Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T04:00:57.476Z Has data issue: false hasContentIssue false

17 - Martian meteorites as crustal samples

from Part III - Mineralogy and Remote Sensing of Rocks, Soil, Dust, and Ices

Published online by Cambridge University Press:  10 December 2009

H. Y. McSween Jr.
Affiliation:
Department of Earth & Planetary Science, University of Tennessee, Knoxville, TN 37996-1410, USA
Jim Bell
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

Times of impact ejection of Martian meteorites occur in clusters and correlate with petrographic classifications. The clustered or unique ejection ages apparently sample as many as seven distinct locations on Mars. All these sites, as yet not identified unambiguously, are dominated by basaltic flows or cumulate rocks formed from basaltic magmas. Except for ALH 84001, a 4.5 Ga sample of the Noachian crust, all SNCs were extracted from Amazonian volcanic terrains. Lithologies identified by landed or orbiting spacecraft are generally different from SNCs, although the distinctive mineralogic characteristics of SNCs (ferroan olivine and pyroxenes, sodic plagioclase) are commonly indicated by remote-sensing data. Aqueous alteration of SNC meteorites is limited, and light stable isotopic fractionations suggest hydrologic cycling. These meteorites reveal many geochemical, mineralogical, and chronological properties of the crust that cannot yet be measured by remote sensing.

Type
Chapter
Information
The Martian Surface
Composition, Mineralogy and Physical Properties
, pp. 381 - 396
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artemieva, N. and Ivanov, B. A., Ejection of Martian meteorites: can they fly?, Lunar Planet. Sci. Conf.XXXIII, Abstract #1113 (CD-ROM), 2002.Google Scholar
Ash, R. D., Knott, S. F., and Turner, G., A 4-Gyr shock age for a Martian meteorite and implications for the cratering history of Mars, Nature 380, 57–9, 1996.CrossRefGoogle Scholar
Bandfield, J. L., Hamilton, V. E., and Christensen, P. R., A global view of Martian surface compositions from MGS-TES, Science 301, 1084–7, 2000.CrossRefGoogle Scholar
Barlow, N. G., Identification of possible source craters for the Martian meteorites ALH84001, Proc. SPIE Annu. Meeting, 26–35, 1997.Google Scholar
Barrat, J. A., Gillet, P., Sautter, V., et al., Petrology and chemistry of the basaltic shergottite North West Africa 480, Meteorit. Planet. Sci. 37, 487–99, 2002a.CrossRefGoogle Scholar
Barrat, J. A., Jambon, A., Bohn, B., et al., Petrology and chemistry of the picritic shergottite North West Africa 1068 (NWA1068), Geochim. Cosmochim. Acta 66, 3505–18, 2002b.CrossRefGoogle Scholar
Berkley, J. L., Keil, K., and Prinz, M., Comparative petrology and origin of Governador Valadares and other nakhlites, Proc. Lunar Planet. Sci. Conf.XI, 1089–102, 1980.Google Scholar
Bishop, J., Pieters, C., Mustard, J., Pratt, S., and Hiroi, T., Spectral analyses of ALH 84001, a meteorite from Mars, Meteoritics 29, 444–5, 1994.Google Scholar
Boctor, N. Z., Ho, A., and Kullerud, G., Lafayette meteorite: petrology and opaque mineralogy, Earth Planet. Sci. Lett. 32, 69–76, 1976.CrossRefGoogle Scholar
Boctor, N. Z., Alexander, C. M. O., Wang, J., and Hauri, E., The sources of water in Martian meteorites: clues from hydrogen isotopes, Geochim. Cosmochim. Acta 67, 3971–89, 2003.CrossRefGoogle Scholar
