Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T16:05:58.611Z Has data issue: false hasContentIssue false

Chapter Five - How to survive winter?

Adaptation and acclimation strategies of eukaryotic algae from polar terrestrial ecosystems

from Part II - Biodiversity, bioenergetic processes, and biotic and abiotic interactions

Published online by Cambridge University Press:  28 September 2020

Guido di Prisco
Affiliation:
National Research Council of Italy
Howell G. M. Edwards
Affiliation:
University of Bradford
Josef Elster
Affiliation:
University of South Bohemia, Czech Republic
Ad H. L. Huiskes
Affiliation:
Royal Netherlands Institute for Sea Research
Get access

Summary

The polar regions are of outstanding international scientific and environmental significance as they support important components of the global biogeochemical cycles. They comprise a whole range of habitats with extreme environmental conditions, which challenge living organisms with multiple environmental stresses. At the same time, they are vulnerable to disturbances and have long recovery times

Type
Chapter
Information
Life in Extreme Environments
Insights in Biological Capability
, pp. 101 - 125
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, S.C. (2009). Factors affecting spore germination in algae – review. Folia Microbiologica, 54, 273302.Google Scholar
AMAP (2011). Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere. Arctic Monitoring and Assessment Programme (AMAP), Oslo, 1538.Google Scholar
Anderson, O.R. (1975). Ultrastructure and cytochemistry of resting cell formation in Amphora coffeaeformis (Bacillariophyceae). Journal of Phycology, 11(3), 272281.CrossRefGoogle Scholar
Arc, E., Pichrtová, M., Kranner, I., Holzinger, A. (2020). Pre-akinete formation in Zygnema sp. from polar habitats is associated with metabolite re-arrangement. Journal of Experimental Botany, doi:10.1093/jxb/eraa12Google Scholar
Bashenkhaeva, M.V., Zakharova, Y.R., Petrova, D.P., et al. (2015). Sub-ice microalgal and bacterial communities in freshwater Lake Baikal, Russia. Microbial Ecology, 70(3), 751765.Google Scholar
Becker, E.W. (1982). Physiological studies on Antarctic Prasiola crispa and Nostoc commune at low temperatures. Polar Biology, 1(2), 99104.CrossRefGoogle Scholar
Bidigare, R.R., Ondrusek, M.E., Kennicutt, M.C., et al. (1993 ). Evidence for a photoprotective function for secondary carotenoids of snow algae. Journal of Phycology, 29(4), 427–434.Google Scholar
Bisson, M.A., Kirst, G.O. (1995). Osmotic acclimation and turgor pressure regulation in algae. Naturwissenschaften, 82(10), 461471.Google Scholar
Bjerke, J.W., Karlsen, S.R., Høgda, K.A., et al. (2014). Record-low primary productivity and high plant damage in the Nordic Arctic Region in 2012 caused by multiple weather events and pest outbreaks. Environmental Research Letters, 9, 084006.Google Scholar
Bokhorst, S., Bjerke, J.W., Tømmervik, H., Callaghan, T.V., Phoenix, G.K. (2009). Winter warming events damage sub-Arctic vegetation: consistent evidence from an experimental manipulation and a natural event. Journal of Ecology, 97(6), 14081415.Google Scholar
Bokhorst, S., Bjerke, J.W., Street, L., Callaghan, T.V., Phoenix, G.K. (2011). Impacts of multiple extreme winter warming events on sub-Arctic heathland: phenology, reproduction, growth, and CO2 flux responses. Global Change Biology, 17(9), 28172830.Google Scholar
Bokhorst, S., Phoenix, G.K., Berg, M.P., et al. (2015). Climatic and biotic extreme events moderate long-term responses of above- and belowground sub-Arctic heathland communities to climate change. Global Change Biology, 21(11), 40634075.Google Scholar
Broady, P.A. (1996). Diversity, distribution and dispersal of Antarctic algae. Biodiversity & Conservation, 5(11), 13071335.Google Scholar
