Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-30T05:14:01.859Z Has data issue: false hasContentIssue false

61 - EBV and KSHV-related herpesviruses in non-human primates

from Part IV - Non-human primate herpesviruses

Published online by Cambridge University Press:  24 December 2009

Blossom Damania
Affiliation:
Lineberger Comprehensive Cancer Center, Department of Microbiology and Immunology, University of North Carolina, NC, USA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

Herpesviruses can be found in primates throughout the animal kingdom. In the animal kingdom, the order of primates is classified into two suborders, the Prosimians and the Anthropoids (Fig. 61.1(a)). Prosimians are the earliest and most primitive of primates and are comprised of lemurs, lorises and tarsiers. Tarsiers share characteristics that are intermediate between the prosimians and the anthropoids, and hence are sometimes considered a third suborder. The Anthropoids are classified into platyrrhines (flat nosed) and catarrhines (downward pointing nose).

The platyrrhines are New World monkeys found exclusively in Mexico and Central and South America. This group includes tamarins, common marmosets, squirrel monkeys and spider monkeys. Evolution of the platyrrhines has been a subject of intense debate. Most believe that the origin and early diversification of platyrrhines occurred on the African continent. It is thought that the platyrrhines then crossed the Atlantic Ocean to the Americas at a time when sea levels were lower and the ocean ridges in the Atlantic were likely exposed as islands, creating pathways that were conducive to platyrrhine migration.

The catarrhines are sub-divided into Cercopithecoids or Old World monkeys (with tails) and Hominids (no tails) (Fig. 61.1(b)). Old World monkeys are found in both Africa and Asia. The rhesus monkey (Macaca mulatta) and the cynomolgus monkey (Macaca fascicularis) are examples of Old World primates found in Asia, while African green monkeys and baboons are Old World primates found exclusively in Africa. The Hominids include apes like chimpanzees, gibbons, gorillas, orangutans, and humans.

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 1093 - 1114
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ablashi, D. V., Pearson, G., Rabin, H.et al. (1978). Experimental infection of Callithrix jacchus marmosets with Herpesvirus ateles, Herpesvirus saimiri, and Epstein Barr virus. Biomedicine, 29, 7–10.Google ScholarPubMed
Albrecht, J. C. (2000). Primary structure of the Herpesvirus ateles genome. J. Virol., 74, 1033–1037.CrossRefGoogle ScholarPubMed
Albrecht, J. C. and Fleckenstein, B. (1990). Structural organization of the conserved gene block of Herpesvirus Saimiri coding for DNA polymerase, glycoprotein B, and major DNA binding protein. Virology, 174, 533–542.CrossRefGoogle Scholar
Alexander, L., Denenkamp, L., Knapp, A.et al. (2000). The primary sequence of rhesus rhadinovirus isolate 26–95: sequence similarities to Kaposi's sarcoma herpesvirus and rhesus rhadinovirus isolate 17577. J. Virol., 74, 3388–3398.CrossRefGoogle ScholarPubMed
Auerbach, M. R., Czajak, S. C., Johnson, W. E., Desrosiers, R. C., and Alexander. L. (2000). Species specificity of macaque rhadinovirus glycoprotein B sequences. J. Virol., 74, 584–590.CrossRefGoogle ScholarPubMed
Baskin, G. B., Roberts, E. D., Kuebler, D.et al. (1995). Squamous epithelial proliferative lesions associated with rhesus Epstein–Barr virus in simian immunodeficiency virus-infected rhesus monkeys. J. Infect. Dis., 172, 535–539.CrossRefGoogle ScholarPubMed
Blake, N. W., Moghaddam, A., Rao, P.et al. (1999). Inhibition of antigen presentation by the glycine/alanine repeat domain is not conserved in simian homologues of Epstein–Barr virus nuclear antigen 1. J. Virol., 73, 7381–7389.Google Scholar
Blake, N. W., Moghaddam, A., Rao, P.et al., (1999). Inhibition of antigen presentation by the glycine/alanine repeat domain is not conserved in simian homologues of Epstein-Barr virus nuclear antigen 1. J. Virol., 73, 7381–7389.Google Scholar
Bocker, J. F., Tiedemann, K. H., Bornkamm, G. W., and zur H. Hausen, H. (1980). Characterization of an EBV-like virus from African green monkey lymphoblasts. Virology, 101, 291–295.CrossRefGoogle ScholarPubMed
