Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-28T09:04:13.167Z Has data issue: false hasContentIssue false

Part II - Biodiversity, bioenergetic processes, and biotic and abiotic interactions

Published online by Cambridge University Press:  28 September 2020

Guido di Prisco
Affiliation:
National Research Council of Italy
Howell G. M. Edwards
Affiliation:
University of Bradford
Josef Elster
Affiliation:
University of South Bohemia, Czech Republic
Ad H. L. Huiskes
Affiliation:
Royal Netherlands Institute for Sea Research
Get access
Type
Chapter
Information
Life in Extreme Environments
Insights in Biological Capability
, pp. 87 - 148
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Akhmanova, A., Voncken, F., van Alen, T., et al. (1998). A hydrogenosome with a genome. Nature, 396, 527528.Google Scholar
Antezana, T. (2009). Euphausia mucronata: a keystone herbivore and prey of the Humboldt Current System. Deep-Sea Research II, 57(7–8), 652662.CrossRefGoogle Scholar
Bang-Berthelsen, I.H., Schmidt-Rhaesa, A., Kristensen, R.M. (2012). 6. Loricifera. In: Schmidt-Rhaesa, A (ed.) Hand book of Zoology. Gastrotricha, Cycloneuralia and Gnathifera. Vol. 1: Nematomorpha, Priapulida, Kinorhyncha, Loricifera. De Gruyter, Berlin, pp. 307328.Google Scholar
Bernhard, J.M., Buck, K.R., Farmer, M.A., Bowser, S.S. (2000). The Santa Barbara basin is a symbiosis oasis. Nature, 403, 7780.CrossRefGoogle Scholar
Bernhard, J.M., Morrison, C.R., Pape, E., et al. (2015). Metazoans of redoxcline sediments in Mediterranean deep-sea hypersaline anoxic basins. BMC Biology, 13, 105.Google Scholar
Boxma, B., de Graaf, R.M., van der Staay, G.W., et al. (2005). An anaerobic mitochondrion that produces hydrogen. Nature, 434, 7479.Google Scholar
Corinaldesi, C., Beolchini, F., Dell’Anno, A. (2008). Damage and degradation rates of extracellular DNA in marine sediments: implications for the preservation of gene sequences. Molecular Ecology, 17, 39393951.Google Scholar
Corinaldesi, C., Tangherlini, M., Luna, G.M., Dell’Anno, A. (2014). Extracellular DNA can preserve the genetic signatures of present and past viral infection events in deep hypersaline anoxic basins. Proceedings of the Royal Society Part B, 281, 20133299.Google Scholar
Daffonchio, D., Borin, S., Brusa, T., et al. (2006). Stratified prokaryote network in the oxic-anoxic transition of the deep-sea halocline. Nature, 440, 203207.Google Scholar
Danovaro, R., Dell’Anno, A., Pusceddu, A., et al. (2010). The first metazoa living in permanently anoxic conditions. BMC Biology, 8, 30.Google Scholar
Danovaro, R., Gambi, C., Dell’Anno, A., et al. (2016). The challenge of proving the existence of metazoan life in permanently anoxic deep-sea sediments. BMC Biology, 14, 43.CrossRefGoogle ScholarPubMed
Danovaro, R., Corinaldesi, C., Dell’Anno, A., Fabiano, M., Corselli, C. (2005). Viruses, prokaryotes and DNA in the sediments of a deep-hypersaline anoxic basin (DHAB) of the Mediterranean Sea. Environmental Microbiology, 7(4), 586592.Google Scholar
Danovaro, R., Snelgrove, P., Tyler, P. (2014). Challenging the paradigms of deep-sea ecology. Trends in Ecology and Evolution, 29(8), 465475.Google Scholar
Fusi, N., Aloisi de Larderel, G., Borelu, A., et al. (1996). Marine geology of the Medriff Corridor, Mediterranean ridge. The Island Arc, 5, 420439.Google Scholar
Gambi, C., Corinaldesi, C., Dell’Anno, A., et al. (2017). Functional response to food limitation can reduce the impact of global change in the deep-sea benthos. Global Ecology and Biogeography, 26(9), 10081021.Google Scholar
Giere, O. (2009). Meiobenthology. The Microscopic Motile Fauna of Aquatic Sediments. Springer-Verlag, Berlin/Heidelberg.Google Scholar
Gribaldo, S., Philippe, H. (2002). Ancient phylogenetic relationships. Theoretical Population Biology, 61, 391408.Google Scholar
Hackstein, J.H.P., Akhmanova, A., Boxma, B., Harhangi, H.R., Voncken, G.J. (1999). Hydrogenosomes: eukaryotic adaptations to anaerobic environments. Trends in Microbiology, 7, 441447.CrossRefGoogle ScholarPubMed
Heiner, I., Kristensen, R.M. (2008). Urnaloricus gadi nov. gen. et nov. sp. (Loricifera, Urnaloricidae nov. fam.), an aberrant Loricifera with a viviparous pedogenetic life cycle. Journal of Morphology, 270, 129153.Google Scholar
Hsü, K.J., Montadert, L., Bernoulli, D., et al. (1977). History of the Mediterranean salinity crisis. Nature, 267, 399403.CrossRefGoogle Scholar
Jilbert, T., Reichart, G-J., Mason, P., de Lange, G.J. (2010). Short-time-scale variability in ventilation and export productivity during the formation of Mediterranean sapropel S1. Paleocenography, 25, PA4232.Google Scholar
Kristensen, R.M. (1983). Loricifera, a new phylum with Aschelminthes characters from the meiobenthos. Zeitschrift für zoologische Systematik und Evolutionforschung, 21, 163180.Google Scholar
Kristensen, R.M. (2003). Loricifera. In: Hofrichter, R (ed). Das Mittelmeer, Fauna, Flora, Ökologie, II/1 Bestimmungsführer. Spektrum Akademischer Verlag, Heidelberg/Berlin, pp. 638645.Google Scholar
Kristensen, R.M., Brooke, S. (2002). Phylum Loricifera. In: Young, C.M., Sewell, M.A., Rice, M.E. (eds) Atlas of Marine Invertebrate Larvae. Academic Press,London, pp. 179187.Google Scholar
Kristensen, R.M., Shirayama, Y. (1988). Pliciloricus hadalis (Pliciloricidae), a new Loriciferan species collected from the Izu-Ogasawara Trench, Western Pacific. Zoological Sciences, 5, 875881.Google Scholar
Kuypers, M.M., Sliekers, A.O., Lavik, G., et al. (2003). Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, 422, 608611.Google Scholar
Levin, L. (2003). Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanography and Marine Biology Annual Review, 41, 145.Google Scholar
Lipp, J.S., Morono, Y., Inagaki, F., Hinrichs, K-U. (2008). Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature, 454, 991994.CrossRefGoogle ScholarPubMed
Müller, M. (1993). The hydrogenosome. Journal of General Microbiology, 139, 28792889.CrossRefGoogle ScholarPubMed
Neves, R.C., Bailly, X., Leasi, F., et al. (2013). A complete three-dimensional reconstruction of the myoanatomy of Loricifera: comparative morphology of an adult and a Higgins larva stage. Frontiers in Zoology, 10, 19.Google Scholar
Neves, R.C., Gambi, C., Danovaro, R., Kristensen, R.M. (2014). Spinoloricus cinziae (Phylum Loricifera), a new species from a hypersaline anoxic deep basin in the Mediterranean Sea. Systematics and Biodiversity, 12, 489502.Google Scholar
Neves, R.C., Reichert, H., Søresen, M.V., Kristensen, R.M. (2016). Systematics of phylum Loricifera: identification keys of families, genera and species. Zoologischer Anzeiger, 265, 141170.CrossRefGoogle Scholar
Pardos, F., Kristensen, R.M. (2013). First record of Loricifera from the Iberian Peninsula, with the description of Rugiloricus manuelae sp. nov. (Loricifera, Pliciloricidae). Helgoland Marine Research, 67, 623638.Google Scholar
Paulmier, A., Ruiz-Pino, D. (2008). Oxygen Minimum Zones (OMZs) in the modern ocean. Progress in Oceanography, 80(3–4), 113128.Google Scholar
Polonia, A., Vaiani, S.C., de Lange, G.J. (2016). Did the A.D. 365 Crete earthquake/tsunami trigger synchronous giant turbidity currents in the Mediterranean Sea? Geology, 44(3): 191194. doi:10.1130/G37486.1.Google Scholar
Roger, A.J. (1999). Reconstructing early events in eukaryotic evolution. American Naturalist, 154, 146163.CrossRefGoogle ScholarPubMed
Royer, D.L., Bemer, R.A., Montanez, I.P., Tabor, N.J., Beerling, D.J. (2004). CO2 as a primary driver of Phanerozoic climate. GSA Today, 14(3), 37. doi:10.1130/1052-5173.Google Scholar
Sagarin, R.D., Gaines, S.D., Gaylord, B. (2006). Moving beyond assumptions to understand abundance distributions across the ranges of species. Trends in Ecology and Evolution, 21, 524530.CrossRefGoogle ScholarPubMed
Soetaert, K., Heip, C., Vincx, M. (1984). Meiofauna of a deep-sea transect off Corsica. Annales de la Société royale zoologique de Belgique, 114, 323324.Google Scholar
Soetaert, K., Heip, C., Vincx, M. (1991). The meiobenthos along a Mediterranean deep-sea transect off Calvi (Corsica) and in an adjacent canyon. P.S.Z.N.I: Marine Ecology, 12(3), 227242.Google Scholar
