Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-23T05:19:53.050Z Has data issue: false hasContentIssue false

58 - Simian varicella virus

from Part IV - Non-human primate herpesviruses

Published online by Cambridge University Press:  24 December 2009

Ravi Mahalingam
Affiliation:
Departments of Neurology, University of Colorado Health Sciences Center, Denver, CO, USA
Donald H. Gilden
Affiliation:
Microbiology, University of Colorado Health Sciences Center, Denver, CO, USA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

After primary infection (chickenpox) in children, varicella zoster virus (VZV) becomes latent in cranial, dorsal root and autonomic ganglia along the entire neuraxis and may reactivate decades later to produce zoster. The incidence of zoster and its attendant neurological complications is related to a natural decline in cell-mediated immunity (CMI) to VZV that occurs with aging, and which also develops in immunocompromised organ transplant recipients, and patients with cancer or AIDS. Yet the mechanism of reactivation and the cascade of events that are precipitated by impaired CMI to VZV are still unknown. To study such events require an animal model of varicella. While experimental animal models of latency and pathogenesis exist for closely related viruses such as herpes simplex types 1 and 2, VZV causes disease exclusively in humans. Thus, lack of a good animal model has hampered the studies of varicella latency and pathogenesis. Several attempts to produce disease by experimental inoculation of animals have led to seroconversion without clinical symptoms (Takahashi et al., 1975; Myers et al., 1980, 1985; Matsunaga et al., 1982; Wroblewska et al., 1982; Walz-Cicconi et al., 1986). Subcutaneous inoculation of the Oka VZV (vaccine strain) into the breast of a chimpanzee has been shown to produce viremia and mild rash restricted to the site of inoculation (Cohen et al., 1996). VZV DNA was detected in blood mononuclear cells (MNCs) of the chimpanzee during the 10-day incubation period.

