Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T04:58:38.489Z Has data issue: false hasContentIssue false

11 - Species and Charge Transport

Published online by Cambridge University Press:  05 June 2012

Brian J. Kirby
Affiliation:
Cornell University, New York
Get access

Summary

This chapter describes a general framework for species and charge transport, which assists us in understanding how electric fields couple to fluid flow in nonequilibrium systems. The following sections first describe the basic sources of species fluxes. These constitutive relations include the diffusivity, electrophoretic mobility, and viscous mobility. The species fluxes, when applied to a control volume, lead to the basic conservation equations for species, the Nernst–Planck equations. We then consider the sources of charge fluxes, which lead to constitutive relations for the charge fluxes and definitions of parameters such as the conductivity and molar conductivity. Because charge in an electrolyte solution is carried by ionic species (in contrast to electrons, as is the case for metal conductors), the charge transport and species transport equations are closely related – in fact, the charge transport equation is just a sum of species transport equations weighted by the ion valence and multiplied by the Faraday constant. We show in this chapter that the transport parameters D, µEP, µi, σ, and ∧ are all closely related, and we write equations such as the Nernst–Einstein relation to link these parameters.

These issues affect microfluidic devices because ion transport couples to and affects fluid flow in microfluidic systems. Further, many microfluidic systems are designed to manipulate and control the distribution of dissolved analytes for concentration, chemical separation, or other purposes.

Type
Chapter
Information
Micro- and Nanoscale Fluid Mechanics
Transport in Microfluidic Devices
, pp. 250 - 264
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×