Bosch, M. L., Harper, E., Schmidt, A.et al. (1999). Activation in vivo of retroperitoneal fibromatosis-associated herpesvirus, a simian homologue of human herpesvirus-8. J. Gen. Virol., 80, 467–475.CrossRefGoogle ScholarPubMed
Cannon, J. S., Ciufo, D., Hawkins, A. L.et al. (2000). A new primary effusion lymphoma-derived cell line yields a highly infectious Kaposi's sarcoma herpesvirus-containing supernatant. J. Virol., 74, 10187–10193.CrossRefGoogle ScholarPubMed
Cho, Y., Ramer, J., Rivailler, P.et al. (2001). An Epstein–Barr-related herpesvirus from marmoset lymphomas. Proc. Natl Acad. Sci. USA, 98, 1224–1229.CrossRefGoogle ScholarPubMed
Cho, Y. G., Gordadze, A. V., Ling, P. D., and Wang, F. (1999). Evolution of two types of rhesus lymphocryptovirus similar to type 1 and type 2 Epstein–Barr virus. J. Virol., 73, 9206–9212.Google ScholarPubMed
Clapp, N. K., Littlefield, L. G., and Lushbaugh, C. C. (1982). Colon carcinoma in subhuman primates. Gastroenterology, 83, 519.Google ScholarPubMed
Cleary, M. L., Epstein, M. A., Finerty, S.et al. (1985). Individual tumors of multifocal EB virus-induced malignant lymphomas in tamarins arise from different B-cell clones. Science, 228, 722–724.CrossRefGoogle ScholarPubMed
Cohen, J. I., Wang, F., Mannick, J., and Kieff, E. (1989). Epstein–Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc. Natl Acad. Sci. USA, 86, 9558–9562.CrossRefGoogle ScholarPubMed
Dalbies-Tran, R., Stigger-Rosser, E., Dotson, T., and Sample, C. E. (2001). Amino acids of Epstein–Barr virus nuclear antigen 3A essential for repression of Jkappa-mediated transcription and their evolutionary conservation. J. Virol., 75, 90–99.CrossRefGoogle ScholarPubMed
Damania, B., Li, M., Choi, J. K., Alexander, L., Jung, J. U., and Desrosiers, R. C. (1999). Identification of the R1 oncogene and its protein product from the Rhadinovirus of Rhesus monkeys. J. Virol., 73, 5123–5131.Google ScholarPubMed
Damania, B., DeMaria, M., Jung, J. U., and Desrosiers, R. C. (2000). Activation of lymphocyte signaling by the R1 protein of rhesus monkey rhadinovirus. J. Virol., 74, 2721–2730.CrossRefGoogle ScholarPubMed
Damania, B. J. J., Bowser, B. S., DeWire, S. M., Staudt, M., and Dittmer, D. P. (2004). Comparison of the Rta/Orf50 transactivator proteins of gamma-2 herpesviruses. J. Virol., 78(10), 5491–5499.CrossRefGoogle ScholarPubMed
Dambaugh, T., Raab-Traub, N., Heller, M.et al. (1980). Variations among isolates of Epstein–Barr virus. Ann. N Y Acad. Sci., 354, 309–325.CrossRefGoogle ScholarPubMed
Dambaugh, T., Hennessy, K., Chamnankit, L., and Kieff, E. (1984). U2 region of Epstein–Barr virus DNA may encode Epstein–Barr nuclear antigen 2. Proc. Natl Acad. Sci. USA, 81, 7632–7636.CrossRefGoogle ScholarPubMed
Dambaugh, T., Wang, F., Hennessy, K., Woodland, E., Rickinson, A., and Kieff, E. (1986). Expression of the Epstein-Barr virus nuclear protein 2 in rodent cells. J. Virol., 59, 453–462.Google ScholarPubMed
Thoisy, B., Pouliquen, J. F., Lacoste, V., Gessain, A., and Kazanji, M. (2003). Novel gamma-1 herpesviruses identified in free-ranging new world monkeys (golden-handed tamarin (Saguinus midas), squirrel monkey (Saimiri sciureus), and white-faced saki (Pithecia pithecia) in French Guiana. J. Virol., 77, 9099–9105.CrossRefGoogle Scholar
Delecluse, H. J., Kost, M., Feederle, R., Wilson, L., and Hammerschmidt, W. (2001). Spontaneous activation of the lytic cycle in cells infected with a recombinant Kaposi's sarcoma-associated virus. J. Virol., 75, 2921–2928.CrossRefGoogle ScholarPubMed
Desgranges, C., Lenoir, G., de-The, G., Seigneurin, J. M., Hilgers, J., and Dubouch, P. (1976). In vitro transforming activity of EBV. I-Establishment and properties of two EBV strains (M81 and M72) produced by immortalized Callithrix jacchus lymphocytes. Biomedicine, 25, 349–352.Google ScholarPubMed
Desrosiers, R. C., Sasseville, V. G., Czajak, S. C.et al. (1997). A herpesvirus of rhesus monkeys related to the human Kaposi's sarcoma-associated herpesvirus. J. Virol., 71, 9764–9769.Google ScholarPubMed
de-The, G., Dubouch, P., Fontaine, C.et al. (1980). Natural antibodies to EBV-VCA antigens in common marmosets (Callithrix jacchus) and response after EBV inoculation. Intervirology, 14, 284–291.Google Scholar
DeWire, S. M., McVoy, M. A., and Damania, B. (2002). Kinetics of expression of rhesus monkey rhadinovirus (RRV) and identification and characterization of a polycistronic transcript encoding the RRV Orf50/Rta, RRV R8, and R8.1 genes. J. Virol., 76, 9819–9831.Google Scholar
