Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-28T04:40:03.027Z Has data issue: false hasContentIssue false

Chapter Four - Metazoan life in anoxic marine sediments

from Part II - Biodiversity, bioenergetic processes, and biotic and abiotic interactions

Published online by Cambridge University Press:  28 September 2020

Guido di Prisco
Affiliation:
National Research Council of Italy
Howell G. M. Edwards
Affiliation:
University of Bradford
Josef Elster
Affiliation:
University of South Bohemia, Czech Republic
Ad H. L. Huiskes
Affiliation:
Royal Netherlands Institute for Sea Research
Get access

Summary

Benthic deep-sea ecosystems (beneath 200 m depth) represent the largest biome on our planet, covering >65% of the Earth’s surface and hosting >95% of the global biosphere (Danovaro et al., 2014). Deep-sea ecosystems also contain the largest hypoxic and anoxic regions of the Biosphere such as the oxygen minimum zones (OMZ) and the deep hypersaline anoxic basins (DHAB).

Type
Chapter
Information
Life in Extreme Environments
Insights in Biological Capability
, pp. 89 - 100
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akhmanova, A., Voncken, F., van Alen, T., et al. (1998). A hydrogenosome with a genome. Nature, 396, 527528.Google Scholar
Antezana, T. (2009). Euphausia mucronata: a keystone herbivore and prey of the Humboldt Current System. Deep-Sea Research II, 57(7–8), 652662.CrossRefGoogle Scholar
Bang-Berthelsen, I.H., Schmidt-Rhaesa, A., Kristensen, R.M. (2012). 6. Loricifera. In: Schmidt-Rhaesa, A (ed.) Hand book of Zoology. Gastrotricha, Cycloneuralia and Gnathifera. Vol. 1: Nematomorpha, Priapulida, Kinorhyncha, Loricifera. De Gruyter, Berlin, pp. 307328.Google Scholar
Bernhard, J.M., Buck, K.R., Farmer, M.A., Bowser, S.S. (2000). The Santa Barbara basin is a symbiosis oasis. Nature, 403, 7780.CrossRefGoogle Scholar
Bernhard, J.M., Morrison, C.R., Pape, E., et al. (2015). Metazoans of redoxcline sediments in Mediterranean deep-sea hypersaline anoxic basins. BMC Biology, 13, 105.CrossRefGoogle ScholarPubMed
Boxma, B., de Graaf, R.M., van der Staay, G.W., et al. (2005). An anaerobic mitochondrion that produces hydrogen. Nature, 434, 7479.Google Scholar
Corinaldesi, C., Beolchini, F., Dell’Anno, A. (2008). Damage and degradation rates of extracellular DNA in marine sediments: implications for the preservation of gene sequences. Molecular Ecology, 17, 39393951.Google Scholar
Corinaldesi, C., Tangherlini, M., Luna, G.M., Dell’Anno, A. (2014). Extracellular DNA can preserve the genetic signatures of present and past viral infection events in deep hypersaline anoxic basins. Proceedings of the Royal Society Part B, 281, 20133299.CrossRefGoogle ScholarPubMed
Daffonchio, D., Borin, S., Brusa, T., et al. (2006). Stratified prokaryote network in the oxic-anoxic transition of the deep-sea halocline. Nature, 440, 203207.Google Scholar
Danovaro, R., Dell’Anno, A., Pusceddu, A., et al. (2010). The first metazoa living in permanently anoxic conditions. BMC Biology, 8, 30.CrossRefGoogle ScholarPubMed
Danovaro, R., Gambi, C., Dell’Anno, A., et al. (2016). The challenge of proving the existence of metazoan life in permanently anoxic deep-sea sediments. BMC Biology, 14, 43.Google Scholar
Danovaro, R., Corinaldesi, C., Dell’Anno, A., Fabiano, M., Corselli, C. (2005). Viruses, prokaryotes and DNA in the sediments of a deep-hypersaline anoxic basin (DHAB) of the Mediterranean Sea. Environmental Microbiology, 7(4), 586592.Google Scholar
Danovaro, R., Snelgrove, P., Tyler, P. (2014). Challenging the paradigms of deep-sea ecology. Trends in Ecology and Evolution, 29(8), 465475.Google Scholar
Fusi, N., Aloisi de Larderel, G., Borelu, A., et al. (1996). Marine geology of the Medriff Corridor, Mediterranean ridge. The Island Arc, 5, 420439.Google Scholar
Gambi, C., Corinaldesi, C., Dell’Anno, A., et al. (2017). Functional response to food limitation can reduce the impact of global change in the deep-sea benthos. Global Ecology and Biogeography, 26(9), 10081021.CrossRefGoogle Scholar
Giere, O. (2009). Meiobenthology. The Microscopic Motile Fauna of Aquatic Sediments. Springer-Verlag, Berlin/Heidelberg.Google Scholar
Gribaldo, S., Philippe, H. (2002). Ancient phylogenetic relationships. Theoretical Population Biology, 61, 391408.Google Scholar
Hackstein, J.H.P., Akhmanova, A., Boxma, B., Harhangi, H.R., Voncken, G.J. (1999). Hydrogenosomes: eukaryotic adaptations to anaerobic environments. Trends in Microbiology, 7, 441447.Google Scholar
Heiner, I., Kristensen, R.M. (2008). Urnaloricus gadi nov. gen. et nov. sp. (Loricifera, Urnaloricidae nov. fam.), an aberrant Loricifera with a viviparous pedogenetic life cycle. Journal of Morphology, 270, 129153.CrossRefGoogle Scholar
Hsü, K.J., Montadert, L., Bernoulli, D., et al. (1977). History of the Mediterranean salinity crisis. Nature, 267, 399403.Google Scholar
