Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-23T10:05:29.034Z Has data issue: false hasContentIssue false

4 - Lithium Initiation and Monitoring

Baseline Assessment; Loading and Initiation Methods; Target Serum Levels; Monitoring Intrinsic Renal Function with New eGFRcr-cys Formula; Office and Laboratory Methods for Monitoring Polyuria; Monitoring Thyroid and Parathyroid Function

Published online by Cambridge University Press:  09 February 2024

Jonathan M. Meyer
Affiliation:
University of California, San Diego
Stephen M. Stahl
Affiliation:
University of California, San Diego
Get access

Summary

While the literature abundantly documents lithium’s unique efficacy profile and the limitations of non-lithium therapies, starting a patient on lithium requires the complete array of one’s clinical skills. One core ability relates to appropriate pharmacological use of lithium, including dosing, level monitoring, and management of drug interactions and adverse effects that lead to discontinuation [1]; however, it is facility in communicating with patients and eliciting their illness beliefs, their ideas about the need for any treatment, and their specific thoughts about lithium therapy that is crucial to minimizing nonadherence [2].

Type
Chapter
Information
The Lithium Handbook
Stahl's Handbooks
, pp. 203 - 250
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Öhlund, L., Ott, M., Oja, S., et al. (2018). Reasons for lithium discontinuation in men and women with bipolar disorder: A retrospective cohort study. BMC Psychiatry, 18, 3746.CrossRefGoogle ScholarPubMed
Jawad, I., Watson, S., Haddad, P. M., et al. (2018). Medication nonadherence in bipolar disorder: A narrative review. Ther Adv Psychopharmacol, 8, 349363.CrossRefGoogle ScholarPubMed
Abegaz, T. M., Shehab, A., Gebreyohannes, E. A., et al. (2017). Nonadherence to antihypertensive drugs: A systematic review and meta-analysis. Medicine (Baltimore), 96, e5641.CrossRefGoogle ScholarPubMed
Meyer, J. M. and Stahl, S. M. (2021). The Clinical Use of Antipsychotic Plasma Levels (Stahl’s Handbooks). New York: Cambridge University Press.CrossRefGoogle Scholar
Van Putten, T. (1975). Why do patients with manic-depressive illness stop their lithium? Compr Psychiatry, 16, 179183.CrossRefGoogle ScholarPubMed
Jamison, K. R., Gerner, R. H. and Goodwin, F. K. (1979). Patient and physician attitudes toward lithium: Relationship to compliance. Arch Gen Psychiatry, 36, 866869.CrossRefGoogle ScholarPubMed
Vestergaard, P. and Amdisen, A. (1983). Patient attitudes towards lithium. Acta Psychiatr Scand, 67, 812.CrossRefGoogle ScholarPubMed
Pope, M. and Scott, J. (2003). Do clinicians understand why individuals stop taking lithium? J Affect Disord, 74, 287291.CrossRefGoogle ScholarPubMed
Schou, M. (1999). The early European lithium studies. Aust N Z J Psychiatry, 33 Suppl., S3947.CrossRefGoogle ScholarPubMed
Cole, N. and Parker, G. (2012). Cade’s identification of lithium for manic-depressive illness–the prospector who found a gold nugget. J Nerv Ment Dis, 200, 11011104.CrossRefGoogle Scholar
Rybakowski, J. K. (2018). Challenging the negative perception of lithium and optimizing its long-term administration. Front Mol Neurosci, 11, 18.CrossRefGoogle ScholarPubMed
Kerner, B., Crisanti, A. S., DeShaw, J. L., et al. (2019). Preferences of information dissemination on treatment for bipolar disorder: Patient-centered focus group study. JMIR Ment Health, 6, e12848.CrossRefGoogle ScholarPubMed
Scott, J. and Tacchi, M. J. (2002). A pilot study of concordance therapy for individuals with bipolar disorders who are non-adherent with lithium prophylaxis. Bipolar Disord, 4, 386392.CrossRefGoogle ScholarPubMed
Sugawara, N., Adachi, N., Kubota, Y., et al. (2022). Determinants of three-year clinical outcomes in real-world outpatients with bipolar disorder: The multicenter treatment survey for bipolar disorder in psychiatric outpatient clinics (MUSUBI). J Psychiatr Res, 151, 683692.CrossRefGoogle ScholarPubMed
