Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-28T01:21:08.869Z Has data issue: false hasContentIssue false

2 - Renal Handling of Lithium

Proximal and Distal Handling of Lithium; The Staging of Chronic Kidney Disease; Lithium Related Effects on Renal Function

Published online by Cambridge University Press:  09 February 2024

Jonathan M. Meyer
Affiliation:
University of California, San Diego
Stephen M. Stahl
Affiliation:
University of California, San Diego
Get access

Summary

In a 1989 review entitled “Long-term treatment with lithium and renal function: A review and reappraisal,” the pioneering Danish psychopharmacologist Mogens Schou concluded: “The fear of eventual kidney insufficiency as a result of long-term lithium treatment can be set at rest” [1]. Despite the certainty advanced by the preeminent authority on lithium at that time – the man responsible for all of the early data on lithium’s efficacy and the first double-blind placebo-controlled trials – fear of lithium’s long-term renal adverse effects remains a significant concern to clinicians, a concern that is often disproportionate to the emerging data in this area.

Type
Chapter
Information
The Lithium Handbook
Stahl's Handbooks
, pp. 95 - 150
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Schou, M. (1989). [Long-term treatment with lithium and renal function: A review and reappraisal. Encephale, 15, 437442.Google ScholarPubMed
Aiff, H., Attman, P.-O., Aurell, M., et al. (2014). The impact of modern treatment principles may have eliminated lithium-induced renal failure. J Psychopharmacol, 28, 151154.CrossRefGoogle ScholarPubMed
Kirkham, E., Skinner, J., Anderson, T., et al. (2014). One lithium level > 1.0 mmol/L causes an acute decline in eGFR: Findings from a retrospective analysis of a monitoring database. BMJ Open, 4, e006020.CrossRefGoogle ScholarPubMed
Castro, V. M., Roberson, A. M., McCoy, T. H., et al. (2016). Stratifying risk for renal insufficiency among lithium-treated patients: An electronic health record study. Neuropsychopharmacol, 41, 11381143.CrossRefGoogle ScholarPubMed
Kessing, L. V., Gerds, T. A., Feldt-Rasmussen, B., et al. (2015). Use of lithium and anticonvulsants and the rate of chronic kidney disease: A nationwide population-based study. JAMA Psychiatry, 72, 11821191.CrossRefGoogle ScholarPubMed
Clos, S., Rauchhaus, P., Severn, A., et al. (2015). Long-term effect of lithium maintenance therapy on estimated glomerular filtration rate in patients with affective disorders: A population-based cohort study. Lancet Psychiatry, 2, 10751083.CrossRefGoogle Scholar
Dastych, M., Synek, O. and Gottwaldova, J. (2019). Impact of long-term lithium treatment on renal function in patients with bipolar disorder based on novel biomarkers. J Clin Psychopharmacol, 39, 238242.CrossRefGoogle ScholarPubMed
Bisogni, V., Rossitto, G., Reghin, F., et al. (2016). Antihypertensive therapy in patients on chronic lithium treatment for bipolar disorders. J Hypertens, 34, 2028.CrossRefGoogle ScholarPubMed
Alsady, M., Baumgarten, R., Deen, P. M., et al. (2016). Lithium in the kidney: Friend and foe? J Am Soc Nephrol, 27, 15871595.CrossRefGoogle ScholarPubMed
Schoot, T. S., Molmans, T. H. J., Grootens, K. P., et al. (2020). Systematic review and practical guideline for the prevention and management of the renal side effects of lithium therapy. Eur Neuropsychopharmacol, 31, 1632.CrossRefGoogle ScholarPubMed
Łukawska, E., Frankiewicz, D., Izak, M., et al. (2021). Lithium toxicity and the kidney with special focus on nephrotic syndrome associated with the acute kidney injury: A case-based systematic analysis. J Appl Toxicol, 41, 18961909.CrossRefGoogle ScholarPubMed