Jilbert, T., Reichart, G-J., Mason, P., de Lange, G.J. (2010). Short-time-scale variability in ventilation and export productivity during the formation of Mediterranean sapropel S1. Paleocenography, 25, PA4232.CrossRefGoogle Scholar
Kristensen, R.M. (1983). Loricifera, a new phylum with Aschelminthes characters from the meiobenthos. Zeitschrift für zoologische Systematik und Evolutionforschung, 21, 163180.Google Scholar
Kristensen, R.M. (2003). Loricifera. In: Hofrichter, R (ed). Das Mittelmeer, Fauna, Flora, Ökologie, II/1 Bestimmungsführer. Spektrum Akademischer Verlag, Heidelberg/Berlin, pp. 638645.Google Scholar
Kristensen, R.M., Brooke, S. (2002). Phylum Loricifera. In: Young, C.M., Sewell, M.A., Rice, M.E. (eds) Atlas of Marine Invertebrate Larvae. Academic Press,London, pp. 179187.Google Scholar
Kristensen, R.M., Shirayama, Y. (1988). Pliciloricus hadalis (Pliciloricidae), a new Loriciferan species collected from the Izu-Ogasawara Trench, Western Pacific. Zoological Sciences, 5, 875881.Google Scholar
Kuypers, M.M., Sliekers, A.O., Lavik, G., et al. (2003). Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, 422, 608611.CrossRefGoogle ScholarPubMed
Levin, L. (2003). Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanography and Marine Biology Annual Review, 41, 145.Google Scholar
Lipp, J.S., Morono, Y., Inagaki, F., Hinrichs, K-U. (2008). Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature, 454, 991994.Google Scholar
Müller, M. (1993). The hydrogenosome. Journal of General Microbiology, 139, 28792889.CrossRefGoogle ScholarPubMed
Neves, R.C., Bailly, X., Leasi, F., et al. (2013). A complete three-dimensional reconstruction of the myoanatomy of Loricifera: comparative morphology of an adult and a Higgins larva stage. Frontiers in Zoology, 10, 19.Google Scholar
Neves, R.C., Gambi, C., Danovaro, R., Kristensen, R.M. (2014). Spinoloricus cinziae (Phylum Loricifera), a new species from a hypersaline anoxic deep basin in the Mediterranean Sea. Systematics and Biodiversity, 12, 489502.CrossRefGoogle Scholar
Neves, R.C., Reichert, H., Søresen, M.V., Kristensen, R.M. (2016). Systematics of phylum Loricifera: identification keys of families, genera and species. Zoologischer Anzeiger, 265, 141170.Google Scholar
Pardos, F., Kristensen, R.M. (2013). First record of Loricifera from the Iberian Peninsula, with the description of Rugiloricus manuelae sp. nov. (Loricifera, Pliciloricidae). Helgoland Marine Research, 67, 623638.Google Scholar
Paulmier, A., Ruiz-Pino, D. (2008). Oxygen Minimum Zones (OMZs) in the modern ocean. Progress in Oceanography, 80(3–4), 113128.Google Scholar
Polonia, A., Vaiani, S.C., de Lange, G.J. (2016). Did the A.D. 365 Crete earthquake/tsunami trigger synchronous giant turbidity currents in the Mediterranean Sea? Geology, 44(3): 191194. doi:10.1130/G37486.1.CrossRefGoogle Scholar
Roger, A.J. (1999). Reconstructing early events in eukaryotic evolution. American Naturalist, 154, 146163.Google Scholar
Royer, D.L., Bemer, R.A., Montanez, I.P., Tabor, N.J., Beerling, D.J. (2004). CO2 as a primary driver of Phanerozoic climate. GSA Today, 14(3), 37. doi:10.1130/1052-5173.Google Scholar
Sagarin, R.D., Gaines, S.D., Gaylord, B. (2006). Moving beyond assumptions to understand abundance distributions across the ranges of species. Trends in Ecology and Evolution, 21, 524530.Google Scholar
Soetaert, K., Heip, C., Vincx, M. (1984). Meiofauna of a deep-sea transect off Corsica. Annales de la Société royale zoologique de Belgique, 114, 323324.Google Scholar
Soetaert, K., Heip, C., Vincx, M. (1991). The meiobenthos along a Mediterranean deep-sea transect off Calvi (Corsica) and in an adjacent canyon. P.S.Z.N.I: Marine Ecology, 12(3), 227242.Google Scholar
Tielens, A.G., Rotte, C., van Hellemond, J.J., Martin, W. (2002). Mitochondria as we don’t know them. Trends in Biochemical Sciences, 27, 564572.Google Scholar
Todaro, M.A., Kristensen, R.M. (1998). A new species and first report of the genus Nanaloricus (Loricifera, Nanaloricida, Nanaloricidae) from the Mediterranean Sea. Italian Journal of Zoology, 65, 219226.Google Scholar
van der Wielen, P.W., Bolhuis, H., Borin, S., et al. (2005). BioDeep Scientific Party: the enigma of prokaryotic life in deep hypersaline anoxic basins. Science, 307, 121123.Google Scholar
Walsh, D.A., Zaikova, E., Howes, C.G., et al. (2009). Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science, 326, 578582.Google Scholar
Wishner, K.F., Gelfman, C., Gowing, M.M., et al. (2008). Vertical zonation and distributions of calanoid copepods through the lower oxycline of the Arabian Sea oxygen minimum zone. Progress in Oceanography, 78, 163191.Google Scholar
Zeppilli, D., Leduc, D., Fontanier, C., et al. (2018). Characteristics of meiofauna in extreme marine ecosystems: a review. Marine Biodiversity, 48, 3571.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×