Kessing, L. V., Vradi, E. and Andersen, P. K. (2014). Starting lithium prophylaxis early v. late in bipolar disorder. Br J Psychiatry, 205, 214220.CrossRefGoogle ScholarPubMed
Yoshimura, B., Yada, Y., So, R., et al. (2017). The critical treatment window of clozapine in treatment-resistant schizophrenia: Secondary analysis of an observational study. Psychiatry Res, 250, 6570.CrossRefGoogle ScholarPubMed
Griffiths, K., Millgate, E., Egerton, A., et al. (2021). Demographic and clinical variables associated with response to clozapine in schizophrenia: A systematic review and meta-analysis. Psychol Med, 51, 376386.CrossRefGoogle ScholarPubMed
Franchini, L., Zanardi, R., Smeraldi, E., et al. (1999). Early onset of lithium prophylaxis as a predictor of good long-term outcome. Eur Arch Psychiatry Clin Neurosci, 249, 227230.CrossRefGoogle ScholarPubMed
Baldessarini, R. J., Tondo, L. and Hennen, J. (2003). Treatment-latency and previous episodes: Relationships to pretreatment morbidity and response to maintenance treatment in bipolar I and II disorders. Bipolar Disord, 5, 169179.CrossRefGoogle ScholarPubMed
Bratti, I. M., Baldessarini, R. J., Baethge, C., et al. (2003). Pretreatment episode count and response to lithium treatment in manic-depressive illness. Harv Rev Psychiatry, 11, 245256.CrossRefGoogle ScholarPubMed
Baldessarini, R. J., Tondo, L., Baethge, C. J., et al. (2007). Effects of treatment latency on response to maintenance treatment in manic-depressive disorders. Bipolar Disord, 9, 386393.CrossRefGoogle ScholarPubMed
Burkhardt, E., Pfennig, A. and Leopold, K. (2021). Clinical risk constellations for the development of bipolar disorders. Medicina (Kaunas), 57, 792799.CrossRefGoogle ScholarPubMed
Martini, J., Leopold, K., Pfeiffer, S., et al. (2021). Early detection of bipolar disorders and treatment recommendations for help-seeking adolescents and young adults: Findings of the Early Detection and Intervention Center Dresden. Int J Bipolar Disord, 9, 23.CrossRefGoogle Scholar
Lim, M., Li, Z., Xie, H., et al. (2021). The effect of therapeutic alliance on attitudes toward psychiatric medications in schizophrenia. J Clin Psychopharmacol, 41, 551560.CrossRefGoogle ScholarPubMed
Nestsiarovich, A., Gaudiot, C. E. S., Baldessarini, R. J., et al. (2022). Preventing new episodes of bipolar disorder in adults: Systematic review and meta-analysis of randomized controlled trials. Eur Neuropsychopharmacol, 54, 7589.CrossRefGoogle ScholarPubMed
Öhlund, L., Ott, M., Bergqvist, M., et al. (2019). Clinical course and need for hospital admission after lithium discontinuation in patients with bipolar disorder type I or II: Mirror-image study based on the LiSIE retrospective cohort. BJPsych Open, 5, e101112.CrossRefGoogle ScholarPubMed
Lintunen, J., Taipale, H., Tanskanen, A., et al. (2021). Long-term real-world effectiveness of pharmacotherapies for schizoaffective disorder. Schizophr Bull, 47, 10991107.CrossRefGoogle ScholarPubMed
Wingård, L., Brandt, L., Bodén, R., et al. (2019). Monotherapy vs. combination therapy for post mania maintenance treatment: A population based cohort study. Eur Neuropsychopharmacol, 29, 691700.CrossRefGoogle ScholarPubMed
Abou-Saleh, M. T., Muller-Oerlinghausen, B. and Coppen, A. J. (2017). Lithium in the episode and suicide prophylaxis and in augmenting strategies in patients with unipolar depression. Int J Bipolar Disord, 5, 11.CrossRefGoogle ScholarPubMed
Undurraga, J., Sim, K., Tondo, L., et al. (2019). Lithium treatment for unipolar major depressive disorder: Systematic review. J Psychopharmacol, 33, 167176.CrossRefGoogle ScholarPubMed
Scott, F., Hampsey, E., Gnanapragasam, S., et al. (2023). Systematic review and meta-analysis of augmentation and combination treatments for early-stage treatment-resistant depression. J Psychopharmacol, 37, 268–278.CrossRefGoogle Scholar