Kortenoeven, M. L., Li, Y., Shaw, S., et al. (2009). Amiloride blocks lithium entry through the sodium channel thereby attenuating the resultant nephrogenic diabetes insipidus. Kidney Int, 76, 4453.CrossRefGoogle ScholarPubMed
Kalita-De Croft, P., Bedford, J. J., Leader, J. P., et al. (2018). Amiloride modifies the progression of lithium-induced renal interstitial fibrosis. Nephrology (Carlton), 23, 2030.CrossRefGoogle ScholarPubMed
Vallée, C., Howlin, B. and Lewis, R. (2021). Ion selectivity in the ENaC/DEG family: A systematic review with supporting analysis. Int J Mol Sci, 22. doi: 10.3390/ijms222010998.CrossRefGoogle Scholar
Vandenbeuch, A. and Kinnamon, S. C. (2020). Is the amiloride-sensitive Na+ channel in taste cells really ENaC? Chem Senses, 45, 233234.CrossRefGoogle ScholarPubMed
Davis, J., Desmond, M. and Berk, M. (2018). Lithium and nephrotoxicity: Unravelling the complex pathophysiological threads of the lightest metal. Nephrology (Carlton), 23, 897903.CrossRefGoogle ScholarPubMed
Bedford, J. J., Weggery, S., Ellis, G., et al. (2008). Lithium-induced nephrogenic diabetes insipidus: Renal effects of amiloride. Clin J Am Soc Nephrol, 3, 13241331.CrossRefGoogle ScholarPubMed
Macau, R. A., da Silva, T. N., Silva, J. R., et al. (2018). Use of acetazolamide in lithium-induced nephrogenic diabetes insipidus: A case report. Endocrinol Diabetes Metab Case Rep, doi: 10.1530/EDM-17-0154.CrossRefGoogle Scholar
Chen, T. K., Knicely, D. H. and Grams, M. E. (2019). Chronic kidney disease diagnosis and management: A review. JAMA, 322, 12941304.CrossRefGoogle ScholarPubMed
Inker, L. A., Eneanya, N. D., Coresh, J., et al. (2021). New creatinine- and cystatin C-based equations to estimate GFR without race. N Engl J Med, 385, 17371749.CrossRefGoogle ScholarPubMed
Öhlund, L., Ott, M., Oja, S., et al. (2018). Reasons for lithium discontinuation in men and women with bipolar disorder: A retrospective cohort study. BMC Psychiatry, 18, 3746.CrossRefGoogle ScholarPubMed
Kinahan, J. C., NiChorcorain, A., Cunningham, S., et al. (2015). Diagnostic accuracy of tests for polyuria in lithium-treated patients. J Clin Psychopharmacol, 35, 434441.CrossRefGoogle ScholarPubMed
Kinahan, J. C., Ni Chorcorain, A., Cunningham, S., et al. (2022). Managing polyuria during lithium treatment: A preliminary prospective observational study. Ir J Psychol Med, 39, 2027.CrossRefGoogle ScholarPubMed
Koomans, H. A., Boer, W. H. and Dorhout Mees, E. J. (1989). Evaluation of lithium clearance as a marker of proximal tubule sodium handling. Kidney Int, 36, 212.CrossRefGoogle ScholarPubMed
Thomsen, K. and Shirley, D. G. (2006). A hypothesis linking sodium and lithium reabsorption in the distal nephron. Nephrol Dial Transplant, 21, 869880.CrossRefGoogle ScholarPubMed
Jackson, E. K. (2018). Drugs affecting renal excretory function. In Brunton, L. L., Hilal-Dandan, R. and Knollmann, B. C., eds., Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 13th Edition. Chicago: McGraw-Hill, pp. 445470.Google Scholar
Meyer, J. M. (2022). Pharmacotherapy of psychosis and mania. In Brunton, L. L. and Knollmann, B. C., eds., Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 14th Edition. Chicago: McGraw-Hill, pp.357384.Google Scholar
Giebisch, G., Windhager, E. H. and Aronson, P. S. (2017). Glomerular filtration and renal blood flow. In Boron, W. F. and Boulpaep, E. L., eds., Medical Physiology: A Cellular and Molecular Approach, 3rd Edition. Philadelphia, PA: Elsevier, pp. 739753.Google Scholar
Atherton, J. C., Doyle, A., Gee, A., et al. (1991). Lithium clearance: Modification by the loop of Henle in man. J Physiol, 437, 377391.CrossRefGoogle ScholarPubMed