DeWire, S. M., Money, E. S., Krall, S. P., and Damania, B. (2003). Rhesus monkey rhadinovirus (RRV): construction of a RRV-GFP recombinant virus and development of assays to assess viral replication. Virology, 312, 122–134.Google Scholar
Dewire, S. M., and Damania, B. (2005). The latency-associated nuclear antigen of rhesus monkey rhadinovirus inhibits viral replication through repression of Orf50/Rta transcriptional activation. J. Virol., 79, 3127–3138.CrossRefGoogle ScholarPubMed
Dittmer, D., Stoddart, C., and Renne, R. (1999). Experimental transmission of Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) to SCID-hu Thy/Liv mice. J. Exp. Med., 190, 1857–1868.CrossRefGoogle Scholar
Dittmer, D. P., Gonzalez, C. M., Vahrson, W., De Wire, S. M., Hines-Boykin, R., and Damania, B. (2005). Whole-genome transcription profiling of rhesus monkey rhadinovirus. J. Virol., 79(13), 8637–8650.CrossRefGoogle ScholarPubMed
Dunkel, V. C., Pry, T. W.Henle, G., and Henle, W. (1972). Immunofluorescence tests for antibodies to Epstein–Barr virus with sera of lower primates. J. Natl Cancer Inst., 49, 435–440.Google Scholar
Ehlers, B., Ochs, A., Leendertz, F., Goltz, M., Boesch, C., and Matz-Rensing, K. (2003). Novel simian homologues of Epstein–Barr virus. J. Virol., 77, 10695–10699.CrossRefGoogle ScholarPubMed
Eliopoulos, A. G. and Young, L. S. (1998). Activation of the cJun N-terminal kinase (JNK) pathway by the Epstein–Barr virus-encoded latent membrane protein 1 (LMP1). Oncogene, 16, 1731–1742.CrossRefGoogle Scholar
Epstein, M. A., Hunt, R. D., and Rabin, H. (1973a). Pilot experiments with EB virus in owl monkeys (Aotus trivirgatus). I: Reticuloproliferative disease in an inoculated animal. Int. J. Cancer, 12, 309–318.CrossRefGoogle Scholar
Epstein, M. A., Rabin, H., Ball, G., Rickinson, A. B., Jarvis, J., and Melendez, L. V. (1973b). Pilot experiments with EB virus in owl monkeys (Aotus trivirgatus). II. EB virus in a cell line from an animal with reticuloproliferative disease. Int. J. Cancer, 12, 319–332.CrossRefGoogle Scholar
Estep, R. D., Axthelm, M. K., and Wong, S. W., (2003). A G protein-coupled receptor encoded by rhesus rhadinovirus is similar to ORF74 of Kaposi's sarcoma-associated herpesvirus. J. Virol., 77, 1738–1746.CrossRefGoogle Scholar
Falk, L., Deinhardt, F., Wolfe, L., Johnson, D., Hilgers, J., and de-The, G. (1976). Epstein–Barr virus: experimental infection of Callithrix jacchus marmosets. Int. J. Cancer, 17, 785–788.CrossRefGoogle ScholarPubMed
Falk, L. A., Henle, G., Henle, W., Deinhardt, F., and Schudel, A. (1977). Transformation of lymphocytes by Herpesvirus papio. Int. J. Cancer, 20, 219–226.CrossRefGoogle ScholarPubMed
Faucher, S., Dimock, K., and Wright, K. E. (2002). Characterization of the Cyno-EBV LMP1 homologue and comparison with LMP1s of EBV and other EBV-like viruses. Virus Res., 90, 63–75.CrossRefGoogle ScholarPubMed
Feichtinger, H., Kaaya, E., Putkonen, P.et al. (1992a). Malignant lymphoma associated with human AIDS and with SIV-induced immunodeficiency in macaques. AIDSRes. Hum. Retroviruses, 8, 339–348.CrossRefGoogle Scholar
Feichtinger, H., Li, S. L., Kaaya, E.et al. (1992b). A monkey model for Epstein–Barr virus-associated lymphomagenesis in human acquired immunodeficiency syndrome. J. Exp. Med., 176, 281–286.CrossRefGoogle Scholar
Fogg, M. H., Kaur, A., Cho, Y. G., and Wang, F. (2005). The CD8+ T-cell response to an Epstein-Barr virus-related gammaherpesvirus infecting rhesus macaques provides evidence for immune evasion by the EBNA-1 homologue. J. Virol., 79, 12681–12691.CrossRefGoogle Scholar
Foreman, K. E., Bacon, P. E., Hsi, E. D., and Nickoloff, B. J. (1997). In situ polymerase chain reaction-based localization studies support role of human herpesvirus-8 as the cause of two AIDS-related neoplasms: Kaposi's sarcoma and body cavity lymphoma. J. Clin. Invest., 99, 2971–2978.CrossRefGoogle ScholarPubMed
Frank, A., Andiman, W. A., and Miller, G. (1976). Epstein–Barr virus and nonhuman primates: natural and experimental infection. Adv. Cancer Res., 23, 171–201.CrossRefGoogle ScholarPubMed
Franken, M., Devergne, O., Rosenzweig, M., Annis, B., Kieff, E., and Wang, F. (1996). Comparative analysis identifies conserved tumor necrosis factor receptor-associated factor 3 binding sites in the human and simian Epstein–Barr virus oncogene LMP1. J. Virol., 70, 7819–7826.Google ScholarPubMed
