Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-23T10:33:25.010Z Has data issue: false hasContentIssue false

5 - Management of Routine Lithium Related Adverse Effects

Polyuria, Gastrointestinal Complaints; Altered Taste; Weight Gain; Thyroid and Parathyroid Dysfunction; ECG Changes; Hair Loss; Acneiform Eruptions and Other Skin Disorders; Neutrophilia; CNS Complaints (Tremor, Fatigue, Cognitive and Emotional Dulling, Nystagmus, Myoclonus and Idiopathic Intracranial Hypertension); Peripheral Edema

Published online by Cambridge University Press:  09 February 2024

Jonathan M. Meyer
Affiliation:
University of California, San Diego
Stephen M. Stahl
Affiliation:
University of California, San Diego
Get access

Summary

Despite recent downward trends in lithium use for bipolar disorder (BD) [1], nearly every treatment guideline, meta-analysis or review published in the last decade has reinforced the notion that lithium remains the mood stabilizer of choice for acute or maintenance therapy in those with a history of mania (BD-1, schizoaffective disorder, bipolar type [SAD-BT]), and an important treatment option for other mood disorder spectrum patients (BD-2, unipolar major depressive disorder [MDD]) [2–4].

Type
Chapter
Information
The Lithium Handbook
Stahl's Handbooks
, pp. 251 - 328
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zivanovic, O. (2017). Lithium: A classic drug frequently discussed, but, sadly, seldom prescribed! Aust N Z J Psychiatry, 51, 886896.CrossRefGoogle ScholarPubMed
Malhi, G. S., Gessler, D. and Outhred, T. (2017). The use of lithium for the treatment of bipolar disorder: Recommendations from clinical practice guidelines. J Affect Disord, 217, 266280.CrossRefGoogle ScholarPubMed
Fountoulakis, K. N., Tohen, M. and Zarate, C. A. (2022). Lithium treatment of bipolar disorder in adults: A systematic review of randomized trials and meta-analyses. Eur Neuropsychopharmacol, 54, 100115.CrossRefGoogle ScholarPubMed
Kishi, T., Ikuta, T., Matsuda, Y., et al. (2022). Pharmacological treatment for bipolar mania: A systematic review and network meta-analysis of double-blind randomized controlled trials. Mol Psychiatry, 27, 11361144.CrossRefGoogle Scholar
Benard, V., Vaiva, G., Masson, M., et al. (2016). Lithium and suicide prevention in bipolar disorder. Encephale, 42, 234241.CrossRefGoogle ScholarPubMed
Rybakowski, J. K. (2016). Effect of lithium on neurocognitive functioning. Curr Alzheimer Res, 13, 887893.CrossRefGoogle ScholarPubMed
Velosa, J., Delgado, A., Finger, E., et al. (2020). Risk of dementia in bipolar disorder and the interplay of lithium: A systematic review and meta-analyses. Acta Psychiatr Scand, 141, 510521.CrossRefGoogle ScholarPubMed
Baldessarini, R. J. and Tondo, L. (2021). Testing for antisuicidal effects of lithium treatment. JAMA Psychiatry, 79, 910.CrossRefGoogle Scholar
Baldessarini, R. J., Tondo, L., Davis, P., et al. (2006). Decreased risk of suicides and attempts during long-term lithium treatment: A meta-analytic review. Bipolar Disord, 8, 625639.CrossRefGoogle ScholarPubMed
Del Matto, L., Muscas, M., Murru, A., et al. (2020). Lithium and suicide prevention in mood disorders and in the general population: A systematic review. Neurosci Biobehav Rev, 116, 142153.CrossRefGoogle ScholarPubMed
Kishi, T., Ikuta, T., Matsuda, Y., et al. (2021). Mood stabilizers and/or antipsychotics for bipolar disorder in the maintenance phase: A systematic review and network meta-analysis of randomized controlled trials. Mol Psychiatry, 26, 41464157.CrossRefGoogle ScholarPubMed
Schumann, C., Lenz, G., Berghofer, A., et al. (1999). Non-adherence with long-term prophylaxis: A 6-year naturalistic follow-up study of affectively ill patients. Psychiatry Res, 89, 247257.CrossRefGoogle ScholarPubMed
Kessing, L. V., Søndergård, L., Kvist, K., et al. (2007). Adherence to lithium in naturalistic settings: Results from a nationwide pharmacoepidemiological study. Bipolar Disord, 9, 730736.CrossRefGoogle ScholarPubMed
Aagaard, J., Vestergaard, P. and Maarbjerg, K. (1988). Adherence to lithium prophylaxis: II. Multivariate analysis of clinical, social, and psychosocial predictors of nonadherence. Pharmacopsychiatry, 21, 166170.CrossRefGoogle ScholarPubMed
Maarbjerg, K., Aagaard, J. and Vestergaard, P. (1988). Adherence to lithium prophylaxis: I. Clinical predictors and patient’s reasons for nonadherence. Pharmacopsychiatry, 21, 121125.CrossRefGoogle ScholarPubMed
Jawad, I., Watson, S., Haddad, P. M., et al. (2018). Medication nonadherence in bipolar disorder: A narrative review. Ther Adv Psychopharmacol, 8, 349363.CrossRefGoogle ScholarPubMed
Gitlin, M. (2016). Lithium side effects and toxicity: Prevalence and management strategies. Int J Bipolar Disord, 4, 2736.CrossRefGoogle ScholarPubMed
Pope, M. and Scott, J. (2003). Do clinicians understand why individuals stop taking lithium? J Affect Disord, 74, 287291.CrossRefGoogle ScholarPubMed
McVoy, M., Delbello, M., Levin, J., et al. (2022). A customized adherence enhancement program for adolescents and young adults with suboptimal adherence and bipolar disorder: Trial design and methodological report. Contemp Clin Trials, 115, 106729.CrossRefGoogle Scholar
Sajatovic, M., Tatsuoka, C., Cassidy, K. A., et al. (2018). A 6-month, prospective, randomized controlled trial of Customized Adherence Enhancement versus bipolar-specific educational control in poorly adherent individuals with bipolar disorder. J Clin Psychiatry, 79, 17m12036 e12031–e12010.CrossRefGoogle ScholarPubMed
Öhlund, L., Ott, M., Oja, S., et al. (2018). Reasons for lithium discontinuation in men and women with bipolar disorder: A retrospective cohort study. BMC Psychiatry, 18, 3746.CrossRefGoogle ScholarPubMed
Bai, Y., Yang, H., Chen, G., et al. (2020). Acceptability of acute and maintenance pharmacotherapy of bipolar disorder: A systematic review of randomized, double-blind, placebo-controlled clinical trials. J Clin Psychopharmacol, 40, 167179.CrossRefGoogle ScholarPubMed
Holm, M., Tanskanen, A., Lahteenvuo, M., et al. (2022). Comparative effectiveness of mood stabilizers and antipsychotics in the prevention of hospitalization after lithium discontinuation in bipolar disorder. Eur Neuropsychopharmacol, 61, 3642.CrossRefGoogle ScholarPubMed
Krull, F., Akkouh, I., Hughes, T., et al. (2022). Dose-dependent transcriptional effects of lithium and adverse effect burden in a psychiatric cohort. Prog Neuropsychopharmacol Biol Psychiatry, 112, 110408.CrossRefGoogle Scholar
Davis, J., Desmond, M. and Berk, M. (2018). Lithium and nephrotoxicity: A literature review of approaches to clinical management and risk stratification. BMC Nephrol, 19, 305.CrossRefGoogle ScholarPubMed
