Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-07T07:21:58.521Z Has data issue: false hasContentIssue false

60 - Gammaherpesviruses of New World primates

from Part IV - Non-human primate herpesviruses

Published online by Cambridge University Press:  24 December 2009

Bernhard Fleckenstein
Affiliation:
Institut für Klinische und Molekulare Virologie Erlangen, Germany
Armin Ensser
Affiliation:
Institut für Klinische und Molekulare Virologie Erlangen, Germany
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

Numerous Gamma-herpesviruses, a large subfamily of the herpes group, have limited pathogenic potential upon primary infection of their natural host. They are most relevant however as tumor viruses of the hematopoietic system and form an important chapter of viral oncology. The prototype of the genus lymphocryptovirus (γ1-herpesvirus), Epstein-Barr Virus (EBV), was the first clearly identified human herpesvirus. EBV causes lymphomas of B-cell origin and other lymphoproliferative syndromes, nasopharyngeal carcinomas and, possibly, gastric cancer. The second known genus of gamma-herpesviruses, rhadinoviruses or γ2-herpesviruses, is biologically and molecularly distinct. The prototypic members of this group, termed Herpesvirus (H.) saimiri (HVS) and H. ateles (HVA), were detected as T-lymphotropic tumor viruses in neotropical primates and raised primary interest from the fact that they cause fulminant T-cell lymphomas in numerous primates as well as in rabbits, although no exact correlates of these tumors exist in human pathology. This led to the identification of novel viral membrane-associated T-cell oncoproteins, termed Stp and Tip. These are small adaptor molecules that efficiently act on T-lymphocyte signaling. The viruses have been used as expression vectors in T-lymphocytes and allow to study mechanisms of episomal persistence in components of the T-cell system. Later on it became clear that certain strains of HVS can transform human T-lymphocytes to continuous growth in an antigen- and mitogen-independent fashion, providing for the first time a reliable means of human T-lymphocyte immortalization in cell culture.