Sforzini, L., Worrell, C., Kose, M., et al. (2022). A Delphi-method-based consensus guideline for definition of treatment-resistant depression for clinical trials. Mol Psychiatry, 27, 12861299.CrossRefGoogle ScholarPubMed
Malhi, G. S., Bell, E., Bassett, D., et al. (2021). The 2020 Royal Australian and New Zealand College of Psychiatrists clinical practice guidelines for mood disorders. Aust N Z J Psychiatry, 55, 7117.CrossRefGoogle ScholarPubMed
Henssler, J., Alexander, D., Schwarzer, G., et al. (2022). Combining antidepressants vs antidepressant monotherapy for treatment of patients with acute depression: A systematic review and meta-analysis. JAMA Psychiatry, 79, 300312.CrossRefGoogle ScholarPubMed
Vázquez, G. H., Bahji, A., Undurraga, J., et al. (2021). Efficacy and tolerability of combination treatments for major depression: Antidepressants plus second-generation antipsychotics vs. esketamine vs. lithium. J Psychopharmacol, 35, 890900.CrossRefGoogle ScholarPubMed
Heitzmann, E., Javelot, H., Weiner, L., et al. (2016). A case of aripiprazole-induced tardive dyskinesia with dramatic evolution. Case Rep Psychiatry, 2016, 7031245.Google ScholarPubMed
Gomaa, H., Mahgoub, Y. and Francis, A. (2021). Covert dyskinesia with aripiprazole: Tip of the iceberg? A case report and literature review. J Clin Psychopharmacol, 41, 6770.CrossRefGoogle ScholarPubMed
Preskorn, S., Flynn, A. and Macaluso, M. (2015). Determining whether a definitive causal relationship exists between aripiprazole and tardive dyskinesia and/or dystonia in patients with major depressive disorder: Part 1. J Psychiatr Pract, 21, 359369.CrossRefGoogle ScholarPubMed
Macaluso, M., Flynn, A. and Preskorn, S. (2016). Determining whether a definitive causal relationship exists between aripiprazole and tardive dyskinesia and/or dystonia in patients with major depressive disorder, part 2: Preclinical and early phase human proof of concept studies. J Psychiatr Pract, 22, 4249.CrossRefGoogle ScholarPubMed
Preskorn, S. H. and Macaluso, M. (2016). Determining whether a definitive causal relationship exists between aripiprazole and tardive dyskinesia and/or dystonia in patients with major depressive disorder, part 3: Clinical trial data. J Psychiatr Pract, 22, 117123.CrossRefGoogle ScholarPubMed
Macaluso, M., Flynn, A. and Preskorn, S. (2016). Determining whether a definitive causal relationship exists between aripiprazole and tardive dyskinesia and/or dystonia in patients with major depressive disorder, part 4: Case report data. J Psychiatr Pract, 22, 203220.CrossRefGoogle ScholarPubMed
Schneider, L. S., Dagerman, K. S. and Insel, P. (2005). Risk of death with atypical antipsychotic drug treatment for dementia: Meta-analysis of randomized placebo-controlled trials. JAMA, 294, 1934–1943.CrossRefGoogle ScholarPubMed
Maust, D. T., Kim, H. M., Seyfried, L. S., et al. (2015). Antipsychotics, other psychotropics, and the risk of death in patients with dementia: Number needed to harm. JAMA Psychiatry, 72, 438445.CrossRefGoogle ScholarPubMed
Gerhard, T., Stroup, T. S., Correll, C. U., et al. (2020). Mortality risk of antipsychotic augmentation for adult depression. PLoS One, 15, e0239206.CrossRefGoogle ScholarPubMed
Thomas, L., Li, F. and Pencina, M. (2020). Using propensity score methods to create target populations in observational clinical research. JAMA, 323, 466467.CrossRefGoogle ScholarPubMed
Davies, P., Ijaz, S., Williams, C. J., et al. (2019). Pharmacological interventions for treatment-resistant depression in adults. Cochrane Database Syst Rev, 12, Cd010557.Google ScholarPubMed
Lorentzen, R., Kjær, J. N., Østergaard, S. D., et al. (2020). Thyroid hormone treatment in the management of treatment-resistant unipolar depression: A systematic review and meta-analysis. Acta Psychiatr Scand, 141, 316326.CrossRefGoogle ScholarPubMed
Kessing, L. V., Gerds, T. A., Feldt-Rasmussen, B., et al. (2015). Use of lithium and anticonvulsants and the rate of chronic kidney disease: A nationwide population-based study. JAMA Psychiatry, 72, 11821191.CrossRefGoogle ScholarPubMed