Kinahan, J. C., NiChorcorain, A., Cunningham, S., et al. (2015). Diagnostic accuracy of tests for polyuria in lithium-treated patients. J Clin Psychopharmacol, 35, 434441.CrossRefGoogle ScholarPubMed
Clos, S., Rauchhaus, P., Severn, A., et al. (2015). Long-term effect of lithium maintenance therapy on estimated glomerular filtration rate in patients with affective disorders: A population-based cohort study. Lancet Psychiatry, 2, 10751083.CrossRefGoogle Scholar
Kirkham, E., Skinner, J., Anderson, T., et al. (2014). One lithium level > 1.0 mmol/L causes an acute decline in eGFR: Findings from a retrospective analysis of a monitoring database. BMJ Open, 4, e006020.CrossRefGoogle ScholarPubMed
Castro, V. M., Roberson, A. M., McCoy, T. H., et al. (2016). Stratifying risk for renal insufficiency among lithium-treated patients: An electronic health record study. Neuropsychopharmacology, 41, 11381143.CrossRefGoogle ScholarPubMed
Kalita-De Croft, P., Bedford, J. J., Leader, J. P., et al. (2018). Amiloride modifies the progression of lithium-induced renal interstitial fibrosis. Nephrology (Carlton), 23, 2030.CrossRefGoogle ScholarPubMed
Pradhan, B. K., Chakrabarti, S., Irpati, A. S., et al. (2011). Distress due to lithium-induced polyuria: Exploratory study. Psychiatry Clin Neurosci, 65, 386388.CrossRefGoogle ScholarPubMed
Kortenoeven, M. L., Li, Y., Shaw, S., et al. (2009). Amiloride blocks lithium entry through the sodium channel thereby attenuating the resultant nephrogenic diabetes insipidus. Kidney Int, 76, 4453.CrossRefGoogle ScholarPubMed
Vandenbeuch, A. and Kinnamon, S. C. (2020). Is the amiloride-sensitive Na+ channel in taste cells really ENaC? Chem Senses, 45, 233234.CrossRefGoogle ScholarPubMed
Vallée, C., Howlin, B. and Lewis, R. (2021). Ion selectivity in the ENaC/DEG family: A systematic review with supporting analysis. Int J Mol Sci, 22, 10998, 10991–10922.CrossRefGoogle Scholar
Trepiccione, F. and Christensen, B. M. (2010). Lithium-induced nephrogenic diabetes insipidus: New clinical and experimental findings. J Nephrol, 23 Suppl. 16, S4348.Google ScholarPubMed
Davis, J., Desmond, M. and Berk, M. (2018). Lithium and nephrotoxicity: Unravelling the complex pathophysiological threads of the lightest metal. Nephrology (Carlton), 23, 897903.CrossRefGoogle ScholarPubMed
Batlle, D. C., von Riotte, A. B., Gaviria, M., et al. (1985). Amelioration of polyuria by amiloride in patients receiving long-term lithium therapy. NEJM, 312, 408414.CrossRefGoogle ScholarPubMed
Schoot, T. S., Molmans, T. H. J., Grootens, K. P., et al. (2020). Systematic review and practical guideline for the prevention and management of the renal side effects of lithium therapy. Eur Neuropsychopharmacol, 31, 1632.CrossRefGoogle ScholarPubMed
Bedford, J. J., Weggery, S., Ellis, G., et al. (2008). Lithium-induced nephrogenic diabetes insipidus: Renal effects of amiloride. Clin J Am Soc Nephrol, 3, 13241331.CrossRefGoogle ScholarPubMed
Grünfeld, J.-P. and Rossier, B. C. (2009). Lithium nephrotoxicity revisited. Nat Rev Nephrol, 5, 270276.CrossRefGoogle ScholarPubMed
Schou, M., Amdisen, A., Thomsen, K., et al. (1982). Lithium treatment regimen and renal water handling: The significance of dosage pattern and tablet type examined through comparison of results from two clinics with different treatment regimens. Psychopharmacology, 77, 387390.CrossRefGoogle ScholarPubMed
Song, J., Bergen, S. E., Di Florio, A., et al. (2016). Genome-wide association study identifies SESTD1 as a novel risk gene for lithium-responsive bipolar disorder. [Erratum appears in Mol Psychiatry (2017). Aug. 22(8): 1223; PMID: 28194006.] Mol Psychiatry, 21, 12901297.CrossRefGoogle ScholarPubMed
Amdisen, A. (1977). Serum level monitoring and clinical pharmacokinetics of lithium. Clin Pharmacokinet, 2, 7392.CrossRefGoogle ScholarPubMed
Swartz, C. M. (1987). Correction of lithium levels for dose and blood sampling times. J Clin Psychiatry, 48, 6064.Google ScholarPubMed
Kusalic, M. and Engelsmann, F. (1996). Renal reactions to changes of lithium dosage. Neuropsychobiology, 34, 113116.CrossRefGoogle ScholarPubMed
Roush, G. C. and Sica, D. A. (2016). Diuretics for hypertension: A review and update. Am J Hypertens, 29, 11301137.CrossRefGoogle Scholar
Mehta, B. R. and Robinson, B. H. (1980). Lithium toxicity induced by triamterene-hydrochlorothiazide. Postgrad Med J, 56, 783784.CrossRefGoogle ScholarPubMed
Dorevitch, A. and Baruch, E. (1986). Lithium toxicity induced by combined amiloride HCl-hydrochlorothiazide administration. Am J Psychiatry, 143, 257258.Google ScholarPubMed
de Groot, T., Sinke, A. P., Kortenoeven, M. L., et al. (2016). Acetazolamide attenuates lithium-induced nephrogenic diabetes insipidus. J Am Soc Nephrol, 27, 20822091.CrossRefGoogle ScholarPubMed
Gordon, C. E., Vantzelfde, S. and Francis, J. M. (2016). Acetazolamide in lithium-induced nephrogenic diabetes insipidus. N Engl J Med, 375, 20082009.CrossRefGoogle ScholarPubMed
de Groot, T., Doornebal, J., Christensen, B. M., et al. (2017). Lithium-induced NDI: Acetazolamide reduces polyuria but does not improve urine concentrating ability. Am J Physiol Renal Physiol, 313, F669676.CrossRefGoogle Scholar
Sands, J. M. and Bichet, D. G. (2006). Nephrogenic diabetes insipidus. Ann Intern Med, 144, 186194.CrossRefGoogle ScholarPubMed
Macau, R. A., da Silva, T. N., Silva, J. R., et al. (2018). Use of acetazolamide in lithium-induced nephrogenic diabetes insipidus: A case report. Endocrinol Diabetes Metab Case Rep, 2018, 17-0154.CrossRefGoogle Scholar
Alembic Pharmaceuticals Inc. (2022). Acetazolamide capsule, extended release package insert. Bedminster, NJ.Google Scholar
Thomsen, K. and Schou, M. (1973). The effect of prolonged administration of hydrochlorothiazide on the renal lithium clearance and the urine flow of ordinary rats and rats with diabetes insipidus. Pharmakopsychiatr Neuropsychopharmakol, 6, 264269.CrossRefGoogle ScholarPubMed
Kim, G.-H., Lee, J. W., Oh, Y. K., et al. (2004). Antidiuretic effect of hydrochlorothiazide in lithium-induced nephrogenic diabetes insipidus is associated with upregulation of aquaporin-2, Na-Cl co-transporter, and epithelial sodium channel. J Am Soc Nephrol, 15, 28362843.CrossRefGoogle ScholarPubMed
Sinke, A. P., Kortenoeven, M. L., de Groot, T., et al. (2014). Hydrochlorothiazide attenuates lithium-induced nephrogenic diabetes insipidus independently of the sodium–chloride cotransporter. Am J Physiol Renal Physiol, 306, F525F533.CrossRefGoogle ScholarPubMed