Fransen, R., Boer, W. H., Boer, P., et al. (1993). Effects of furosemide or acetazolamide infusion on renal handling of lithium: A micropuncture study in rats. Am J Physiol, 264, R129134.Google ScholarPubMed
Gimenez, I. (2006). Molecular mechanisms and regulation of furosemide-sensitive Na-K-Cl cotransporters. Curr Opin Nephrol Hypertens, 15, 517523.CrossRefGoogle ScholarPubMed
Levey, A. S., Grams, M. E. and Inker, L. A. (2022). Uses of GFR and albuminuria level in acute and chronic kidney disease. N Engl J Med, 386, 21202128.CrossRefGoogle ScholarPubMed
De Vriese, A. S., Sethi, S., Nath, K. A., et al. (2018). Differentiating primary, genetic, and secondary FSGS in adults: A clinicopathologic approach. J Am Soc Nephrol, 29, 759774.CrossRefGoogle ScholarPubMed
Nyengaard, J. R., Bendtsen, T. F., Christensen, S., et al. (1994). The number and size of glomeruli in long-term lithium-induced nephropathy in rats. Apmis, 102, 5966.CrossRefGoogle ScholarPubMed
Min, G., Christensen, S., Marcussen, N., et al. (2000). Glomerular structure in lithium-induced chronic renal failure in rats. Apmis, 108, 652662.CrossRefGoogle ScholarPubMed
de Groot, T., Doty, R., Damen, L., et al. (2021). Genetic background determines renal response to chronic lithium treatment in female mice. Physiol Genomics, 53, 406415.CrossRefGoogle ScholarPubMed
Markowitz, G. S., Radhakrishnan, J., Kambham, N., et al. (2000). Lithium nephrotoxicity: A progressive combined glomerular and tubulointerstitial nephropathy. J Am Soc Nephrol, 11, 14391448.CrossRefGoogle ScholarPubMed
Walker, R. J., Leader, J. P., Bedford, J. J., et al. (2013). Chronic interstitial fibrosis in the rat kidney induced by long-term (6-mo) exposure to lithium. Am J Physiol Renal Physiol, 304, F300307.CrossRefGoogle ScholarPubMed
Grünfeld, J.-P. and Rossier, B. C. (2009). Lithium nephrotoxicity revisited. Nat Rev Nephrol, 5, 270276.CrossRefGoogle ScholarPubMed
Kwon, T. H., Laursen, U. H., Marples, D., et al. (2000). Altered expression of renal AQPs and Na(+) transporters in rats with lithium-induced NDI. Am J Physiol Renal Physiol, 279, F552564.CrossRefGoogle ScholarPubMed
Pradhan, B. K., Chakrabarti, S., Irpati, A. S., et al. (2011). Distress due to lithium-induced polyuria: Exploratory study. Psychiatry Clin Neurosci, 65, 386388.CrossRefGoogle ScholarPubMed
Rej, S., Segal, M., Low, N. C., et al. (2014). The McGill Geriatric Lithium-Induced Diabetes Insipidus Clinical Study (McGLIDICS). Can J Psychiatry, 59, 327334.CrossRefGoogle ScholarPubMed
Schou, M., Amdisen, A., Thomsen, K., et al. (1982). Lithium treatment regimen and renal water handling: The significance of dosage pattern and tablet type examined through comparison of results from two clinics with different treatment regimens. Psychopharmacology, 77, 387390.CrossRefGoogle ScholarPubMed
Meyer, J. M. and Nasrallah, H. A., eds. (2009). Medical Illness and Schizophrenia, 2nd Edition. Washington, DC: American Psychiatric Press, Inc.Google ScholarPubMed
McElroy, S. L. and Keck, P. E., Jr. (2014). Metabolic syndrome in bipolar disorder: A review with a focus on bipolar depression. J Clin Psychiatry, 75, 4661.CrossRefGoogle ScholarPubMed
Hayes, J. F., Marston, L., Walters, K., et al. (2017). Mortality gap for people with bipolar disorder and schizophrenia: UK-based cohort study 2000–2014. Br J Psychiatry, 211, 175181.CrossRefGoogle ScholarPubMed
Lurie, I., Shoval, G., Hoshen, M., et al. (2021). The association of medical resource utilization with physical morbidity and premature mortality among patients with schizophrenia: An historical prospective population cohort study. Schizophr Res, 237, 6268.CrossRefGoogle ScholarPubMed
Lepkifker, E., Sverdlik, A., Iancu, I., et al. (2004). Renal insufficiency in long-term lithium treatment. J Clin Psychiatry, 63, 850856.CrossRefGoogle Scholar