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 1043 - 1050
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annunziato, P., LaRussa, P., Lee, P.et al. (1998). Evidence of latent varicella-zoster virus in rat dorsal root ganglia. J. Infect. Dis., 178 (Suppl. 1), S48–S51.CrossRefGoogle ScholarPubMed
Arbeit, R. D., Zaia, J. A., Valerio, M. A., and Levin, M. J. (1982). Infection of human peripheral blood mononuclear cells by varicella-zoster virus. Intervirology, 18, 56–65.CrossRefGoogle ScholarPubMed
Ashburn, C. V. and Gray, W. L. (1999). Identification and characterization of the simian varicella virus uracil DNA glycosylase. Arch. Virol., 144, 2161–2172.CrossRefGoogle ScholarPubMed
Ashburn, C. V. and Gray, W. L. (2002). Expression of the simian varicella virus glycoprotein L and H. Arch. Virol., 147, 335–348.CrossRefGoogle Scholar
Clarke, P., Rabkin, S. D., Inman, M. V.et al. (1992). Molecular analysis of simian varicella virus DNA. Virology, 190, 597–605.CrossRefGoogle ScholarPubMed
Clarke, P., Beer, T., and Gilden, D. H. (1995). Configuration and terminal sequences of the simian varicella virus genome. Virology, 207, 154–159.CrossRefGoogle ScholarPubMed
Clarkson, M. J., Thorpe, E., and McCarthy, K. (1967). A virus disease of captive vervet monkeys (Cercopithecus aethiops) caused by a new herpesvirus. Arch. Gesamte Virusforsch., 22, 219–234.CrossRefGoogle ScholarPubMed
Cohen, J. I., Moskal, T., Shapiro, M., and Purcell, R. H. (1996). Varicella in chimpanzees. J. Med. Virol., 50, 289–292.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Davison, A. J. and Scott, J. E. (1986). The complete DNA sequence of varicella-zoster virus. J. Gen. Virol., 67, 1759–1816.CrossRefGoogle ScholarPubMed
Dueland, A. N., Martin, J. R., Devlin, M. E.et al. (1992). Acute simian varicella infection. Clinical, laboratory, pathologic, and virologic features. Lab. Invest., 66, 762–773.Google ScholarPubMed
Felsenfeld, A. D. and Schmidt, N. J. (1977). Antigenic relationship among several simian varicella-like viruses and varicella-zoster virus. Infect. Immun., 15, 807–812.Google Scholar
Felsenfeld, A. D. and Schmidt, N. J. (1979). Varicella-zoster virus immunizes patas monkeys against simian varicella-like disease. J. Gen. Virol., 42, 171–178.CrossRefGoogle ScholarPubMed
Fletcher, T. M. and Gray, W. L. (1992). Simian varicella virus: characterization of virion and infected cell polypeptides and the antigenic cross-reactivity with varicella-zoster virus. J. Gen. Virol., 73, 1209–1215.CrossRefGoogle ScholarPubMed
Gilden, D. H., Hayward, A. R., Krupp, J., Hunter-Laszlo, M., Huff, J. C., and Vafai, A. (1987). Varicella-zoster virus infection of human mononuclear cells. Virus Res., 7, 117–129.CrossRefGoogle ScholarPubMed
Gray, W. L. (2003). Pathogenesis of simian varicella virus. J. Med Virol., 70 (Suppl. 1), S4–S8.CrossRefGoogle ScholarPubMed
Gray, W. L. and Byrne, B. H. (2003) Characterization of simian varicella virus glycoprotein C, which is nonessential forin vitro replication. Arch. Virol., 148, 537–545.Google Scholar
Gray, W. L. and Gusick, N. J. (1996). Viral isolates derived from simian varicella epizootics are genetically related but are distinct from other primate herpesviruses. Virology, 224, 161–166.CrossRefGoogle ScholarPubMed
Gray, W. L. and Oakes, J. E. (1984). Simian varicella virus DNA shares homology with human varicella-zoster virus DNA. Virology, 136, 241–246.CrossRefGoogle ScholarPubMed
Gray, W. L., Pumphrey, C. Y., Ruyechan, W. T., and Fletcher, T. M. (1992). The simian varicella virus and varicella zoster virus genomes are similar in size and structure. Virology, 186, 562–572.CrossRefGoogle ScholarPubMed
Gray, W. L., Williams, R. J., Chang, R., and Soike, K. F. (1998). Experimental simian varicella virus infection of St. Kitts vervet monkeys. J. Med. Primatol., 27, 177–183.CrossRefGoogle ScholarPubMed
Gray, W. L., Starnes, B., White, M. W., and Mahalingam, R. (2001). The DNA sequence of the simian varicella virus genome. Virology, 284, 123–130.CrossRefGoogle ScholarPubMed
Gray, W. L., Mullis, L., and Soike, K. F. (2002). Viral gene expression during acute simian varicella virus infection. J. Gen. Virol., 83, 841–846.CrossRefGoogle ScholarPubMed
Iltis, J. P., Arrons, M. C., Castellano, G. A.et al. (1982). Simian varicella virus (delta herpesvirus) infection of patas monkeys leading to pneumonia and encephalitis. Proc. Soc. Exp. Biol. Med., 169, 266–279.CrossRefGoogle ScholarPubMed
Kinchington, P. R., Reinhold, W. C., Casey, T. A., Straus, S. E., Hay, J., and Ruyechan, W. T. (1985). Inversion and circularization of the varicella-zoster virus genome. J. Virol., 56, 194–200.Google ScholarPubMed
Koropchak, C. M., Solem, S. M., Diaz, P. S., and Arvin, A. M. (1989). Investigation of varicella-zoster virus infection of lymphocytes by in situ hybridization. J. Virol., 63, 2392–2395.Google ScholarPubMed
Mahalingam, R., White, T., Wellish, M., Gilden, D. H., Soike, K., and Gray, W. L. (2000). Sequence analysis of the leftward end of simian varicella virus (EcoRI-I fragment) reveals the presence of an 8-bp repeat flanking the unique long segment and an 881-bp open-reading frame that is absent in the varicella zoster virus genome. Virology, 274, 420–428.CrossRefGoogle ScholarPubMed
