Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 3
  • Print publication year: 2008
  • Online publication date: December 2009

10 - The compositional diversity and physical properties mapped from the Mars Odyssey Thermal Emission Imaging System

from Part III - Mineralogy and Remote Sensing of Rocks, Soil, Dust, and Ices
    • By P. R. Christensen, Planetary Exploration Laboratory Arizona State University Moeur Building 110D Tempe, AZ 85287, USA, J. L. Bandfield, Arizona State University, MC 6305 Mars Space Flight Facility Tempe, AZ, USA, R. L. Fergason, School of Earth & Space Exploration Arizona State University, PO Box 876305 Tempe, AZ 85287-6305, USA, V. E. Hamilton, Hawaii Institute of Geophysics & Planetology, University of Hawaii, 1680 East-West Road Honolulu, HI 96822, USA, A. D. Rogers, Department of Geosciences, SUNY at Stony Brook Stony Brook, NY 11794, USA
  • Edited by Jim Bell, Cornell University, New York
  • Publisher: Cambridge University Press
  • DOI: https://doi.org/10.1017/CBO9780511536076.011
  • pp 221-241

Summary

ABSTRACT

The Thermal Emission Imaging System (THEMIS) began mapping Mars in 2002 on the Mars Odyssey spacecraft. This instrument provides nine infrared and five visible surface-sensing and atmospheric bands, with spatial resolutions of 100 m in the IR and 18 m in the visible. THEMIS data have been used to investigate the composition and physical properties of the surface and polar ices, as well as to study atmospheric temperature, dust, and water vapor. THEMIS provides an excellent complement to the hyperspectral, 3–6 km spatial resolution Thermal Emission Spectrometer (TES) observations, and the two instruments have been used together to map the distribution of geologic units and to determine their detailed mineralogy. Among the major findings to date is the discovery of a diversity in volcanic compositions, from ultramafic olivine-rich basalts through basalts, dacite cones and flows, and granitic rocks uplifted by impact. These observations indicate that the Martian crust, while dominated by basalt, has undergone many of the processes of igneous differentiation that occur on Earth. THEMIS has not detected any carbonate outcrops at 100 m scales, suggesting that carbonate rocks have not formed on Mars and has also not detected any evidence for near-surface volcanic activity, liquid water, or ice that is close enough to the surface to produce a measurable thermal anomaly. THEMIS nighttime temperature measurements have shown the existence of exposed bedrock at 100 m to km scales, and layered materials of differing physical properties, with inferred differences in the processes that deposited or consolidated them.

Related content

Powered by UNSILO
REFERENCES
Aharonson, O., Schorghofer, N., and Gerstell, M. F., Slope streak formation and dust deposition rates on Mars, J. Geophys. Res. 108, 5138, doi:5110.1029/2003JE002123, 2003.
Arvidson, R. E., Seelos, F. P. IV, Deal, K. S., et al., Mantled and exhumed terrains in Terra Meridiani, Mars, J. Geophys. Res. 108(E12), 8073, doi:8010.1029/2002JE001982, 2003.
Baloga, S. M. and Bruno, B. C., Origin of transverse ridges on the surfaces of catastrophic mass flow deposits on the Earth and Mars, J. Geophys. Res. 110, doi:10.1029/2004JE002381, 2005.
Bandfield, J. L., Global mineral distributions on Mars, J. Geophys. Res. 107, doi:10.1029/2001JE001510, 2002.
Bandfield, J. L., Extended surface exposures of granitoid compositions in Syrtis Major, Mars, Geophys. Res. Lett. 33, doi:10.1029/2005GL025559, 2006.
Bandfield, J. L., Hamilton, V. E., and Christensen, P. R., A global view of Martian volcanic compositions, Science 287, 1626–30, 2000.
Bandfield, J. L., Glotch, T. D., and Christensen, P. R., Spectroscopic identification of carbonates in the Martian dust, Science 301 (1084), 1987, 2003.
