Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T07:16:12.590Z Has data issue: false hasContentIssue false

7 - Potential Fluid Flow

Published online by Cambridge University Press:  05 June 2012

Brian J. Kirby
Affiliation:
Cornell University, New York
Get access

Summary

This chapter discusses the physical relevance of potential fluid flow to flows in microfluidic devices and describes analytical tools for creating potential flow solutions. This chapter also focuses on the use of complex mathematics for 2D potential problems with plane symmetry. These plane-symmetric flows are relevant for microsystems, because microchannels are often shallower than they are wide and thus depth-averaged properties are often well approximated by 2D analysis.

In particular, we want to retain perspective on the engineering importance of these flows as well as on the relative importance of analysis versus numerics. The Laplace equation is rather straightforward to solve numerically, and therefore numerical simulation is a suitable approach for most Laplace equation systems. For example, simulation of the electroosmotic flow within a microdevice with a complicated geometry would be simulated, because analytical solution would be impossible. Despite the importance of numerics, the analytical solutions are important because they lend physical insight and because simple analytical solutions for important cases (for example, the potential flow around a sphere) facilitate expedient solutions of more complicated problems. For example, the study of electrophoresis of a suspension of charged spheres is typically analyzed with techniques informed by the analytical solution for potential flow around a sphere and not with detailed and extensive numerical solutions of the Laplace equation.

Type
Chapter
Information
Micro- and Nanoscale Fluid Mechanics
Transport in Microfluidic Devices
, pp. 153 - 177
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Potential Fluid Flow
  • Brian J. Kirby, Cornell University, New York
  • Book: Micro- and Nanoscale Fluid Mechanics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511760723.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Potential Fluid Flow
  • Brian J. Kirby, Cornell University, New York
  • Book: Micro- and Nanoscale Fluid Mechanics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511760723.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Potential Fluid Flow
  • Brian J. Kirby, Cornell University, New York
  • Book: Micro- and Nanoscale Fluid Mechanics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511760723.009
Available formats
×