Tielens, A.G., Rotte, C., van Hellemond, J.J., Martin, W. (2002). Mitochondria as we don’t know them. Trends in Biochemical Sciences, 27, 564572.Google Scholar
Todaro, M.A., Kristensen, R.M. (1998). A new species and first report of the genus Nanaloricus (Loricifera, Nanaloricida, Nanaloricidae) from the Mediterranean Sea. Italian Journal of Zoology, 65, 219226.Google Scholar
van der Wielen, P.W., Bolhuis, H., Borin, S., et al. (2005). BioDeep Scientific Party: the enigma of prokaryotic life in deep hypersaline anoxic basins. Science, 307, 121123.Google Scholar
Walsh, D.A., Zaikova, E., Howes, C.G., et al. (2009). Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science, 326, 578582.Google Scholar
Wishner, K.F., Gelfman, C., Gowing, M.M., et al. (2008). Vertical zonation and distributions of calanoid copepods through the lower oxycline of the Arabian Sea oxygen minimum zone. Progress in Oceanography, 78, 163191.Google Scholar
Zeppilli, D., Leduc, D., Fontanier, C., et al. (2018). Characteristics of meiofauna in extreme marine ecosystems: a review. Marine Biodiversity, 48, 3571.Google Scholar

References

Agrawal, S.C. (2009). Factors affecting spore germination in algae – review. Folia Microbiologica, 54, 273302.CrossRefGoogle Scholar
AMAP (2011). Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere. Arctic Monitoring and Assessment Programme (AMAP), Oslo, 1538.Google Scholar
Anderson, O.R. (1975). Ultrastructure and cytochemistry of resting cell formation in Amphora coffeaeformis (Bacillariophyceae). Journal of Phycology, 11(3), 272281.Google Scholar
Arc, E., Pichrtová, M., Kranner, I., Holzinger, A. (2020). Pre-akinete formation in Zygnema sp. from polar habitats is associated with metabolite re-arrangement. Journal of Experimental Botany, doi:10.1093/jxb/eraa12Google Scholar
Bashenkhaeva, M.V., Zakharova, Y.R., Petrova, D.P., et al. (2015). Sub-ice microalgal and bacterial communities in freshwater Lake Baikal, Russia. Microbial Ecology, 70(3), 751765.Google Scholar
Becker, E.W. (1982). Physiological studies on Antarctic Prasiola crispa and Nostoc commune at low temperatures. Polar Biology, 1(2), 99104.Google Scholar
Bidigare, R.R., Ondrusek, M.E., Kennicutt, M.C., et al. (1993 ). Evidence for a photoprotective function for secondary carotenoids of snow algae. Journal of Phycology, 29(4), 427–434.Google Scholar
Bisson, M.A., Kirst, G.O. (1995). Osmotic acclimation and turgor pressure regulation in algae. Naturwissenschaften, 82(10), 461471.Google Scholar
Bjerke, J.W., Karlsen, S.R., Høgda, K.A., et al. (2014). Record-low primary productivity and high plant damage in the Nordic Arctic Region in 2012 caused by multiple weather events and pest outbreaks. Environmental Research Letters, 9, 084006.Google Scholar
Bokhorst, S., Bjerke, J.W., Tømmervik, H., Callaghan, T.V., Phoenix, G.K. (2009). Winter warming events damage sub-Arctic vegetation: consistent evidence from an experimental manipulation and a natural event. Journal of Ecology, 97(6), 14081415.Google Scholar
Bokhorst, S., Bjerke, J.W., Street, L., Callaghan, T.V., Phoenix, G.K. (2011). Impacts of multiple extreme winter warming events on sub-Arctic heathland: phenology, reproduction, growth, and CO2 flux responses. Global Change Biology, 17(9), 28172830.Google Scholar
Bokhorst, S., Phoenix, G.K., Berg, M.P., et al. (2015). Climatic and biotic extreme events moderate long-term responses of above- and belowground sub-Arctic heathland communities to climate change. Global Change Biology, 21(11), 40634075.Google Scholar
Broady, P.A. (1996). Diversity, distribution and dispersal of Antarctic algae. Biodiversity & Conservation, 5(11), 13071335.Google Scholar
Callaghan, T.V., Johansson, M., Brown, R.D., et al. (2011). The changing face of Arctic snow cover: a synthesis of observed and projected changes. Ambio, 40(1), 1731.Google Scholar
Callaghan, T.V., Jonasson, C., Thierfelder, T., et al. (2013). Ecosystem change and stability over multiple decades in the Swedish subarctic: complex processes and multiple drivers. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1624), 20120488.Google Scholar
Clarke, A., Morris, G.J., Fonseca, F., et al. (2013). A low temperature limit for life on Earth. PLoS One, 8, e66207.Google Scholar
Crowe, J.H., Oliver, A.E., Tablin, F. (2002). Is there a single biochemical adaptation to anhydrobiosis? Integrative and Comparative Biology, 42(3), 497503.CrossRefGoogle Scholar
Crowe, J.H., Crowe, L.M., Tablin, F., et al. (2004). Stabilization of cells during freeze-drying: the trehalose myth. In: Fuller, B. J., Lane, N, and Benson, E. E. (eds) Life in the Frozen State. CRC Press,London, pp. 581602.Google Scholar
Davey, M.C. (1988). Ecology of terrestrial algae of the fellfield ecosystems of Signy Island, South Orkney Islands. British Antarctic Survey B, 81, 6974.Google Scholar
Davey, M.C. (1989). The effects of freezing and desiccation on photosynthesis and survival of terrestrial antarctic algae and Cyanobacteria. Polar Biology, 10(1), 2936.Google Scholar
Davey, M.C. (1991). The seasonal periodicity of algae on Antarctic fellfield soils. Holarctic Ecology, 14(2), 112120.Google Scholar
Davey, M.C., Rothery, P. (1992). Factors causing the limitation of growth of terrestrial algae in maritime Antarctica during late summer. Polar BioIogy, 12(6–7), 595601.Google Scholar
de Vries, J., Stanton, A., Archibald, J.M., Gould, S.B. (2016). Streptophyte terrestrialization in light of plastid evolution. Trends in Plant Science, 21(6), 467476.Google Scholar
de Vries, J., Curtis, B.A., Gould, S.B., Archibald, J.M. (2018). Embryophyte stress signaling evolved in the algal progenitors of land plants. Proceedings of the National Academy of Sciences of the USA, 115(15), E3471E3480.Google Scholar
Dolev, M.B., Braslavsky, I., Davies, P.L. (2016). Ice-binding proteins and their function. Annual Review of Biochemistry, 85, 515542.Google Scholar
Domozych, D.S. (2011). Algal cell walls. eLS; https://doi.org/10.1002/9780470015902.a0000315.pub4Google Scholar
Edlund, M.B., Stoermer, E.F., Taylor, C.M. (1996). Aulacoseira skvortzowii sp. nov. (Bacillariophyta), a poorly understood diatom from Lake Baikal, Russia. Journal of Phycology, 32(1), 165175.Google Scholar
Elster, J. (2002). Ecological classification of terrestrial algae communities of polar environment. In: Beyer, L and Bölter, M (eds) GeoEcology of Terrestrial Oases, Ecological Studies, 154. Springer, Berlin, pp. 303326.Google Scholar
Elster, J., Benson, E.E. (2004). Life in the polar environment with a focus on algae and Cyanobacteria. In: Fuller, B, Lane, N and Benson, E (eds) Life in the Frozen State. Taylor and Francis, London, pp. 109150.Google Scholar
Elster, J., Komárek, O. (2003). Periphyton ecology of two snow-fed streams in the vicinity of H. Arctowski station, King George Island, South Shetlands, Antarctica. Antarctic Science, 15(2), 189201.Google Scholar
Elster, J., Svoboda, J., Komárek, J., Marvan, P. (1997). Algal and cyanoprocaryote communities in a glacial stream, Sverdrup Pass, 79° N, Central Ellesmere Island, Canada. Algological Studies, 85, 5793.Google Scholar
Elster, J., Degma, P., Kováčik, Ľ., et al. (2008). Freezing and desiccation injury resistance in the filamentous green alga Klebsormidium from the Antarctic, Arctic and Slovakia. Biologia, 63(6), 839847.Google Scholar
Fuller, B.J. (2004). Cryoprotectants: the essential antifreezes to protect life in the frozen state. CryoLetters, 25(6), 375388.Google Scholar
Fuller, C. (2013). Examining morphological and physiological changes in Zygnema irregulare during a desiccation and recovery period. PhD thesis, California State University San Marcos.Google Scholar
Guschina, I.A., Harwood, J.L. (2006). Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research, 45(2), 160186.Google Scholar
Hawes, I. (1989). Filamentous green algae in freshwater streams on Signy Island, Antarctica. In: Vincent, W.F., Ellis‐Evans, J.C. (eds) High Latitude Limnology. Developments in Hydrobiology, 49. Kluwer, Dordrecht, pp. 118.Google Scholar