Sinha, A., Shariq, A., Said, K., et al. (2018). Medical comorbidities in bipolar disorder. Curr Psychiatry Rep, 20, 36.CrossRefGoogle ScholarPubMed
Scott, J., Etain, B. and Bellivier, F. (2018). Can an integrated science approach to precision medicine research improve lithium treatment in bipolar disorders? Front Psychiatry, 9, 360.CrossRefGoogle ScholarPubMed
Grillault Laroche, D., Etain, B., Severus, E., et al. (2020). Socio-demographic and clinical predictors of outcome to long-term treatment with lithium in bipolar disorders: A systematic review of the contemporary literature and recommendations from the ISBD/IGSLI Task Force on treatment with lithium. Int J Bipolar Disord, 8, 113.CrossRefGoogle ScholarPubMed
Nunes, A., Ardau, R., Berghofer, A., et al. (2020). Prediction of lithium response using clinical data. Acta Psychiatr Scand, 141, 131141.CrossRefGoogle ScholarPubMed
Hui, T. P., Kandola, A., Shen, L., et al. (2019). A systematic review and meta-analysis of clinical predictors of lithium response in bipolar disorder. Acta Psychiatr Scand, 140, 94115.CrossRefGoogle ScholarPubMed
Baldessarini, R. J., Tondo, L., Floris, G., et al. (2000). Effects of rapid cycling on response to lithium maintenance treatment in 360 bipolar I and II disorder patients. J Affect Disord, 61, 1322.CrossRefGoogle ScholarPubMed
Strawbridge, R., Kurana, S., Kerr-Gaffney, J., et al. (2022). A systematic review and meta-analysis of treatments for rapid cycling bipolar disorder. Acta Psychiatr Scand, 146, 290311.CrossRefGoogle ScholarPubMed
Fountoulakis, K. N., Tohen, M. and Zarate, C. A. (2022). Lithium treatment of bipolar disorder in adults: A systematic review of randomized trials and meta-analyses. Eur Neuropsychopharmacol, 54, 100115.CrossRefGoogle ScholarPubMed
Lin, Y., Maihofer, A. X., Stapp, E., et al. (2021). Clinical predictors of non-response to lithium treatment in the Pharmacogenomics of Bipolar Disorder (PGBD) study. Bipolar Disord, 23, 821831.CrossRefGoogle ScholarPubMed
Sekula, N. M., Yocum, A. K., Anderau, S., et al. (2022). Lithium use associated with symptom severity in comorbid bipolar disorder I and migraine. Brain Behav, 12, e32585.CrossRefGoogle ScholarPubMed
Jacobsen, K. K., Nievergelt, C. M., Zayats, T., et al. (2015). Genome wide association study identifies variants in NBEA associated with migraine in bipolar disorder. J Affect Disord, 172, 453461.CrossRefGoogle ScholarPubMed
Clos, S., Rauchhaus, P., Severn, A., et al. (2015). Long-term effect of lithium maintenance therapy on estimated glomerular filtration rate in patients with affective disorders: A population-based cohort study. Lancet Psychiatry, 2, 10751083.CrossRefGoogle Scholar
Nolen, W. A., Licht, R. W., Young, A. H., et al. (2019). What is the optimal serum level for lithium in the maintenance treatment of bipolar disorder? A systematic review and recommendations from the ISBD/IGSLI Task Force on treatment with lithium. Bipolar Disord, 21, 394409.CrossRefGoogle ScholarPubMed
Castro, V. M., Roberson, A. M., McCoy, T. H., et al. (2016). Stratifying risk for renal insufficiency among lithium-treated patients: An electronic health record study. Neuropsychopharmacol, 41, 11381143.CrossRefGoogle ScholarPubMed
Bisogni, V., Rossitto, G., Reghin, F., et al. (2016). Antihypertensive therapy in patients on chronic lithium treatment for bipolar disorders. J Hypertens, 34, 2028.CrossRefGoogle ScholarPubMed
Finley, P. R. (2016). Drug interactions with lithium: An update. Clin Pharmacokinet, 55, 925941.CrossRefGoogle ScholarPubMed
Oedegaard, K. J., Alda, M., Anand, A., et al. (2016). The Pharmacogenomics of Bipolar Disorder study (PGBD): Identification of genes for lithium response in a prospective sample. BMC Psychiatry, 16, 129.CrossRefGoogle Scholar
Amare, A. T., Schubert, K. O., Hou, L., et al. (2018). Association of polygenic score for schizophrenia and HLA antigen and inflammation genes with response to lithium in bipolar affective disorder: A genome-wide association study. JAMA Psychiatry, 75, 6574.Google ScholarPubMed