Sands, J. M. (2016). Water, water everywhere: A new cause and a new treatment for nephrogenic diabetes insipidus. J Am Soc Nephrol, 27, 1872–1874.CrossRefGoogle Scholar
Chen, T. K., Knicely, D. H. and Grams, M. E. (2019). Chronic kidney disease diagnosis and management: A review. JAMA, 322, 12941304.CrossRefGoogle ScholarPubMed
Delgado, C., Baweja, M., Crews, D. C., et al. (2021). A unifying approach for GFR estimation: Recommendations of the NKF–ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease. Am J Kidney Dis, 79, 268–288.e261.Google ScholarPubMed
Fagiolini, A., Chengappa, K. N., Soreca, I., et al. (2008). Bipolar disorder and the metabolic syndrome: Causal factors, psychiatric outcomes and economic burden. CNS Drugs, 22, 655669.CrossRefGoogle ScholarPubMed
McElroy, S. L. and Keck, P. E., Jr. (2014). Metabolic syndrome in bipolar disorder: A review with a focus on bipolar depression. J Clin Psychiatry, 75, 4661.CrossRefGoogle ScholarPubMed
Godin, O., Leboyer, M., Belzeaux, R., et al. (2021). Non-alcoholic fatty liver disease in a sample of individuals with bipolar disorders: Results from the FACE-BD cohort. Acta Psychiatr Scand, 143, 8291.CrossRefGoogle Scholar
Lepkifker, E., Sverdlik, A., Iancu, I., et al. (2004). Renal insufficiency in long-term lithium treatment. J Clin Psychiatry, 63, 850856.CrossRefGoogle Scholar
Presne, C., Fakhouri, F., Noel, L. H., et al. (2003). Lithium-induced nephropathy: Rate of progression and prognostic factors. Kidney Int, 64, 585592.CrossRefGoogle ScholarPubMed
Fotso Soh, J., Klil-Drori, S. and Rej, S. (2019). Using lithium in older age bipolar disorder: Special considerations. Drugs Aging, 36, 147154.CrossRefGoogle ScholarPubMed
Golic, M., Aiff, H., Attman, P. O., et al. (2021). Starting lithium in patients with compromised renal function – is it wise? J Psychopharmacol, 35, 190197.CrossRefGoogle ScholarPubMed
McGrane, I. R., Omar, F. A., Morgan, N. F., et al. (2022). Lithium therapy in patients on dialysis: A systematic review. Int J Psychiatry Med, 57, 187201.CrossRefGoogle ScholarPubMed
Markowitz, G. S., Radhakrishnan, J., Kambham, N., et al. (2000). Lithium nephrotoxicity: A progressive combined glomerular and tubulointerstitial nephropathy. J Am Soc Nephrol, 11, 14391448.CrossRefGoogle ScholarPubMed
Rej, S., Abitbol, R., Looper, K., et al. (2013). Chronic renal failure in lithium-using geriatric patients: Effects of lithium continuation versus discontinuation – a 60-month retrospective study. Int J Geriatr Psychiatry, 28, 450453.CrossRefGoogle ScholarPubMed
Amaro-Hosey, K., Castells, X., Blanco-Silvente, L., et al. (2022). Drug-induced sudden death: A scoping review. Curr Drug Saf, https://doi.org/10.2174/1574886317666220525115232 (online ahead of print).CrossRefGoogle Scholar
Bunschoten, J. W., Husein, N., Devinsky, O., et al. (2022). Sudden death and cardiac arrythmia with lamotrigine: A rapid systematic review. Neurology, 98, e1748e1760.CrossRefGoogle ScholarPubMed
Meyer, J. M., Dollarhide, A. and Tuan, I.-L. (2005). Lithium toxicity after switch from fosinopril to lisinopril. Int Clin Psychopharmacol, 20, 115118.CrossRefGoogle ScholarPubMed
Sabharwal, M. S., Annapureddy, N., Agarwal, S. K., et al. (2013). Severe bradycardia caused by a single dose of lithium. Int Med, 52, 767769.CrossRefGoogle ScholarPubMed
Mehta, N. and Vannozzi, R. (2017). Lithium-induced electrocardiographic changes: A complete review. Clin Cardiol, 40, 13631367.CrossRefGoogle ScholarPubMed
Dahan, A., Porat, D., Azran, C., et al. (2019). Lithium toxicity with severe bradycardia post sleeve gastrectomy: A case report and review of the literature. Obes Surg, 29, 735738.CrossRefGoogle ScholarPubMed
ANI Pharmaceuticals Inc. (2020). LithoBID package insert. Baudette, MN.Google Scholar
Bucht, G., Smigan, L., Wahlin, A., et al. (1984). ECG changes during lithium therapy: A prospective study. Acta Med Scand, 216, 101104.CrossRefGoogle ScholarPubMed
Josephson, I. R., Lederer, W. J. and Hartmann, H. A. (2006). Letter regarding article by Darbar et al, “unmasking of Brugada syndrome by lithium.Circulation, 113, e408; author reply e408.CrossRefGoogle ScholarPubMed
Yanagita, T., Maruta, T., Uezono, Y., et al. (2007). Lithium inhibits function of voltage-dependent sodium channels and catecholamine secretion independent of glycogen synthase kinase-3 in adrenal chromaffin cells. Neuropharmacology, 53, 881889.CrossRefGoogle ScholarPubMed
Darbar, D., Yang, T., Churchwell, K., et al. (2005). Unmasking of brugada syndrome by lithium. Circulation, 112, 15271531.CrossRefGoogle ScholarPubMed
Hsu, C. H., Liu, P. Y., Chen, J. H., et al. (2005). Electrocardiographic abnormalities as predictors for over-range lithium levels. Cardiology, 103, 101106.CrossRefGoogle ScholarPubMed
Bussink, B. E., Holst, A. G., Jespersen, L., et al. (2013). Right bundle branch block: Prevalence, risk factors, and outcome in the general population. Results from the Copenhagen City Heart Study. Eur Heart J, 34, 138146.CrossRefGoogle ScholarPubMed
Brugada, J., Campuzano, O., Arbelo, E., et al. (2018). Present status of Brugada Syndrome: JACC state-of-the-art review. J Am Coll Cardiol, 72, 10461059.CrossRefGoogle ScholarPubMed
Gourraud, J. B., Barc, J., Thollet, A., et al. (2017). Brugada syndrome: Diagnosis, risk stratification and management. Arch Cardiovasc Dis, 110, 188195.CrossRefGoogle ScholarPubMed
Ravi, V., Serafini, N. J., Pulipati, P., et al. (2020). Lithium-induced Brugada pattern: A case report and review of literature. Cureus, 12, e9351e9537.Google ScholarPubMed
Roberts-Thomson, K. C., Teo, K. S. and Young, G. D. (2007). Drug-induced Brugada syndrome with ST-T wave alternans and long QT. Intern Med J, 37, 199200.CrossRefGoogle ScholarPubMed
Jafferany, M. (2008). Lithium and skin: Dermatologic manifestations of lithium therapy. Int J Dermatol, 47, 11011111.CrossRefGoogle ScholarPubMed
Suganya Priyadharshini, B. S. and Ummar, I. S. (2017). Prevalence and sociodemographic profile of lithium-induced cutaneous side effects in bipolar affective disorder patients: A 1-year prospective observational study in South India. Indian J Psychol Med, 39, 648652.CrossRefGoogle ScholarPubMed
Cox, C. and George, M. (2022). Monitoring of cutaneous manifestations of lithium treatment in mental health inpatients. Aust N Z J Psychiatry, 56, 863.CrossRefGoogle ScholarPubMed
McKnight, R. F., Adida, M., Budge, K., et al. (2012). Lithium toxicity profile: A systematic review and meta-analysis. Lancet, 379, 721728.CrossRefGoogle ScholarPubMed
Pinna, M., Manchia, M., Puddu, S., et al. (2017). Cutaneous adverse reaction during lithium treatment: A case report and updated systematic review with meta-analysis. Int J Bipolar Disord, 5, 20.CrossRefGoogle ScholarPubMed