Borg, L. and Drake, M. J., A review of meteorite evidence for the timing of magmatism and of surface or near-surface liquid water on Mars, J. Geophys. Res. 110, E12S03, doi:10.1029/2005JE002402, 2005.CrossRefGoogle Scholar
Borg, L. E., Connelly, J. N., Nyquist, L. E., et al., The age of the carbonates in Martian meteorite ALH84001, Science 286, 90–4, 1999.CrossRefGoogle ScholarPubMed
Bridges, J. C. and Grady, M. M., Evaporite mineral assemblages in the nakhlite (Martian) meteorite, Earth Planet. Sci. Lett. 176, 267–79, 2000.CrossRefGoogle Scholar
Christen, R., Eugster, O., and Busemann, H., Mars ejection times and neutron capture effects of the nakhlites Y000593 and Y000749, the olivine-phyric shergottite Y980459, and the lherzolite NWA1950, Antarct. Meteorite Res. 18, 117–32, 2005.Google Scholar
Christensen, P. R., Bandfield, J. L., Smith, M. D., Hamilton, V. E., and Clark, R. N., Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data, J. Geophys. Res. 105, 9609–22, 2000.CrossRefGoogle Scholar
Christensen, P. R., McSween, H. Y., Bandfield, J. L., et al., Evidence for magmatic evolution and diversity on Mars from infrared observations, Nature 436, 504–9, doi:10.1038/nature03639, 2005.CrossRefGoogle ScholarPubMed
Cloutis, E. A. and Gaffey, M. J., Pyroxene spectroscopy revisited: spectral-compositional correlations and relationships to geothermometry, J. Geophys. Res. 96, 22809–26, 1991.CrossRefGoogle Scholar
Dreibus, G. and Wänke, H., Mars: a volatile rich planet, Meteoritics 20, 367–82, 1985.Google Scholar
Eiler, J. M., Valley, J. W., Graham, C. M., and Fournelle, J., Two populations of carbonate in ALH84001: geochemical evidence for discrimination and genesis, Geochim. Cosmochim. Acta 66, 1285–303, 2002.CrossRefGoogle Scholar
Farquhar, J. and Thiemens, M. H., Oxygen cycle of the Martian atmosphere-regolith system: D17O of secondary phases in Nakhla and Lafayette, J. Geophys. Res. 195(E5), 11991–7, 2000.CrossRefGoogle Scholar
Farquhar, J., Savarino, J., Jackson, T. L., and Thiemens, M. H., Evidence of atmospheric sulphur in the Martian regolith from sulphur isotopes in meteorites, Nature 404, 50–2, 2000.CrossRefGoogle ScholarPubMed
Floran, R. J., Prinz, M., Hlava, R. F., et al., The Chassigny meteorite: a cumulate dunite with hydrous amphibole-bearing melt inclusions, Geochim. Cosmochim. Acta 42, 1213–29, 1978.CrossRefGoogle Scholar
Foley, C. N., Economou, T. E., and Clayton, R. N., Final chemical results from the Mars Pathfinder alpha proton X-ray spectrometer, J. Geophys. Res. 108(E12), 8096, doi:10.1029/2002JE002019, 2003.Google Scholar
Friedman-Lentz, R. C., Taylor, G. J., and Treiman, A. H., Formation of a Martian pyroxenite: a comparative study of the nakhlite meteorites and Theo's Flow, Meteorit. Planet. Sci. 34, 919–32, 1999.CrossRefGoogle Scholar
Fritz, J., Artemieva, N., and Greshake, A., Ejection of Martian meteorites, Meteorit. Planet. Sci. 40, 1393–411, 2005.CrossRefGoogle Scholar
Gillet, P., Barrat, J. A., Beck, P., et al., Petrology, geochemistry, and cosmic-ray exposure age of lherzolitic shergottite Northwest Africa 1950, Meteorit. Planet. Sci. 40, 1175–84, 2005.CrossRefGoogle Scholar
Goodrich, C. A., Petrogenesis of olivine-phyric shergottites Sayh al Uhaymir 005 and Elephant Moraine A79001 lithology A. Geochim. Cosmochim. Acta 67, 3735–71, 2003.CrossRefGoogle Scholar