Fuentes-Panana, E. M., Swaminathan, S., and Ling, P. D. (1999). Transcriptional activation signals found in the Epstein–Barr virus (EBV) latency C promoter are conserved in the latency C promoter sequences from baboon and Rhesus monkey EBV-like lymphocryptoviruses (cercopithicine herpesviruses 12 and 15). J. Virol., 73, 826–833.Google Scholar
Gerber, P., Branch, J. W., and Rosenblum, E. N. (1969). Attempts to transmit infectious mononucleosis to rhesus monkeys and marmosets and to isolate herpes-like virus. Proc. Soc. Exp. Biol. Med., 130, 14–19.CrossRefGoogle ScholarPubMed
Gerber, P., Kalter, S. S., Schidlovsky, G., Peterson, W. D. Jr., and Daniel, M. D. (1977). Biologic and antigenic characteristics of Epstein–Barr virus-related Herpesviruses of chimpanzees and baboons. Int. J. Cancer, 20, 448–459.CrossRefGoogle ScholarPubMed
Greensill, J., Sheldon, J. A., Murthy, K. K., Bessonette, J. S., Beer, B. E., and Schulz, T. F. (2000a). A chimpanzee rhadinovirus sequence related to Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8: increased detection after HIV-1 infection in the absence of disease. AIDS, 14, F129–135.Google Scholar
Greensill, J., Sheldon, J. A., and Renwick, N. M. (2000b). Two distinct gamma-2 herpesviruses in African green monkeys: a second gamma-2 herpesvirus lineage among old world primates?J. Virol., 74, 1572–1577.CrossRefGoogle Scholar
Habis, A., Baskin, G., Simpson, L., Fortgang, I., Murphey-Corb, M., and Levy, L. S. (2000). Rhesus lymphocryptovirus infection during the progression of SAIDS and SAIDS-associated lymphoma in the rhesus macaque. AIDSRes. Hum. Retroviruses, 16, 163–171.CrossRefGoogle Scholar
Heller, M. and Kieff, E. (1981). Colinearity between the DNAs of Epstein–Barr virus and herpesvirus papio. J. Virol., 37, 821–826.Google ScholarPubMed
Heller, M., Gerber, P., and Kieff, E. (1981). Herpesvirus papio DNA is similar in organization to Epstein–Barr virus DNA. J. Virol., 37, 698–709.Google ScholarPubMed
Hernandez-Camacho, J. C. R., (1976). The nonhuman primates of Colombia. In Thorington, R. W. Jr. and Heltne, P. G. eds. Neotropical Primates: Field Studies and Conservation. Washington, DC: National Academy of Sciences.
ICTV. Website: http://www.ncbi.nlm.nih.gov/ICTVdb/Ictv/fs_herpe.htm. International Committee on the Taxonomy of Viruses.
Ishida, T. and Yamamoto, K. (1987). Survey of nonhuman primates for antibodies reactive with Epstein–Barr virus (EBV) antigens and susceptibility of their lymphocytes for immortalization with EBV. J. Med. Primatol., 16, 359–371.Google ScholarPubMed
Jenson, H. B., Ench, Y., Zhang, Y. S., Gao, J., Arrand, J. R., and Mackett, M. (2002). Characterization of an Epstein–Barr virus-related gammaherpesvirus from common marmoset (Callithrix jacchus). J. Gen. Virol., 83, 1621–1633.CrossRefGoogle Scholar
Jiang, H., Cho, Y. G., and Wang, F. (2000). Structural, functional, and genetic comparisons of Epstein–Barr virus nuclear antigen 3A, 3B, and 3C homologues encoded by the rhesus lymphocryptovirus. J. Virol., 74, 5921–5932.CrossRefGoogle ScholarPubMed
Johnson, D. R., Wolfe, L. G., Levan, G., Klein, G., Ernberg, I., and Aman, P. (1983). Epstein–Barr virus (EBV)-induced lymphoproliferative disease in cotton-topped marmosets. Int. J. Cancer, 31, 91–97.CrossRefGoogle ScholarPubMed
Kaleeba, J. A., Bergquam, E. P., and Wong, S. W. (1999). A rhesus macaque rhadinovirus related to Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 encodes a functional homologue of interleukin-6. J. Virol., 73, 6177–6181.Google ScholarPubMed
Kalter, S. S., Heberling, R. L., and Ratner, J. J. (1972). EBV antibody in sera of non-human primates. Nature, 238, 353–354.CrossRefGoogle ScholarPubMed
Lacoste, V., Mauclere, P., Dubreuil, G., Lewis, J., Georges-Courbot, M. C., and Gessain, A. (2000a). KSHV-like herpesviruses in chimps and gorillas. Nature, 407, 151–152.Google Scholar
Lacoste, V., Mauclere, P., and Dubreuil, G. (2000b). Simian homologues of human gamma-2 and betaherpesviruses in mandrill and drill monkeys. J. Virol., 74, 11993–11999.CrossRefGoogle Scholar
Lacoste, V., Mauclere, P., Dubreuil, G., Lewis, J., Georges-Courbot, M. C., and Gessain, A. (2001). A novel gamma 2-herpesvirus of the Rhadinovirus 2 lineage in chimpanzees. Genome Res., 11, 1511–1519.CrossRefGoogle ScholarPubMed