McCarthy, M. J., Wei, H., Nievergelt, C. M., et al. (2019). Chronotype and cellular circadian rhythms predict the clinical response to lithium maintenance treatment in patients with bipolar disorder. Neuropsychopharmacol, 44, 620628.CrossRefGoogle ScholarPubMed
Mishra, H. K., Ying, N. M., Luis, A., et al. (2021). Circadian rhythms in bipolar disorder patient-derived neurons predict lithium response: Preliminary studies. Mol Psychiatry, 26, 33833394.CrossRefGoogle ScholarPubMed
Post, R. M., Leverich, G. S., Kupka, R., et al. (2016). Clinical correlates of sustained response to individual drugs used in naturalistic treatment of patients with bipolar disorder. Compr Psychiatry, 66, 146156.CrossRefGoogle ScholarPubMed
Calabrese, J. R., Shelton, M. D., Rapport, D. J., et al. (2005). A 20-month, double-blind, maintenance trial of lithium versus divalproex in rapid-cycling bipolar disorder. Am J Psychiatry, 162, 21522161.CrossRefGoogle ScholarPubMed
Hou, L., Heilbronner, U., Degenhardt, F., et al. (2016). Genetic variants associated with response to lithium treatment in bipolar disorder: A genome-wide association study. Lancet, 387, 10851093.CrossRefGoogle ScholarPubMed
McIntyre, R. S., Berk, M., Brietzke, E., et al. (2020). Bipolar disorders. Lancet, 396, 1841–1856.CrossRefGoogle ScholarPubMed
Schumann, C., Lenz, G., Berghofer, A., et al. (1999). Non-adherence with long-term prophylaxis: A 6-year naturalistic follow-up study of affectively ill patients. Psychiatry Res, 89, 247257.CrossRefGoogle ScholarPubMed
Inoue, T., Sano, H., Kojima, Y., et al. (2021). Real-world treatment patterns and adherence to oral medication among patients with bipolar disorders: A retrospective, observational study using a healthcare claims database. Neuropsychiatr Dis Treat, 17, 821833.CrossRefGoogle ScholarPubMed
Kessing, L. V., Søndergård, L., Kvist, K., et al. (2007). Adherence to lithium in naturalistic settings: Results from a nationwide pharmacoepidemiological study. Bipolar Disord, 9, 730736.CrossRefGoogle ScholarPubMed
Harvey, N. S. (1991). The development and descriptive use of the Lithium Attitudes Questionnaire. J Affect Disord, 22, 211219.CrossRefGoogle ScholarPubMed
Singh, S., Kumar, S., Mahal, P., et al. (2019). Self-reported medication adherence and its correlates in a lithium-maintained cohort with bipolar disorder at a tertiary care centre in India. Asian J Psychiatr, 46, 3440.CrossRefGoogle Scholar
Rosa, A. R., Marco, M., Fachel, J. M., et al. (2007). Correlation between drug treatment adherence and lithium treatment attitudes and knowledge by bipolar patients. Prog Neuropsychopharmacol Biol Psychiatry, 31, 217224.CrossRefGoogle ScholarPubMed
Thompson, K., Kulkarni, J. and Sergejew, A. A. (2000). Reliability and validity of a new Medication Adherence Rating Scale (MARS) for the psychoses. Schizophr Res, 42, 241247.CrossRefGoogle ScholarPubMed
Even, C., Thuile, J., Kalck-Stern, M., et al. (2010). Psychoeducation for patients with bipolar disorder receiving lithium: Short and long term impact on locus of control and knowledge about lithium. J Affect Disord, 123, 299302.CrossRefGoogle Scholar
Colom, F. (2014). The evolution of psychoeducation for bipolar disorder: From lithium clinics to integrative psychoeducation. World Psychiatry, 13, 9092.CrossRefGoogle ScholarPubMed
Soo, S. A., Zhang, Z. W., Khong, S. J., et al. (2018). Randomized controlled trials of psychoeducation modalities in the management of bipolar disorder: A systematic review. J Clin Psychiatry, 79, 17r11750.CrossRefGoogle ScholarPubMed
Sajatovic, M., Tatsuoka, C., Cassidy, K. A., et al. (2018). A 6-month, prospective, randomized controlled trial of Customized Adherence Enhancement versus bipolar-specific educational control in poorly adherent individuals with bipolar disorder. J Clin Psychiatry, 79, 17m12036.CrossRefGoogle ScholarPubMed