Bandfield, J. L., Hamilton, V. E., Christensen, P. R., and McSween, H. Y. Jr., Identification of quartzofeldspathic materials on Mars, J. Geophys. Res. 109, doi:10.1029/2004JE002290, 2004a.
Bandfield, J. L., Rogers, D., Smith, M. D., and Christensen, P. R., Atmospheric correction and surface spectral unit mapping using Thermal Emission Imaging System data, J. Geophys. Res. 109, E10008, doi:10010.11029/12004JE002289, 2004b.
Barker, F., Trondhjemite: definition, environment, and hypothesis of origin. In Trondhjemites, Dacites, and Related Rocks (ed. Barker, F.), New York: Elsevier, pp. 1–12, 1979.
Barlow, N. G. and Perez, C. B., Martian impact crater ejecta morphologies as indicators of the distribution of subsurface volatiles, J. Geophys. Res. 108, doi:10.1029/2002JE002036, 2003.
Barnouin-Jha, O. S., Baloga, S., and Glaze, L., Comparing landslides to fluidized crater ejecta on Mars, J. Geophys. Res. 110, doi:10.1029/2003JE002214, 2005.
Beyer, R. A. and McEwen, A. S., Layering stratigraphy of eastern Corprates and northern Capri Chasmata, Mars, Icarus 179, 1–23, doi:10.1016/j.icarus.2005.1006.1014, 2005.
Bibring, J.-P., Combes, M., Langevin, Y., et al., Results from the ISM experiment, Nature 341, 591–3, 1989.
Bibring, J.-P., Langevin, Y., Gendrin, A., et al., Mars surface diversity as revealed by the OMEGA/Mars Express observations, Science 307, 1576–81, doi:1510.1126/science.1108806, 2005.
Bibring, J.-P., Langevin, Y., Mustard, J. F., et al., Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data, Science 312, 400–4, doi:410.1126/science.1122659, 2006.
Boyce, J. M., Mouginis-Mark, P., and Garbeil, H., Ancient oceans in the northern lowlands of Mars: evidence from impact crater depth/diameter relationships, J. Geophys. Res. 110, E03008, doi:03010.01029/02004JE002328, 2005.
Bradley, B. A., Sakimoto, S. E. H., Frey, H., and Zimbelman, J. R., Medusa Fossae formation: new perspectives from Mars Global Surveyor, J. Geophys. Res. 107, doi:10.1029/2001JE001537, 2002.
Carr, M. H., Crumpler, L. S., Cutts, J. A., et al., Martian impact craters and emplacement of ejecta by surface flow, J. Geophys. Res. 82, 4055–65, 1977.
Catling, D. C. and Moore, J. M., The nature of coarse-grained crystalline hematite and its implications for the early environment of Mars, Icarus 165, 277–300, 2003.
Chan, M. A., Beitler, B., Parry, W. T., Ormo, J., and Komatsu, G., A possible terrestrial analogue for hematite concretions on Mars, Nature 429, 731–4, 2004.
Chapman, M. G. and Tanaka, K. L., Interior trough deposits on Mars: Subice volcanoes?, J. Geophys. Res. 106, 10087–100, 2001.
Chojnacki, M., Jakosky, B. M., and Hynek, B. M., Surficial properties of landslides and surrounding units in Ophir Chasma, Mars, J. Geophys. Res. 111, doi:10.1029/2005JE002601, 2006.
Christensen, P. R., Variations in Martian surface composition and cloud occurrence determined from thermal infrared spectroscopy: analysis of Viking and Mariner 9 data, J. Geophys. Res. 103, 1733–46, 1998.
Christensen, P. R. and Ruff, S. W., The formation of the hematite-bearing unit in Meridiani Planum: evidence for deposition in standing water, J. Geophys. Res. 109, E08003, doi:08010.01029/02003JE002233, 2004.
Christensen, P. R., Bandfield, J. L., Smith, M. D., Hamilton, V. E., and Clark, R. N., Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data, J. Geophys. Res. 105, 9609–22, 2000a.