McKnight, R. F., Geddes, J. R. and Goodwin, G. M. (2017). Short- and midterm side effects of lithium therapy. In Malhi, G. S., Masson, M. and Bellivier, F., eds., The Science and Practice of Lithium Therapy. Basel: Springer International Publishing AG, pp. 249264.CrossRefGoogle Scholar
Eichenfield, D. Z., Sprague, J. and Eichenfield, L. F. (2021). Management of acne vulgaris: A review. JAMA, 326, 20552067.CrossRefGoogle ScholarPubMed
Balak, D. M. and Hajdarbegovic, E. (2017). Drug-induced psoriasis: Clinical perspectives. Psoriasis (Auckl), 7, 8794.Google ScholarPubMed
Nestor, M. S., Ablon, G., Gade, A., et al. (2021). Treatment options for androgenetic alopecia: Efficacy, side effects, compliance, financial considerations, and ethics. J Cosmet Dermatol, 20, 37593781.CrossRefGoogle ScholarPubMed
Kozikowski, A. P., Gaisina, I. N., Yuan, H., et al. (2007). Structure-based design leads to the identification of lithium mimetics that block mania-like effects in rodents – possible new GSK-3beta therapies for bipolar disorders. J Am Chem Soc, 129, 83288332.CrossRefGoogle Scholar
Freland, L. and Beaulieu, J. M. (2012). Inhibition of GSK3 by lithium, from single molecules to signaling networks. Front Mol Neurosci, 5, 14.CrossRefGoogle ScholarPubMed
Kang, J. I., Kim, S. C., Kim, M. K., et al. (2015). Effects of dihydrotestosterone on rat dermal papilla cells in vitro. Eur J Pharmacol, 757, 7483.CrossRefGoogle ScholarPubMed
Xiao, S., Wang, J., Chen, Q., et al. (2019). The mechanism of activated platelet-rich plasma supernatant promotion of hair growth by cultured dermal papilla cells. J Cosmet Dermatol, 18, 17111716.CrossRefGoogle ScholarPubMed
McKinney, P. A., Finkenbine, R. D. and DeVane, C. L. (1996). Alopecia and mood stabilizer therapy. Ann Clin Psychiatry, 8, 183185.CrossRefGoogle ScholarPubMed
Grover, S., Ghosh, A., Sarkar, S., et al. (2014). Sexual dysfunction in clinically stable patients with bipolar disorder receiving lithium. J Clin Psychopharmacol, 34, 475482.CrossRefGoogle ScholarPubMed
Elnazer, H. Y., Sampson, A. and Baldwin, D. (2015). Lithium and sexual dysfunction: An under-researched area. Hum Psychopharmacol, 30, 6669.CrossRefGoogle ScholarPubMed
Wiggers, S. (1968). [Effects of lithium on the thyroid gland]. Ugeskr Laeger, 130, 15231525.Google ScholarPubMed
Garfinkel, P. E., Ezrin, C. and Stancer, H. C. (1973). Hypothyroidism and hyperparathyroidism associated with lithium. Lancet, 2, 331332.CrossRefGoogle ScholarPubMed
Ambrosiani, L., Pisanu, C., Deidda, A., et al. (2018). Thyroid and renal tumors in patients treated with long-term lithium: Case series from a lithium clinic, review of the literature and international pharmacovigilance reports. Int J Bipolar Disord, 6, 17.CrossRefGoogle ScholarPubMed
Kraszewska, A., Ziemnicka, K., Sowinski, J., et al. (2019). No connection between long-term lithium treatment and antithyroid antibodies. Pharmacopsychiatry, 52, 232236.Google ScholarPubMed
Biondi, B., Cappola, A. R. and Cooper, D. S. (2019). Subclinical hypothyroidism: A review. JAMA, 322, 153160.CrossRefGoogle ScholarPubMed
Shine, B., McKnight, R. F., Leaver, L., et al. (2015). Long-term effects of lithium on renal, thyroid, and parathyroid function: A retrospective analysis of laboratory data. Lancet, 386, 461468.CrossRefGoogle ScholarPubMed
Hayes, J. F., Marston, L., Walters, K., et al. (2016). Adverse renal, endocrine, hepatic, and metabolic events during maintenance mood stabilizer treatment for bipolar disorder: A population-based cohort study. PLoS Med, 13, e1002058.CrossRefGoogle ScholarPubMed
Fairbrother, F., Petzl, N., Scott, J. G., et al. (2019). Lithium can cause hyperthyroidism as well as hypothyroidism: A systematic review of an under-recognised association. Aust N Z J Psychiatry, 53, 384402.CrossRefGoogle ScholarPubMed
Kibirige, D., Luzinda, K. and Ssekitoleko, R. (2013). Spectrum of lithium induced thyroid abnormalities: A current perspective. Thyroid Res, 6, 37.CrossRefGoogle ScholarPubMed
Kupka, R. W., Nolen, W. A., Post, R. M., et al. (2002). High rate of autoimmune thyroiditis in bipolar disorder: Lack of association with lithium exposure. Biol Psychiatry, 51, 305311.CrossRefGoogle ScholarPubMed
Czarnywojtek, A., Zgorzalewicz-Stachowiak, M., Czarnocka, B., et al. (2020). Effect of lithium carbonate on the function of the thyroid gland: Mechanism of action and clinical implications. J Physiol Pharmacol, 71, 191199.Google ScholarPubMed
Liu, Y. Y., van der Pluijm, G., Karperien, M., et al. (2006). Lithium as adjuvant to radioiodine therapy in differentiated thyroid carcinoma: Clinical and in vitro studies. Clin Endocrinol (Oxf), 64, 617624.CrossRefGoogle ScholarPubMed
Lerena, V. S., León, N. S., Sosa, S., et al. (2022). Lithium and endocrine dysfunction. Medicina (B Aires), 82, 130137.Google ScholarPubMed
Lieber, I., Ott, M., Öhlund, L., et al. (2020). Lithium-associated hypothyroidism and potential for reversibility after lithium discontinuation: Findings from the LiSIE retrospective cohort study. J Psychopharmacol, 34, 293303.CrossRefGoogle ScholarPubMed
Biondi, B. (2013). The normal TSH reference range: What has changed in the last decade? J Clin Endocrinol Metab, 98, 35843587.CrossRefGoogle ScholarPubMed
Bode, H., Ivens, B., Bschor, T., et al. (2021). Association of hypothyroidism and clinical depression: A systematic review and meta-analysis. JAMA Psychiatry, 78, 13751383.CrossRefGoogle ScholarPubMed
Frye, M. A., Denicoff, K. D., Bryan, A. L., et al. (1999). Association between lower serum free T4 and greater mood instability and depression in lithium-maintained bipolar patients. Am J Psychiatry, 156, 1909–1914.CrossRefGoogle ScholarPubMed
Frye, M. A., Yatham, L., Ketter, T. A., et al. (2009). Depressive relapse during lithium treatment associated with increased serum thyroid-stimulating hormone: Results from two placebo-controlled bipolar I maintenance studies. Acta Psychiatr Scand, 120, 1013.CrossRefGoogle ScholarPubMed
Cole, D. P., Thase, M. E., Mallinger, A. G., et al. (2002). Slower treatment response in bipolar depression predicted by lower pretreatment thyroid function. Am J Psychiatry, 159, 116121.CrossRefGoogle ScholarPubMed
McAninch, E. A. and Bianco, A. C. (2016). The history and future of treatment of hypothyroidism. Ann Intern Med, 164, 5056.CrossRefGoogle ScholarPubMed
Jonklaas, J., Bianco, A. C., Cappola, A. R., et al. (2021). Evidence-based use of levothyroxine/liothyronine combinations in treating hypothyroidism: A consensus document. Thyroid, 31, 156182.CrossRefGoogle ScholarPubMed