Callaghan, T.V., Johansson, M., Brown, R.D., et al. (2011). The changing face of Arctic snow cover: a synthesis of observed and projected changes. Ambio, 40(1), 1731.Google Scholar
Callaghan, T.V., Jonasson, C., Thierfelder, T., et al. (2013). Ecosystem change and stability over multiple decades in the Swedish subarctic: complex processes and multiple drivers. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1624), 20120488.Google Scholar
Clarke, A., Morris, G.J., Fonseca, F., et al. (2013). A low temperature limit for life on Earth. PLoS One, 8, e66207.CrossRefGoogle ScholarPubMed
Crowe, J.H., Oliver, A.E., Tablin, F. (2002). Is there a single biochemical adaptation to anhydrobiosis? Integrative and Comparative Biology, 42(3), 497503.Google Scholar
Crowe, J.H., Crowe, L.M., Tablin, F., et al. (2004). Stabilization of cells during freeze-drying: the trehalose myth. In: Fuller, B. J., Lane, N, and Benson, E. E. (eds) Life in the Frozen State. CRC Press,London, pp. 581602.Google Scholar
Davey, M.C. (1988). Ecology of terrestrial algae of the fellfield ecosystems of Signy Island, South Orkney Islands. British Antarctic Survey B, 81, 6974.Google Scholar
Davey, M.C. (1989). The effects of freezing and desiccation on photosynthesis and survival of terrestrial antarctic algae and Cyanobacteria. Polar Biology, 10(1), 2936.Google Scholar
Davey, M.C. (1991). The seasonal periodicity of algae on Antarctic fellfield soils. Holarctic Ecology, 14(2), 112120.Google Scholar
Davey, M.C., Rothery, P. (1992). Factors causing the limitation of growth of terrestrial algae in maritime Antarctica during late summer. Polar BioIogy, 12(6–7), 595601.Google Scholar
de Vries, J., Stanton, A., Archibald, J.M., Gould, S.B. (2016). Streptophyte terrestrialization in light of plastid evolution. Trends in Plant Science, 21(6), 467476.Google Scholar
de Vries, J., Curtis, B.A., Gould, S.B., Archibald, J.M. (2018). Embryophyte stress signaling evolved in the algal progenitors of land plants. Proceedings of the National Academy of Sciences of the USA, 115(15), E3471E3480.Google Scholar
Dolev, M.B., Braslavsky, I., Davies, P.L. (2016). Ice-binding proteins and their function. Annual Review of Biochemistry, 85, 515542.Google Scholar
Edlund, M.B., Stoermer, E.F., Taylor, C.M. (1996). Aulacoseira skvortzowii sp. nov. (Bacillariophyta), a poorly understood diatom from Lake Baikal, Russia. Journal of Phycology, 32(1), 165175.CrossRefGoogle Scholar
Elster, J. (2002). Ecological classification of terrestrial algae communities of polar environment. In: Beyer, L and Bölter, M (eds) GeoEcology of Terrestrial Oases, Ecological Studies, 154. Springer, Berlin, pp. 303326.Google Scholar
Elster, J., Benson, E.E. (2004). Life in the polar environment with a focus on algae and Cyanobacteria. In: Fuller, B, Lane, N and Benson, E (eds) Life in the Frozen State. Taylor and Francis, London, pp. 109150.Google Scholar
Elster, J., Komárek, O. (2003). Periphyton ecology of two snow-fed streams in the vicinity of H. Arctowski station, King George Island, South Shetlands, Antarctica. Antarctic Science, 15(2), 189201.Google Scholar
Elster, J., Svoboda, J., Komárek, J., Marvan, P. (1997). Algal and cyanoprocaryote communities in a glacial stream, Sverdrup Pass, 79° N, Central Ellesmere Island, Canada. Algological Studies, 85, 5793.Google Scholar
Elster, J., Degma, P., Kováčik, Ľ., et al. (2008). Freezing and desiccation injury resistance in the filamentous green alga Klebsormidium from the Antarctic, Arctic and Slovakia. Biologia, 63(6), 839847.CrossRefGoogle Scholar
Fuller, B.J. (2004). Cryoprotectants: the essential antifreezes to protect life in the frozen state. CryoLetters, 25(6), 375388.Google Scholar
Fuller, C. (2013). Examining morphological and physiological changes in Zygnema irregulare during a desiccation and recovery period. PhD thesis, California State University San Marcos.Google Scholar