Christensen, P. R., Clark, R. N., Kieffer, H. H., et al., Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: evidence for near-surface water, J. Geophys. Res. 105, 9623–42, 2000b.
Christensen, P. R., Bandfield, J. L., Hamilton, V. E., et al., The Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results, J. Geophys. Res. 106, 23823–71, 2001a.
Christensen, P. R., Morris, R. V., Lane, M. D., Bandfield, J. L., and Malin, M. C., Global mapping of Martian hematite mineral deposits: remnants of water-driven processes on early Mars, J. Geophys. Res. 106, 23873–85, 2001b.
Christensen, P. R., Bandfield, J. L., Bell, J. F. III, et al., Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results, Science 300, 2056–61, 2003a.
Christensen, P. R., Mehall, G. L., Silverman, S. H., et al., The Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers, J. Geophys. Res. 108, 8064, doi:8010.1029/2003JE002117, 2003b.
Christensen, P. R., Jakosky, B. M., Kieffer, H. H., et al., The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission, Space Sci. Rev. 110, 85–130, 2004a.
Christensen, P. R., Ruff, S. W., Fergason, R. L., et al., Initial results from the Miniature Thermal Emission Spectrometer experiment at the Spirit landing site at Gusev crater, Science 305, 837–42, 2004b.
Christensen, P. R., Wyatt, M. B., Glotch, T. D., et al., Mineralogy at Meridiani Planum from the Mini-TES Experiment on the Opportunity Rover, Science 306, 1733–9, 2004c.
Christensen, P. R., McSween, H. Y. Jr., Bandfield, J. L., et al., Evidence for igneous diversity and magmatic evolution on Mars from infrared spectral observations, Nature 436, doi:10.1038/nature03639, 2005a.
Christensen, P. R., Ruff, S. W., Fergason, R. L., et al., Mars Exploration Rover candidate landing sites as viewed by THEMIS, Icarus 187, 12–43, 2005b.
Conrath, B., Curran, R., Hanel, R., et al., Atmospheric and surface properties of Mars obtained by infrared spectroscopy on Mariner 9, J. Geophys. Res. 78, 4267–78, 1973.
Edgett, K. S. and Parker, T. J., Water on early Mars: possible subaqueous sedimentary deposits covering ancient cratered terrain in western Arabia and Sinus Meridiani, Geophys. Res. Lett. 24, 2897–900, 1997.
Fenton, L. K., Potential sand sources for the dune fields in Noachis Terra, Mars, J. Geophys. Res. 110, E11004, doi:11010.11029/12005JE002436, 2005.
Fenton, L. K. and Mellon, M. T., Thermal properties of sand from Thermal Emission Spectrometer (TES) and Thermal Emission Imaging System (THEMIS): spatial variations within the Proctor crater dune field on Mars, J. Geophys. Res. 111, E06014, doi:06010.01029/02004JE002363, 2006.
Fenton, L. K., Toigo, A. D., and Richardson, M. I., Aeolian processes in Proctor crater on Mars: mesoscale modeling of dune-forming winds, J. Geophys. Res. 110, doi:10.1029/2004JE002309, 2005.
Fergason, R. L., Christensen, P. R., and Kieffer, H. H., High resolution thermal inertia derived from THEMIS: thermal model and applications, J. Geophys. Res. 111, E12004, doi:12010.11029/12006JE002735, 2006.
Gellert, R., Rieder, R., Anderson, R. C., et al., Chemistry of rocks and soils at Gusev crater from the Alpha Particle X-ray Spectrometer, Science 305, 829–32, 2004.
Gendrin, A., Mangold, N., Bibring, J.-P., et al., Sulfates in martian layered terrains: the OMEGA/Mars Express view, Science 307, 1587–90, 2005.
Gillespie, A. R., Kahle, A. B., and Walker, R. E., Color enhancement of highly correlated images: I. Decorrelation and HSI contrast stretches, Remote Sens. Environ. 20, 209–35, 1986.