Shapiro, H. I. and Davis, K. A. (2015). Hypercalcemia and “primary” hyperparathyroidism during lithium therapy. Am J Psychiatry, 172, 1215.CrossRefGoogle ScholarPubMed
Albert, U., De Cori, D., Aguglia, A., et al. (2013). Lithium-associated hyperparathyroidism and hypercalcaemia: A case-control cross-sectional study. J Affect Disord, 151, 786790.CrossRefGoogle ScholarPubMed
Catalano, A., Chilà, D., Bellone, F., et al. (2018). Incidence of hypocalcemia and hypercalcemia in hospitalized patients: Is it changing? J Clin Transl Endocrinol, 13, 913.Google ScholarPubMed
Mifsud, S., Cilia, K., Mifsud, E. L., et al. (2020). Lithium-associated hyperparathyroidism. Br J Hosp Med (Lond), 81, 19.CrossRefGoogle ScholarPubMed
Islam, A. K. (2021). Advances in the diagnosis and the management of primary hyperparathyroidism. Ther Adv Chronic Dis, 12, 20406223211015965.CrossRefGoogle ScholarPubMed
Pattan, V., Singh, B., Abdelmoneim, S. S., et al. (2021). Lithium-induced hyperparathyroidism: An ill-defined territory. Psychopharmacol Bull, 51, 6571.Google ScholarPubMed
Ketteler, M., Bover, J. and Mazzaferro, S. (2022). Treatment of secondary hyperparathyroidism in non-dialysis CKD: An appraisal 2022s. Nephrol Dial Transplant, DOI: 10.1093/ndt/gfac236.CrossRefGoogle Scholar
Kessing, L. V., Gerds, T. A., Feldt-Rasmussen, B., et al. (2015). Use of lithium and anticonvulsants and the rate of chronic kidney disease: A nationwide population-based study. JAMA Psychiatry, 72, 11821191.CrossRefGoogle ScholarPubMed
Takkouche, B., Montes-Martínez, A., Gill, S. S., et al. (2007). Psychotropic medications and the risk of fracture: A meta-analysis. Drug Saf, 30, 171184.CrossRefGoogle ScholarPubMed
Köhler-Forsberg, O., Rohde, C., Nierenberg, A. A., et al. (2022). Association of lithium treatment with the risk of osteoporosis in patients with bipolar disorder. JAMA Psychiatry, 79, 454463.CrossRefGoogle ScholarPubMed
Zhou, C., Fang, L., Chen, Y., et al. (2018). Effect of selective serotonin reuptake inhibitors on bone mineral density: A systematic review and meta-analysis. Osteoporos Int, 29, 12431251.CrossRefGoogle Scholar
De Hert, M., Detraux, J. and Stubbs, B. (2016). Relationship between antipsychotic medication, serum prolactin levels and osteoporosis/osteoporotic fractures in patients with schizophrenia: A critical literature review. Expert Opin Drug Saf, 15, 809823.CrossRefGoogle ScholarPubMed
Su, J. A., Cheng, B. H., Huang, Y. C., et al. (2017). Bipolar disorder and the risk of fracture: A nationwide population-based cohort study. J Affect Disord, 218, 246252.CrossRefGoogle ScholarPubMed
Chen, Y., Whetstone, H. C., Lin, A. C., et al. (2007). Beta-catenin signaling plays a disparate role in different phases of fracture repair: Implications for therapy to improve bone healing. PLoS Med, 4, e249.CrossRefGoogle Scholar
Clément-Lacroix, P., Ai, M., Morvan, F., et al. (2005). Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci USA, 102, 1740617411.CrossRefGoogle ScholarPubMed
Wong, S. K., Chin, K. Y. and Ima-Nirwana, S. (2020). The skeletal-protecting action and mechanisms of action for mood-stabilizing drug lithium chloride: Current evidence and future potential research areas. Front Pharmacol, 11, 117.CrossRefGoogle ScholarPubMed
Tully, A., Smyth, S., Conway, Y., et al. (2020). Interventions for the management of obesity in people with bipolar disorder. Cochrane Database Syst Rev, 7, Cd013006.Google ScholarPubMed
Doane, M. J., Bessonova, L., Friedler, H. S., et al. (2022). Weight gain and comorbidities associated with oral second-generation antipsychotics: Analysis of real-world data for patients with schizophrenia or bipolar I disorder. BMC Psychiatry, 22, 114125.CrossRefGoogle ScholarPubMed
Dalkner, N., Bengesser, S. A., Birner, A., et al. (2021). Metabolic syndrome impairs executive function in bipolar disorder. Front Neurosci, 15, 717824.CrossRefGoogle ScholarPubMed
Vanina, Y., Podolskaya, A., Sedky, K., et al. (2002). Body weight changes associated with psychopharmacology. Psychiatr Serv, 53, 842847.CrossRefGoogle ScholarPubMed
Prillo, J., Soh, J. F., Park, H., et al. (2021). Obesity and metabolic comorbidity in bipolar disorder: Do patients on lithium comprise a subgroup? A naturalistic study. BMC Psychiatry, 21, 558565.CrossRefGoogle ScholarPubMed
Vieta, E., Locklear, J., Gunther, O., et al. (2010). Treatment options for bipolar depression: A systematic review of randomized, controlled trials. J Clin Psychopharmacol, 30, 579590.CrossRefGoogle ScholarPubMed
Huhn, M., Nikolakopoulou, A., Schneider-Thoma, J., et al. (2019). Comparative efficacy and tolerability of 32 oral antipsychotics for the acute treatment of adults with multi-episode schizophrenia: A systematic review and network meta-analysis. The Lancet, 394, 939951.CrossRefGoogle ScholarPubMed
Wingård, L., Brandt, L., Bodén, R., et al. (2019). Monotherapy vs. combination therapy for post mania maintenance treatment: A population based cohort study. Eur Neuropsychopharmacol, 29, 691700.CrossRefGoogle ScholarPubMed
Wang, Y., Wang, D., Cheng, J., et al. (2021). Efficacy and tolerability of pharmacological interventions on metabolic disturbance induced by atypical antipsychotics in adults: A systematic review and network meta-analysis. J Psychopharmacol, 35, 11111119.CrossRefGoogle ScholarPubMed
Praharaj, S. K. (2016). Metformin for lithium-induced weight gain: A case report. Clin Psychopharmacol Neurosci, 14, 101103.CrossRefGoogle ScholarPubMed
Lipska, K. J., Bailey, C. J. and Inzucchi, S. E. (2011). Use of metformin in the setting of mild-to-moderate renal insufficiency. Diabetes Care, 34, 14311437.CrossRefGoogle ScholarPubMed
Novo Nordisk Inc. (2021). Wegovy package insert. Plainsboro, NJ.Google Scholar
Novo Nordisk Inc. (2022). Saxenda package insert. Plainsboro, NJ.Google Scholar
Larsen, J. R., Vedtofte, L., Jakobsen, M. S. L., et al. (2017). Effect of liraglutide treatment on prediabetes and overweight or obesity in clozapine- or olanzapine-treated patients with schizophrenia spectrum disorder: A randomized clinical trial. JAMA Psychiatry, 74, 719728.CrossRefGoogle ScholarPubMed
Ayub, S., Saboor, S., Usmani, S., et al. (2022). Lithium toxicity following Roux-en-Y gastric bypass: Mini review and illustrative case. Ment Health Clin, 12, 214218.CrossRefGoogle ScholarPubMed
Bingham, K. S., Thoma, J., Hawa, R., et al. (2016). Perioperative lithium use in bariatric surgery: A case series and literature review. Psychosomatics, 57, 638644.CrossRefGoogle ScholarPubMed
Musfeldt, D., Levinson, A., Nykiel, J., et al. (2016). Lithium toxicity after Roux-en-Y bariatric surgery. BMJ Case Rep, 2016.CrossRefGoogle Scholar