Sajatovic, M., Levin, J. B., Ramirez, L. F., et al. (2021). Long-acting injectable antipsychotic medication plus customized adherence enhancement in poor adherence patients with bipolar disorder. Prim Care Companion CNS Disord, 23, 20m02888.CrossRefGoogle ScholarPubMed
Canales, T., Rodman, S., Conklin, D., et al. (2022). Combining medication adherence support plus long-acting injectable antipsychotic medication: A post-hoc analysis of 3 pilot studies. Psychopharmacol Bull, 52, 4157.Google ScholarPubMed
Baldessarini, R. J., Bolzani, L., Cruz, N., et al. (2010). Onset-age of bipolar disorders at six international sites. J Affect Disord, 121, 143146.CrossRefGoogle ScholarPubMed
Solmi, M., Radua, J., Olivola, M., et al. (2022). Age at onset of mental disorders worldwide: Large-scale meta-analysis of 192 epidemiological studies. Mol Psychiatry, 27, 281295.CrossRefGoogle ScholarPubMed
Smilowitz, S., Aftab, A., Aebi, M., et al. (2020). Age-related differences in medication adherence, symptoms, and stigma in poorly adherent adults with bipolar disorder. J Geriatr Psychiatry Neurol, 33, 250255.CrossRefGoogle ScholarPubMed
McVoy, M., Delbello, M., Levin, J., et al. (2022). A customized adherence enhancement program for adolescents and young adults with suboptimal adherence and bipolar disorder: Trial design and methodological report. Contemp Clin Trials, 115, 106729.CrossRefGoogle Scholar
Sajatovic, M., Tatsuoka, C., Dines, P., et al. (2014). Patient choice as a driver of medication-switching in non-adherent individuals with bipolar disorder. Patient Prefer Adherence, 8, 487491.CrossRefGoogle ScholarPubMed
Judd, L. L., Akiskal, H. S., Schettler, P. J., et al. (2003). A prospective investigation of the natural history of the long-term weekly symptomatic status of bipolar II disorder. Arch Gen Psychiatry, 60, 261269.CrossRefGoogle ScholarPubMed
Kerckhoffs, A. P. M., Hartong, E. and Grootens, K. P. (2018). The perspectives of patients with lithium-induced end-stage renal disease. Int J Bipolar Disord, 6, 17.CrossRefGoogle ScholarPubMed
Methaneethorn, J., Mannie, Z., Bell, E., et al. (2022). Lithium replacement dose recommendations using Monte Carlo simulations. Bipolar Disord, 24, 739748.CrossRefGoogle ScholarPubMed
Merwick, A., Cooke, J., Neligan, A., et al. (2011). Acute neuropathy in setting of diarrhoeal illness and hyponatraemia due to lithium toxicity. Clin Neurol Neurosurg, 113, 923924.CrossRefGoogle ScholarPubMed
Malhi, G. S., Gessler, D. and Outhred, T. (2017). The use of lithium for the treatment of bipolar disorder: Recommendations from clinical practice guidelines. J Affect Disord, 217, 266280.CrossRefGoogle ScholarPubMed
Meyer, J. M., Dollarhide, A. and Tuan, I.-L. (2005). Lithium toxicity after switch from fosinopril to lisinopril. Int Clin Psychopharmacol, 20, 115118.CrossRefGoogle ScholarPubMed
Sebo, P., Herrmann, F. R. and Haller, D. M. (2017). Accuracy of anthropometric measurements by general practitioners in overweight and obese patients. BMC Obes, 4, 2329.CrossRefGoogle ScholarPubMed
Chen, T. K., Knicely, D. H. and Grams, M. E. (2019). Chronic kidney disease diagnosis and management: A review. JAMA, 322, 12941304.CrossRefGoogle ScholarPubMed
Łukawska, E., Frankiewicz, D., Izak, M., et al. (2021). Lithium toxicity and the kidney with special focus on nephrotic syndrome associated with the acute kidney injury: A case-based systematic analysis. J Appl Toxicol, 41, 1896–1909.CrossRefGoogle ScholarPubMed
Stookey, J. D. (2019). Analysis of 2009–2012 Nutrition Health and Examination Survey (NHANES) data to estimate the median water intake associated with meeting hydration criteria for individuals aged 12–80 in the US population. Nutrients, 11, 657700.CrossRefGoogle ScholarPubMed
Golic, M., Aiff, H., Attman, P. O., et al. (2021). Starting lithium in patients with compromised renal function – is it wise? J Psychopharmacol, 35, 190197.CrossRefGoogle ScholarPubMed