Hawes, I. (1990). Effects of freezing and thawing on a species of Zygnema (Chlorophyta) from the Antarctic. Phycologia, 29(3), 326331.Google Scholar
Hejduková, E., Pinseel, E., Vanormelingen, P., et al. (2019). Tolerance of pennate diatoms (Bacillariophyceae) to experimental freezing: comparison of polar and temperate strains. Phycologia, 58(4), 382–392; doi:10.1080/00318884.2019.1591835.Google Scholar
Hejduková, E., Elster, J., Nedbalová, L. (in press). Annual cycle of freshwater diatoms in the High Arctic revealed by multiparameter fluorescent staining. Microbial Ecology.Google Scholar
Herburger, K., Lewis, L.A., Holzinger, A. (2015). Photosynthetic efficiency, desiccation tolerance and ultrastructure in two phylogenetically distinct strains of alpine Zygnema sp. (Zygnematophyceae, Streptophyta): role of pre-akinete formation. Protoplasma, 252(2), 571589.Google Scholar
Herburger, K., Xin, A., Holzinger, A. (2019). Homogalacturonan accumulation in cell walls of the green alga Zygnema sp. (Charophyta) increases desiccation resistance. Frontiers in Plant Science, 10, 540. doi:10.3389/fpls.2019.00540Google Scholar
Hoham, R.W., Roemer, S.C., Mullet, J.E. (1979). The life history and ecology of the snow alga Chloromonas brevispina comb. nov. (Chlorophyta, Volvocales). Phycologia, 18(1), 5570.Google Scholar
Hoham, R.W., Mullet, J.E., Roemer, S.C. (1983). The life history and ecology of the snow alga Chloromonas polyptera comb. nov. (Chlorophyta, Volvocales). Canadian Journal of Botany, 61(9), 24162428.Google Scholar
Holzinger, A., Pichrtová, M. (2016). Abiotic stress tolerance in charophyte green algae: new challenges for omics techniques. Frontiers in Plant Science, 7(678), 117.Google Scholar
Holzinger, A., Roleda, M.Y., Lütz, C. (2009). The vegetative arctic freshwater green alga Zygnema is insensitive to experimental UV exposure. Micron, 40(8), 831838.Google Scholar
Holzinger, A., Kaplan, F., Blaas, K., et al. (2014). Transcriptomics of desiccation tolerance in the streptophyte green alga Klebsormidium reveal a land plant-like defence reaction. PLoS ONE, 9(10), e110630.Google Scholar
Jackson, A.E., Seppelt, R.D. (1995). The accumulation of proline in Prasiola crispa during winter in Antarctica. Physiologia Plantarum, 94(1), 2530.Google Scholar
Jacob, A., Wiencke, C., Lehmann, H., Kirst, G.O. (1992). Physiology and ultrastructure of desiccation in the green alga Prasiola crispa from Antarctica. Botanica Marina, 35, 297303.Google Scholar
Janech, M.G., Mock, T., Kang, J.S., Raymond, J.A. (2006). Ice-binding proteins from sea ice diatoms (Bacillariophyceae). Journal of Phycology, 42(2), 410416.Google Scholar
Jansson, M., Blomqvist, P., Jonsson, A., Bergström, A.‐K. (1996). Nutrient limitation of bacterioplankton, autotrophic and mixotrophic phytoplankton and heterotrophic nanoflagellates in Lake Örträsket. Limnology and Oceanography, 41(7), 15521559.Google Scholar
Jewson, D.H., Granin, N.G., Zhdanov, A.A., et al. (2008). Resting stages and ecology of the planktonic diatom Aulacoseira skvortzowii in Lake Baikal. Limnology and Oceanography, 53(3), 11251136.Google Scholar
Jones, J. (1996). The diversity, distribution and ecology of diatoms from Antarctic inland waters. Biodiversity & Conservation, 5(11), 14331449.Google Scholar
Jones, R.I. (2000). Mixotrophy in planktonic protists: an overview. Freshwater Biology, 45(2), 219226.Google Scholar
Kaplan, F., Lewis, L.A., Herburger, K., Holzinger, A. (2013). Osmotic stress in Arctic and Antarctic strains of the green alga Zygnema (Zygnematales, Streptophyta): effects on photosynthesis and ultrastructure. Micron, 44, 317330.Google Scholar
Karsten, U., Lütz, C., Holzinger, A. (2010). Ecophysiological performance of the aeroterrestrial green alga Klebsormidium crenulatum (Klebsormidiophyceae, Streptophyta) isolated from an alpine soil crust with an emphasis on desiccation stress. Journal of Phycology, 46(6), 11871197.Google Scholar
Kim, G.H., Klochkova, T.A., Kang, S.H. (2008). Notes on freshwater and terrestrial algae from Ny-Ålesund, Svalbard (High Arctic sea area). Journal of Environmental Biology, 29(4), 485491.Google Scholar
Klaveness, D., Bråte, J., Patil, V., et al. (2011). The 18S and 28S rDNA identity and phylogeny of the common lotic chrysophyte Hydrurus foetidus. European Journal of Phycology, 46(3), 282291.Google Scholar
Knowles, E.J., Castenholz, R.W. (2008). Effect of exogenous extracellular polysaccharides on the desiccation and freezing tolerance of rock-inhabiting phototrophic microorganisms. FEMS Microbiology Ecology, 66(2), 261270.Google Scholar
Komárek, J., Nedbalová, L. (2007). Green cryosestic algae. In: Seckbach, J (ed.) Algae and Cyanobacteria in Extreme Environments. Springer, Dordrecht, pp. 321342.Google Scholar
Kosugi, M., Katashima, Y., Aikawa, S., et al. (2010). Comparative study on the photosynthetic properties of Prasiola (Chlorophyceae) and Nostoc (Cyanophyceae) from Antarctic and non-Antarctic sites. Journal of Phycology, 46(3), 466476.Google Scholar
Kuwata, A., Takahashi, M. (1999). Survival and recovery of resting spores and resting cells of the marine planktonic diatom Chaetoceros pseudocurvisetus under fluctuating nitrate conditions. Marine Biology, 134(3), 471478.Google Scholar
Kuwata, A., Hama, T., Takahashi, M. (1993). Ecophysiological characterization of two life forms, resting spores and resting cells, of a marine planktonic diatom, Chaetoceros pseudocurvisetus, formed under nutrient depletion. Marine Ecology Progress Series, 102(3), 245255.Google Scholar
Láska, K., Witoszová, D., Prošek, P. (2012). Weather patterns of the coastal zone of Petuniabukta, central Spitsbergen in the period 2008–2010. Polish Polar Research, 33(4), 297318.Google Scholar
Laybourn-Parry, J., Roberts, E.C., Bell, E.M. (2000). Protozoan growth rates in Antarctic lakes. Polar Biology, 23(7), 445451.Google Scholar
Lembo, V., Bordi, I., Speranza, A. (2017). Annual and semiannual cycles of mid latitude near-surface temperature and tropospheric baroclinicity: reanalysis data and AOGCM simulations. Earth System Dynamics, 8(2), 295312.Google Scholar
Leya, T. (2013). Snow algae: adaptation strategies to survive on snow and ice. In: Seckbach, J, Oren, A and Stan-Lotter, H (eds) Polyextremophiles. Life Under Multiple Forms of Stress. Springer, Dordrecht, pp. 401423.Google Scholar
Lund, J. W. G. (1954). The seasonal cycle of the plankton diatom, Melosira italica (Ehr.) Kutz. subsp. subarctica O. Müll. The Journal of Ecology, 42(1), 151179.Google Scholar
Matsuzaki, R., Nozaki, H., Takeuchi, N., Hara, Y., Kawachi, M. (2019). Taxonomic re-examination of ‘Chloromonas nivalis (Volvocales, Chlorophyceae) zygotes’ from Japan and description of C. muramotoi sp. nov. PLoS ONE, 14(1), e0210986.Google Scholar
Mazur, P. (1984). Freezing of living cells: mechanisms and implications. American Journal of Physiology–Cell Physiology, 247(3), 125142.Google Scholar
McLean, R.J., Pessoney, G.F. (1971). Formation and resistance of akinetes of Zygnema. In: Parker, B.C., Brown, R. M., Jr. (eds) Contributions in Phycology. Allen Press, Lawrence, KS, pp. 145152.Google Scholar
McQuoid, M.R., Hobson, L.A. (1995). Importance of resting stages in diatom seasonal succession. Journal of Phycology, 31(1), 4450.Google Scholar
McQuoid, M.R., Hobson, L.A. (1996). Diatom resting stages. Journal of Phycology, 32(6), 889902.Google Scholar
Mock, T., Valentin, K. (2004). Photosynthesis and cold acclimation: molecular evidence from a polar diatom. Journal of Phycology, 40(4), 732741.Google Scholar
Morgan-Kiss, R.M., Priscu, J.C., Pocock, T., Gudynaite-Savitch, L.G., Huner, N.P.A. (2006). Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiology and Molecular Biology Reviews, 70(1), 222252.Google Scholar
Müller, T., Bleiss, W., Martin, C.D., Rogaschewski, S., Fuhr, G. (1998). Snow algae from northwest Svalbard their identification, distribution, pigment and nutrient content. Polar Biology, 20(1), 1432.Google Scholar