Niessen, R., Sottiaux, T., Schillaci, A., et al. (2018). [Lithium toxicity after bariatric surgery]. Rev Med Liege, 73, 8287.Google ScholarPubMed
Jamison, S. C. and Aheron, K. (2020). Lithium toxicity following bariatric surgery. SAGE Open Med Case Rep, 8, 2050313x20953000.Google ScholarPubMed
Lin, Y. H., Liu, S. W., Wu, H. L., et al. (2020). Lithium toxicity with prolonged neurologic sequelae following sleeve gastrectomy: A case report and review of literature. Medicine (Baltimore), 99, e21122.CrossRefGoogle ScholarPubMed
Marques, A. R., Alho, A., Martins, J. M., et al. (2021). Lithium intoxication after bariatric surgery: A case report. Acta Med Port, 34, 382386.CrossRefGoogle ScholarPubMed
Pratley, R., Amod, A., Hoff, S. T., et al. (2019). Oral semaglutide versus subcutaneous liraglutide and placebo in type 2 diabetes (PIONEER 4): A randomised, double-blind, phase 3a trial. Lancet, 394, 3950.CrossRefGoogle ScholarPubMed
Alsugair, H. A., Alshugair, I. F., Alharbi, T. J., et al. (2021). Weekly semaglutide vs. liraglutide efficacy profile: A network meta-analysis. Healthcare (Basel), 9, 1125.CrossRefGoogle ScholarPubMed
Hou, P. H., Mao, F. C., Chang, G. R., et al. (2018). Newly diagnosed bipolar disorder and the subsequent risk of erectile dysfunction: A nationwide cohort study. J Sex Med, 15, 183191.CrossRefGoogle ScholarPubMed
Sheibani, M., Ghasemi, M. and Dehpour, A. R. (2022). Lithium and erectile dysfunction: An overview. Cells, 11, 171.CrossRefGoogle ScholarPubMed
Saroukhani, S., Emami-Parsa, M., Modabbernia, A., et al. (2013). Aspirin for treatment of lithium-associated sexual dysfunction in men: Randomized double-blind placebo-controlled study. Bipolar Disord, 15, 650656.CrossRefGoogle ScholarPubMed
Gopalakrishnan, R., Jacob, K. S., Kuruvilla, A., et al. (2006). Sildenafil in the treatment of antipsychotic-induced erectile dysfunction: A randomized, double-blind, placebo-controlled, flexible-dose, two-way crossover trial. Am J Psychiatry, 163, 494499.CrossRefGoogle ScholarPubMed
Öhlund, L., Ott, M., Bergqvist, M., et al. (2019). Clinical course and need for hospital admission after lithium discontinuation in patients with bipolar disorder type I or II: Mirror-image study based on the LiSIE retrospective cohort. BJPsych Open, 5, e101112.CrossRefGoogle ScholarPubMed
Vestergaard, P., Amdisen, A. and Schou, M. (1980). Clinically significant side effects of lithium treatment: A survey of 237 patients in long-term treatment. Acta Psychiatr Scand, 62, 193200.CrossRefGoogle ScholarPubMed
Vestergaard, P., Poulstrup, I. and Schou, M. (1988). Prospective studies on a lithium cohort. 3. Tremor, weight gain, diarrhea, psychological complaints. Acta Psychiatr Scand, 78, 434441.CrossRefGoogle ScholarPubMed
Licht, R. W., Nielsen, J. N., Gram, L. F., et al. (2010). Lamotrigine versus lithium as maintenance treatment in bipolar I disorder: An open, randomized effectiveness study mimicking clinical practice. The 6th trial of the Danish University Antidepressant Group (DUAG-6). Bipolar Disord, 12, 483493.CrossRefGoogle ScholarPubMed
El-Mallakh, R. S., Marcus, R., Baudelet, C., et al. (2012). A 40-week double-blind aripiprazole versus lithium follow-up of a 12-week acute phase study (total 52 weeks) in bipolar I disorder. J Affect Disord, 136, 258266.CrossRefGoogle ScholarPubMed
Barbuti, M., Colombini, P., Ricciardulli, S., et al. (2021). Treatment adherence and tolerability of immediate- and prolonged-release lithium formulations in a sample of bipolar patients: A prospective naturalistic study. Int Clin Psychopharmacol, 36, 230237.CrossRefGoogle Scholar
Gai, M. N., Thielemann, A. M. and Arancibia, A. (2000). Effect of three different diets on the bioavailability of a sustained release lithium carbonate matrix tablet. Int J Clin Pharmacol Ther, 38, 320326.CrossRefGoogle ScholarPubMed
Jeppsson, J. and Sjögren, J. (1975). The influence of food on side effects and absorption of lithium. Acta Psychiatr Scand, 51, 285288.CrossRefGoogle ScholarPubMed
Inc, AbbVie. (2021). Depakote ER package insert. North Chicago, IL.Google Scholar
Nolen, W. A., Licht, R. W., Young, A. H., et al. (2019). What is the optimal serum level for lithium in the maintenance treatment of bipolar disorder? A systematic review and recommendations from the ISBD/IGSLI Task Force on treatment with lithium. Bipolar Disord, 21, 394409.CrossRefGoogle ScholarPubMed
Rogers, G. A. (1981). Flavors altered by lithium. Am J Psychiatry, 138, 261.Google ScholarPubMed
Glenmark Pharmaceuticals Inc. (2020). Lithium Carbonate capsule package insert. Mahwah, NJ.Google Scholar
Bigiani, A. (2020). Does ENaC work as sodium taste receptor in humans? Nutrients, 12, 1195.CrossRefGoogle ScholarPubMed
Lossow, K., Hermans-Borgmeyer, I., Meyerhof, W., et al. (2020). Segregated expression of ENaC subunits in taste cells. Chem Senses, 45, 235248.CrossRefGoogle ScholarPubMed
Terao, T., Watanabe, S., Hoaki, N., et al. (2011). Strange taste and mild lithium intoxication. BMJ Case Rep, 2011.CrossRefGoogle Scholar
Hanyu, S., Sugita, N., Matsuda, M., et al. (2020). Lithium intoxication-induced dysgeusia accompanied by glossalgia in a patient receiving lithium carbonate: A case report. J Med Case Rep, 14, 149.CrossRefGoogle Scholar
Gelenberg, A. J., Kane, J. M., Keller, M. B., et al. (1989). Comparison of standard and low serum levels of lithium for maintenance treatment of bipolar disorder. N Engl J Med, 321, 14891493.CrossRefGoogle ScholarPubMed
Proctor, G. B. and Carpenter, G. H. (2014). Salivary secretion: Mechanism and neural regulation. Monogr Oral Sci, 24, 1429.CrossRefGoogle ScholarPubMed
Wu, L. S., Huang, M. C., Chen, C. K., et al. (2021). Genome-wide association study of lithium-induced dry mouth in bipolar I disorder. J Pers Med, 11, 1265.CrossRefGoogle ScholarPubMed
Orsolini, L., Pompili, S. and Volpe, U. (2020). The “collateral side” of mood stabilizers: Safety and evidence-based strategies for managing side effects. Expert Opin Drug Saf, 19, 14611495.CrossRefGoogle Scholar
Seki, T., Aki, M., Kawashima, H., et al. (2019). Electronic health record nested pragmatic randomized controlled trial of a reminder system for serum lithium level monitoring in patients with mood disorder: KONOTORI study protocol. Trials, 20, 706.CrossRefGoogle ScholarPubMed
Joshi, Y. B., Thomas, M. L., Braff, D. L., et al. (2021). Anticholinergic medication burden-associated cognitive impairment in schizophrenia. Am J Psychiatry, 178, 838847.CrossRefGoogle ScholarPubMed
Lupu, A. M., MacCamy, K. L., Gannon, J. M., et al. (2021). Less is more: Deprescribing anticholinergic medications in persons with severe mental illness. Ann Clin Psychiatry, 33, 8092.Google ScholarPubMed