Tondo, L., Abramowicz, M., Alda, M., et al. (2017). Long-term lithium treatment in bipolar disorder: Effects on glomerular filtration rate and other metabolic parameters. Int J Bipolar Disord, 5, 27.CrossRefGoogle ScholarPubMed
Presne, C., Fakhouri, F., Noel, L. H., et al. (2003). Lithium-induced nephropathy: Rate of progression and prognostic factors. Kidney Int, 64, 585592.CrossRefGoogle ScholarPubMed
Aiff, H., Attman, P.-O., Aurell, M., et al. (2015). Effects of 10 to 30 years of lithium treatment on kidney function. J Psychopharmacol, 29, 608614.CrossRefGoogle ScholarPubMed
Golic, M., Aiff, H., Attman, P. O., et al. (2018). Compliance with the safety guidelines for long-term lithium treatment in Sweden. J Psychopharmacol, 32, 11041109.CrossRefGoogle ScholarPubMed
Werneke, U., Ott, M., Renberg, E. S., et al. (2012). A decision analysis of long-term lithium treatment and the risk of renal failure. Acta Psychiatr Scand, 126, 186197.CrossRefGoogle ScholarPubMed
Wingård, L., Brandt, L., Bodén, R., et al. (2019). Monotherapy vs. combination therapy for post mania maintenance treatment: A population based cohort study. Eur Neuropsychopharmacol, 29, 691700.CrossRefGoogle ScholarPubMed
Tuazon, J., Casalino, D., Syed, E., et al. (2008). Lithium-associated kidney microcysts. Scientific World Journal, 8, 828829.CrossRefGoogle ScholarPubMed
Slaughter, A., Pandey, T. and Jambhekar, K. (2010). MRI findings in chronic lithium nephropathy: A case report. J Radiol Case Rep, 4, 1521.Google ScholarPubMed
Jon´czyk-Potoczna, K., Abramowicz, M., Chłopocka-Woz´niak, M., et al. (2016). Renal sonography in bipolar patients on long-term lithium treatment. J Clin Ultrasound, 44, 354359.CrossRefGoogle ScholarPubMed
Tabibzadeh, N., Faucon, A. L., Vidal-Petiot, E., et al. (2021). Determinants of kidney function and accuracy of kidney microcysts detection in patients treated with lithium salts for bipolar disorder. Front Pharmacol, 12, 112.Google ScholarPubMed
Golshayan, D., Nseir, G., Venetz, J. P., et al. (2012). MR imaging as a specific diagnostic tool for bilateral microcysts in chronic lithium nephropathy. Kidney Int, 81, 601.CrossRefGoogle ScholarPubMed
Farshchian, N., Farnia, V., Aghaiani, M. R., et al. (2013). MRI findings and renal function in patients on lithium therapy. Curr Drug Saf, 8, 257260.CrossRefGoogle ScholarPubMed
Davis, J., Desmond, M. and Berk, M. (2018). Lithium and nephrotoxicity: A literature review of approaches to clinical management and risk stratification. BMC Nephrol, 19, 305.CrossRefGoogle ScholarPubMed
Gahr, M., Wezel, F., Bolenz, C., et al. (2019). Lithium therapy associated with renal and upper and lower urinary tract tumors: Results from a retrospective single-center analysis. J Clin Psychopharmacol, 39, 530532.CrossRefGoogle ScholarPubMed
Rookmaaker, M. B., van Gerven, H. A., Goldschmeding, R., et al. (2012). Solid renal tumours of collecting duct origin in patients on chronic lithium therapy. Clin Kidney J, 5, 412415.CrossRefGoogle ScholarPubMed
Zaidan, M., Stucker, F., Stengel, B., et al. (2014). Increased risk of solid renal tumors in lithium-treated patients. Kidney Int, 86, 184190.CrossRefGoogle ScholarPubMed
Cohen, Y., Chetrit, A., Cohen, Y., et al. (1998). Cancer morbidity in psychiatric patients: Influence of lithium carbonate treatment. Med Oncol, 15, 3236.CrossRefGoogle ScholarPubMed
Licht, R. W., Grabenhenrich, L. B., Nielsen, R. E., et al. (2014). Lithium and renal tumors: A critical comment to the report by Zaidan et al. Kidney Int, 86, 857.CrossRefGoogle Scholar
Kessing, L. V., Gerds, T. A., Feldt-Rasmussen, B., et al. (2015). Lithium and renal and upper urinary tract tumors – results from a nationwide population-based study. Bipolar Disord, 17, 805813.CrossRefGoogle ScholarPubMed