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 1076 - 1092
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ablashi, D. V., Schirm, S., Fleckenstein, B.et al. (1985). Herpesvirus saimiri-induced lymphoblastoid rabbit cell line: growth characteristics, virus persistence, and oncogenic properties. J. Virol., 55, 623–633.Google ScholarPubMed
Ahuja, S. K. and Murphy, P. M. (1993). Molecular piracy of mammalian interleukin-8 receptor type B by herpesvirus saimiri. J. Biol. Chem., 268, 20691–20694.Google ScholarPubMed
Albrecht, J. C., Müller-Fleckenstein, I., Schmidt, M., Fleckenstein, B. and Biesinger, B. (2005). Tyrosine phosphorylation of the Tio oncoprotein is essential for transformation of primary human T cells. J. Virol., 79, 10507–10513.CrossRefGoogle ScholarPubMed
Albrecht, J. C., Biesinger, B., Müller-Fleckenstein, I., Lengenfelder, D., Schmidt, M., Fleckenstein, B., and Ensser, A. (2004). Herpesvirus ateles Tio can replace herpesvirus saimiri StpC and Tip oncoproteins in growth transformation of monkey and human T cells. J. Virol., 78, 9814–9819.CrossRefGoogle ScholarPubMed
Albrecht, J. C. (2000). Primary structure of the herpesvirus ateles genome. J. Virol., 74, 1033–1037.CrossRefGoogle ScholarPubMed
Albrecht, J. C. and Fleckenstein, B. (1990). Structural organization of the conserved gene block of Herpesvirus saimiri coding for DNA polymerase, glycoprotein B, and major DNA binding protein. Virology, 174, 533–542.CrossRefGoogle Scholar
Albrecht, J. C. and Fleckenstein, B. (1992). New member of the multigene family of complement control proteins in herpesvirus saimiri. J. Virol., 66, 3937–3940.Google ScholarPubMed
Albrecht, J. C., Nicholas, J., Biller, D.et al. (1992a). Primary structure of the herpesvirus saimiri genome. J. Virol., 66, 5047–5058.Google Scholar
Albrecht, J. C., Nicholas, J., Cameron, K. R., Newman, C., Fleckenstein, B., and Honess, R. W. (1992b). Herpesvirus saimiri has a gene specifying a homologue of the cellular membrane glycoprotein CD59. Virology, 190, 527–530.CrossRefGoogle Scholar
Albrecht, J. C., Friedrich, U., and Kardinal, C. (1999). Herpesvirus ateles gene product Tio interacts with nonreceptor protein tyrosine kinases. J. Virol., 73, 4631–4639.Google ScholarPubMed
Alexander, L., Du, Z., Rosenzweig, M., Jung, J. U., and Desrosiers, R. C. (1997). A role for natural simian immunodeficiency virus and human immunodeficiency virus type 1 nef alleles in lymphocyte activation. J. Virol., 71, 6094–6099.Google ScholarPubMed
Alexander, L., Denekamp, L., Knapp, A., Auerbach, M. R., Damania, B., and Desrosiers, R. C. (2000). The primary sequence of rhesus monkey rhadinovirus isolate 26–95: sequence similarities to Kaposi's sarcoma-associated herpesvirus and rhesus monkey rhadinovirus isolate 17577. J. Virol., 74, 3388–3398.CrossRefGoogle ScholarPubMed
Altare, F., Ensser, A.et al. (2001). Interleukin-12 receptor beta1 deficiency in a patient with abdominal tuberculosis. J. Infect. Dis., 184, 231–236.CrossRefGoogle Scholar
Bauer, F., Hofinger, E., Hoffmann, S., Rösch, P., Schweimer, K., and Sticht, H. (2004). Characterization of LcK-binding elements in the herpesviral regulatory Tip protein. Biochemistry, 43, 14932–14939.CrossRefGoogle ScholarPubMed
Bellows, D. S., Chau, B. N., Lee, P., Lazebnik, Y., Burns, W. H., and Hardwick, J. M. (2000). Antiapoptotic herpesvirus Bcl-2 homologs escape caspase-mediated conversion to proapoptotic proteins. J. Virol., 74, 5024–5031.CrossRefGoogle ScholarPubMed
Biesinger, B., Trimble, J. J., Desrosiers, R. C., and Fleckenstein, B. (1990). The divergence between two oncogenic herpesvirus saimiri strains in a genomic region related to the transforming phenotype. Virology, 176, 505–514.CrossRefGoogle Scholar
Biesinger, B., Müller-Fleckenstein, I., Simmer, B.et al. (1992). Stable growth transformation of human T lymphocytes by herpesvirus saimiri. Proc. Natl. Acad. Sci. USA, 89, 3116–3119.CrossRefGoogle Scholar
Biesinger, B., Tsygankov, A. Y., Fickenscher, H.et al. (1995). The product of the herpesvirus saimiri open reading frame 1 (tip) interacts with T cell-specific kinase p56lck in transformed cells. J. Biol. Chem., 270, 4729–4734.CrossRefGoogle Scholar
Bowman, T., Garcia, R., Turkson, J., and Jove, R. (2000). STATs In oncogenesis. Oncogene, 19, 2474–2488.CrossRefGoogle ScholarPubMed
Bromberg, J. and Darnell, J. E. Jr. (2000). The role of STATs in transcriptional control and their impact on cellular function. Oncogene, 19, 2468–2473.CrossRefGoogle ScholarPubMed
Bröker, B. M., Kraft, M. S., Klauenberg, U.et al. (1997). Activation induces apoptosis in Herpesvirus saimiri-transformed T cells independent of CD95 (Fas, APO-1). Eur. J. Immunol., 27, 2774–2780.CrossRefGoogle Scholar
Cho, Y., Ramer, J., Rivailler, P., Quink, C., Garber, R. L., Beier, D. R., and Wang, F. (2001). An Epstein–Barr-related herpesvirus from marmoset lymphomas. Proc. Natl Acad. Sci. USA, 98, 1224–1229.CrossRefGoogle ScholarPubMed
Cho, N. H., Feng, P., Lee, S. H., Lee, B. S., Liang, X., Chang, H., and Jung, J. U. (2004). Inhibition of T cell receptor signal transduction by tyrosine kinase-interacting protein of Herpesvirus saimiri. J Exp. Med., 200, 681–687.CrossRefGoogle ScholarPubMed