Guschina, I.A., Harwood, J.L. (2006). Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research, 45(2), 160186.Google Scholar
Hawes, I. (1989). Filamentous green algae in freshwater streams on Signy Island, Antarctica. In: Vincent, W.F., Ellis‐Evans, J.C. (eds) High Latitude Limnology. Developments in Hydrobiology, 49. Kluwer, Dordrecht, pp. 118.Google Scholar
Hawes, I. (1990). Effects of freezing and thawing on a species of Zygnema (Chlorophyta) from the Antarctic. Phycologia, 29(3), 326331.Google Scholar
Hejduková, E., Pinseel, E., Vanormelingen, P., et al. (2019). Tolerance of pennate diatoms (Bacillariophyceae) to experimental freezing: comparison of polar and temperate strains. Phycologia, 58(4), 382–392; doi:10.1080/00318884.2019.1591835.Google Scholar
Hejduková, E., Elster, J., Nedbalová, L. (in press). Annual cycle of freshwater diatoms in the High Arctic revealed by multiparameter fluorescent staining. Microbial Ecology.Google Scholar
Herburger, K., Lewis, L.A., Holzinger, A. (2015). Photosynthetic efficiency, desiccation tolerance and ultrastructure in two phylogenetically distinct strains of alpine Zygnema sp. (Zygnematophyceae, Streptophyta): role of pre-akinete formation. Protoplasma, 252(2), 571589.Google Scholar
Herburger, K., Xin, A., Holzinger, A. (2019). Homogalacturonan accumulation in cell walls of the green alga Zygnema sp. (Charophyta) increases desiccation resistance. Frontiers in Plant Science, 10, 540. doi:10.3389/fpls.2019.00540Google Scholar
Hoham, R.W., Roemer, S.C., Mullet, J.E. (1979). The life history and ecology of the snow alga Chloromonas brevispina comb. nov. (Chlorophyta, Volvocales). Phycologia, 18(1), 5570.Google Scholar
Hoham, R.W., Mullet, J.E., Roemer, S.C. (1983). The life history and ecology of the snow alga Chloromonas polyptera comb. nov. (Chlorophyta, Volvocales). Canadian Journal of Botany, 61(9), 24162428.CrossRefGoogle Scholar
Holzinger, A., Pichrtová, M. (2016). Abiotic stress tolerance in charophyte green algae: new challenges for omics techniques. Frontiers in Plant Science, 7(678), 117.Google Scholar
Holzinger, A., Roleda, M.Y., Lütz, C. (2009). The vegetative arctic freshwater green alga Zygnema is insensitive to experimental UV exposure. Micron, 40(8), 831838.Google Scholar
Holzinger, A., Kaplan, F., Blaas, K., et al. (2014). Transcriptomics of desiccation tolerance in the streptophyte green alga Klebsormidium reveal a land plant-like defence reaction. PLoS ONE, 9(10), e110630.Google Scholar
Jackson, A.E., Seppelt, R.D. (1995). The accumulation of proline in Prasiola crispa during winter in Antarctica. Physiologia Plantarum, 94(1), 2530.Google Scholar
Jacob, A., Wiencke, C., Lehmann, H., Kirst, G.O. (1992). Physiology and ultrastructure of desiccation in the green alga Prasiola crispa from Antarctica. Botanica Marina, 35, 297303.Google Scholar
Janech, M.G., Mock, T., Kang, J.S., Raymond, J.A. (2006). Ice-binding proteins from sea ice diatoms (Bacillariophyceae). Journal of Phycology, 42(2), 410416.CrossRefGoogle Scholar
Jansson, M., Blomqvist, P., Jonsson, A., Bergström, A.‐K. (1996). Nutrient limitation of bacterioplankton, autotrophic and mixotrophic phytoplankton and heterotrophic nanoflagellates in Lake Örträsket. Limnology and Oceanography, 41(7), 15521559.Google Scholar
Jewson, D.H., Granin, N.G., Zhdanov, A.A., et al. (2008). Resting stages and ecology of the planktonic diatom Aulacoseira skvortzowii in Lake Baikal. Limnology and Oceanography, 53(3), 11251136.Google Scholar
Jones, J. (1996). The diversity, distribution and ecology of diatoms from Antarctic inland waters. Biodiversity & Conservation, 5(11), 14331449.Google Scholar
Jones, R.I. (2000). Mixotrophy in planktonic protists: an overview. Freshwater Biology, 45(2), 219226.Google Scholar
Kaplan, F., Lewis, L.A., Herburger, K., Holzinger, A. (2013). Osmotic stress in Arctic and Antarctic strains of the green alga Zygnema (Zygnematales, Streptophyta): effects on photosynthesis and ultrastructure. Micron, 44, 317330.CrossRefGoogle ScholarPubMed