Focosi, D., Azzara, A., Kast, R. E., et al. (2009). Lithium and hematology: Established and proposed uses. J Leukoc Biol, 85, 2028.CrossRefGoogle ScholarPubMed
Ballin, A., Lehman, D., Sirota, P., et al. (1998). Increased number of peripheral blood CD34+ cells in lithium-treated patients. Br J Haematol, 100, 219221.CrossRefGoogle ScholarPubMed
Meyer, J. M. and Stahl, S. M. (2019). The Clozapine Handbook (Stahl’s Handbooks). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Baek, J. H., Kinrys, G. and Nierenberg, A. A. (2014). Lithium tremor revisited: Pathophysiology and treatment. Acta Psychiatr Scand, 129, 1723.CrossRefGoogle Scholar
Schneider, S. A. and Deuschl, G. (2014). The treatment of tremor. Neurotherapeutics, 11, 128138.CrossRefGoogle ScholarPubMed
Wilting, I., Heerdink, E. R., Mersch, P. P., et al. (2009). Association between lithium serum level, mood state, and patient-reported adverse drug reactions during long-term lithium treatment: A naturalistic follow-up study. Bipolar Disord, 11, 434440.CrossRefGoogle ScholarPubMed
Wingo, A. P., Wingo, T. S., Harvey, P. D., et al. (2009). Effects of lithium on cognitive performance: A meta-analysis. J Clin Psychiatry, 70, 15881597.CrossRefGoogle ScholarPubMed
Burdick, K. E., Millett, C. E., Russo, M., et al. (2020). The association between lithium use and neurocognitive performance in patients with bipolar disorder. Neuropsychopharmacology, 45, 17431749.CrossRefGoogle ScholarPubMed
Paterson, A. and Parker, G. (2017). Lithium and cognition in those with bipolar disorder. Int Clin Psychopharmacol, 32, 5762.CrossRefGoogle ScholarPubMed
Soares, J. C., Boada, F. and Keshavan, M. S. (2000). Brain lithium measurements with (7)Li magnetic resonance spectroscopy (MRS): A literature review. Eur Neuropsychopharmacol, 10, 151158.CrossRefGoogle Scholar
Forester, B. P., Streeter, C. C., Berlow, Y. A., et al. (2009). Brain lithium levels and effects on cognition and mood in geriatric bipolar disorder: A lithium-7 magnetic resonance spectroscopy study. Am J Geriatr Psychiatry, 17, 1323.CrossRefGoogle ScholarPubMed
Lee, J. H., Adler, C., Norris, M., et al. (2012). 4-T 7Li 3D MR spectroscopy imaging in the brains of bipolar disorder subjects. Magn Reson Med, 68, 363368.CrossRefGoogle ScholarPubMed
Moore, C. M., Demopulos, C. M., Henry, M. E., et al. (2002). Brain-to-serum lithium ratio and age: An in vivo magnetic resonance spectroscopy study. Am J Psychiatry, 159, 12401242.CrossRefGoogle ScholarPubMed
Machado-Vieira, R., Otaduy, M. C., Zanetti, M. V., et al. (2016). A selective association between central and peripheral lithium levels in remitters in bipolar depression: A 3 T-(7)Li magnetic resonance spectroscopy study. Acta Psychiatr Scand, 133, 214220.CrossRefGoogle Scholar
Tandon, P., Wong, N. and Zaltzman, J. S. (2015). Lithium-induced minimal change disease and acute kidney injury. N Am J Med Sci, 7, 328331.CrossRefGoogle ScholarPubMed
Basile, G., Epifanio, A., Mandraffino, R., et al. (2014). Parkinsonism and severe hypothyroidism in an elderly patient: A case of lithium toxicity due to pharmacological interactions. J Clin Pharm Ther, 39, 452454.CrossRefGoogle Scholar
Hermida, A. P., Janjua, A. U., Glass, O. M., et al. (2016). A case of lithium-induced parkinsonism presenting with typical motor symptoms of Parkinson’s disease in a bipolar patient. Int Psychogeriatr, 28, 21012104.CrossRefGoogle Scholar
Marras, C., Herrmann, N., Fischer, H. D., et al. (2016). Lithium use in older adults is associated with increased prescribing of Parkinson medications. Am J Geriatr Psychiatry, 24, 301309.CrossRefGoogle ScholarPubMed
Friedman, J. H. (2020). Movement disorders induced by psychiatric drugs that do not block dopamine receptors. Parkinsonism Relat Disord, 79, 6064.CrossRefGoogle Scholar
Hsieh, H. T. and Yeh, Y. W. (2020). Dose-dependent effects of lithium treatment on the aggravation of antipsychotic-induced Pisa syndrome. Clin Neuropharmacol, 43, 9091.CrossRefGoogle ScholarPubMed
Tatara, A., Shimizu, S., Shin, N., et al. (2012). Modulation of antipsychotic-induced extrapyramidal side effects by medications for mood disorders. Prog Neuropsychopharmacol Biol Psychiatry, 38, 252259.CrossRefGoogle ScholarPubMed
Uwai, Y. and Nabekura, T. (2022). Relationship between lithium carbonate and the risk of Parkinson-like events in patients with bipolar disorders: A multivariate analysis using the Japanese adverse drug event report database. Psychiatry Res, 314, 114687.CrossRefGoogle ScholarPubMed
Erro, R., Landolfi, A., D’Agostino, G., et al. (2021). Bipolar disorder and Parkinson’s Disease: A (123)I-Ioflupane dopamine transporter SPECT study. Front Neurol, 12, 652375.CrossRefGoogle ScholarPubMed
Revet, A., Montastruc, F., Roussin, A., et al. (2020). Antidepressants and movement disorders: A postmarketing study in the world pharmacovigilance database. BMC Psychiatry, 20, 308.CrossRefGoogle ScholarPubMed
Chenu, F. and Bourin, M. (2006). Potentiation of antidepressant-like activity with lithium: Mechanism involved. Curr Drug Targets, 7, 159163.CrossRefGoogle ScholarPubMed
Janssen, S., Bloem, B. R. and van de Warrenburg, B. P. (2017). The clinical heterogeneity of drug-induced myoclonus: An illustrated review. J Neurol, 264, 15591566.CrossRefGoogle ScholarPubMed
Guttuso, T., Jr. (2019). High lithium levels in tobacco may account for reduced incidences of both Parkinson’s disease and melanoma in smokers through enhanced β-catenin-mediated activity. Med Hypotheses, 131, 109302.CrossRefGoogle ScholarPubMed
Sáenz-Farret, M., Tijssen, M. A. J., Eliashiv, D., et al. (2022). Antiseizure drugs and movement disorders. CNS Drugs, 36, 859876.CrossRefGoogle ScholarPubMed
Williams, D. P., Troost, B. T. and Rogers, J. (1988). Lithium-induced downbeat nystagmus. Arch Neurol, 45, 10221023.CrossRefGoogle ScholarPubMed
Halmagyi, G. M., Lessell, I., Curthoys, I. S., et al. (1989). Lithium-induced downbeat nystagmus. Am J Ophthalmol, 107, 664670.Google ScholarPubMed
Rosenberg, M. L. (1989). Permanent lithium-induced downbeating nystagmus. Arch Neurol, 46, 839.CrossRefGoogle ScholarPubMed
Lee, M. S. and Lessell, S. (2003). Lithium-induced periodic alternating nystagmus. Neurology, 60, 344.CrossRefGoogle ScholarPubMed
Monden, M. A., Nederkoorn, P. J. and Tijsma, M. (2015). [Downbeat nystagmus – a rare side-effect of lithium carbonate]. Tijdschr Psychiatr, 57, 4953.Google ScholarPubMed
Jørgensen, J. S., Landschoff Lassen, L. and Wegener, M. (2016). Lithium-induced downbeat nystagmus and horizontal gaze palsy. Open Ophthalmol J, 10, 126128.CrossRefGoogle ScholarPubMed