Greenwood, J. P. and McSween, H. Y., Petrogenesis of Allan Hills 84001: constraints from impact-melted feldspathic and silica glass, Meteorit. Planet. Sci. 36, 43–61, 2001.CrossRefGoogle Scholar
Greshake, A., Fritz, J., and Stöffler, D., Petrology and shock metamorphism of the olivine-phyric shergottite Yamato 980459: evidence for a two-stage cooling and a single-stage ejection history, Geochim. Cosmochim. Acta 68, 2359–77, 2004.CrossRefGoogle Scholar
Hale, V. P. S., McSween, H. Y., and McKay, G., Re-evaluation of intercumulus liquid composition and oxidation state for the Shergotty meteorite, Geochim. Cosmochim. Acta 63, 1459–70, 1999.CrossRefGoogle Scholar
Halliday, A. N., Wanke, H., Birck, J.-L., and Clayton, R. N., The accretion, composition and early differentiation of Mars, Space Sci. Rev. 96, 197–230, 2001.CrossRefGoogle Scholar
Hamilton, V. E., A source region for Martian meteorite ALH84001: Eos Chasma, Mars (abstract), Meteorit. Planet. Sci., 40 (Suppl.), A63, 2005.Google Scholar
Hamilton, V. E. and Christensen, P. R., Evidence for extensive, olivine-rich bedrock on Mars, Geology 33, 433–6, 2005.CrossRefGoogle Scholar
Hamilton, V. E., Wyatt, M. B., McSween, H. Y., and Christensen, P. R., Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy: 2. Application to Martian surface spectra from the Mars Global Surveyor Thermal Emission Spectrometer, J. Geophys. Res. 107 (E6), 14733–46, 2001.CrossRefGoogle Scholar
Hamilton, V. E., Christensen, P. R., McSween, H. Y., and Bandfield, J. L., Searching for the source regions of Martian meteorites using MGS TES: integrating Martian meteorites in to the global distribution of igneous materials on Mars, Meteorit. Planet. Sci. 38, 871–86, 2003.CrossRefGoogle Scholar
Hartmann, W. K. and Neukum, G., Cratering chronology and the evolution of Mars. Space Sci. Rev. 96, 165–94, 2001.CrossRefGoogle Scholar
Harvey, R. P. and Hamilton, V. E., Syrtis Major as the source of the nakhlite/chassignite Martian meteorites (abstract), Meteorit. Planet. Sci. 40 (Suppl.), A64, 2005.Google Scholar
Harvey, R. P., Wadhwa, M., McSween, H. Y., and Crozaz, G., Petrography, mineral chemistry, and petrogenesis of Antarctic shergottite LEW88516, Geochim. Cosmochim. Acta 56, 4769–83, 1993.CrossRefGoogle Scholar
Haskin, L. A., Wang, A., Jolliff, B. L., et al., Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater, Nature 436, 66–9, doi:10.1038/nature03640, 2005.CrossRefGoogle ScholarPubMed
Head, J. N., Melosh, H. J., and Ivanov, B. A., Martian meteorite launch: high-speed ejecta from small craters, Science 298, 1752–6, 2002.CrossRefGoogle ScholarPubMed
Herd, C. D. K., Papike, J. J., and Brearley, A. J., Oxygen fugacity of Martian basalts from electron microprobe, oxygen, and TEM-EELs analyses of iron-titanium oxides, Am. Mineral. 86, 1015–24, 2001.CrossRefGoogle Scholar
Herkenhoff, K. E., Squyres, S. W., Arvidson, R., et al., Textures of soils and rocks at Gusev crater from Spirit's Microscopic Imager, Science 305, 824–6, 2004.CrossRefGoogle ScholarPubMed
Hoefen, T. M., Clark, R. N., Bandfield, J. L, et al., Discovery of olivine in the Nili Fossea region of Mars, Science 302, 627–30, 2003.CrossRefGoogle Scholar
Irving, A. J., Kuehner, S. M., Hupe, A. C., and Hupe, G. M., Olivine-phyric basaltic shergottite NWA 1195: a very primitive Martian lava (abstract), Meteorit. Planet. Sci. 37 (Suppl.), A69, 2002.Google Scholar