Nagao, M., Arakawa, K., Takezawa, D., Yoshida, S., Fujikawa, S. (1999). Akinete formation in Tribonema bombycinum Derbes et Solier (Xanthophyceae ) in relation to freezing tolerance. Journal of Plant Research, 112, 163174.Google Scholar
Nagao, M., Matsui, K., Uemura, M. (2008). Klebsormidium flaccidum, a charophycean green alga, exhibits cold acclimation that is closely associated with compatible solute accumulation and ultrastructural changes. Plant, Cell & Environment, 31(3), 872885.Google Scholar
Pichrtová, M., Hájek, T., Elster, J. (2014a). Osmotic stress and recovery in field populations of Zygnema sp. (Zygnematophyceae, Streptophyta) on Svalbard (High Arctic) subjected to natural desiccation. FEMS Microbiology Ecology, 89(2), 270280.Google Scholar
Pichrtová, M., Kulichová, J., Holzinger, A. (2014b). Nitrogen limitation and slow drying induce desiccation tolerance in conjugating green algae (Zygnematophyceae, Streptophyta) from polar habitats. Plos ONE, 9, e113137.CrossRefGoogle ScholarPubMed
Pichrtová, M., Arc, E., Stöggl, W., et al. (2016a). Formation of lipid bodies and changes in fatty acid composition upon pre-akinete formation in Arctic and Antarctic Zygnema (Zygnematophyceae, Streptophyta) strains. FEMS Microbiology Ecology, 92, fiw096.Google Scholar
Pichrtová, M., Hájek, T., Elster, J. (2016b). Annual development of mat-forming conjugating green algae Zygnema spp. in hydroterrestrial habitats in the Arctic. Polar Biology, 39(9), 16531662.CrossRefGoogle Scholar
Pichrtová, M., Holzinger, A., Kulichová, J., et al. (2018). Molecular and morphological diversity of Zygnema and Zygnemopsis (Zygnematophyceae, Streptophyta) on Svalbard (High Arctic). European Journal of Phycology, 53(4), 492508.Google Scholar
Post, E., Forchhammer, M.C., Bret-Harte, M.S., et al. (2009). Ecological dynamics across the Arctic associated with recent climate change. Science, 325(5946), 13551358.Google Scholar
Poulíčková, A., Žižka, Z., Hašler, P., Benada, O. (2007). Zygnematalean zygospores: morphological features and use in species identification. Folia Microbiologica, 52(2), 135145.Google Scholar
Procházková, L., Remias, D., Řezanka, T., Nedbalová, L. (2018). Chloromonas nivalis subsp. tatrae, susbp. nov. (Chlamydomonadales, Chlorophyta): re-examination of a snow alga from the High Tatra Mountains (Slovakia). Fottea, 18(1), 118.Google Scholar
Raymond, J.A. (2000). Distribution and partial characterization of ice-active molecules associated with sea-ice diatoms. Polar Biology, 23(10), 721729.Google Scholar
Raymond, J.A. (2014). The ice-binding proteins of a snow alga, Chloromonas brevispina: probable acquisition by horizontal gene transfer. Extremophiles, 18(6), 987994.Google Scholar
Raymond, J.A., Janech, M.G., Fritsen, C.H. (2009). Novel ice-binding proteins from a psychrophilic Antarctic alga (Chlamydomonadaceae, Chlorophyceae). Journal of Phycology, 45(1), 130136.Google Scholar
Reed, R.H., Richardson, D.L., Warr, S.R.C., Stewart, W.D.P. (1984). Carbohydrate accumulation and osmotic stress in cyanobacteria. Microbiology, 130, 14.Google Scholar
Remias, D. (2012). Cell structure and physiology of alpine snow and ice algae. In: Lűtz, C (ed.) Plants in Alpine Regions. Springer, Wien, pp. 175185.Google Scholar
Remias, D., Lütz-Meindl, U., Lütz, C. (2005). Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. European Journal of Phycology, 40(3), 259268.Google Scholar
Remias, D., Karsten, U., Lütz, C. (2010). Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma, 243(1–4), 7386.Google Scholar
Remias, D., Holzinger, A., Aigner, S., Lütz, C. (2011). Ecophysiology and ultrastructure of Ancylonema nordenskiöldii (Zygnematales, Streptophyta), causing brown ice on glaciers in Svalbard (high arctic). Polar Biology, 35(6), 899908.Google Scholar
Remias, D., Wastien, H., Lütz, C., Leya, T. (2013). Insights into the biology and phylogeny of Chloromonas polyptera (Chlorophyta), an alga causing orange snow in Maritime Antarctica. Antarctic Science, 25(5), 648656.Google Scholar
Rengefors, K., Karlsson, I., Hansson, L.-A. (1998). Algal cyst dormancy: a temporal escape from herbivory. Proceedings of the Royal Society of London Series B: Biological Sciences, 265, 13531358.Google Scholar
Rippin, M., Becker, B., Holzinger, A. (2017). Enhanced desiccation tolerance in mature cultures of the Streptophytic green alga Zygnema circumcarinatum revealed by transcriptomics. Plant & Cell Physiology, 58(12), 20672084.Google Scholar
Robinson, S.A., Wasley, J., Tobin, A.K. (2003). Living on the edge – plants and global change in continental and maritime Antarctica. Global Change Biology, 9(12), 16811717.Google Scholar
Roos, J.C., Vincent, W.F. (1998). Temperature dependence of UV radiation effects on Antarctic cyanobacteria. Journal of Phycology, 34(1), 118125.CrossRefGoogle Scholar
Round, F.E., Crawford, R.M., Mann, D.G. (1990). Diatoms: Biology and Morphology of the Genera. Cambridge University Press, Cambridge, UK.Google Scholar
Ryšánek, D., Elster, J., Kováčik, L., Škaloud, P. (2016). Diversity and dispersal capacities of a terrestrial algal genus Klebsormidium (Streptophyta) in polar regions. FEMS Microbiology Ecology, 92(4), fiw039.Google Scholar
Řezanka, T., Nedbalová, L., Sigler, K., Cepák, V. (2008). Identification of astaxanthin diglucoside diesters from snow alga Chlamydomonas nivalis by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Phytochemistry, 69(2), 479490.Google Scholar
Řezanka, T., Nedbalová, L., Lukavský, J., Střížek, A., Sigler, K. (2017). Pilot cultivation of the green alga Monoraphidium sp. producing a high content of polyunsaturated fatty acids in low-temperature environment. Algal Research, 22, 160165.Google Scholar
Šabacká, M., Elster, J. (2006). Response of cyanobacteria and algae from Antarctic wetland habitats to freezing and desiccation stress. Polar Biology, 30(1), 3137.Google Scholar
Saha, S.K., Rinke, A., Dethloff, K. (2006). Future winter extreme temperature and precipitation events in the Arctic. Geophysical Research Letters, 33(15), L15818.Google Scholar
Seaburg, K.G., Parker, B.C., Wharton, Jr., R.A., SimmonsJr., G.M. (1981). Temperature-growth responses of algal isolates from Antarctic oases. Journal of Phycology, 17(4), 353360.Google Scholar
Sheath, R.G., Vis, M.L., Hambrook, J.A., Cole, K.M. (1996). Tundra stream macroalgae of North America: composition, distribution and physiological adaptations. Hydrobiologia, 336, 6782.Google Scholar
Sicko-Goad, L., Stoermer, E.F., Fahnenstiel, G. (1986). Rejuvenation of Melosira granulata (Bacillariophyceae) resting cells from the anoxic sediments of Douglas Lake, Michigan. I. Light microscopy and 14C uptake. Journal of Phycology, 22(1), 2228.Google Scholar
Siegele, D.A., Kolter, R. (1992). Life after log. Journal of Bacteriology, 174(2), 345348.Google Scholar
Skácelová, K., Barták, M., Coufalík, P., Nývlt, D., Trnková, K. (2013). Biodiversity of freshwater algae and Cyanobacteria on deglaciated northern part of James RossIsland, Antarctica. A preliminary study. Czech Polar Reports, 3, 93106.Google Scholar
Souffreau, C., Vanormelingen, P., Verleyen, E., Sabbe, K., Vyverman, W. (2010). Tolerance of benthic diatoms from temperate aquatic and terrestrial habitats to experimental desiccation and temperature stress. Phycologia, 49(4), 309324.Google Scholar
Souffreau, C., Vanormelingen, P., Sabbe, K., Vyverman, W. (2013). Tolerance of resting cells of freshwater and terrestrial benthic diatoms to experimental desiccation and freezing is habitat-dependent. Phycologia, 52(3), 246255.Google Scholar
Spijkerman, E., Wacker, A., Weithoff, G., Leya, T. (2012). Elemental and fatty acid composition of snow algae in Arctic habitats. Frontiers in Microbiology, 3, 380.Google Scholar
Stibal, M., Elster, J., Šabacká, M., Kaštovská, K. (2007). Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbiology Ecology, 59(2), 265273.Google Scholar
Svoboda, J. (2009). Evolution of plant cold hardiness and its manifestation along the latitudinal gradient in the Canadian High Arctic. In: Gusta, L, Wisniewski, M, Tanino, K (eds.) Plant Cold Hardiness: From the Laboratory to the Field. CAB International, pp. 140162.Google Scholar