Lagunoff, M., Bechtel, J., Venetsanakos, E., et al. (2002). De novo infection and serial transmission of Kaposi's sarcoma-associated herpesvirus in cultured endothelial cells. J. Virol., 76, 2440–2448.CrossRefGoogle ScholarPubMed
Landon, J. C. and Malan, L. B. (1971). Seroepidemiologic studies of Epstein–Barr virus antibody in monkeys. J. Natl Cancer Inst., 46, 881–884.Google ScholarPubMed
Landon, J. C., Ellis, L. B., Zeve, V. H., and Fabrizio, D. P. (1968). Herpes-type virus in cultured leukocytes from chimpanzees. J. Natl Cancer Inst., 40, 181–192.Google ScholarPubMed
Langlais, C. L., Jones, J. M., Estep, R. D., and Wong, S. W. (2006). Rhesus rhadinovirus R15 encodes a functional homologue of human CD200. J. Virol., 80, 3098–3103.CrossRefGoogle ScholarPubMed
Lee, H., Veazey, R., Williams, K.et al. (1998). Deregulation of cell growth by the K1 gene of Kaposi's sarcoma- associated herpesvirus. Nat. Med., 4, 435–440.CrossRefGoogle Scholar
Levine, P. H., Leiseca, S. A., Hewetson, J. F.et al. (1980). Infection of rhesus monkeys and chimpanzees with Epstein–Barr virus. Arch. Virol., 66, 341–351.CrossRefGoogle ScholarPubMed
Levitskaya, J., Coram, M., Levitsky, V.et al. (1995). Inhibition of antigen processing by the internal repeat region of the Epstein–Barr virus nuclear antigen-1. Nature, 375, 685–688.CrossRefGoogle ScholarPubMed
Levitskaya, J., Coram, M., Levitsky, V.et al., (1995). Inhibition of antigen processing by the internal repeat region of the Epstein–Barr virus nuclear antigen-1. Nature, 375, 685–688.CrossRefGoogle ScholarPubMed
Levy, J. A., Levy, S. B., Hirshaut, Y., Kafuko, G., and Prince, A. (1971). Presence of EBV antibodies in sera from wild chimpanzees. Nature, 233, 559–560.CrossRefGoogle ScholarPubMed
Lin, S. F., Robinson, D. R., Oh, J., Jung, J. U., Luciw, P. A., and Kung, H. J. (2002). Identification of the bZIP and Rta homologues in the genome of rhesus monkey rhadinovirus. Virology, 298, 181–188.CrossRefGoogle ScholarPubMed
Ling, P. D. and Hayward, S. D. (1995). Contribution of conserved amino acids in mediating the interaction between EBNA2 and CBF1/RBPJk. J. Virol., 69, 1944–1950.Google ScholarPubMed
Ling, P. D., Ryon, J. J., and Hayward, S. D. (1993). EBNA-2 of herpesvirus papio diverges significantly from the type A and type B EBNA-2 proteins of Epstein–Barr virus but retains an efficient transactivation domain with a conserved hydrophobic motif. J. Virol., 67, 2990–3003.Google Scholar
Manet, E., Gruffat, H., and Trescol-Biemont, M. C. (1989). Epstein–Barr virus bicistronic mRNAs generated by facultative splicing code for two transcriptional trans-activators. EMBO J., 8, 1819–1826.Google ScholarPubMed
Mansfield, K., Westmoreland, S. V., DeBakker, C. D.et al. (1999). Experimental infection of rhesus and pig-tailed macaques with macaque rhadinoviruses. J. Virol., 73, 10320–10328.Google ScholarPubMed
Marechal, V., Dehee, A., Chikhi-Brachet, R.Piolot, T., Coppey-Moisan, M., and Nicolas, J. C. (1999). Mapping EBNA-1 domains involved in binding to metaphase chromosomes. J. Virol., 73, 4385–4392.Google ScholarPubMed
Melendez, L. V., Daniel, M. D., Garcia, F. G., Fraser, C. E., Hunt, R. D., and King, N. W. (1969). Herpesvirus saimiri. I. Further characterization studies of a new virus from the squirrel monkey. Lab. Anim. Care, 19, 372–377.Google ScholarPubMed
Melendez, L. V., Hunt, R. D., King, N. W.et al. (1972). Herpesvirus ateles, a new lymphoma virus of monkeys. Nat. New Biol., 235, 182–184.CrossRefGoogle ScholarPubMed
Miller, G., Niederman, J. C., and Stitt, D. A. (1972). Infectious mononucleosis: appearance of neutralizing antibody to Epstein–Barr virus measured by inhibition of formation of lymphoblastoid cell lines. J. Infect. Dis., 125, 403–406.CrossRefGoogle ScholarPubMed
Miller, G., Shope, T., Coope, D.et al. (1977). Lymphoma in cotton-top marmosets after inoculation with Epstein–Barr virus: tumor incidence, histologic spectrum antibody responses, demonstration of viral DNA, and characterization of viruses. J. Exp. Med., 145, 948–967.CrossRefGoogle ScholarPubMed
Moghaddam, A., Rosenzweig, M., Lee-Parritz, D., Annis, B., Johnson, R. P., and Wang, F. (1997). An animal model for acute and persistent Epstein–Barr virus infection. Science, 276, 2030–2033.CrossRefGoogle ScholarPubMed