Karsten, U., Lütz, C., Holzinger, A. (2010). Ecophysiological performance of the aeroterrestrial green alga Klebsormidium crenulatum (Klebsormidiophyceae, Streptophyta) isolated from an alpine soil crust with an emphasis on desiccation stress. Journal of Phycology, 46(6), 11871197.Google Scholar
Kim, G.H., Klochkova, T.A., Kang, S.H. (2008). Notes on freshwater and terrestrial algae from Ny-Ålesund, Svalbard (High Arctic sea area). Journal of Environmental Biology, 29(4), 485491.Google Scholar
Klaveness, D., Bråte, J., Patil, V., et al. (2011). The 18S and 28S rDNA identity and phylogeny of the common lotic chrysophyte Hydrurus foetidus. European Journal of Phycology, 46(3), 282291.Google Scholar
Knowles, E.J., Castenholz, R.W. (2008). Effect of exogenous extracellular polysaccharides on the desiccation and freezing tolerance of rock-inhabiting phototrophic microorganisms. FEMS Microbiology Ecology, 66(2), 261270.CrossRefGoogle ScholarPubMed
Komárek, J., Nedbalová, L. (2007). Green cryosestic algae. In: Seckbach, J (ed.) Algae and Cyanobacteria in Extreme Environments. Springer, Dordrecht, pp. 321342.CrossRefGoogle Scholar
Kosugi, M., Katashima, Y., Aikawa, S., et al. (2010). Comparative study on the photosynthetic properties of Prasiola (Chlorophyceae) and Nostoc (Cyanophyceae) from Antarctic and non-Antarctic sites. Journal of Phycology, 46(3), 466476.Google Scholar
Kuwata, A., Takahashi, M. (1999). Survival and recovery of resting spores and resting cells of the marine planktonic diatom Chaetoceros pseudocurvisetus under fluctuating nitrate conditions. Marine Biology, 134(3), 471478.Google Scholar
Kuwata, A., Hama, T., Takahashi, M. (1993). Ecophysiological characterization of two life forms, resting spores and resting cells, of a marine planktonic diatom, Chaetoceros pseudocurvisetus, formed under nutrient depletion. Marine Ecology Progress Series, 102(3), 245255.Google Scholar
Láska, K., Witoszová, D., Prošek, P. (2012). Weather patterns of the coastal zone of Petuniabukta, central Spitsbergen in the period 2008–2010. Polish Polar Research, 33(4), 297318.Google Scholar
Laybourn-Parry, J., Roberts, E.C., Bell, E.M. (2000). Protozoan growth rates in Antarctic lakes. Polar Biology, 23(7), 445451.CrossRefGoogle Scholar
Lembo, V., Bordi, I., Speranza, A. (2017). Annual and semiannual cycles of mid latitude near-surface temperature and tropospheric baroclinicity: reanalysis data and AOGCM simulations. Earth System Dynamics, 8(2), 295312.Google Scholar
Leya, T. (2013). Snow algae: adaptation strategies to survive on snow and ice. In: Seckbach, J, Oren, A and Stan-Lotter, H (eds) Polyextremophiles. Life Under Multiple Forms of Stress. Springer, Dordrecht, pp. 401423.Google Scholar
Lund, J. W. G. (1954). The seasonal cycle of the plankton diatom, Melosira italica (Ehr.) Kutz. subsp. subarctica O. Müll. The Journal of Ecology, 42(1), 151179.Google Scholar
Matsuzaki, R., Nozaki, H., Takeuchi, N., Hara, Y., Kawachi, M. (2019). Taxonomic re-examination of ‘Chloromonas nivalis (Volvocales, Chlorophyceae) zygotes’ from Japan and description of C. muramotoi sp. nov. PLoS ONE, 14(1), e0210986.Google Scholar
Mazur, P. (1984). Freezing of living cells: mechanisms and implications. American Journal of Physiology–Cell Physiology, 247(3), 125142.Google Scholar
McLean, R.J., Pessoney, G.F. (1971). Formation and resistance of akinetes of Zygnema. In: Parker, B.C., Brown, R. M., Jr. (eds) Contributions in Phycology. Allen Press, Lawrence, KS, pp. 145152.Google Scholar
McQuoid, M.R., Hobson, L.A. (1995). Importance of resting stages in diatom seasonal succession. Journal of Phycology, 31(1), 4450.CrossRefGoogle Scholar
McQuoid, M.R., Hobson, L.A. (1996). Diatom resting stages. Journal of Phycology, 32(6), 889902.Google Scholar
