Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-28T08:09:35.849Z Has data issue: false hasContentIssue false

17 - Particle and Droplet Actuation: Dielectrophoresis, Magnetophoresis, and Digital Microfluidics

Published online by Cambridge University Press:  05 June 2012

Brian J. Kirby
Affiliation:
Cornell University, New York
Get access

Summary

Microsystems use several techniques to actuate particles beyond the electrophoresis discussed in Chapter 13. Two physical phenomena are described in this chapter – dielectrophoresis and magnetophoresis – which are commonly used in microdevices to manipulate particles or droplets in suspension. This chapter also discusses digital microfluidics, which is not a physical phenomenon, but rather a system concept for manipulating fluid droplets using AC electric fields.

DIELECTROPHORESIS

Dielectrophoresis (DEP) is often used in microsystems as a mechanism for manipulating particles. It is appealing because the dielectrophoretic force on a particle scales with the characteristic length scale of the system to the –3 power, and dielectrophoretic forces are quite large when small devices are used. Further, particle response varies based on the frequency and phase of the applied field. Because the user can change particle response by changing a setting on a function generator, DEP measurements afford great flexibility to the user. Because of this, DEP has been used for many applications, with one example shown in Fig. 17.1.

The term dielectrophoresis refers to the Coulomb response of an electrically polarized object in a nonuniform electric field. In contrast to linear electrophoresis, it (a) does not require that the object have a net charge and (b) has a nonzero time-averaged effect even if AC electric fields are used.

Consider, as an example, a spherical, uncharged, uniform, ideal dielectric particle with a finite polarizability, expressed using its electrical permittivity εp, suspended in empty space.

Type
Chapter
Information
Micro- and Nanoscale Fluid Mechanics
Transport in Microfluidic Devices
, pp. 373 - 404
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×