Moghaddam, A., Koch, J., Annis, B., and Wang, F. (1998). Infection of human B lymphocytes with lymphocryptoviruses related to Epstein–Barr virus. J. Virol., 72, 3205–3212.Google Scholar
Mohle, R., Green, D., Moore, M. A., Nachman, R. L., and Rafii, S. (1997). Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc. Natl Acad. Sci. USA, 94, 663–668.CrossRefGoogle ScholarPubMed
Moore, P. S. and Chang, Y. (2003). Kaposi's sarcoma-associated herpesvirus immunoevasion and tumorigenesis: two sides of the same coin?Annu. Rev. Microbiol., 57, 609–639.CrossRefGoogle ScholarPubMed
Moses, A. V., Fish, K. N., Ruhl, R.et al. (1999). Long-term infection and transformation of dermal microvascular endothelial cells by human herpesvirus 8. J. Virol., 73, 6892–6902.Google ScholarPubMed
Naito, M., Ono, K., Doi, T., Kato, S., and Tanabe, S. (1971). Antibodies in human and monkey sera to herpes-type virus from a chicken with Marek's disease and to EB virus detected by the immunofluorescence test. Biken J., 14, 161–166.Google Scholar
Nealon, K., Newcomb, W. W., Pray, T. R., Craik, C. S., Brown, J. C., and Kedes, D. H. (2001). Lytic replication of Kaposi's sarcoma-associated herpesvirus results in the formation of multiple capsid species: isolation and molecular characterization of A, B, and C capsids from a gammaherpesvirus. J. Virol., 75, 2866–2878.CrossRefGoogle Scholar
Neubauer, R. H., Rabin, H., Strnad, B. C., Nonoyama, M., and Nelson-Rees, W. A. (1979). Establishment of a lymphoblastoid cell line and isolation of an Epstein–Barr-related virus of gorilla origin. J. Virol., 31, 845–848.Google ScholarPubMed
O'Connor, C. M., Damania, B., and Kedes, D. H. (2003). De novo infection with rhesus monkey rhadinovirus leads to the accumulation of multiple intranuclear capsid species during lytic replication but favors the release of genome-containing virions. J. Virol., 77, 13439–13447.CrossRefGoogle Scholar
Ohara, N., Hayashi, K., Teramoto, N.et al. (2000). Sequence analysis and variation of EBNA-1 in Epstein–Barr virus-related herpesvirus of cynomolgus monkey. Intervirology, 43, 102–106.CrossRefGoogle ScholarPubMed
Peng, R., Gordadze, A. V., Panana, Fuentes E. M.et al. (2000). Sequence and functional analysis of EBNA-LP and EBNA2 proteins from nonhuman primate lymphocryptoviruses. J. Virol., 74, 379–389.CrossRefGoogle ScholarPubMed
Poole, L. J., Yu, Y., Kim, P. S., Zheng, Q. Z., Pevsner, J., and Hayward, G. S. (2002). Altered patterns of cellular gene expression in dermal microvascular endothelial cells infected with Kaposi's sarcoma-associated herpesvirus. J. Virol., 76, 3395–3420.CrossRefGoogle ScholarPubMed
Portis, T., Cooper, L., Dennis, P., and Longnecker, R. (2002). The LMP2A signalosome – a therapeutic target for Epstein–Barr virus latency and associated disease. Front Biosci., 7, d414–d426.CrossRefGoogle ScholarPubMed
Pratt, C. L., Estep, R. D., and Wong, S. W. (2005). Splicing of rhesus rhadinovirus R15 and ORF74 bicistronic transcripts during lytic infection and analysis of effects on production of vCD200 and vGPCR. J. Virol., 79, 3878–3882.CrossRefGoogle Scholar
Rabin, H., Neubauer, R. H., Hopkins, R. F., 3rd, Dzhikidze, E. K., Shevtsova, Z. V., and Lapin, B. A. (1977a). Transforming activity and antigenicity of an Epstein–Barr-like virus from lymphoblastoid cell lines of baboons with lymphoid disease. Intervirology, 8, 240–249.CrossRefGoogle Scholar
Rabin, H., Neubauer, R. H., Hopkins, R. F., and Levy, B. M. (1977b). Characterization of lymphoid cell lines established from multiple Epstein–Barr virus (EBV)-induced lymphomas in a cotton-topped marmoset. Int. J. Cancer, 20, 44–50.CrossRefGoogle Scholar
Ramer, J. C., Garber, R. L., Steele, K. E., Boyson, J. F., O'Rourke, C., and Thomson, J. A. (2000). Fatal lymphoproliferative disease associated with a novel gammaherpesvirus in a captive population of common marmosets. Comp. Med., 50, 59–68.Google Scholar
Rangan, S. R., Martin, L. N., Bozelka, B. E., Wang, N., and Gormus, B. J. (1986). Epstein–Barr virus-related herpesvirus from a rhesus monkey (Macaca mulatta) with malignant lymphoma. Int. J. Cancer, 38, 425–432.CrossRefGoogle ScholarPubMed
Rao, P., Jiang, H., and Wang, F. (2000). Cloning of the rhesus lymphocryptovirus viral capsid antigen and Epstein–Barr virus-encoded small RNA homologues and use in diagnosis of acute and persistent infections. J. Clin. Microbiol., 38, 3219–3925.Google ScholarPubMed