Glotch, T. D. and Christensen, P. R., Geologic and mineralogic mapping of Aram Chaos: evidence for a water-rich history, J. Geophys. Res. 110, E09006, doi:09010.01029/02004JE02389, 2005.
Glotch, T. D. and Rogers, A. D., Evidence for aqueous deposition of hematite- and sulfate-rich light-toned layered deposits in Aureum and Iani Chaos, Mars, J. Geophys. Res. 112, E06001, doi:10.1029/2006JE002863, 2007.
Glotch, T. D., Morris, R. V., Christensen, P. R., and Sharp, T. G., Effect of precursor mineralogy on the thermal infrared emission spectra of hematite: application to martian hematite mineralization, J. Geophys. Res. 109, E07003, doi:07010.01029/02003JE002224, 2004.
Glotch, T. D., Bandfield, J. L., Christensen, P. R., et al., The mineralogy of the light-toned outcrop at Meridiani Planum as seen by the Miniature Thermal Emission Spectrometer and implications for its formation, J. Geophys. Res. 111, doi:10.1029/2005JE002672, 2006.
Golombek, M. P., Grant, J. A., Parker, T. J., et al., Selection of the Mars Exploration Rover landing sites, J. Geophys. Res. 108, 8072, doi:8010.1029/2003JE002074, 2003.
Golombek, M. P., Arvidson, R. E., Bell, J. F., et al., Assessment of Mars Exploration Rover landing site predictions, Nature 436, 44–8, doi:10.1038/nature03600, 2005.
Golombek, M. P., Grant, J. A., Crumpler, L. S., et al., Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars, J. Geophys. Res. 111, doi:10.1029/JE002754, 2006.
Grotzinger, J., Bell, J. F. III, Calvin, W., et al., Stratigraphy, sedimentology and depositional environment of the Burns Formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett. 240, 11–72, 2005.
Hamilton, V. E. and Christensen, P. R., Determining the modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscopy, J. Geophys. Res. 105, 9717–34, 2000.
Hamilton, V. E. and Christensen, P. R., Detailed mineralogical analyses of Martian meteorite-like terrains using MGS TES and Odyssey THEMIS data, Lunar Planet. Sci. XXXIV, Abstract #1982 (CD-ROM), 2003.
Hamilton, V. E. and Christensen, P. R., Evidence for extensive olivine-rich bedrock in Nili Fossae, Mars, Geology 33, 433–6, 2005.
Hamilton, V. E., Christensen, P. R., McSween, H. Y. Jr., and Bandfield, J. L., Searching for the source regions of martian meteorites using MGS TES: integrating martian meteorites into the global distribution of igneous materials on Mars, Meteorit. Planet. Sci. 38, 871–85, 2003a.
Hamilton, V. E., Christensen, P. R., and McSween, H. Y. Jr., Global constraints on the source regions of martian meteorites from MGS TES data, Meteorit. Planet. Sci. 37, 59, 2003b.
Hanel, R., Conrath, B., Hovis, W., et al., Investigation of the martian environment by infrared spectroscopy on Mariner 9, Icarus 17, 423–42, 1972a.
Hanel, R. A., Conrath, B. J., Hovis, W. A., et al., Infrared spectroscopy experiment on the Mariner 9 mission: preliminary results, Science 175, 305–8, 1972b.
Harrison, K. P. and Grimm, R. E., Rheological constraints on martian landslides, Icarus 163, 347–62, 2003.
Herkenhoff, K. E. and Plaut, J. J., Surface ages and resurfacing rates of the polar layered deposits on Mars, Icarus 144, 243–53, 2000.
Hiesinger, H. and Head, J. W. III, The Syrtis Major volcanic province, Mars: synthesis from Mars Global Surveyor data, J. Geophys. Res. 109, doi:10.1029/2003JE002143, 2004.
Hoefen, T. M. and Clark, R. N., Compositional variability of martian olivines using Mars Global Surveyor thermal emission spectra, Lunar Planet. Sci. Conf. XXXII, Abstract #2049 (CD-ROM), 2001.