Mahalingam, R., Wellish, M., Soike, K., White, T., Kleinschmidt-DeMasters, B. K., and Gilden, D. H. (2001). Simian varicella virus infects ganglia before rash in experimentally infected monkeys. Virology, 279, 339–342.CrossRefGoogle ScholarPubMed
Mahalingam, R., Traina-Dorge, V., Wellish, M., Smith, J., and Gilden, D. H. (2002). Naturally acquired simian varicella virus infection in African green monkeys. J. Virol., 76, 8548–8550.CrossRefGoogle ScholarPubMed
Matsunaga, Y., Yamanishi, K., and Takahashi, M. (1982). Experimental infection and immune response of guinea pigs with varicella-zoster virus. Infect. Immun., 37, 407–412.Google ScholarPubMed
Myers, M. G. and Connelly, B. L. (1992). Animal models of varicella. J. Infect. Dis., 166(Suppl. 1), 548–550.CrossRefGoogle ScholarPubMed
Myers, M. G., Duer, H. L., and Hausler, C. K. (1980). Experimental infection of guinea pigs with varicella-zoster virus. J. Infect. Dis., 142, 414–420.CrossRefGoogle ScholarPubMed
Myers, M. G., Stanberry, L. R., and Edmond, B. J. (1985). Varicella-zoster virus infection of strain 2 guinea pigs. J. Infect. Dis., 151, 106–113.CrossRefGoogle ScholarPubMed
Padovan, D. and Cantrell, C. A. (1986). Varicella-like herpesvirus infection of nonhuman primates. Lab. Anim. Sci., 36, 7–13.Google ScholarPubMed
Pumphrey, C. Y. and Gray, W. L. (1992). The genomes of simian varicella virus and varicella zoster virus are colinear. Virus Res., 26, 255–266.CrossRefGoogle ScholarPubMed
Pumphrey, C. Y. and Gray, W. L. (1994). DNA sequence and transcriptional analysis of the simian varicella virus glycoprotein B gene. J. Gen. Virol., 75, 3219–3227.CrossRefGoogle ScholarPubMed
Pumphrey, C. Y. and Gray, W. L. (1996). Identification and analysis of the simian varicella virus thymidine kinase gene. Arch. Virol., 151, 43–55.CrossRefGoogle Scholar
Roberts, E. D., Baskin, G. B., Soike, K., and Gibson, S. V. (1984). Pathologic changes of experimental simian varicella (Delta herpesvirus) infection in African green monkeys (Cercopithecus aethiops). Am. J. Vet. Res., 45, 523–530.Google Scholar
Soike, K. F. (1992). Simian varicella virus infection in African and Asian monkeys. The potential for development of antivirals for animal diseases. Ann. NY Acad. Sci., 653, 323–333.CrossRefGoogle ScholarPubMed
Soike, K. F., Rangan, S. R., and Gerone, P. J. (1984a). Viral disease models in primates. Adv. Vet. Sci. Comp. Med., 28, 151–199.CrossRefGoogle Scholar
Soike, K. F., Baskin, G., Cantrell, C., and Gerone, P. (1984b). Investigation of antiviral activity of 1-beta-D-arabinofuranosylthymine (ara-T) and 1-beta-D-arabinofuranosyl-E-5-(2-bromovinyl) uracil (BV-ara-U) in monkeys infected with simian varicella virus. Antiviral Res., 4, 245–257.CrossRefGoogle Scholar
Soike, K. F., Keller, P. M., and Ellis, R. W. (1987). Immunization of monkeys with varicella-zoster virus glycoprotein antigens and their response to challenge with simian varicella virus. J. Med. Virol., 22, 307–313.CrossRefGoogle ScholarPubMed
Soong, W., Schultz, J. C., Patera, A. C., Sommer, M. H., and Cohen, J. I. (2000). Infection of human T lymphocytes with varicella-zoster virus: an analysis with viral mutants and clinical isolates. J. Virol., 74, 1864–1870.CrossRefGoogle Scholar
Takahashi, M., Okuno, Y., Otsuka, T., Osame, J., and Takamizawa, A. (1975). Development of a live attenuated varicella vaccine. Biken. J., 18, 25–33.Google ScholarPubMed
Walz-Cicconi, M. A., Rose, R. M., Dammin, G. J., and Weller, T. H. (1986). Inoculation of guinea pigs with varicella-zoster virus via the respiratory route. Arch. Virol., 88, 265–277.CrossRefGoogle ScholarPubMed
Wenner, H. A., Abel, D., Barrick, S., and Seshumurty, P. (1977). Clinical and pathogenetic studies of Medical Lake macaque virus infections in cynomolgus monkeys (simian varicella). J. Infect. Dis., 135, 611–622.CrossRefGoogle Scholar
White, T. M., Mahalingam, R., Kolhatkar, G., and Gilden, D. H. (1997). Identification of simian varicella virus homologues of varicella zoster virus genes. Virus Genes, 15, 265–269.CrossRefGoogle ScholarPubMed
White, T. M., Gilden, D. H., and Mahalingam, R. (2001). An animal model of varicella virus infection. Brain Pathol., 11, 475–479.CrossRefGoogle ScholarPubMed
White, T. M., Mahalingam, R., Traina-Dorge, V., and Gilden, D. H. (2002a). Simian varicella virus DNA is present and transcribed months after experimental infection of adult African green monkeys. J. Neurovirol., 8, 191–203.CrossRefGoogle Scholar
White, T. M., Mahalingam, R., Traina-Dorge, V., and Gilden, D. H. (2002b). Persistence of simian varicella virus DNA in CD4(+) and CD8(+) blood mononuclear cells for years after intratracheal inoculation of African green monkeys. Virology, 303, 192–198.CrossRefGoogle Scholar
Wolf, R. H., Smetana, H. F., Allen, W. P., and Felsenfeld, A. D. (1974). Pathology and clinical history of Delta herpesvirus infection in patas monkeys. Lab. Anim. Sci., 24, 218–221.Google ScholarPubMed
Wroblewska, Z., Devlin, M., Reilly, K., Trieste, H., Wellish, M., and Gilden, D. H. (1982). The production of varicella zoster virus antiserum in laboratory animals. Brief report. Arch. Virol., 74, 233–238.CrossRefGoogle ScholarPubMed
Zerboni, L., Sommer, M., Ware, C. F., and Arvin, A. M. (2000). Varicella-zoster virus infection of a human CD4-positive T-cell line. Virology, 270, 278–285.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×