Pottegård, A., Hallas, J., Jensen, B. L., et al. (2016). Long-term lithium use and risk of renal and upper urinary tract cancers. J Am Soc Nephrol, 27, 249255.CrossRefGoogle ScholarPubMed
Martinsson, L., Westman, J., Hallgren, J., et al. (2016). Lithium treatment and cancer incidence in bipolar disorder. Bipolar Disord, 18, 3340.CrossRefGoogle ScholarPubMed
Huang, R. Y., Hsieh, K. P., Huang, W. W., et al. (2016). Use of lithium and cancer risk in patients with bipolar disorder: Population-based cohort study. Br J Psychiatry, 209, 393399.CrossRefGoogle ScholarPubMed
Anmella, G., Fico, G., Lotfaliany, M., et al. (2021). Risk of cancer in bipolar disorder and the potential role of lithium: International collaborative systematic review and meta-analyses. Neurosci Biobehav Rev, 126, 529541.CrossRefGoogle ScholarPubMed
Plenge, P., Mellerup, E. T., Bolwig, T. G., et al. (1982). Lithium treatment: Does the kidney prefer one daily dose instead of two? Acta Psychiatr Scand, 66, 121128.CrossRefGoogle ScholarPubMed
Carter, L., Zolezzi, M. and Lewczyk, A. (2013). An updated review of the optimal lithium dosage regimen for renal protection. Can J Psychiatry, 58, 595600.CrossRefGoogle ScholarPubMed
Amdisen, A. (1977). Serum level monitoring and clinical pharmacokinetics of lithium. Clin Pharmacokinet, 2, 7392.CrossRefGoogle ScholarPubMed
Greil, W. (1981). [Pharmacokinetics and toxicology of lithium]. Bibl Psychiatr, 161, 69103.Google Scholar
Swartz, C. M. (1987). Correction of lithium levels for dose and blood sampling times. J Clin Psychiatry, 48, 6064.Google ScholarPubMed
Kusalic, M. and Engelsmann, F. (1996). Renal reactions to changes of lithium dosage. Neuropsychobiology, 34, 113116.CrossRefGoogle ScholarPubMed
Nolen, W. A., Licht, R. W., Young, A. H., et al. (2019). What is the optimal serum level for lithium in the maintenance treatment of bipolar disorder? A systematic review and recommendations from the ISBD/IGSLI Task Force on treatment with lithium. Bipolar Disord, 21, 394409.CrossRefGoogle ScholarPubMed
Shaddock, R., Anderson, K. V. and Beyth, R. (2020). Renal repercussions of medications. Prim Care, 47, 691702.CrossRefGoogle ScholarPubMed
Ruffenach, S. J., Siskind, M. S. and Lien, Y. H. (1992). Acute interstitial nephritis due to omeprazole. Am J Med, 93, 472473.CrossRefGoogle ScholarPubMed
Wei, X., Yu, J., Xu, Z., et al. (2022). Incidence, pathogenesis, and management of proton pump inhibitor-induced nephrotoxicity. Drug Saf, 45, 703712.CrossRefGoogle ScholarPubMed
Lazarus, B., Chen, Y., Wilson, F. P., et al. (2016). Proton pump inhibitor use and the risk of chronic kidney disease. JAMA Intern Med, 176, 238246.CrossRefGoogle ScholarPubMed
Al-Aly, Z., Maddukuri, G. and Xie, Y. (2020). Proton pump inhibitors and the kidney: Implications of current evidence for clinical practice and when and how to deprescribe. Am J Kidney Dis, 75, 497507.CrossRefGoogle ScholarPubMed
Attridge, R. L., Frei, C. R., Ryan, L., et al. (2013). Fenofibrate-associated nephrotoxicity: A review of current evidence. Am J Health Syst Pharm, 70, 12191225.CrossRefGoogle ScholarPubMed
Zingerman, B., Ziv, D., Feder Krengel, N., et al. (2020). Cessation of bezafibrate in patients with chronic kidney disease improves renal function. Sci Rep, 10, 19768.CrossRefGoogle ScholarPubMed
Dohmen, K., Onohara, S. Y. and Harada, S. (2021). Effects of switching from fenofibrate to pemafibrate for asymptomatic primary biliary cholangitis. Korean J Gastroenterol, 78, 227234.CrossRefGoogle ScholarPubMed
Zhang, J., Ji, X., Dong, Z., et al. (2021). Impact of fenofibrate therapy on serum uric acid concentrations: A review and meta-analysis. Endocr J, 68, 829837.CrossRefGoogle Scholar