Tamaru, Y., Takani, Y., Yoshida, T., Sakamoto, T. (2005). Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Applied and Environmental Microbiology, 71, 73277333.Google Scholar
Tanghe, A., van Dijck, P., Thevelein, J.M. (2003). Determinants of freeze tolerance in microorganisms, physiological importance, and biotechnological applications. Advances in Applied Microbiology, 53, 129176.Google Scholar
Teoh, M.-L., Chu, W.-L., Marchant, H., Phang, S.-M. (2004). Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. Journal of Applied Phycology, 16(6), 421430.Google Scholar
Thomas, D.N., Fogg, G.E., Convey, P., et al. (2008). The Biology of Polar Regions. Oxford University Press, Oxford.Google Scholar
Trumhová, K., Holzinger, A., Obwegeser, S., Neuner, G., Pichrtová, M. (2019). The conjugating green alga Zygnema sp. (Zygnematophyceae) from the Arctic shows high frost tolerance in mature cells (pre-akinetes). Protoplasma, 256, 16811694.Google Scholar
Van De Vijver, B., Beyens, L. (1999). Biogeography and ecology of freshwater diatoms in Subantarctica: a review. Journal of Biogeography, 26(5), 9931000.Google Scholar
Van de Vijver, B., Frenot, Y., Beyens, L. (2002). Freshwater Diatoms from Ile de la Possession (Crozet-Archipelago, Subantarctica). Bibliotheca Diatomologica, 46. J. Cramer, Berlin/Stuttgart.Google Scholar
Vincent, W.F. (1988). Microbial Ecosystem of Antarctica. Cambridge University Press,Cambridge, UK.Google Scholar
Vincent, W.F., James, M.R. (1996). Biodiversity in extreme aquatic environments: lakes, ponds and streams of the Ross Sea Sector, Antarctica. Biodiversity & Conservation, 5(11), 14511471.Google Scholar
Vítová, M., Bišová, K., Kawano, S., Zachleder, V. (2014). Accumulation of energy reserves in algae: From cell cycles to biotechnological applications. Biotechnological Advances, 3, 12041218.Google Scholar
Vrionis, H.A., Miller, R.V., Whyte, L.G. (2013). Life at the poles in the age of global warming: Part 1. Microbe, 8(11), 449453.Google Scholar
Welsh, D.T. (2000). Ecological significance of compatible solute accumulation by microorganisms: from single cells to global climate. FEMS Microbiology Reviews, 24(3), 263290.Google Scholar
Worland, M.R., Lukešová, A. (2001). The application of differential scanning calorimetry and ice nucleation spectrometry to ecophysiological studies of algae. Nova Hedwigia Beiheft, 123, 571583.Google Scholar
Yancey, P.H. (2005). Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. Journal of Experimental Biology, 208, 28192830.Google Scholar
Youssouf, M.O., Laurent, M., Xavier, C. (2016). Statistical analysis of sea surface temperature and chlorophyll-a concentration patterns in the Gulf of Tadjourah (Djibouti). Journal of Marine Science: Research & Development, 6(2), 19.Google Scholar

References

Adouchief, S., Smura, T., Sane, J., Vapalahti, O., Kurkela, S. (2016). Sindbis virus as a human pathogen: epidemiology, clinical picture and pathogenesis. Reviews in Medical Virology, 26, 221241.Google Scholar
Akerstedt, J., Lillehaug, A., Larsen, I.L., et al. (2010). Serosurvey for canine distemper virus, canine adenovirus, Leptospira interrogans, and Toxoplasma gondii in free-ranging canids in Scandinavia and Svalbard. Journal of Wildlife Diseases, 46, 474480.Google Scholar
Alexander, D.J., Manvell, R.J., Collins, M.S., et al. (1989). Characterization of paramyxoviruses isolated from penguins in Antarctica and sub-Antarctica during 1976-1979. Archives of Virology, 109, 135143.Google Scholar
Andersen, J.H., Berzaghi, F., Christensen, T., et al. (2017). Potential for cumulative effects of human stressors onfish, sea birds and marine mammals in Arctic waters. Estuarine, Coastal and Shelf Science, 184, 202206.Google Scholar
Austin, F.J., Webster, R.G. (1993). Evidence of ortho- and paramyxoviruses in fauna from Antarctica. Journal of Wildlife Diseases, 29, 568571.Google Scholar
Balboni, A., Tryland, M., Mørk, T., et al. (2019). Unique genetic features of canine adenovirus type 1 (CAdV-1) infecting red foxes (Vulpes vulpes) in northern Norway and arctic foxes (Vulpes lagopus) in Svalbard. Veterinary Research Communications, 43(2), 6776.Google Scholar
Ballard, W.B., Krausman, P.R. (1997). Occurrence of rabies in wolves of Alaska. Journal of Wildlife Diseases, 33, 242245.Google Scholar
Ballinger, M.J., Bruenn, J.A., Hay, J., Czechowski, D., Taylor, D.J. (2014). Discovery and evolution of bunyavirids in arctic phantom midges and ancient bunyavirid-like sequences in insect genomes. Journal of Virology, 88, 87838794.Google Scholar
Ballinger, M.J., Medeiros, A.S., Qin, J., Taylor, D.J. (2017). Unexpected differences in the population genetics of phasmavirids. Virus Evolution, 3, vex015.Google Scholar
Beresford, D. (2011). Insect collections from Polar Bear Provincial Park, Ontario, with new records. Journal of the Entomological Society of Ontario, 142, 1927.Google Scholar
Beyrer, C., Wirtz, A.L., O’Hara, G., Léon, N., Kazatchkine, M. (2017). The expanding epidemic of HIV-1 in the Russian Federation. PLoS Medicine, 14, e1002462.Google Scholar
Bjorn-Mortensen, K., Ladefoged, K., Obel, N., Helleberg, M. (2013). The HIV epidemic in Greenland: a slow spreading infection among adult heterosexual Greenlanders. International Journal of Circumpolar Health, 72, 19558.Google Scholar
Blix, A.S. (2016). Adaptations to polar life in mammals and birds. Journal of Experimental Biology, 219(Pt 8), 10931105.Google Scholar
Bohm, J., Blixenkrone-Møller, M., Lund, E. (1989). A serious outbreak of canine distemper among sled-dogs in northern Greenland. Arctic Medical Research, 48, 195203.Google Scholar
Børresen, M.L., Andersson, M., Wohlfahrt, J., et al. (2015). Hepatitis B prevalence and incidence in Greenland: a population-based cohort study. American Journal of Epidemiology, 181, 422430.Google Scholar
Borriss, M., Helmke, E., Hanschke, R., Schweder, T. (2003). Isolation and characterization of marine psychrophilic phage-host systems from Arctic sea ice. Extremophiles, 7, 377384.Google Scholar
Bouckaert, R., Simons, B.C., Krarup, H., Friesen, T.M., Osiowy, C. (2017). Tracing hepatitis B virus (HBV) genotype B5 (formerly B6) evolutionary history in the circumpolar Arctic through phylogeographic modelling. PeerJ, 5, e3757.Google Scholar
Bruce, M., Zulz, T., Koch, A. (2016). Surveillance of infectious diseases in the Arctic. Public Health, 137, 512.Google Scholar
Buck, C.B., Van Doorslaer, K., Peretti, A., et al. (2016). The ancient evolutionary history of polyomaviruses. PLoS Pathogens, 12, e1005574.Google Scholar
Callan, R.J., Early, G., Kida, H., Hinshaw, V.S., 1995. The appearance of H3 influenza viruses in seals. Journal of General Virology, 76( Pt 1), 199203.Google Scholar
Cameron, A.S., Moore, B.W. (1968). The epidemiology of respiratory infection in an isolated Antarctic community. Journal of Hygiene (London), 66, 427437.Google Scholar
Carson, P.K., Holloway, K., Dimitrova, K., et al. (2017). The seasonal timing of snowshoe hare virus transmission on the Island of Newfoundland, Canada. Journal of Medical Entomology, 54, 712718.Google Scholar
Cattet, M.R., Duignan, P.J., House, C.A., Aubin, D.J. (2004). Antibodies to canine distemper and phocine distemper viruses in polar bears from the Canadian arctic. Journal of Wildlife Diseases, 40, 338342.Google Scholar
Cavicchioli, R. (2015). Microbial ecology of Antarctic aquatic systems. Nature Reviews Microbiology, 13, 691706.Google Scholar
Chan, F.T., Stanislawczyk, K., Sneekes, A.C., et al. (2019). Climate change opens new frontiers for marine species in the Arctic: current trends and future invasion risks. Global Change Biology, 25, 2538.Google Scholar
Ching, L.K., Gounder, P.P., Bulkow, L., et al. (2016). Incidence of hepatocellular carcinoma according to hepatitis B virus genotype in Alaska Native people. Liver International, 36, 15071515.Google Scholar
Claverie, J.M. (2006). Viruses take center stage in cellular evolution. Genome Biology, 7, 110.Google Scholar