Mock, T., Valentin, K. (2004). Photosynthesis and cold acclimation: molecular evidence from a polar diatom. Journal of Phycology, 40(4), 732741.Google Scholar
Morgan-Kiss, R.M., Priscu, J.C., Pocock, T., Gudynaite-Savitch, L.G., Huner, N.P.A. (2006). Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiology and Molecular Biology Reviews, 70(1), 222252.Google Scholar
Müller, T., Bleiss, W., Martin, C.D., Rogaschewski, S., Fuhr, G. (1998). Snow algae from northwest Svalbard their identification, distribution, pigment and nutrient content. Polar Biology, 20(1), 1432.Google Scholar
Nagao, M., Arakawa, K., Takezawa, D., Yoshida, S., Fujikawa, S. (1999). Akinete formation in Tribonema bombycinum Derbes et Solier (Xanthophyceae ) in relation to freezing tolerance. Journal of Plant Research, 112, 163174.Google Scholar
Nagao, M., Matsui, K., Uemura, M. (2008). Klebsormidium flaccidum, a charophycean green alga, exhibits cold acclimation that is closely associated with compatible solute accumulation and ultrastructural changes. Plant, Cell & Environment, 31(3), 872885.Google Scholar
Pichrtová, M., Hájek, T., Elster, J. (2014a). Osmotic stress and recovery in field populations of Zygnema sp. (Zygnematophyceae, Streptophyta) on Svalbard (High Arctic) subjected to natural desiccation. FEMS Microbiology Ecology, 89(2), 270280.CrossRefGoogle ScholarPubMed
Pichrtová, M., Kulichová, J., Holzinger, A. (2014b). Nitrogen limitation and slow drying induce desiccation tolerance in conjugating green algae (Zygnematophyceae, Streptophyta) from polar habitats. Plos ONE, 9, e113137.Google Scholar
Pichrtová, M., Arc, E., Stöggl, W., et al. (2016a). Formation of lipid bodies and changes in fatty acid composition upon pre-akinete formation in Arctic and Antarctic Zygnema (Zygnematophyceae, Streptophyta) strains. FEMS Microbiology Ecology, 92, fiw096.Google Scholar
Pichrtová, M., Hájek, T., Elster, J. (2016b). Annual development of mat-forming conjugating green algae Zygnema spp. in hydroterrestrial habitats in the Arctic. Polar Biology, 39(9), 16531662.Google Scholar
Pichrtová, M., Holzinger, A., Kulichová, J., et al. (2018). Molecular and morphological diversity of Zygnema and Zygnemopsis (Zygnematophyceae, Streptophyta) on Svalbard (High Arctic). European Journal of Phycology, 53(4), 492508.Google Scholar
Post, E., Forchhammer, M.C., Bret-Harte, M.S., et al. (2009). Ecological dynamics across the Arctic associated with recent climate change. Science, 325(5946), 13551358.Google Scholar
Poulíčková, A., Žižka, Z., Hašler, P., Benada, O. (2007). Zygnematalean zygospores: morphological features and use in species identification. Folia Microbiologica, 52(2), 135145.Google Scholar
Procházková, L., Remias, D., Řezanka, T., Nedbalová, L. (2018). Chloromonas nivalis subsp. tatrae, susbp. nov. (Chlamydomonadales, Chlorophyta): re-examination of a snow alga from the High Tatra Mountains (Slovakia). Fottea, 18(1), 118.Google Scholar
Raymond, J.A. (2000). Distribution and partial characterization of ice-active molecules associated with sea-ice diatoms. Polar Biology, 23(10), 721729.Google Scholar
Raymond, J.A. (2014). The ice-binding proteins of a snow alga, Chloromonas brevispina: probable acquisition by horizontal gene transfer. Extremophiles, 18(6), 987994.Google Scholar
Raymond, J.A., Janech, M.G., Fritsen, C.H. (2009). Novel ice-binding proteins from a psychrophilic Antarctic alga (Chlamydomonadaceae, Chlorophyceae). Journal of Phycology, 45(1), 130136.Google Scholar
Reed, R.H., Richardson, D.L., Warr, S.R.C., Stewart, W.D.P. (1984). Carbohydrate accumulation and osmotic stress in cyanobacteria. Microbiology, 130, 14.Google Scholar
Remias, D. (2012). Cell structure and physiology of alpine snow and ice algae. In: Lűtz, C (ed.) Plants in Alpine Regions. Springer, Wien, pp. 175185.Google Scholar