Hoefen, T., Clark, R. N., Bandfield, J. L., et al., Discovery of olivine in the Nili Fossae region of Mars, Science 302, 627–30, 2003.
Howard, A. D., Moore, J. M., and Irwin, I. R. P., An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits, J. Geophys. Res. 110, E12S14, doi:10.1029/2005JE002459, 2005.
Hynek, B. M., Implications for hydrologic processes on Mars from extensive bedrock outcrops throughout Terra Meridiani, Nature 431, 156–9, 2005.
Hynek, B. M., Arvidson, R. E., and Phillips, R. J., Geologic setting and origin of Terra Meridiani hematite deposit on Mars, J. Geophys. Res. 107, 5088, doi:5010.1029/2002E001891, 2002.
Hynek, B. M., Phillips, R. J., and Arvidson, R. E., Explosive volcanism in the Tharsis region: Global evidence in the martian geologic record, J. Geophys. Res. 108, 5111, doi:5110.1029/2003JE002062, 2003.
Kieffer, H. H., Martin, T. Z., Peterfreund, A. R., et al., Thermal and albedo mapping of Mars during the Viking primary mission, J. Geophys. Res. 82, 4249–92, 1977.
Klingelhöfer, G., Morris, R. V., Bernhardt, B., et al., Jarosite and hematite at Meridiani Planum from the Mössbauer spectrometer on the Opportunity rover, Science 306, 1740–5, 2004.
Knauth, L. P., Burt, D. M., and Wohletz, K. H., Impact origin of sediments at the Opportunity landing site on Mars, Nature 438, 1123–8, 2005.
Komatsu, G., Geissler, P. E., Strom, R. G., and Singer, R. B., Stratigraphy and erosional landforms of layered deposits in Valles Marineris, Mars, J. Geophys. Res. 98, 1993.
Lane, M. D., Morris, R. V., Mertzman, S. A., and Christensen, P. R., Evidence for platy hematite grains in Sinus Meridiani, Mars, J. Geophys. Res. 107, 5126, doi:5110.1029/2001JE001832, 2002.
Lane, M. D., Christensen, P. R., and Hartmann, W. K., Utilization of the THEMIS visible and infrared imaging data for crater population studies in the Meridiani Planum landing site, Geophys. Res. Lett. 30, 1770, doi:1710.1029/2003GL017183, 2003.
Lucchitta, B. K., Isbell, N. K., and Howington-Kraus, A., Topography of Valles Marineris: implications for erosional and structural history, J. Geophys. Res. 99, 3783–98, 1994.
Malin, M. C. and Edgett, K. S., Sedimentary rocks of early Mars, Science 290, 1927–37, 2000.
Malin, M. C. and Edgett, K. S., Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission, J. Geophys. Res. 106, 23429–570, 2001.
Mangold, N., Quantin, C., Ansan, V., Delacourt, C., and Allemand, P., Evidence for precipitation on Mars from dendritic valleys in the Valles Marineris area, Science 305, 78–81, 2004.
McCollom, T. M. and Hynek, B. M., A volcanic environment for bedrock diagenesis at Meridiani Planum on Mars, Nature 438, 1129–31, doi:1110.1038/nature04390, 2005.
McConnochie, T. H., Bell, J. F. III, Savransky, D., et al., Calibration and in-flight performance of the Mars Odyssey THEMIS Visible Imaging Subsystem (VIS) Instrument, J. Geophys. Res. 111, E06018, doi:10.1029/2005JE002568, 2006.
McCord, T. B. and Adams, J. B., Spectral reflectivity of Mars, Science 163, 1058–60, 1969.
McEwen, A. S., Mobility of large rock avalanches; evidence from Valles Marineris, Mars, Geology 17, 1111–14, 1989.
McEwen, A. S., Malin, M. C., Carr, M. H., and Hartmann, W. K., Voluminous volcanism on early Mars revealed in Valles Marineris, Nature 397, 584–6, 1999.