Presne, C., Fakhouri, F., Noel, L. H., et al. (2003). Lithium-induced nephropathy: Rate of progression and prognostic factors. Kidney Int, 64, 585592.CrossRefGoogle ScholarPubMed
Rej, S., Li, B. W., Looper, K., et al. (2014). Renal function in geriatric psychiatry patients compared to non-psychiatric older adults: Effects of lithium use and other factors. Aging Ment Health, 18, 847853.CrossRefGoogle ScholarPubMed
Lepkifker, E., Sverdlik, A., Iancu, I., et al. (2004). Renal insufficiency in long-term lithium treatment. J Clin Psychiatry, 63, 850856.CrossRefGoogle Scholar
Aiff, H., Attman, P.-O., Aurell, M., et al. (2014). The impact of modern treatment principles may have eliminated lithium-induced renal failure. J Psychopharmacol, 28, 151154.CrossRefGoogle ScholarPubMed
Nederlof, M., Heerdink, E. R., Egberts, A. C. G., et al. (2018). Monitoring of patients treated with lithium for bipolar disorder: An international survey. Int J Bipolar Disord, 6, 1220.CrossRefGoogle ScholarPubMed
Werneke, U., Ott, M., Renberg, E. S., et al. (2012). A decision analysis of long-term lithium treatment and the risk of renal failure. Acta Psychiatr Scand, 126, 186197.CrossRefGoogle ScholarPubMed
Bauer, M. and Gitlin, M. (2016). The Essential Guide to Lithium Treatment. Basel: Springer International Publishing AG.CrossRefGoogle Scholar
Du, J., Quiroz, J., Yuan, P., et al. (2004). Bipolar disorder: Involvement of signaling cascades and AMPA receptor trafficking at synapses. Neuron Glia Biol, 1, 231243.CrossRefGoogle ScholarPubMed
Meyer, J. M. (2022). Pharmacotherapy of psychosis and mania. In Brunton, L. L. and Knollmann, B. C., eds., Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 14th Edition. Chicago: McGraw-Hill, pp. 357384.Google Scholar
Meyer, J. M. (2021). Approach to bipolar diathesis in schizophrenia spectrum patients. In Cummings, M. A. and Stahl, S. M., eds., Management of Complex Treatment-Resistant Psychotic Disorders. Cambridge: Cambridge University Press, pp. 4250.Google Scholar
Schou, M. (2004). Lithium Treatment of Mood Disorders (6th edn.). Basel: S. Karger AG.CrossRefGoogle Scholar
Cooper, T. B., Bergner, P. E. and Simpson, G. M. (1973). The 24-hour serum lithium level as a prognosticator of dosage requirements. Am J Psychiatry, 130, 601603.CrossRefGoogle ScholarPubMed
Amdisen, A. (1977). Serum level monitoring and clinical pharmacokinetics of lithium. Clin Pharmacokinet, 2, 7392.CrossRefGoogle ScholarPubMed
Kook, K. A., Stimmel, G. L., Wilkins, J. N., et al. (1985). Accuracy and safety of a priori lithium loading. J Clin Psychiatry, 46, 4951.Google ScholarPubMed
Heald, A. H., Holland, D., Stedman, M., et al. (2021). Can we check serum lithium levels less often without compromising patient safety? BJPsych Open, 8, e18.CrossRefGoogle ScholarPubMed
Kirkham, E., Skinner, J., Anderson, T., et al. (2014). One lithium level > 1.0 mmol/L causes an acute decline in eGFR: Findings from a retrospective analysis of a monitoring database. BMJ Open, 4, e006020.CrossRefGoogle ScholarPubMed
MacEwan, J. P., Forma, F. M., Shafrin, J., et al. (2016). Patterns of adherence to oral atypical antipsychotics among patients diagnosed with schizophrenia. J Manag Care Spec Pharm, 22, 13491361.Google ScholarPubMed
Velligan, D. I., Weiden, P. J., Sajatovic, M., et al. (2009). The expert consensus guideline series: Adherence problems in patients with serious and persistent mental illness. J Clin Psychiatry, 70, 146.Google ScholarPubMed
Sylvia, L. G., Reilly-Harrington, N. A., Leon, A. C., et al. (2014). Medication adherence in a comparative effectiveness trial for bipolar disorder. Acta Psychiatr Scand, 129, 359365.CrossRefGoogle Scholar
Velligan, D. I., Maples, N. J., Pokorny, J. J., et al. (2020). Assessment of adherence to oral antipsychotic medications: What has changed over the past decade? Schizophr Res, 215, 1724.CrossRefGoogle ScholarPubMed