Remias, D., Lütz-Meindl, U., Lütz, C. (2005). Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. European Journal of Phycology, 40(3), 259268.Google Scholar
Remias, D., Karsten, U., Lütz, C. (2010). Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma, 243(1–4), 7386.Google Scholar
Remias, D., Holzinger, A., Aigner, S., Lütz, C. (2011). Ecophysiology and ultrastructure of Ancylonema nordenskiöldii (Zygnematales, Streptophyta), causing brown ice on glaciers in Svalbard (high arctic). Polar Biology, 35(6), 899908.Google Scholar
Remias, D., Wastien, H., Lütz, C., Leya, T. (2013). Insights into the biology and phylogeny of Chloromonas polyptera (Chlorophyta), an alga causing orange snow in Maritime Antarctica. Antarctic Science, 25(5), 648656.Google Scholar
Rengefors, K., Karlsson, I., Hansson, L.-A. (1998). Algal cyst dormancy: a temporal escape from herbivory. Proceedings of the Royal Society of London Series B: Biological Sciences, 265, 13531358.Google Scholar
Rippin, M., Becker, B., Holzinger, A. (2017). Enhanced desiccation tolerance in mature cultures of the Streptophytic green alga Zygnema circumcarinatum revealed by transcriptomics. Plant & Cell Physiology, 58(12), 20672084.CrossRefGoogle ScholarPubMed
Robinson, S.A., Wasley, J., Tobin, A.K. (2003). Living on the edge – plants and global change in continental and maritime Antarctica. Global Change Biology, 9(12), 16811717.Google Scholar
Roos, J.C., Vincent, W.F. (1998). Temperature dependence of UV radiation effects on Antarctic cyanobacteria. Journal of Phycology, 34(1), 118125.Google Scholar
Round, F.E., Crawford, R.M., Mann, D.G. (1990). Diatoms: Biology and Morphology of the Genera. Cambridge University Press, Cambridge, UK.Google Scholar
Ryšánek, D., Elster, J., Kováčik, L., Škaloud, P. (2016). Diversity and dispersal capacities of a terrestrial algal genus Klebsormidium (Streptophyta) in polar regions. FEMS Microbiology Ecology, 92(4), fiw039.Google Scholar
Řezanka, T., Nedbalová, L., Sigler, K., Cepák, V. (2008). Identification of astaxanthin diglucoside diesters from snow alga Chlamydomonas nivalis by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Phytochemistry, 69(2), 479490.Google Scholar
Řezanka, T., Nedbalová, L., Lukavský, J., Střížek, A., Sigler, K. (2017). Pilot cultivation of the green alga Monoraphidium sp. producing a high content of polyunsaturated fatty acids in low-temperature environment. Algal Research, 22, 160165.Google Scholar
Šabacká, M., Elster, J. (2006). Response of cyanobacteria and algae from Antarctic wetland habitats to freezing and desiccation stress. Polar Biology, 30(1), 3137.Google Scholar
Saha, S.K., Rinke, A., Dethloff, K. (2006). Future winter extreme temperature and precipitation events in the Arctic. Geophysical Research Letters, 33(15), L15818.CrossRefGoogle Scholar
Seaburg, K.G., Parker, B.C., Wharton, Jr., R.A., SimmonsJr., G.M. (1981). Temperature-growth responses of algal isolates from Antarctic oases. Journal of Phycology, 17(4), 353360.Google Scholar
Sheath, R.G., Vis, M.L., Hambrook, J.A., Cole, K.M. (1996). Tundra stream macroalgae of North America: composition, distribution and physiological adaptations. Hydrobiologia, 336, 6782.Google Scholar
Sicko-Goad, L., Stoermer, E.F., Fahnenstiel, G. (1986). Rejuvenation of Melosira granulata (Bacillariophyceae) resting cells from the anoxic sediments of Douglas Lake, Michigan. I. Light microscopy and 14C uptake. Journal of Phycology, 22(1), 2228.CrossRefGoogle Scholar
Siegele, D.A., Kolter, R. (1992). Life after log. Journal of Bacteriology, 174(2), 345348.Google Scholar
Skácelová, K., Barták, M., Coufalík, P., Nývlt, D., Trnková, K. (2013). Biodiversity of freshwater algae and Cyanobacteria on deglaciated northern part of James RossIsland, Antarctica. A preliminary study. Czech Polar Reports, 3, 93106.Google Scholar