McEwen, A. S., Preblich, B. S., Turtle, E. P., et al., The rayed crater Zunil and interpretations of small impact craters on Mars, Icarus 176, 351–81, 2005.
McSween, H. Y. Jr., Arvidson, R. E., Bell, J. F. III, et al., Basaltic rocks analyzed by the Spirit rover in Gusev crater, Science 305, 842–5, 2004.
McSween, H. Y. Jr., Grove, T. L., and Wyatt, W. B., Constraints on the composition and petrogenesis of the martian crust, J. Geophys. Res. 108 (E12), 5135, doi:5110.1029/2003JE002175, 2003.
McSween, H. Y., Wyatt, M. B., Gellert, R., et al., Characterization and petrologic interpretation of olivine-rich basalts at Gusev crater, Mars, J. Geophys. Res. 111, E02S10, doi:1029/2005JE002477, 2006.
Mellon, M. T., Jakosky, B. M., Kieffer, H. H., and Christensen, P. R., High resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer, Icarus 148, 437–55, 2000.
Michalski, J. R., Kraft, M. D., Sharp, T. G., Williams, L. B., and Christensen, P. R., Mineralogical constraints on the high-silica Martian surface component observed by TES, Icarus 174, 161–77, 2005.
Milam, K. A., Stockstill, K. R., Moersch, J. E., et al., THEMIS characterization of the MER Gusev crater landing site, J. Geophys. Res. 108, 8078, doi:1029/2003JE002023, 2003.
Milkovich, S. M. and Head, J. W. III, North polar cap of Mars: polar layered deposit characterization and identification of a fundamental climate signal, J. Geophys. Res. 110, doi:10.1029/2004JE002349, 2005.
Moersch, J. E., Hayward, T., Nicholson, P., et al., Identification of a 10 µm silicate absorption feature in the Acidalia region of Mars, Icarus 126, 183–96, 1997.
Morris, R. V., Lane, M. D., Mertzman, S., Shelfer, T. D., and Christensen, P. R., Chemical and mineralogical purity of Sinus Meridiani hematite, Lunar Planet. Sci. XXXI, Abstract #1618 (CD-ROM), 2000.
Morris, R. V., Klingelhöfer, G., Bernhardt, B., et al., Mineralogy at Gusev crater from the Mössbauer spectrometer on the Spirit Rover, Science 305, 833–6, 2004.
Mouginis-Mark, P., Martian fluidized crater morphology: variations with crater size, latitude, altitude and target material, J. Geophys. Res. 84, 8011–22, 1979.
Mouginis-Mark, P. J. and Christensen, P. R., New observations of volcanic features on Mars from the THEMIS instrument, J. Geophys. Res. 110, doi:10.1029/2005JE002421, 2005.
Murchie, S., Mustard, J., Bishop, J., et al., Spatial variations in the spectral properties of bright regions on Mars, Icarus 105, 454–68, 1993.
Mustard, J. F., Erard, S., Bibring, J.-P., et al., The surface of Syrtis Major: composition of the volcanic substrate and mixing with altered dust and soil, J. Geophys. Res. 98, 3387–400, 1993.
Mustard, J. F., Poulet, F., Gendrin, A., et al., Olivine and pyroxene diversity in the crust of Mars, Science 307, 1594–7, 2005.
Nedell, S. S., Squyres, S. W., and Anderson, D. W., Origin and evolution of the layered deposits in the Valles Marineris, Mars, Icarus 70, 409–41, 1987.
Newsom, H. E., Barber, C. A., Hare, T. M., et al., Paleolakes and impact basins in southern Arabia Terra, including Meridiani Planum: implications for the formation of hematite deposits on Mars, J. Geophys. Res. 108, 8075, doi:8010.1029/2002JE001993, 2003.
Pelkey, S. M., Jakosky, B. M., and Christensen, P. R., Surficial properties in Melas Chasma, Mars, from Mars Odyssey THEMIS data, Icarus 165, 68–89, 2003.
