 1983, 18: 16.Google Scholar
Loeys, BL, Chen, J, Neptuine, ER. A syndroms of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 and TGFBR2. Nat Genet, 2005, 37: 275281.Google Scholar
Dean, JG. Marfan syndromes. Clinical diagnosis and management. European J Hum Genetics, 2007, 15: 724733.Google Scholar
deVries, BB, Pals, G, Odink, R, et al. Homozygosity for a FBN1 missence mutation clinical and molecular evidence for recessive Marfan syndrome. Eur J Hum Genet, 2007, 15: 930935.Google Scholar
Faivre, L, Gorlin, FJ, Wirtz, MK, et al. In frame fibrillin-1 gene deletion in autosomal dominant weill-marchesani syndrome. J Med Genet, 2003, 40: 3436.Google Scholar
Pyeitz, RE. The Marfan syndrome in childhood. Features, natural history and differential diagnosis. Prog Pediatric Cariol, 1996, 5: 151157.Google Scholar
Bolar, N, Van Laer, , Loeys, BL. Marfan syndrome: from gene to therapy. Curr Opin Pediatr, 2012, 24: 498504.Google Scholar
Cohen, MM Jr. Proteus syndrome: an update. Am J Med Genet C Seminar Med Genet, 2005, 137: 3852.Google Scholar
Hoey, SE, Eastwood, D, Monsell, , et al. Histopathological features of proteus syndrome. Clin Exp Dermatol, 2008, 33: 234238.Google Scholar
Happle, R. The manifold faces of proteus syndrome. Arch Dermatol, 2004, 140: 10011002.Google Scholar
Twede, JV, Turner, JT, Biesecker, LG, et al. Evolution of skin lesions in proteus syndrome. J Am Acad Dermatol, 2005, 52: 834838.Google Scholar
Cardoso, MT, deCarvalho, TB, Casulari, LA, et al. Proteus syndrome and somatic mosaigism of the chromosome 16. Panminerva Med, 2003, 45: 267271.Google Scholar
Lindhurst, MJ, Sapp, JC, Teer, JK, et al. A mosaic activating mutation in AKT1 associated with proteus syndrome. N Engl J Med, 2011, 365: 611619.Google Scholar
Bhupal, HK. Ramsay Hunt syndrome presenting in primary care. Practitioner, 2010, 254: 3335.Google Scholar
Kleinschmidt-DeMasters, BK, Gilden, DH. The expanding spectrum of herpes virus infections of the nervous system. Brainn Pthol, 2001, 11: 440451.Google Scholar
Sandoval, CC, Nunez, FA, Lizama, CM, et al. Ramsay Hunt syndrome in children: four cases and review. Rev Chilena Infectol, 2008, 25: 458464.Google Scholar
Ryer, EW, Lee, HY, Lee, SY, et al. Clinical manifestations and prognosis of patients with Ramsay Hunt syndrome. Am J Otolaryngol, 2011, 33: 313318.Google Scholar
Furuta, Y, Aizawa, H, Ohtani, F, et al. Varicella-Zoster virus reactivation on Ramsay Hunt syndrome. Ann Otol Rhinol Laryngol, 2004, 113: 700705.Google Scholar
Coffin, SE, Hodkinka, RL. Utility of direct immunofluorescence and virus culture for detection of varicella-zoster virus in skin lesions. J Clin Microiol, 1995, 33: 27922795.Google Scholar
Naganawa, S, Nakashima, T. Cutting edge of inner ear MRI. Acta Otolaryngol Supp, 2009, 560: 1521.Google Scholar
Uscategui, T, Doree, C, Chamberlain, IJ, et al. Antiviral therapy for Ramsay Hunt syndrome (herpes zoster oticus with facial palsy) in adults. Cochrane Data Base System Review, Oct 8 2008, doi: 10.1002/14651858.Google Scholar
deRu, JA, VanBenthem, PP. Combination therapy is preferable for patients with Ramsay Hunt syndrome. Oto Neurotol, 2011, 32: 852855.Google Scholar
Albers–Schonberg, H. Roetgenbilder einer seltenen knochennerkrankung. Muuch Med Wochenschr, 1904, 51: 365.Google Scholar
Start, Z, Savarirayan, R. Osteopetrosis. Orphanet J Rare Dis, 2009, 4: 5.Google Scholar
Tritelbaum, SL. Bone resorption by osteoclasts. Science, 2000, 289: 15041508.Google Scholar
Wada, T, Nakashima, T, Oliveria-dos-Santos, , et al. The molecular scatfold Bag 2 is a critical component of RANK signaling and osteoclastogenesis. Nat Med, 2005, 11: 394399.Google Scholar
Cleiren, E, Benichou, O, VanHul, E, et al. Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in CICN7 chloride channel gene. Hum Mol Genet, 2001, 10: 28612667.Google Scholar
Mazzolari, E, Forino, C, Razza, A, et al. A single-center experience in 20 patients with infantile malignant osteopetrosis. Am J Hematol, 2009, 84: 473479.Google Scholar
Marx, RE, Stern, D. Oral and Maxillofacial Pathology: A Rationale for Diagnosis and Treatment. Chicago: Quintessence Publishing Company, 2012.Google Scholar
Symposium on osteopetrosis: proceedings and abstracts of the first interactive symposium on osteopetrosis: Biology and therapy. Oct 23–24, 2003, Bethesda Maryland. USA J Bone Miner Res, 2004, 19: 1356–1375.Google Scholar
Armstrong, DG, Newfield, JY, Gillespie, R. Orthopedic management of osteopetrosis: results of a survey and review of the literature. J Pediatr Orthop, 1999, 19: 122132.Google Scholar
Lata, PHJ, Sharma, R, Parmar, M. Massive osteolysis of hemimandible: a case report. J Maxillofac Oral Surg, 2009, 8: 381383.Google Scholar
Lee, S, Finn, L, Sze, RW. Gorham Stout syndrome (disappearing bone disease): two additional case reports and a review of the literature. Arch Otolaryngol Head Neck Surg, 2003, 129: 13401343.Google Scholar
Hu, P, Yuan, XG, Chan, XY, et al. Gorham-Stout syndrome in mainland China: a case series of 67 patients and review of the literature. J Zhejiang Univ Sci B, 2013, 14: 729735.Google Scholar
Ruggieri, P, Montalti, M, Angelini, A, et al. Gorham-Stout disease: the experience of the Rizzoli Institute and review of the literature. Skeletal Radiol, 2011, 40: 13911397.Google Scholar
Dong, Q, Yafei, Z, Chuankong, S. Gorham-Stout syndrome affecting the left mandible: a case report. Exp Ther Med, 2013, 5: 162164.Google Scholar
Escande, C, Schouman, T, Francoise, G, et al. Histological features and management of a mandibular Gorham-Stout disease: a case report and review of maxillofacial cases in the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2008, 106: e30e37.Google Scholar
Silva, S. Gorham-Stout disease affecting both hands: stabilization during bisphosphonate treatment. Hand (NY), 2011, 6: 8589.Google Scholar
Zheng, MW, Yang, M, Qiu, JX, et al. Gorham-Stout syndrome presenting in a 5-year-old girl with successful bisphosphonate therapeutic effect. Exp Ther Med, 2012, 4: 449451.Google Scholar
Nir, V, Guralnik, L, Livnat, G. Propranolol as a treatment option in Gorham-Stout syndrome. A case report. Pediatr Pulmonol, 2014, 49: 417419.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×