Rasheed, S., Rongey, R. W., Bruszweski, J.et al. (1977). Establishment of a cell line with associated Epstein–Barr-like virus from a leukemic orangutan. Science, 198, 407–409.CrossRefGoogle ScholarPubMed
Renne, R., Blackbourn, D., Whitby, D., Levy, J., and Ganem, D. (1998). Limited transmission of Kaposi's sarcoma-associated herpesvirus in cultured cells. J. Virol., 72, 5182–5188.Google ScholarPubMed
Renne, R., Dittmer, D., Kedes, D.et al. (2004). Experimental transmission of Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) to SIV-positive and SIV-negative rhesus macaques. J. Med. Primatol., 33, 1–9.CrossRefGoogle ScholarPubMed
Rickinson, A. B., Young, L. S., and Rowe, M. (1987). Influence of the Epstein–Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells. J. Virol., 61, 1310–1317.Google ScholarPubMed
Rivailler, P., Quink, C., and Wang, F. (1999). Strong selective pressure for evolution of an Epstein–Barr virus LMP2B homologue in the rhesus lymphocryptovirus. J. Virol., 73, 8867–8872.Google ScholarPubMed
Rivailler, P., Cho, Y. G., and Wang, F. (2002). Complete genomic sequence of an Epstein–Barr virus-related herpesvirus naturally infecting a new world primate: a defining point in the evolution of oncogenic lymphocryptoviruses. J. Virol., 76, 12055–12068.CrossRefGoogle ScholarPubMed
Rivailler, P., Jiang, H., Cho, Y. G., Quink, C., and Wang, F. (2002). Complete nucleotide sequence of the rhesus lymphocryptovirus: genetic validation for an Epstein–Barr virus animal model. J. Virol., 76, 421–426.CrossRefGoogle ScholarPubMed
Rivailler, P., Carville, A., Kaur, A.et al., (2004). Experimental rhesus lymphocryptovirus infection in immunosuppressed macaques: an animal model for Epstein-Barr virus pathogenesis in the immunosuppressed host. Blood, 104, 1482–1489.CrossRefGoogle ScholarPubMed
Rose, T. M., Strand, K. B., Schultz, E. R.et al. (1997). Identification of two homologs of the Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in retroperitoneal fibromatosis of different macaque species. J. Virol., 71, 4138–4144.Google ScholarPubMed
Rose, T. M., Ryan, J. T., Schultz, E. R., Raden, B. W., and Tsai, C. C. (2003). Analysis of 4.3 kilobases of divergent locus B of macaque retroperitoneal fibromatosis-associated herpesvirus reveals a close similarity in gene sequence and genome organization to Kaposi's sarcoma-associated herpesvirus. J. Virol., 77, 5084–5097.CrossRefGoogle ScholarPubMed
Rowe, D. T. and Clarke, J. R. (1989). The type-specific epitopes of the Epstein–Barr virus nuclear antigen 2 are near the carboxy terminus of the protein. J. Gen. Virol., 70(Pt 5), 1217–1229.CrossRefGoogle ScholarPubMed
Rowe, M., Young, L. S., Cadwallader, K., Petti, L.Kieff, E., and Rickinson, A. B. (1989). Distinction between Epstein–Barr virus type A (EBNA 2A) and type B (EBNA 2B) isolates extends to the EBNA 3 family of nuclear proteins. J. Virol., 63, 1031–1039.Google ScholarPubMed
Ruf, I. K., Moghaddam, A., Wang, F., and Sample, J. (1999). Mechanisms that regulate Epstein–Barr virus EBNA-1 gene transcription during restricted latency are conserved among lymphocryptoviruses of Old World primates. J. Virol., 73, 1980–1989.Google ScholarPubMed
Sample, J., Young, L., Martin, B., Chatman, T.Kieff, E., and Rickinson, A. (1990). Epstein–Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes. J. Virol., 64, 4084–4092.Google ScholarPubMed
Schrago, C. G. and Russo, C. A. (2003). Timing the origin of new world monkeys. Mol. Biol. Evol., 20, 1620–1625.CrossRefGoogle ScholarPubMed
Schultz, E. R., Rankin, G. W. Jr., Blanc, M. P., Raden, B. W., Tsai, C. C., and Rose, T. M. (2000). Characterization of two divergent lineages of macaque rhadinoviruses related to Kaposi's sarcoma-associated herpesvirus. J. Virol., 74, 4919–4928.CrossRefGoogle ScholarPubMed
Searles, R. P., Bergquam, E. P., Axthelm, M. K., and Wong, S. W. (1999). Sequence and genomic analysis of a rhesus macaque rhadinovirus with similarity to Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J. Virol., 73, 3040–3053.Google ScholarPubMed
Shope, T., Dechairo, D., and Miller, G. (1973). Malignant lymphoma in cottontop marmosets after inoculation with Epstein–Barr virus. Proc. Natl Acad. Sci. USA, 70, 2487–2491.CrossRefGoogle ScholarPubMed
Stewart, C. B. and Disotell, T. R. (1998). Primate evolution – in and out of Africa. Curr. Biol., 8, R582–R588.CrossRefGoogle ScholarPubMed