Pelkey, S. M., Jakosky, B. M., and Christensen, P. R., Surficial properties in Gale crater, Mars, from Mars Odyssey THEMIS data, Icarus 167, 244–70, doi:1016/j.icarus.2003.1009.1013, 2004.
Pimentel, G. C., Forney, P. B., and Herr, K. C., Evidence about hydrate and solid water in the martian surface from the 1969 Mariner infrared spectrometer, J. Geophys. Res. 79, 1623–34, 1974.
Pollack, J. B., Roush, T., Witteborn, F., et al., Thermal emission spectra of Mars (5.4–10.5µm): evidence for sulfates, carbonates, and hydrates, J. Geophys. Res. 95, 14595–627, 1990.
Poulet, F., Bibring, J.-P., Mustard, J. F., et al., Phyllosilicates on Mars and implications for early martian climate, Nature 438, 623–7, doi:610.1038/nature04274, 2005.
Presley, M. A. and Arvidson, R. E., Nature and origin of materials exposed in the Oxia Palus-Western Arabia-Sinus Meridiani region, Mars, Icarus 75, 499–517, 1988.
Putzig, N. E., Mellon, M. T., Jakosky, B. M., et al., Mars thermal inertia from THEMIS data, Lunar Planet. Sci. XXXV, Abstract #1863 (CD-ROM), 2004.
Putzig, N. E., Mellon, M. T., Kretkea, K. A., and Arvidson, R. E., Global thermal inertia and surface properties of Mars from the MGS mapping mission, Icarus 173, 325–41, 2005.
Quantin, C., Allemand, P., Mangold, N., and Delacourt, C., Ages of Valles Marineris (Mars) landslides and implications for canyon history, Icarus 172, 555–72, 2004.
Quantin, C., Allemand, P., Mangold, N., Dromart, G., and Delacourt, C., Fluvial and lacustrine activity on layered deposits in Melas Chasma, Valles Marineris, Mars, J. Geophys. Res. 110, E12S19, doi:10.1029/2005JE002440, 2005.
Ramsey, M. S. and Christensen, P. R., Mineral abundance determination: quantitative deconvolution of thermal emission spectra, J. Geophys. Res. 103, 577–96, 1998.
Rieder, R., Gellert, R., Anderson, R. C., et al., Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer, Science 306, 1746–9, 2005.
Rogers, A. D. and Christensen, P. R., Surface mineralogy of martian low-albedo regions from MGS TES data: implications for crustal evolution and surface alteration, J. Geophys. Res. 112, E01003, doi:01010.01029/02006JE002727, 2007.
Rogers, A. D., Christensen, P. R., and Bandfield, J. L., Compositional heterogeneity of the ancient martian crust: analysis of Ares Vallis bedrock the THEMIS and TES data, J. Geophys. Res. 110, doi:10.1029/2005JE002399, 2005.
Ruff, S. W., Quantitative thermal infrared emission spectroscopy applied to granitoid petrology, Ph.D. Dissertation thesis, 234pp., Arizona State University, 1998.
Ruff, S. W. and Hamilton, V. E., Mineralogical anomalies in Mars Nili Patera caldera observed with Thermal Emission Spectrometer data, Lunar Planet. Sci. XXXII, Abstract #2186 (CD-ROM), 2001.
Ruff, S. W. and Christensen, P. R., Identifying compositional heterogeneity in Mars' Nili Patera caldera using THEMIS and TES daa, Lunar Planet. Sci. XXXIV, Abstract # 2068 (CD-ROM), 2003.
Salisbury, J. W. and Walter, L. S., Thermal infrared (2.5–13.5 µm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces, J. Geophys. Res. 94, 9192–202, 1989.
Schaber, G. G., Syrtis Major: a low-relief volcanic shield, J. Geophys. Res. 87, 9852–66, 1982.