Jambon, A., Barrat, J. A., Sautter, V., et al., The basaltic shergottite North West Africa 856: petrology and chemistry, Meteorit. Planet. Sci. 37, 1147–64, 2002.CrossRefGoogle Scholar
Johnson, J. R., Kirk, R., Soderblom, L. A., et al., Preliminary results on photometric properties of materials at the Sagan Memorial Station, Mars, J. Geophys. Res. 104(E4), 8809–30, 1999.CrossRefGoogle Scholar
Johnson, M. C., Rutherford, M. J., and Hess, P. C., Chassigny petrogenesis: melt compositions, intensive parameters, and water contents of Martian(?) magmas, Geochim. Cosmochim. Acta 55, 349–66, 1991.CrossRefGoogle Scholar
Kraft, M. D., Michalski, J. R., and Sharp, T. G., Effects of pure silica coatings on thermal emission spectra of basaltic rocks: considerations for Martian surface mineralogy, Geophys. Res. Lett. 30, 2288, doi:10.1029/2003GL018848, 2003.CrossRefGoogle Scholar
Bas, M. J., Maitre, R. W., Streckeisen, A., and Zanettin, B., A chemical classification of volcanic rocks based on the total alkali-silica diagram, J. Petrol. 27, 745–50, 1986.CrossRefGoogle Scholar
Leshin, L. A., Insights into Martian water reservoirs from analyses of Martian meteorite QUE 94201, Geophys. Res. Lett. 27, 2017–20, 2000.CrossRefGoogle Scholar
Leshin, L. A., Epstein, S., and Stolper, E. M., Hydrogen isotope geochemistry of SNC meteorites, Geochim. Cosmochim. Acta 60, 2635–50, 1996.CrossRefGoogle Scholar
Lodders, K., A survey of shergottite, nakhlite and chassigny meteorites whok-rock compositions, Meteoritics Planet. Sci., 33 183–90, 1998.CrossRefGoogle Scholar
Longhi, J., Complex magmatic processes on Mars: inferences from the SNC meteorites, Proc. Lunar Planet. Sci. Conf.XXI, 695–709, 1991.Google Scholar
Longhi, J. and Pan, V., The parent magmas of the SNC meteorites, Proc. Lunar Planet. Sci. Conf.XIX, 451–64, 1989.Google Scholar
Marty, B., Grimberg, A., Heber, V. S., and Wieler, R., Noble gases in the newly found NWA 2737 chassignite (abstract), Meteorit. Planet. Sci. 40 (Suppl.), A98, 2005.Google Scholar
McCoy, T. J., Taylor, G. J., and Keil, K., Zagami: product of a two-stage magmatic history, Geochim. Cosmochim. Acta 56, 3571–82, 1992.CrossRefGoogle Scholar
McFadden, L. A., Spectral reflectance of SNC meteorites: relationships to Martian surface composition, Lunar Planet. Inst. Tech. Rept. 88-05, 88–90, 1987.Google Scholar
McKay, D. S., Gibson, E. K., Thomas-Keprta, K. L., et al., Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH 84001, Science 273, 924–30, 1996.CrossRefGoogle Scholar
McSween, H. Y., What we have learned about Mars from SNC meteorites, Meteoritics 29, 757–79, 1994.CrossRefGoogle Scholar
McSween, H. Y., The rocks of Mars, from far and near, Meteorit. Planet. Sci. 37, 7–25, 2002.CrossRefGoogle Scholar
McSween, H. Y. and Jarosewich, E., Petrogenesis of the Elephant Moraine A79001 meteorite: multiple magma pulses on the shergottite parent body, Geochim. Cosmochim. Acta 47, 1501–13, 1983.CrossRefGoogle Scholar
McSween, H. Y. and A. H. Treiman, Martian meteorites. In Planetary Materials (ed. Papike, J. J.), Reviews in Mineralogy36, Mineralogical Society of America, 6–1 to 6–53, 1998.Google Scholar
McSween, H. Y., Taylor, L. A., and Stolper, E. M., Allan Hills 77005: a new meteorite type found in Antarctica, Science 204, 1201–3, 1979.CrossRefGoogle ScholarPubMed