Strand, K., Harper, E., Thormahlen, S.et al. (2000). Two distinct lineages of macaque gamma herpesviruses related to the Kaposi's sarcoma associated herpesvirus. J. Clin. Virol., 16, 253–269.CrossRefGoogle ScholarPubMed
Sun, R., Lin, S. F., Gradoville, L., Yuan, Y., Zhu, F., and Miller, G. (1998). A viral gene that activates lytic cycle expression of Kaposi's sarcoma- associated herpesvirus. Proc. Natl Acad. Sci. USA, 95, 10866–10871.CrossRefGoogle ScholarPubMed
Vasiljeva, V. A., Markarjan, D. S., Lapin, B. A.et al. (1974). Establishment of continuous cell lines from leukocytes culture of a hamadryas baboon with leukosis-reticulosis. Neoplasma, 21, 537–544.Google ScholarPubMed
Wang, F. (2001). A new animal model for Epstein–Barr virus pathogenesis. Curr. Top. Microbiol. Immunol., 258, 201–219.Google ScholarPubMed
Wang, F., Rivailler, P., Rao, P., and Cho, Y. (2001). Simian homologues of Epstein–Barr virus. Phil. Trans. R. Soc. Lond. B Biol. Sci., 356, 489–497.CrossRefGoogle ScholarPubMed
Wedderburn, N., Edwards, J. M., Desgranges, C., Fontaine, C., Cohen, B., and The, G. (1984). Infectious mononucleosis-like response in common marmosets infected with Epstein–Barr virus. J. Infect. Dis., 150, 878–882.CrossRefGoogle ScholarPubMed
Werner, J., Wolf, H., Apodaca, J., and Hausen, zur H. (1975). Lymphoproliferative disease in a cotton-top marmoset after inoculation with infectious mononucleosis-derived Epstein–Barr virus. Int. J. Cancer, 15, 1000–1008.CrossRefGoogle Scholar
Whitby, D., Stossel, A., Gamache, C., et al. (2003). Novel Kaposi's sarcoma-associated herpesvirus homolog in baboons. J. Virol., 77, 8159–8165.CrossRefGoogle ScholarPubMed
Wong, S. W., Bergquam, E. P., Swanson, R. M.et al. (1999). Induction of B cell hyperplasia in simian immunodeficiency virus- infected rhesus macaques with the simian homologue of Kaposi's sarcoma- associated herpesvirus. J. Exp. Med., 190, 827–840.CrossRefGoogle ScholarPubMed
Wu, L., Lo, P., Yu, X., Stoops, J. K., Forghani, B., and Zhou, Z. H. (2000). Three-dimensional structure of the human herpesvirus 8 capsid. J. Virol., 74, 9646–9654.CrossRefGoogle ScholarPubMed
Yalamanchili, R., Tong, X., Grossman, S., Johannsen, E., Mosialos, G., and Kieff, E. (1994). Genetic and biochemical evidence that EBNA 2 interaction with a 63-kDa cellular GTG-binding protein is essential for B lymphocyte growth transformation by EBV. Virology, 204, 634–641.CrossRefGoogle ScholarPubMed
Yalamanchili, R., Harada, S., and Kieff, E. (1996). The N-terminal half of EBNA2, except for seven prolines, is not essential for primary B-lymphocyte growth transformation. J. Virol., 70, 2468–2473.Google Scholar
Yasui, T., Luftig, M., Soni, V., and Kieff, E. (2004). Latent infection membrane protein transmembrane FWLY is critical for intermolecular interaction, raft localization, and signaling. Proc. Natl Acad. Sci. USA, 101, 278–283.CrossRefGoogle ScholarPubMed
Yates, J. L., Camiolo, S. M., Ali, S., and Ying, A. (1996). Comparison of the EBNA1 proteins of Epstein–Barr virus and herpesvirus papio in sequence and function. Virology, 222, 1–13.CrossRefGoogle ScholarPubMed
Yu, X. K., O'Connor, C. M., Atanasov, I., Damania, B., Kedes, D. H., and Zhou, Z. H. (2003). Three-dimensional structures of the A, B, and C capsids of rhesus monkey rhadinovirus: insights into gammaherpesvirus capsid assembly, maturation, and DNA packaging. J. Virol., 77, 13182–13193.CrossRefGoogle Scholar
Zhao, B., Dalbies-Tran, R., Jiang, H.et al. (2003). Transcriptional regulatory properties of Epstein–Barr virus nuclear antigen 3C are conserved in simian lymphocryptoviruses. J. Virol., 77, 5639–5648.CrossRefGoogle ScholarPubMed
Zhou, F. C., Zhang, Y. J., Deng, J. H.et al. (2002). Efficient infection by a recombinant Kaposi's sarcoma-associated herpesvirus cloned in a bacterial artificial chromosome: application for genetic analysis. J. Virol., 76, 6185–6196.CrossRefGoogle Scholar
Zhu, F. X., Cusano, T., and Yuan, Y. (1999). Identification of the immediate-early transcripts of Kaposi's sarcoma- associated herpesvirus. J. Virol., 73, 5556–5567.Google ScholarPubMed
Zimber, U., Adldinger, H. K., Lenoir, G. M.et al. (1986). Geographical prevalence of two types of Epstein–Barr virus. Virology, 154, 56–66.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×