Selivanov, A. S., Naraeva, M. K., Panfilov, A. S., et al., Thermal imaging of the surface of Mars, Nature 341, 593–5, 1989.
Shean, D. E., Head, J. W., and Marchant, D. R., Origin and evolution of a cold-based tropical mountain glacier on Mars: the Pavonis Mons fan-shaped deposit, J. Geophys. Res. 110, E05001, doi:05010.01029/02004JE002360, 2005.
Shorthill, R. W., Infrared atlas of the eclipsed Moon, The Moon 7, 22–45, 1973.
Smith, D. E., Zuber, M. T., Frey, H. V., et al., Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars, J. Geophys. Res. 106, 23689–722, 2001.
Squyres, S. W., Arvidson, R., Bell, J. F. III, et al., The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars, Science 306, 1698–703, 2004a.
Squyres, S. W., Grotzinger, J. P., Bell, J. F., et al., In-situ evidence for an ancient aqueous environment on Mars, Science 306, 1709–14, 2004b.
Squyres, S. W. and Knoll, A. H., Sedimentary rocks at Meridiani Planum: origin, diagenesis, and implications for life on Mars, Earth Planet. Sci. Lett. 240, 1–10, 2005.
Stockstill, K. R., Moersch, J. E., McSween, H. Y. Jr., Piatek, J., and Christensen, P. R., TES and THEMIS study of proposed paleolake basins within the Aeolis quadrangle of Mars, J. Geophys. Res. 112, 10.1029/2005JE002517, 2007.
Sullivan, R., Thomas, P., Veverka, J., Malin, M., and Edgett, K. S., Mass movement slope streaks imaged by the Mars Orbiter Camera, J. Geophys. Res. 106, 23607–33, 2001.
Tanaka, K. L., Carr, M. H., Skinner, J. A., Gilmore, M. S., and Hare, T. M., Geology of the MER 2003 “Elysium” candidate landing site in southeastern Utopia Planitia, Mars, J. Geophys. Res. 108, doi:10.1029/2003JE002054, 2003.
Thomas, P. C., S. Squyres, K. Herkenhoff, A. Howard, and B. Murray, Polar deposits of Mars. In Mars (ed. Kieffer, H., et al.), Tucson: University of Arizona Press, pp. 767–95, 1992.
Tornabene, L. L., Moersch, J. E., McSween, H. Y. Jr., et al., Identification of large (2–10 km) rayed craters on Mars in THEMIS thermal infrared images: implications for possible Martian meteorite source regions, J. Geophys. Res. 111, doi:10.1029/2005JE002600, 2006.
Weitz, C. M., Parker, T. J., Bulmer, M. H., Anderson, F. S., and Grant, J. A., Geology of the Melas Chasma landing site for the Mars Exploration Rover mission, J. Geophys. Res. 108, doi:10.1029/2002JE002022, 2003.
Wright, S. P. and Ramsey, M. S., Thermal infrared data analyses of Meteor crater, Arizona: implications for Mars spaceborne data from the Thermal Emission Imaging System, J. Geophys. Res. 111, doi:10.1029/2005JE002472, 2006.
Wyatt, M. B., Hamilton, V. E., McSween, H. Y. Jr., Christensen, P. R., and Taylor, L. A., Analysis of terrestrial and martian volcanic compositions using thermal emission spectroscopy: I. Determination of mineralogy, chemistry, and classification strategies, J. Geophys. Res. 106, 14711–32, 2001.
Wyatt, M. B., McSween, H. Y. Jr., Moersch, J. E., and Christensen, P. R., Analysis of surface compositions in the Oxia Palus region on Mars from Mars Global Surveyor Thermal Emission Spectrometer observations, J. Geophys. Res. 108, 5107, doi:5110.1029/2002JE001986, 2003.
Wyrick, D. Y., Ferrill, D. A., Morris, A. P., Colton, S. L., and Sims, D. W., Distribution, morphology and origins of Martian pit crater chains, J. Geophys. Res. 109, E06005, doi: 06010.01029/02004JE002240, 2004.