McSween, H. Y., Eisenhour, D. D., Taylor, L. A., Wadhwa, M., and Crozaz, G., QUE94201 shergottite: crystallization of a Martian basaltic magma, Geochim. Cosmochim. Acta 60, 4563–9, 1996.CrossRefGoogle Scholar
McSween, H. Y., Murchie, S. L., Crisp, J. A., et al., Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site, J. Geophys. Res. 104(E4), 8679–715, 1999.CrossRefGoogle Scholar
McSween, H. Y., Grove, T. L., Lentz, R. C. F., et al., Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite, Nature 409, 487–90, 2001.CrossRefGoogle ScholarPubMed
McSween, H. Y., Grove, T. L., and Wyatt, M. B., Constraints on the composition and petrogenesis of the Martian crust, J. Geophys. Res. 108(E12), 5135, doi:10.1029/2003JE002175, 2003.CrossRefGoogle Scholar
McSween, H. Y., Wyatt, M. B., Gellert, R., et al., Characterization and petrologic interpretation of olivine-rich basalts at Gusev crater, Mars, J. Geophys. Res. 110, E12S39, doi:10.1029/2005JE002477, 2006.Google Scholar
Melosh, J. J., Impact ejection, spallation, and the origin of meteorites, Icarus 59, 234–60, 1984.CrossRefGoogle Scholar
Michalski, J. R., Kraft, M. D., Sharp, T. G., Williams, L. B., and Christensen, P. R., Mineralogical constraints on the high-silica Martian surface component observed by TES, Icarus 174, 161–77, doi:10.1016/j.icarus.2004.10.022, 2005.CrossRefGoogle Scholar
Mikouchi, T., Comparative mineralogy of Chassigny and NWA 2737: implications for the formation of chassignite igneous body(s) (abstract), Meteorit. Planet. Sci. 40 (Suppl.), A102, 2005.Google Scholar
Mikouchi, T. and Miyamoto, M., Comparative mineralogy of Antarctic Iherzolitic shergottites Allan Hills 77005, Lewis Cliff 88516 and Yamoto 793605, Meteorit. Planet. Sci., 31, A89–A90, 1996.Google Scholar
Mikouchi, T., Koizumi, E., Monkawa, A., Ueda, Y., and Miyamoto, M., Mineralogy and petrology of Yamato 000593: comparison with other Martian nakhlite meteorites, Antarct. Meteorite Res. 16, 34–57, 2003.Google Scholar
Mikouchi, T., Koizumi, T., McKay, G., et al., Yamato 980459: mineralogy and petrology of a new shergottite-related rock from Antarctica, Antarct. Meteorite Res. 17, 13–34, 2004.Google Scholar
Misawa, K., Shih, C.-Y., Reese, Y., Nyquist, L. E., and Barrat, J. A., Rb-Sr and Sm-Nd isotopic systematics of the NWA 2737 chassignite (abstract), Meteorit. Planet. Sci. 40 (Suppl.), A104, 2005.Google Scholar
Mittlefehldt, D. W., ALH84001, a cumulate orthopyroxenite member of the Martian meteorite clan, Meteoritics 29, 214–21, 1994.CrossRefGoogle Scholar
Mittlefehld, D. W., Lindstrom, D. J., Lindstrom, M. M., and Martinez, R. R., An impact-melt origin for lithology A of Martian meteorite Elephant Moraine A79001, Meteorit. Planet. Sci., 34, 357–67, 1999.CrossRefGoogle Scholar
Mouginis-Mark, P. J., McCoy, T. J., Taylor, G. J., and Keil, K., Martian parent craters for the SNC meteorites, J. Geophys. Res. 97, 10213–55, 1992.CrossRefGoogle Scholar
Musselwhite, D. S. and Treiman, A. H., Experimental petrology of olivine-phyric shergottites: primary mantle melts? (abstract), Meteorit. Planet. Sci. 40 (Suppl.), A109, 2005.Google Scholar
Mustard, J. F., Erard, S., Bibring, J.-P., et al., The surface of Syrtis Major: composition of the volcanic substrate and mixing with altered dust and soil, J. Geophys. Res. 98(E2), 3387–400, 1993.CrossRefGoogle Scholar