Yaegashi, H., Kirino, S., Remington, G., et al. (2020). Adherence to oral antipsychotics measured by electronic adherence monitoring in schizophrenia: A systematic review and meta-analysis. CNS Drugs, 34, 579598.CrossRefGoogle ScholarPubMed
Velligan, D. I., Wang, M., Diamond, P., et al. (2007). Relationships among subjective and objective measures of adherence to oral antipsychotic medications. Psychiatr Serv, 58, 11871192.CrossRefGoogle ScholarPubMed
Swartz, C. M. and Wilcox, J. (1984). Characterization and prediction of lithium blood levels and clearances. Arch Gen Psychiatry, 41, 11541158.CrossRefGoogle ScholarPubMed
Barbuti, M., Colombini, P., Ricciardulli, S., et al. (2021). Treatment adherence and tolerability of immediate- and prolonged-release lithium formulations in a sample of bipolar patients: A prospective naturalistic study. Int Clin Psychopharmacol, 36, 230237.CrossRefGoogle Scholar
Soares, J. C., Boada, F. and Keshavan, M. S. (2000). Brain lithium measurements with (7)Li magnetic resonance spectroscopy (MRS): A literature review. Eur Neuropsychopharmacol, 10, 151158.CrossRefGoogle Scholar
Moore, C. M., Demopulos, C. M., Henry, M. E., et al. (2002). Brain-to-serum lithium ratio and age: An in vivo magnetic resonance spectroscopy study. Am J Psychiatry, 159, 12401242.CrossRefGoogle ScholarPubMed
Forester, B. P., Streeter, C. C., Berlow, Y. A., et al. (2009). Brain lithium levels and effects on cognition and mood in geriatric bipolar disorder: A lithium-7 magnetic resonance spectroscopy study. Am J Geriatr Psychiatry, 17, 1323.CrossRefGoogle ScholarPubMed
Machado-Vieira, R., Otaduy, M. C., Zanetti, M. V., et al. (2016). A selective association between central and peripheral lithium levels in remitters in bipolar depression: A 3 T-(7) Li magnetic resonance spectroscopy study. Acta Psychiatr Scand, 133, 214220.CrossRefGoogle Scholar
Hsu, C. W., Carvalho, A. F., Tsai, S. Y., et al. (2021). Lithium concentration and recurrence risk during maintenance treatment of bipolar disorder: Multicenter cohort and meta-analysis. Acta Psychiatr Scand, 144, 368378.CrossRefGoogle ScholarPubMed
Oliver, S. L., Comstock, G. W. and Helsing, K. J. (1976). Mood and lithium in drinking water. Arch Environ Health, 31, 9295.CrossRefGoogle ScholarPubMed
Helbich, M., Leitner, M. and Kapusta, N. D. (2012). Geospatial examination of lithium in drinking water and suicide mortality. Int J Health Geogr, 11, 19.CrossRefGoogle ScholarPubMed
Ishii, N., Terao, T., Araki, Y., et al. (2015). Low risk of male suicide and lithium in drinking water. J Clin Psychiatry, 76, 319326.CrossRefGoogle ScholarPubMed
Nunes, M. A., Schowe, N. M., Monteiro-Silva, K. C., et al. (2015). Chronic microdose lithium treatment prevented memory loss and neurohistopathological changes in a transgenic mouse model of Alzheimer’s disease. PLoS One, 10, e0142267.CrossRefGoogle Scholar
Vita, A., De Peri, L. and Sacchetti, E. (2015). Lithium in drinking water and suicide prevention: A review of the evidence. Int Clin Psychopharmacol, 30, 15.CrossRefGoogle ScholarPubMed
Kessing, L. V., Gerds, T. A., Knudsen, N. N., et al. (2017). Association of lithium in drinking water with the incidence of dementia. JAMA Psychiatry, 74, 10051010.CrossRefGoogle ScholarPubMed
Barjasteh-Askari, F., Davoudi, M., Amini, H., et al. (2020). Relationship between suicide mortality and lithium in drinking water: A systematic review and meta-analysis. J Affect Disord, 264, 234241.CrossRefGoogle ScholarPubMed
Eyre-Watt, B., Mahendran, E., Suetani, S., et al. (2022). The association between lithium in drinking water and neuropsychiatric outcomes: A systematic review and meta-analysis from across 2678 regions containing 113 million. Aust N Z J Psychiatry, 55, 139152.CrossRefGoogle Scholar
Forlenza, O. V., Radanovic, M., Talib, L. L., et al. (2019). Clinical and biological effects of long-term lithium treatment in older adults with amnestic mild cognitive impairment: Randomised clinical trial. Br J Psychiatry, 215, 668674.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×