Rust, H., Lutz, N., Honegger, F., et al. (2016). Periodic alternating nystagmus in a patient on long-term lithium medication. J Neurol Sci, 369, 252253.CrossRefGoogle Scholar
Schein, F., Manoli, P. and Cathébras, P. (2017). Lithium-induced downbeat nystagmus. Am J Ophthalmol Case Rep, 7, 7475.CrossRefGoogle ScholarPubMed
Hong, H. and Lyu, I. J. (2019). A case of skew deviation and downbeat nystagmus induced by lithium. BMC Ophthalmol, 19, 257.CrossRefGoogle ScholarPubMed
Peng, Y. Y. (2019). Reversible hand tremors, downbeat nystagmus, and an unsteady gait with nontoxic lithium level. Clin Case Rep, 7, 599600.CrossRefGoogle Scholar
Boyer, E. W. and Shannon, M. (2005). The serotonin syndrome. N Engl J Med, 352, 11121120.CrossRefGoogle ScholarPubMed
Caviness, J. N. and Evidente, V. G. (2003). Cortical myoclonus during lithium exposure. Arch Neurol, 60, 401404.CrossRefGoogle ScholarPubMed
Sarrigiannis, P. G., Zis, P., Unwin, Z. C., et al. (2019). Tremor after long term lithium treatment; is it cortical myoclonus? Cerebellum Ataxias, 6, 5.CrossRefGoogle ScholarPubMed
Kocher, R. and Richter, R. (1978). Routine EEG examinations accompanying lithium therapy over two years. Arzneimittelforschung, 28, 15241525.Google ScholarPubMed
Hanak, A. S., Malissin, I., Poupon, J., et al. (2017). Electroencephalographic patterns of lithium poisoning: A study of the effect/concentration relationships in the rat. Bipolar Disord, 19, 135145.CrossRefGoogle ScholarPubMed
Swartz, C. M. and Dolinar, L. J. (1995). Encephalopathy associated with rapid decrease of high levels of lithium. Ann Clin Psychiatry, 7, 207209.CrossRefGoogle ScholarPubMed
Señga, M. M., Sarapuddin, G. and Saniel, E. (2020). A case report on an atypical presentation of the Syndrome of Irreversible Lithium-Effectuated Neurotoxicity (SILENT) in a war veteran with bipolar disorder and PTSD. Case Rep Psychiatry, 2020, 5369297.Google Scholar
Brandt, C., Töllner, K., Klee, R., et al. (2015). Effective termination of status epilepticus by rational polypharmacy in the lithium–pilocarpine model in rats: Window of opportunity to prevent epilepsy and prediction of epilepsy by biomarkers. Neurobiol Dis, 75, 7890.CrossRefGoogle ScholarPubMed
Payandemehr, B., Bahremand, A., Ebrahimi, A., et al. (2015). Protective effects of lithium chloride on seizure susceptibility: Involvement of α2-adrenoceptor. Pharmacol Biochem Behav, 133, 3742.CrossRefGoogle ScholarPubMed
Garcia, G., Crismon, M. L. and Dorson, P. G. (1994). Seizures in two patients after the addition of lithium to a clozapine regimen. J Clin Psychopharmacol, 14, 426428.Google ScholarPubMed
Tan, M. G., Worley, B., Kim, W. B., et al. (2020). Drug-induced intracranial hypertension: A systematic review and critical assessment of drug-induced causes. Am J Clin Dermatol, 21, 163172.CrossRefGoogle ScholarPubMed
Sundholm, A., Burkill, S., Waldenlind, E., et al. (2021). A national Swedish case-control study investigating incidence and factors associated with idiopathic intracranial hypertension. Cephalalgia, 41, 14271436.CrossRefGoogle ScholarPubMed
Hexom, B. and Barthel, R. P. (2004). Lithium and pseudotumor cerebri. J Am Acad Child Adolesc Psychiatry, 43, 247248.CrossRefGoogle ScholarPubMed
Jonnalagadda, J., Saito, E. and Kafantaris, V. (2005). Lithium, minocycline, and pseudotumor cerebri. J Am Acad Child Adolesc Psychiatry, 44, 209.CrossRefGoogle ScholarPubMed
Callens, P., Sienaert, P., Demyttenaere, K., et al. (2012). [Is there a causal link between idiopathic intracranial hypertension and the use of lithium? A case-study and a review of the literature]. Tijdschr Psychiatr, 54, 453462.Google Scholar
Stachenfeld, N. S., Taylor, H. S., Leone, C. A., et al. (2003). Estrogen effects on urine concentrating response in young women. J Physiol (Lond). 552, 869880.CrossRefGoogle ScholarPubMed
Grandjean, E. M. and Aubry, J.-M. (2009). Lithium: Updated human knowledge using an evidence-based approach: Part III: Clinical safety. CNS Drugs, 23, 397418.CrossRefGoogle ScholarPubMed
Rugino, T. A., Janvier, Y. M., Baunach, J. M., et al. (2003). Hypoalbuminemia with valproic acid administration. Pediatr Neurol, 29, 440444.CrossRefGoogle ScholarPubMed
Łukawska, E., Frankiewicz, D., Izak, M., et al. (2021). Lithium toxicity and the kidney with special focus on nephrotic syndrome associated with the acute kidney injury: A case-based systematic analysis. J Appl Toxicol, 41, 1896–1909.CrossRefGoogle ScholarPubMed
Levey, A. S., Grams, M. E. and Inker, L. A. (2022). Uses of GFR and albuminuria level in acute and chronic kidney disease. N Engl J Med, 386, 21202128.CrossRefGoogle ScholarPubMed
Juurlink, D. N., Mamdani, M. M., Kopp, A., et al. (2004). Drug-induced lithium toxicity in the elderly: A population-based study. J Am Geriatr Soc, 52, 794798.CrossRefGoogle ScholarPubMed
Thomsen, K. and Schou, M. (1968). Renal lithium excretion in man. Am J Physiol, 215, 823827.CrossRefGoogle ScholarPubMed
Atherton, J. C., Doyle, A., Gee, A., et al. (1991). Lithium clearance: Modification by the loop of Henle in man. J Physiol, 437, 377391.CrossRefGoogle ScholarPubMed
Cohen, Y., Chetrit, A., Cohen, Y., et al. (1998). Cancer morbidity in psychiatric patients: Influence of lithium carbonate treatment. Med Oncol, 15, 3236.CrossRefGoogle ScholarPubMed
Gahr, M., Wezel, F., Bolenz, C., et al. (2019). Lithium therapy associated with renal and upper and lower urinary tract tumors: Results from a retrospective single-center analysis. J Clin Psychopharmacol, 39, 530532.CrossRefGoogle ScholarPubMed
Kessing, L. V., Gerds, T. A., Feldt-Rasmussen, B., et al. (2015). Lithium and renal and upper urinary tract tumors – results from a nationwide population-based study. Bipolar Disord, 17, 805813.CrossRefGoogle ScholarPubMed
Pottegård, A., Hallas, J., Jensen, B. L., et al. (2016). Long-term lithium use and risk of renal and upper urinary tract cancers. J Am Soc Nephrol, 27, 249255.CrossRefGoogle ScholarPubMed
Martinsson, L., Westman, J., Hallgren, J., et al. (2016). Lithium treatment and cancer incidence in bipolar disorder. Bipolar Disord, 18, 3340.CrossRefGoogle ScholarPubMed
Huang, R. Y., Hsieh, K. P., Huang, W. W., et al. (2016). Use of lithium and cancer risk in patients with bipolar disorder: Population-based cohort study. Br J Psychiatry, 209, 393399.CrossRefGoogle ScholarPubMed
Anmella, G., Fico, G., Lotfaliany, M., et al. (2021). Risk of cancer in bipolar disorder and the potential role of lithium: International collaborative systematic review and meta-analyses. Neurosci Biobehav Rev, 126, 529541.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×