Mustard, J. F., Murchie, A., Erard, S., and Sunshine, J. M., In situ compositions of Martian volcanics: implications for the mantle, J. Geophys. Res. 102, 25605–15, 1997.CrossRefGoogle Scholar
Mustard, J. F., Poulet, F., Gendrin, A., et al., Olivine and pyroxene diversity in the crust of Mars, Science. 307, 1594–7, 2005.CrossRefGoogle ScholarPubMed
Nyquist, L. E., Bogard, D. D., Shih, C.-Y., et al., Ages and history of Martian meteorites, Space Sci. Rev. 96, 105–64, 2001.CrossRefGoogle Scholar
Ouri, Y., Shirari, N., and Ebihara, M., Chemical composition of Yamato (Y)980459 and Y000749: neutron-induced prompt gamma-ray analysis study, Antarct. Meteorite Res. 16, 80–93, 2003.Google Scholar
Owen, T., Maillard, J. P., DeBergh, C., and Lutz, B. L., Deuterium on Mars: the abundance of HDO and the value of D/H, Science. 240, 1767–70, 1988.CrossRefGoogle ScholarPubMed
Papike, J. J., Comparative planetary mineralogy: chemistry of melt-derived pyroxene, feldspar, and olivine. In Planetary Materials (ed. Papike, J. J.), Reviews in Mineralogy 36, Mineralogical Society of America, 7–1 to 7–11, 1998.Google Scholar
Romanek, C. S., Grady, M. M., Wright, I. P., et al., Record of fluid-rock interactions on Mars from the meteorite ALH 84001, Nature 372, 655–7, 1994.CrossRefGoogle Scholar
Rubin, A. E., Warren, P. H., Greenwood, J. P., et al., Petrology of Los Angeles: a new basaltic shergottite find, Geology 28, 1011–14, 2000.2.0.CO;2>CrossRefGoogle Scholar
Sautter, V., Barrat, J. A., Jambon, A., et al., A new Martian meteorite from Morocco: the nakhlite North West Africa 817, Earth Planet. Sci. Lett. 195, 223–38, 2002.CrossRefGoogle Scholar
Shirai, N. and Ebihara, M., Chemical characteristics of a Martian meteorite, Yamato 980459, Antarct. Meteorite Res. 17, 55–67, 2004.Google Scholar
Singer, R. B., Clark, R. N., and Owensby, P. D., Mars: new regional near-infrared spectrophotometry (0.65–2.50 µm) obtained during the 1980 apparition, Bull. Am. Astron. Soc. 12, 680, 1980.Google Scholar
Squyres, S. W., Arvidson, R. E., Bell, J. F. III, et al., The Opportunity rover's Athena science investigation at Meridiani Planum, Mars, Science 306, 1698–703, 2004.CrossRefGoogle ScholarPubMed
Stockstill, K. R., McSween, H. Y., and Bodnar, R. J., Melt inclusions in augite of the Nakhla Martian meteorite: evidence for basaltic parental melt, Meteorit. Planet. Sci. 40, 377–96, 2005.CrossRefGoogle Scholar
Stöffler, D., Ostertag, R., Jammes, C., et al., Shock metamorphism and petrography of the Shergotty achondrite, Geochim. Cosmochim. Acta 50, 889–913, 1986.CrossRefGoogle Scholar
Sunshine, J. M., McFadden, L. A., and Pieters, C. M., Reflectance spectra of the Elephant Moraine A79001 meteorites: implications for remote sensing of planetary bodies, Icarus 105, 79–91, 1993.CrossRefGoogle Scholar
Taylor, L. A., Nazarov, M. A., Shearer, C. K., et al., Martian meteorite Dhofar 019: a new shergottite, Meteorit. Planet. Sci. 37, 1107–28, 2002.CrossRefGoogle Scholar
Tornabene, L. L., Moersch, J. E., McSween, H. Y., et al., Identification of large (2–10 km) rayed craters on Mars in THEMIS thermal infrared images: implications for possible Martian meteorite source regions, J. Geophys. Res. 111(E10), 2006.CrossRefGoogle Scholar
Treiman, A. H., Amphibole and hercynite spinel in Shergotty and Zagami: magmatic water, depth of crystallization, and metasomatism, Meteoritics 20, 229–43, 1985.CrossRefGoogle Scholar