Colangelo-Lillis, J.R., Deming, J.W. (2013). Genomic analysis of cold-active Colwelliaphage 9 A and psychrophilic phage-host interactions. Extremophiles, 17, 99114.Google Scholar
Corbet, P.S., Downe, A.E.R. (1966). Natural hosts of mosquitoes in Northern Ellesmere Island. Arctic, 19, 153161.Google Scholar
Culler, L.E., Ayres, M.P., Virginia, R.A. (2015). In a warmer Arctic, mosquitoes avoid increased mortality from predators by growing faster. Proceedings of the Royal Society of London Series B: Biological Sciences, 282, 18.Google Scholar
Cupp, E.W., Maré, C.J., Cupp, M.S., Ramberg, F.B. (1992). Biological transmission of vesicular stomatitis virus (New Jersey) by Simulium vittatum (Diptera: Simuliidae). Journal of Medical Entomology, 29, 137140.Google Scholar
das Neves, C.G., Roth, S., Rimstad, E., Thiry, E., Tryland, M. (2010). Cervid herpesvirus 2 infection in reindeer: a review. Veterinary Microbiology, 143, 7080.Google Scholar
Deardorff, E.R., Nofchissey, R.A., Cook, J.A., et al. (2013). Powassan virus in mammals, Alaska and New Mexico, U.S.A., and Russia, 2004–2007. Emerging Infectious Diseases, 19, 20122016.Google Scholar
Descamps, S. (2013). Winter temperature affects the prevalence of ticks in an Arctic seabird. PLoS One 8, e65374.Google Scholar
Descamps, S., Aars, J., Fuglei, E., et al. (2017). Climate change impacts on wildlife in a High Arctic archipelago – Svalbard, Norway. Global Change Biology, 23(2), 490–502.Google Scholar
Di Sabatino, D., Lorusso, A., Di Francesco, C.E., et al. (2014). Arctic lineage-canine distemper virus as a cause of death in Apennine wolves (Canis lupus) in Italy. PLoS One, 9, e82356.Google Scholar
Di Sabatino, D., Di Francesco, G., Zaccaria, G., et al. (2016). Lethal distemper in badgers (Meles meles) following epidemic in dogs and wolves. Infection Genetics and Evolution, 46, 130137.Google Scholar
Dietrich, M., Gómez-Díaz, E., McCoy, K.D. (2011). Worldwide distribution and diversity of seabird ticks: implications for the ecology and epidemiology of tick-borne pathogens. Vector Borne Zoonotic Diseases, 11, 453470.Google Scholar
Drebot, M.A. (2015.) Emerging mosquito-borne bunyaviruses in Canada. Canada Communicable Diseases Report, 41, 117123.Google Scholar
Dubois, A., Galan, M., Cosson, J.F., et al. (2017). Microevolution of bank voles (Myodes glareolus) at neutral and immune-related genes during multiannual dynamic cycles: consequences for Puumala hantavirus epidemiology. Infection Genetics and Evolution, 49, 318329.Google Scholar
Duignan, P.J., Saliki, J.T., St Aubin, D.J., House, J.A., Geraci, J.R. (1994). Neutralizing antibodies to phocine distemper virus in Atlantic walruses (Odobenus rosmarus rosmarus) from Arctic Canada. Journal of Wildlife Diseases, 30, 9094.Google Scholar
Duignan, P.J., Van Bressem, M.F., Baker, J.D., et al. (2014). Phocine distemper virus: current knowledge and future directions. Viruses, 6, 50935134.Google Scholar
Durden, L.A., Beckmen, K.B., Gerlach, R.F. (2016). New Records of Ticks (Acari: Ixodidae) From Dogs, Cats, Humans, and Some Wild Vertebrates in Alaska: Invasion Potential. Journal of Medical Entomology, 53(6), 13911395.Google Scholar
Elsterova, J., Cerny, J., Mullerova, J., et al. (2015). Search for tick-borne pathogens in the Svalbard Archipelago and Jan Mayen. Polar Research, 34, 17.Google Scholar
Evander, M., Putkuri, N., Eliasson, M., et al. (2016). Seroprevalence and risk factors of Inkoo Virus in Northern Sweden. American Journal of Tropical Medicine and Hygiene, 94, 11031106.Google Scholar
Fagre, A.C., Patyk, K.A., Nol, P., et al. (2015). Review of infectious agents in polar bears (Ursus maritimus) and their long-term ecological relevance. Ecohealth, 12(3), 528539. doi:10.1007/s10393-015-1023-6. Erratum in: Ecohealth, 2015 Sep;12(3):540.Google Scholar
Fahsbender, E., Burns, J.M., Kim, S., et al. (2017). Diverse and highly recombinant anelloviruses associated with Weddell seals in Antarctica.Virus Evolution, 3, vex017.Google Scholar
Fargeaud, D., Bugand, M., Précausta, P., Soulebot, J.P., Tektoff, J. (1982). Thermostability of the rabies virion. Optical density measurement technique applications. Comparative Immunology Microbiology & Infectious Diseases, 5, 3947.Google Scholar
Fields, B.N., Knipe, D.M., Howley, P.M. (2007). In: D.M. Knipe, P.M. Howley (editors-in-chief); D.E. Griffin et al. (associate editors) Fields’ Virology, 5th ed. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, PA/London.Google Scholar
Follmann, E.H., Garner, G.W., Evermann, J.F., McKeirnan, A.J. (1996). Serological evidence of morbillivirus infection in polar bears (Ursus maritimus) from Alaska and Russia. Veterinary Record, 138, 615618.Google Scholar
Gagnon, C.A., Allard, V., Cloutier, G. (2016). Canine parvovirus type 2b is the most prevalent genomic variant strain found in parvovirus antigen positive diarrheic dog feces samples across Canada. Canadian Veterinary Journal, 57, 2931.Google Scholar
Gaidet, N., Leclercq, I., Batéjat, C., et al. (2018). Avian influenza virus surveillance in high arctic breeding geese, Greenland. Avian Diseases, 62, 237240.Google Scholar
Gardner, H., Kerry, K., Riddle, M., Brouwer, S., Gleeson, L. (1997). Poultry virus infection in Antarctic penguins. Nature, 387, 245.Google Scholar
Geraci, J.R., St Aubin, D.J., Barker, I.K., et al. (1982). Mass mortality of harbor seals: pneumonia associated with influenza A virus. Science, 215, 11291131.Google Scholar
Goddard, A., Leisewitz, A.L. (2010). Canine parvovirus. Veterinary Clinics of North America Small Animal Practice, 40, 10411053.Google Scholar
Gounder, P.P., Bulkow, L.R., Snowball, M., et al. (2016). Hepatocellular carcinoma risk in Alaska native children and young adults with hepatitis B virus: retrospective cohort analysis. Journal of Pediatrics, 178, 206213.Google Scholar
Groth, M., Lange, J., Kanrai, P., et al. (2014). The genome of an influenza virus from a pilot whale: relation to influenza viruses of gulls and marine mammals. Infection Genetics and Evolution, 24, 183186.Google Scholar
Härkönen, T., Dietz, R., Reijnders, P., et al. (2006). The 1988 and 2002 phocine distemper virus epidemics in European harbour seals. Diseases of Aquatic Organisms, 68, 115130.Google Scholar
Hartby, C.M., Krog, J.S., Merkel, F., et al. (2016). First characterization of avian influenza viruses from Greenland 2014. Avian Diseases, 60, 302310.Google Scholar
Heide-Joergensen, M.P., Haerkoenen, T., Aaberg, P. (1992). Long-term effects of epizootic in harbor seals in the Kattegat-Skagerak and adjacent areas. AMBIO A Journal of the Human Environment, 21, 511516.Google Scholar
Hill, N.J., and Runstadler, J.A. (2016). A bird’s eye view of influenza A virus transmission: challenges with characterizing both sides of a co-evolutionary dynamic. Integrative and Comparative Biology, 56(2), 304316.Google Scholar
Holmes, M.J., Allen, T.R., Bradburne, A.F., Stott, E.J. (1971). Studies of respiratory viruses in personnel at an Antarctic base. Journal of Hygiene (London), 69, 187199.Google Scholar
Hubálek, Z., Rudolf, I. (2012). Tick-borne viruses in Europe. Parasitology Research, 111, 936.Google Scholar
Hurt, A.C., Vijaykrishna, D., Butler, J., et al. (2014). Detection of evolutionarily distinct avian influenza A viruses in antarctica. MBio, 5, e01098–01014.Google Scholar
Hurt, A.C., Su, Y.C., Aban, M., et al. (2016). Evidence for the introduction, reassortment, and persistence of diverse Influenza A viruses in Antarctica. Journal of Virology, 90, 96749682.Google Scholar
Hussein, I.T., Krammer, F., Ma, E., et al. (2016). New England harbor seal H3N8 influenza virus retains avian-like receptor specificity. Science Report, 6, 21428.Google Scholar
Jaenike, J. (2012). Population genetics of beneficial heritable symbionts. Trends in Ecology & Evolution, 27, 226232.Google Scholar
Jansen, M.D., Bang Jensen, B., McLoughlin, M.F., et al. (2017). The epidemiology of pancreas disease in salmonid aquaculture: a summary of the current state of knowledge. Journal of Fish Diseases, 40, 141155.Google Scholar