Souffreau, C., Vanormelingen, P., Verleyen, E., Sabbe, K., Vyverman, W. (2010). Tolerance of benthic diatoms from temperate aquatic and terrestrial habitats to experimental desiccation and temperature stress. Phycologia, 49(4), 309324.Google Scholar
Souffreau, C., Vanormelingen, P., Sabbe, K., Vyverman, W. (2013). Tolerance of resting cells of freshwater and terrestrial benthic diatoms to experimental desiccation and freezing is habitat-dependent. Phycologia, 52(3), 246255.Google Scholar
Spijkerman, E., Wacker, A., Weithoff, G., Leya, T. (2012). Elemental and fatty acid composition of snow algae in Arctic habitats. Frontiers in Microbiology, 3, 380.Google Scholar
Stibal, M., Elster, J., Šabacká, M., Kaštovská, K. (2007). Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbiology Ecology, 59(2), 265273.Google Scholar
Svoboda, J. (2009). Evolution of plant cold hardiness and its manifestation along the latitudinal gradient in the Canadian High Arctic. In: Gusta, L, Wisniewski, M, Tanino, K (eds.) Plant Cold Hardiness: From the Laboratory to the Field. CAB International, pp. 140162.Google Scholar
Tamaru, Y., Takani, Y., Yoshida, T., Sakamoto, T. (2005). Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Applied and Environmental Microbiology, 71, 73277333.Google Scholar
Tanghe, A., van Dijck, P., Thevelein, J.M. (2003). Determinants of freeze tolerance in microorganisms, physiological importance, and biotechnological applications. Advances in Applied Microbiology, 53, 129176.CrossRefGoogle ScholarPubMed
Teoh, M.-L., Chu, W.-L., Marchant, H., Phang, S.-M. (2004). Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. Journal of Applied Phycology, 16(6), 421430.Google Scholar
Thomas, D.N., Fogg, G.E., Convey, P., et al. (2008). The Biology of Polar Regions. Oxford University Press, Oxford.Google Scholar
Trumhová, K., Holzinger, A., Obwegeser, S., Neuner, G., Pichrtová, M. (2019). The conjugating green alga Zygnema sp. (Zygnematophyceae) from the Arctic shows high frost tolerance in mature cells (pre-akinetes). Protoplasma, 256, 16811694.Google Scholar
Van De Vijver, B., Beyens, L. (1999). Biogeography and ecology of freshwater diatoms in Subantarctica: a review. Journal of Biogeography, 26(5), 9931000.Google Scholar
Van de Vijver, B., Frenot, Y., Beyens, L. (2002). Freshwater Diatoms from Ile de la Possession (Crozet-Archipelago, Subantarctica). Bibliotheca Diatomologica, 46. J. Cramer, Berlin/Stuttgart.Google Scholar
Vincent, W.F. (1988). Microbial Ecosystem of Antarctica. Cambridge University Press,Cambridge, UK.Google Scholar
Vincent, W.F., James, M.R. (1996). Biodiversity in extreme aquatic environments: lakes, ponds and streams of the Ross Sea Sector, Antarctica. Biodiversity & Conservation, 5(11), 14511471.Google Scholar
Vítová, M., Bišová, K., Kawano, S., Zachleder, V. (2014). Accumulation of energy reserves in algae: From cell cycles to biotechnological applications. Biotechnological Advances, 3, 12041218.Google Scholar
Vrionis, H.A., Miller, R.V., Whyte, L.G. (2013). Life at the poles in the age of global warming: Part 1. Microbe, 8(11), 449453.Google Scholar
Welsh, D.T. (2000). Ecological significance of compatible solute accumulation by microorganisms: from single cells to global climate. FEMS Microbiology Reviews, 24(3), 263290.Google Scholar
Worland, M.R., Lukešová, A. (2001). The application of differential scanning calorimetry and ice nucleation spectrometry to ecophysiological studies of algae. Nova Hedwigia Beiheft, 123, 571583.Google Scholar
Yancey, P.H. (2005). Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. Journal of Experimental Biology, 208, 28192830.Google Scholar
Youssouf, M.O., Laurent, M., Xavier, C. (2016). Statistical analysis of sea surface temperature and chlorophyll-a concentration patterns in the Gulf of Tadjourah (Djibouti). Journal of Marine Science: Research & Development, 6(2), 19.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×