Treiman, A. H., Complex petrogenesis of the Nakhla (SNC) meteorite: evidence from petrography and mineral chemistry, Proc. Lunar Planet. Sci. Conf.XX, 273–80, 1990.Google Scholar
Treiman, A. H., The history of ALH 84001 revised: multiple shock events, Meteorit. Planet. Sci. 33, 753–64, 1998.CrossRefGoogle ScholarPubMed
Treiman, A. H., Submicron magnetite grains and carbon compounds in Martian meteorite ALH84001: inorganic, abiotic formation by shock and thermal metamorphism, Astrobiology 3, 369–92, 2003.Google Scholar
Treiman, A. H., The nakhlite meteorites: augite-rich igneous rocks from Mars, Chem. Erde 65, 203–70, 2005.CrossRefGoogle Scholar
Treiman, A. H., Gleason, J. D., and Bogard, D. D., The SNC meteorites are from Mars, Planet. Space Sci. 48, 1213–30, 2000.CrossRefGoogle Scholar
Valley, J. W., Eiler, J. M., Graham, C. M., et al., Low-temperature carbonate concretions in the Martian meteorite ALH 84001: evidence from stable isotopes and mineralogy, Science 275, 1633–8, 1997.CrossRefGoogle Scholar
Vickery, A. M. and Melosh, H. J., The large crater origin of the SNC meteorites, Science 237, 738–43, 1987.CrossRefGoogle ScholarPubMed
Wänke, H. and Dreibus, G., Chemical composition and accretion history of terrestrial planets, Philos. Trans. R. Soc. Lond. A 325, 545–57, 1988.CrossRefGoogle Scholar
Wänke, H., Brückner, J., Dreibus, G., Rieder, R., and Ryabchikov, I., Chemical composition of rocks and soils at the Pathfinder site, Space Sci. Rev. 96, 317–30, 2001.CrossRefGoogle Scholar
Warren, P. H. and Kallemeyn, G. W., Siderophile trace elements in ALH 84001, other SNC meteorites and eucrites: evidence of heterogeneity, possibly time-linked, in the mantle of Mars, Meteorit. Planet. Sci. 31, 97–105, 1996.CrossRefGoogle Scholar
Wyatt, M. B. and McSween, H. Y., Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars, Nature 417, 263–6, 2002.CrossRefGoogle ScholarPubMed
Wyatt, M. B., McSween, H. Y., Tanaka, K. L., and Head, J. W., Global geologic context for rock types and surface alteration on Mars, Geology 32, 645–8, doi:10.1130/G20527.1, 2004.CrossRefGoogle Scholar
Yen, A. S., Gellert, R., Schröder, C., et al., An integrated view of the chemistry and mineralogy of Martian soils, Nature 436, 49–54, doi:10.1038/nature03637, 2005.CrossRefGoogle ScholarPubMed
Zipfel, J., Scherer, P., Spettel, B., Dreibus, G., and Schultz, L., Petrology and chemistry of the new shergottite Dar al Gani 476, Meteorit. Planet. Sci. 35, 95–106, 2000.CrossRefGoogle Scholar
Zipfel, J., Anderson, R., Brückner, J., et al., APXS analyses of Bounce Rock: the first shergottite on Mars (abstract), Meteorit. Planet. Sci. 39 (Suppl.), A118, 2004.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Martian meteorites as crustal samples
    • By H. Y. McSween, Jr., Department of Earth & Planetary Science, University of Tennessee, Knoxville, TN 37996-1410, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Martian meteorites as crustal samples
    • By H. Y. McSween, Jr., Department of Earth & Planetary Science, University of Tennessee, Knoxville, TN 37996-1410, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Martian meteorites as crustal samples
    • By H. Y. McSween, Jr., Department of Earth & Planetary Science, University of Tennessee, Knoxville, TN 37996-1410, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.018
Available formats
×