Julkunen, I., Brummer-Korvenkontio, M., Hautanen, A., et al. (1986). Elevated serum immune complex levels in Pogosta disease, an acute alphavirus infection with rash and arthritis. Journal of Clinical and Laboratory Immunology, 21, 7782.Google Scholar
Kaaden, O.R., Eichhorn, W., Essbauer, S. (2002). Recent developments in the epidemiology of virus diseases. Journal of Veterinary Medicine B: Infectious Diseases and Veterinary Public Health, 49, 36.Google Scholar
Kautto, A.H., Alenius, S., Mossing, T., et al. (2012). Pestivirus and alphaherpesvirus infections in Swedish reindeer (Rangifer tarandus tarandus L.). Veterinary Microbiology, 156, 6471.Google Scholar
Kempf, F., Boulinier, T., De Meeûs, T., Arnathau, C., McCoy, K.D. (2009). Recent evolution of host-associated divergence in the seabird tick Ixodes uriae. Molecular Ecology, 18, 44504462.Google Scholar
Kernbauer, E., Ding, Y., Cadwell, K. (2014). An enteric virus can replace the beneficial function of commensal bacteria. Nature, 516, 9498.Google Scholar
Kirk, C.M., Amstrup, S., Swor, R., Holcomb, D., O’Hara, T.M. (2010). Morbillivirus and Toxoplasma exposure and association with hematological parameters for southern Beaufort Sea polar bears: potential response to infectious agents in a sentinel species. Ecohealth, 7, 321331.Google Scholar
Kramvis, A. (2014). Genotypes and genetic variability of hepatitis B virus. Intervirology, 57, 141150.Google Scholar
Krarup, H.B., Andersen, S., Madsen, P.H., et al. (2008). Benign course of long-standing hepatitis B virus infection among Greenland Inuit? Scandinavian Journal of Gastroenterology, 43, 334343.Google Scholar
Krog, J.S., Hansen, M.S., Holm, E., et al. (2015). Influenza A(H10N7) virus in dead harbor seals, Denmark. Emerging Infectious Diseases, 21, 684687.Google Scholar
Kumar, A. (2016). HIV/aids risk and prevention issues among Inuit living in Nunavut Territory of Canada. In Vivo, 30, 905916.Google Scholar
La Linn, M., Gardner, J., Warrilow, D., et al. (2001). Arbovirus of marine mammals: a new alphavirus isolated from the elephant seal louse, Lepidophthirus macrorhini. Journal of Virology, 75, 41034109.Google Scholar
Larska, M. (2015). Pestivirus infection in reindeer (Rangifer tarandus). Frontiers in Microbiology, 6, 1187.Google Scholar
Laws, R.M., Taylor, R.J.F. (1957). A mass dying of Crabeater Seals, Lobodon Carcinophague (Gray). Journal of Zoology, 129, 315324.Google Scholar
Lee, H.S., Zhdanova, S.N., Vladimirtsev, V.A., et al. (2010). Epidemiology of Viliuisk encephalomyelitis in Eastern Siberia. Epidemiology, 21, 2430.Google Scholar
Lee, R.E., Baust, J.G. (1987). Cold-hardiness in the antarctic tick, Ixodes-Uriae. Physiological Zoology, 60, 499506.Google Scholar
Liberda, E.N., Meldrum, R., Charania, N.A., Davey, R., Tsuji, L.J. (2017). Avian influenza prevalence among hunter-harvested birds in a remote Canadian First Nation community. Rural Remote Health, 17, 3864.Google Scholar
Loewen, K., Prins, B., Philibert, H. (1990). Northwest Territories. Rabies in a polar bear.Canadian Veterinary Journal, 31, 457.Google Scholar
Lugg, D., Shepanek, M. (1999). Space analogue studies in Antarctica. Acta Astronaut, 44, 693699.Google Scholar
Lvov, D.K., Vladimirtseva, E.A., Butenko, A.M., et al. (1988). Identity of Karelian fever and Ockelbo viruses determined by serum dilution-plaque reduction neutralization tests and oligonucleotide mapping. American Journal of Tropical Medicine and Hygiene, 39, 607610.Google Scholar
Maat, D.S., Biggs, T., Evans, C., et al. (2017). Characterization and temperature dependence of arctic Micromonas polaris viruses. Viruses 9, pii: E134.Google Scholar
Macdonald, E., Handeland, K., Blystad, H., et al. (2011). Public health implications of an outbreak of rabies in arctic foxes and reindeer in the Svalbard archipelago, Norway, September 2011. Eurosurveillance, 16, pii: 19985.Google Scholar
Major, L., Linn, M.L., Slade, R.W., et al. (2009). Ticks associated with macquarie island penguins carry arboviruses from four genera. PLoS One, 4, e4375.Google Scholar
Mateu, M.G. (2013). Assembly, stability and dynamics of virus capsids. Archives of Biochemistry and Biophysics, 531, 6579.Google Scholar
Márquez, L.M., Redman, R.S., Rodriguez, R.J., Roossinck, M.J. (2007). A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science, 315, 513515.Google Scholar
McLean, C.A., Masters, C.L., Vladimirtsev, V.A., et al. (1997). Viliuisk encephalomyelitis: review of the spectrum of pathological changes. Neuropathology and Applied Neurobiology, 23, 212217.Google Scholar
McLean, D.M., Clarke, A.M., Goddard, E.J., et al. (1973). California encephalitis virus endemicity in the Yukon Territory, 1972. Journal of Hygiene (London), 71, 391402.Google Scholar
Mehta, S.K., Pierson, D.L., Cooley, H., Dubow, R., Lugg, D. (2000). Epstein-Barr virus reactivation associated with diminished cell-mediated immunity in antarctic expeditioners. Reviews in Medical Virology, 61, 235240.Google Scholar
Miller, G., Watts, J., Shellam, G. (2008). Viral antibodies in SouthPolar Skuas around Davis Station, Antarctica. Antarctic Science, 20, 455461.Google Scholar
Mustonen, J., Outinen, T., Laine, O., et al. (2017). Kidney disease in Puumala hantavirus infection. Infectious Diseases (London), 49, 321332.Google Scholar
Mørk, T., Prestrud, P. (2004). Arctic rabies: a review. Acta Veterinaria Scandinavica, 45, 19.Google Scholar
Müllerová, J., Elsterová, J., Jiří, Č., et al. (2018). No indication of arthropod-vectored viruses in mosquitoes (Diptera: Culicidae) collected on Greenland and Svalbard. Polar Biology, 41, 15811586.Google Scholar
Nielsen, O., Clavijo, A., Boughen, J.A (2001). Serologic evidence of influenza A infection in marine mammals of arctic Canada. Journal of Wildlife Diseases, 37, 820825.Google Scholar
Odegaard, O.A., Krogsrud, J. (1981). Rabies in Svalbard: infection diagnosed in arctic fox, reindeer and seal. Veterinary Record, 109, 141142.Google Scholar
Olsen, B., Munster, V.J., Wallensten, A., et al. (2006). Global patterns of influenza a virus in wild birds. Science, 312, 384388.Google Scholar
Orpetveit, I., Ytrehus, B., Vikoren, T., et al. (2011). Rabies in an Arctic fox on the Svalbard archipelago, Norway, January 2011. Eurosurveillance, 16, 12.Google Scholar
Osiowy, C., Simons, B.C., Rempel, J.D. (2013). Distribution of viral hepatitis in indigenous populations of North America and the circumpolar Arctic. Antiviral Therapy, 18, 467473.Google Scholar
Panum, P.L. (2018). Observations Made During the Epidemic of Measles on the Faroe Islands in the Year 1846. Franklin Classics Trade Press, Lebanon, NJ.Google Scholar
Park, Y.M., Kim, J.H., Gu, S.H., et al. (2012). Full genome analysis of a novel adenovirus from the South Polar skua (Catharacta maccormicki) in Antarctica. Virology, 422, 144150.Google Scholar
Parkinson, A.J., Evengard, B., Semenza, J.C., et al. (2014). Climate change and infectious diseases in the Arctic: establishment of a circumpolar working group. International Journal of Circumpolar Health, 73.Google Scholar
Philippa, J.D., Leighton, F.A., Daoust, P-Y., et al. (2004). Antibodies to selected pathogens in free-ranging terrestrial carnivores and marine mammals in Canada. Veterinary Record, 155, 135140.Google Scholar
Piersma, T. (1997). Do global patterns of habitat use and migration strategies co-evolve with relative investments in immunocompetence due to spatial variation in parasite pressure? Oikos, 623–631.Google Scholar
Piersma, T., Mendes, L., Hennekens, J., et al. (2001). Breeding plumage honestly signals likelihood of tapeworm infestation in females of a long-distance migrating shorebird, the bar-tailed godwit. Zoology (Jena), 104, 4148.Google Scholar
Pirisinu, L., Tran, L., Chiappini, B., et al. (2018). Novel type of chronic wasting disease detected in moose (Alces alces), Norway. Emerging Infectious Diseases, 24, 22102218.Google Scholar
Plyusnin, A., Hörling, J., Kanerva, M., et al. (1997). Puumala hantavirus genome in patients with nephropathia epidemica: correlation of PCR positivity with HLA haplotype and link to viral sequences in local rodents. Journal of Clinical Microbiology, 35, 10901096.Google Scholar