Broeders, N., Knoop, C., Antoine, M., et al. (2000). Fibrate-induced increase in blood urea and creatinine: Is gemfibrozil the only innocuous agent? Nephrol Dial Transplant, 15, 1993–1999.CrossRefGoogle ScholarPubMed
Gray, M. P., Barreto, E. F., Schreier, D. J., et al. (2022). Consensus obtained for the nephrotoxic potential of 167 drugs in adult critically ill patients using a modified Delphi method. Drug Saf, 45, 389398.CrossRefGoogle ScholarPubMed
Morriss, R. and Benjamin, B. (2008). Lithium and eGFR: A new routinely available tool for the prevention of chronic kidney disease. Br J Psychiatry, 193, 9395.CrossRefGoogle ScholarPubMed
Cockcroft, D. W. and Gault, M. H. (1976). Prediction of creatinine clearance from serum creatinine. Nephron, 16, 3141.CrossRefGoogle ScholarPubMed
Inker, L. A. and Titan, S. (2021). Measurement and estimation of GFR for use in clinical practice: Core curriculum 2021. Am J Kidney Dis, 78, 736749.CrossRefGoogle ScholarPubMed
Meyer, J. M. and Stahl, S. M. (2021). The Clinical Use of Antipsychotic Plasma Levels (Stahl’s Handbooks). New York: Cambridge University Press.CrossRefGoogle Scholar
Shannon, J. A. and Smith, H. W. (1935). The excretion of inulin, xylose and urea by normal and phlorizinized man. J Clin Invest, 14, 393401.CrossRefGoogle ScholarPubMed
Eneanya, N. D., Yang, W. and Reese, P. P. (2019). Reconsidering the consequences of using race to estimate kidney function. JAMA, 322, 113114.CrossRefGoogle ScholarPubMed
Diao, J. A., Wu, G. J., Taylor, H. A., et al. (2021). Clinical implications of removing race from estimates of kidney function. JAMA, 325, 184186.CrossRefGoogle ScholarPubMed
Powe, N. R. (2020). Black kidney function matters: Use or misuse of race? JAMA, 324, 737738.CrossRefGoogle ScholarPubMed
Delgado, C., Baweja, M., Crews, D. C., et al. (2021). A unifying approach for GFR estimation: Recommendations of the NKF–ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease. Am J Kidney Dis, 79, 268288.e261.CrossRefGoogle ScholarPubMed
Diao, J. A., Inker, L. A., Levey, A. S., et al. (2021). In search of a better equation – performance and equity in estimates of kidney function. N Engl J Med, 384, 396399.CrossRefGoogle ScholarPubMed
Shlipak, M. G., Inker, L. A. and Coresh, J. (2022). Serum cystatin C for estimation of GFR. JAMA, 328, 883884.CrossRefGoogle ScholarPubMed
Tummalapalli, S. L., Shlipak, M. G., Damster, S., et al. (2020). Availability and affordability of kidney health laboratory tests around the globe. Am J Nephrol, 51, 959965.CrossRefGoogle ScholarPubMed
Stookey, J. D. (2019). Analysis of 2009–2012 Nutrition Health and Examination Survey (NHANES) data to estimate the median water intake associated with meeting hydration criteria for individuals aged 12–80 in the US population. Nutrients, 11, 657700.CrossRefGoogle ScholarPubMed
Sureda-Vives, M., Morell-Garcia, D., Rubio-Alaejos, A., et al. (2017). Stability of serum, plasma and urine osmolality in different storage conditions: Relevance of temperature and centrifugation. Clin Biochem, 50, 772776.CrossRefGoogle ScholarPubMed
Meyer, J. M. and Stahl, S. M. (2019). The Clozapine Handbook (Stahl’s Handbooks).Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Goldman, M. B. (2010). The assessment and treatment of water imbalance in patients with psychosis. Clin Schizophr Relat Psychoses, 4, 115123.CrossRefGoogle ScholarPubMed
Nederlof, M., Heerdink, E. R., Egberts, A. C. G., et al. (2018). Monitoring of patients treated with lithium for bipolar disorder: An international survey. Int J Bipolar Disord, 6, 12–20.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×