Plyusnin, A., Vapalahti, O., Lundkvist, A., Henttonen, H., Vaheri, A. (1996). Newly recognised hantavirus in Siberian lemmings. Lancet, 347, 1835.Google Scholar
Putkuri, N., Kantele, A., Levanov, L., et al. (2016). Acute human Inkoo and Chatanga virus infections, Finland. Emerging Infectious Diseases, 22, 810817.Google Scholar
Ramey, A.M., Reeves, A.B., TeSlaa, J.L., et al. (2016). Evidence for common ancestry among viruses isolated from wild birds in Beringia and highly pathogenic intercontinental reassortant H5N1 and H5N2 influenza A viruses. Infection, Genetics and Evolution, 40, 176185.Google Scholar
Rastrojo, A., Alcamí, A. (2018). Viruses in polar lake and soil ecosystems. Advances in Virus Research, 101, 3954.Google Scholar
Razzauti, M., Plyusnina, A., Sironen, T., Henttonen, H., Plyusnin, A. (2009). Analysis of Puumala hantavirus in a bank vole population in northern Finland: evidence for co-circulation of two genetic lineages and frequent reassortment between strains. Journal of General Virology, 90, 1923–1931.Google Scholar
Reilley, B., Haberling, D. L., Person, M., et al. (2018). Assessing New Diagnoses of HIV Among American Indian/Alaska Natives Served by the Indian Health Service, 2005–2014. Public Health Reports, 133(2), 163168.Google Scholar
Rex, K.F., Andersen, S., Krarup, H.B. (2015). Hepatitis B among Inuit: a review with focus on Greenland Inuit. World Journal of Hepatology, 7, 12651271.Google Scholar
Reyes, D.P., Brinley, A.A., Blue, R.S., et al. (2017). Clinical herpes zoster in Antarctica as a model for spaceflight. Aerospace Medicine and Human Performance, 88, 784788.Google Scholar
Ringrose, J.L., Abraham, K.F., Beresford, D.V. (2013). New range records of mosquitoes (Diptera: Culicidae) from northern Ontario. Journal of the Entomological Society of Ontario, 144, 314.Google Scholar
Robertson, N.L. (2007). Identification and characterization of a new virus in the genus Potyvirus from wild populations of Angelica lucida L. and A. genuflexa Nutt., family Apiaceae. Archives of Virology, 152, 16031611.Google Scholar
Robertson, N.L., French, R. (2007). Genetic analysis of a novel Alaska barley yellow dwarf virus in the family Luteoviridae. Archives of Virology, 152, 369382.Google Scholar
Robertson, N.L., Côté, F., Paré, C., et al. (2007). Complete nucleotide sequence of Nootka lupine vein-clearing virus. Virus Genes, 35, 807814.Google Scholar
Sakamoto, T., Tanaka, Y., Simonetti, J., et al. (2007). Classification of hepatitis B virus genotype B into 2 major types based on characterization of a novel subgenotype in Arctic indigenous populations. Journal of Infectious Diseases, 196, 14871492.Google Scholar
Sasai, S., Tamura, K., Tojo, M., et al. (2018). A novel non-segmented double-stranded RNA virus from an Arctic isolate of Pythium polare. Virology, 522, 234243.Google Scholar
Säwström, C., Lisle, J., Anesio, A.M., Priscu, J.C., Laybourn-Parry, J. (2008). Bacteriophage in polar inland waters. Extremophiles, 12, 167175.Google Scholar
Shearn-Bochsler, V., Green, D.E., Converse, K.A., et al. (2008). Cutaneous and diphtheritic avian poxvirus infection in a nestling Southern Giant Petrel (Macronectes giganteus) from Antarctica. Polar Biology, 31, 569573.Google Scholar
Shi, M., Lin, X.D., Tian, J.H., et al. (2016). Redefining the invertebrate RNA virosphere. Nature, 540, 539543.Google Scholar
Skoge, R.H., Brattespe, J., Økland, A.L., Plarre, H., Nylund, A. (2018). New virus of the family Flaviviridae detected in lumpfish (Cyclopterus lumpus). Archives of Virology, 163, 679685.Google Scholar
Skogh, M., Espmark, A. (1982). Ockelbo disease: epidemic arthritis-exanthema syndrome in Sweden caused by Sindbis-virus like agent. Lancet, 1, 795796.Google Scholar
Smeele, Z.E., Ainley, D.G., Varsani, A. (2018). Viruses associated with Antarctic wildlife: From serology based detection to identification of genomes using high throughput sequencing. Virus Research, 243, 91105.Google Scholar
Soleng, A., Edgar, K.S., Paulsen, K.M., et al. (2018). Distribution of Ixodes ricinus ticks and prevalence of tick-borne encephalitis virus among questing ticks in the Arctic Circle region of northern Norway. Ticks and Tick Borne Diseases, 9, 97103.Google Scholar
Stimmelmayr, R., Rotstein, D.S., Maboni, G., Person, B.T., Sanchez, S. (2018). Morbillivirus-associated lipid pneumonia in Arctic foxes. Journal of Veterinary Diagnostic Investigation, 30, 933936.Google Scholar
Suttle, C.A. (2005). Viruses in the sea. Nature, 437, 356361.Google Scholar
Taylor, M., Elkin, B., Maier, N., Bradley, M. (1991). Observation of a polar bear with rabies. Journal of Wildlife Diseases, 27(2), 337339.Google Scholar
Thomazelli, L.M., Araujo, J., Oliveira, D.B., et al. (2010). Newcastle disease virus in penguins from King George Island on the Antarctic region. Veterinary Microbiology, 146, 155160.Google Scholar
Thompson, R.M., Thompson, H., Hall, A.J. (2002). Prevalence of morbillivirus antibodies in Scottish harbour seals. Veterinary Record, 151, 609610.Google Scholar
Tingate, T.R., Lugg, D.J., Muller, H.K., Stowe, R.P., Pierson, D.L. (1997). Antarctic isolation: immune and viral studies. Immunology and Cell Biology, 75, 275283.Google Scholar
Tjøtta, E., Hungnes, O., Grinde, B. (1991). Survival of HIV-1 activity after disinfection, temperature and pH changes, or drying. Journal of Medical Virology, 35, 223227.Google Scholar
Traavik, T., Mehl, R., Wiger, R. (1978). California encephalitis group viruses isolated from mosquitoes collected in Southern and Arctic Norway. Acta pathologica et microbiologica Scandinavica. Section B: Microbiology and immunology, 86B, 335341.Google Scholar
Tryland, M., Balboni, A., Killengreen, S.T., et al. (2018). A screening for canine distemper virus, canine adenovirus and carnivore protoparvoviruses in Arctic foxes (Vulpes lagopus) and red foxes (Vulpes vulpes) from Arctic and sub-Arctic regions of Norway. Polar Research, 37.Google Scholar
Tryland, M., Klein, J., Nordøy, E.S., Blix, A.S. (2005). Isolation and partial characterization of a parapoxvirus isolated from a skin lesion of a Weddell seal. Virus Research, 108, 8387.Google Scholar
Tryland, M., Nymo, I.H., Nielsen, O., et al. (2012). Serum chemistry and antibodies against pathogens in antarctic fur seals, Weddell seals, crabeater seals, and Ross seals. Journal of Wildlife Diseases, 48, 632645.Google Scholar
Van Hemert, C., Spivey, T.J., Uher-Koch, B.D., et al. (2019). Surwey of arctic Alaskan wildlife for influenza A antibodies: limited evidence for exposure of mammals. Journal of Wildlife Diseases, 55(2), 387398.Google Scholar
Vapalahti, O., Lundkvist, A., Fedorov, V., et al. (1999). Isolation and characterization of a hantavirus from Lemmus sibiricus: evidence for host switch during hantavirus evolution. Journal of Virology, 73, 55865592.Google Scholar
Varsani, A., Frankfurter, G., Stainton, D., et al. (2017). Identification of a polyomavirus in Weddell seal (Leptonychotes weddellii) from the Ross Sea (Antarctica). Archives of Virology, 162, 14031407.Google Scholar
Walker, F.J., Llata, E., Doshani, M., et al. (2015). HIV, chlamydia, gonorrhea, and primary and secondary syphilis among American Indians and Alaska Natives within Indian health service areas in the United States, 2007-2010. Journal of Community Health, 40, 484492.Google Scholar
Webster, R.G., Hinshaw, V.S., Bean, W.J., et al. (1981). Characterization of an influenza A virus from seals. Virology, 113, 712724.Google Scholar
Weiler, G.J., Garner, G.W., Ritter, D.G. (1995). Occurrence of rabies in a wolf population in northeastern Alaska. Journal of Wildlife Diseases, 31, 7982.Google Scholar
Zhang, G., Shoham, D., Gilichinsky, D., et al. (2006). Evidence of influenza a virus RNA in siberian lake ice. Journal of Virology, 80, 1222912235.Google Scholar
Zhang, R., Wei, W., Cai, L. (2014). The fate and biogeochemical cycling of viral elements. Nature Reviews Microbiology, 12, 850851.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×