Cho, N. H., Kingston, D., Chang, H., Kwon, E. K., Kim, J. M., Lee, J. H., Chu, H., Choi, M. S., Kim, I. S., and Jung, J. U. (2006). Association of herpesvirus saimiri tip with lipid raft is essential for downregulation of T-cell receptor and CD4 coreceptor. J. Virol., 80, 108–118.CrossRefGoogle ScholarPubMed
Choi, J. K., Ishido, S., and Jung, J. U. (2000). The collagen repeat sequence is a determinant of the degree of herpesvirus saimiri STP transforming activity. J. Virol., 74, 8102–8110.CrossRefGoogle ScholarPubMed
Chou, C. S., Medveczky, M. M., Geck, P., Vercelli, D., and Medveczky, P. G. (1995). Expression of IL-2 and IL-4 in T lymphocytes transformed by herpesvirus saimiri. Virology, 208, 418–426.CrossRefGoogle Scholar
Cooper, M., Goodwin, D. J., Hall, K. T.et al. (1999). The gene product encoded by ORF 57 of herpesvirus saimiri regulates the redistribution of the splicing factor SC-35. J. Gen. Virol., 80, 1311–1316.CrossRefGoogle ScholarPubMed
Coscoy, L. and Ganem, D. (2000). Kaposi's sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis. Proc. Natl Acad. Sci. USA, 97, 8051–8056.CrossRefGoogle ScholarPubMed
Damania, B., Li, M., Choi, J. K., Alexander, L., Jung, J. U., and Desrosiers, R. C. (1999). Identification of the R1 oncogene and its protein product from the rhadinovirus of rhesus monkeys. J. Virol., 73, 5123–5131.Google ScholarPubMed
Daniel, M. D., Silva, D., Jackman, D.et al. (1975). Reactivation of squirrel monkey heart isolate (Herpesvirus saimiri strain) from latently infected human cell cultures and induction of malignant lymphoma in marmoset monkeys. Bibl. Haematol., 392–395.Google ScholarPubMed
Daniel, M. D., Silva, D., and Ma, N. (1976). Establishment of owl monkey kidney 210 cell line for virological studies. In Vitro, 12, 290.Google Scholar
Carli, M., Berthold, S., Fickenscher, H.et al. (1993). Immortalization with herpesvirus saimiri modulates the cytokine secretion profile of established Th1 and Th2 human T cell clones. J. Immunol., 151, 5022–5030.Google ScholarPubMed
Thoisy, B., Pouliquen, J. F., Lacoste, V., Gessain, A., and Kazanji, M. (2003). Novel gamma-1 herpesviruses identified in free-ranging new world monkeys (golden-handed tamarin (Saguinus midas), squirrel monkey (Saimiri sciureus), and white-faced saki (Pithecia pithecia)) in French Guiana. J. Virol., 77, 9099–9105.CrossRefGoogle Scholar
Deckert, M., Ticchioni, M., Mari, B., Mary, D., and Bernard, A. (1995). The glycosylphosphatidylinositol-anchored CD59 protein stimulates both T cell receptor zeta/ZAP-70-dependent and -independent signaling pathways in T cells. Eur. J. Immunol., 25, 1815–1822.CrossRefGoogle Scholar
Derfuss, T., Fickenscher, H., Kraft, M. S.et al. (1998). Antiapoptotic activity of the herpesvirus saimiri-encoded Bcl-2 homolog: stabilization of mitochondria and inhibition of caspase-3-like activity. J. Virol., 72, 5897–5904.Google ScholarPubMed
Desrosiers, R. C. and Falk, L. A. (1982). Herpesvirus saimiri strain variability. J. Virol., 43, 352–356.Google ScholarPubMed
Desrosiers, R. C., Mulder, C., and Fleckenstein, B. (1979). Methylation of herpesvirus saimiri DNA in lymphoid tumor cell lines. Proc. Natl Acad. Sci. USA, 76, 3839–3843.CrossRefGoogle ScholarPubMed
Desrosiers, R. C., Bakker, A., Kamine, J., Falk, L. A., Hunt, R. D., and King, N. W. (1985a). A region of the herpesvirus saimiri genome required for oncogenicity. Science, 228, 184–187.CrossRefGoogle Scholar
Desrosiers, R. C., Kamine, J., Bakker, A.et al. (1985b). Synthesis of bovine growth hormone in primates by using a herpesvirus vector. Mol. Cell Biol, 5, 2796–2803.CrossRefGoogle Scholar
Desrosiers, R. C., Silva, D. P., Waldron, L. M., and Letvin, N. L. (1986). Nononcogenic deletion mutants of herpesvirus saimiri are defective for in vitro immortalization. J. Virol., 57, 701–705.Google ScholarPubMed
Doody, G. M., Leek, J. P., Bali, A. K., Ensser, A., Markham, A. F., and Wynter, E. A. (2005). Marker gene transfer into human haemopoietic cells using a herpesvirus saimiri-based vector. Gene Ther., 12, 373–379.CrossRefGoogle ScholarPubMed
Duboise, S. M., Guo, J., Desrosiers, R. C., and Jung, J. U. (1996). Use of virion DNA as a cloning vector for the construction of mutant and recombinant herpesviruses. Proc. Natl Acad. Sci. USA, 93, 11389–11394.CrossRefGoogle ScholarPubMed
Duboise, S. M., Guo, J., Czajak, S.et al. (1998a). A role for herpesvirus saimiri orf14 in transformation and persistent infection. J. Virol., 72, 6770–6776.Google Scholar
Duboise, S. M., Guo, J., Czajak, S., Desrosiers, R. C., and Jung, J. U. (1998b). STP and Tip are essential for herpesvirus saimiri oncogenicity. J. Virol., 72, 1308–1313.Google Scholar
Ensser, A. (2006). Transformation by herpesviruses: focus on T cells. Future Virology, 1, 109–121.CrossRefGoogle Scholar
Ensser, A. and Fleckenstein, B. (2005). T-Cell Transformation and Oncogenesis by gamma-2-Herpesviruses. Adv. Cancer. Res., 63, 91–128.CrossRefGoogle Scholar
Ensser, A. and Fleckenstein, B. (2004). Herpesvirus saimiri transformation of human T Lymphocytes. In Current Protocols in Immunology. New York: Current protocols, John Wiley & Sons, Inc., p. 7.21.1–7.21.10.Google Scholar
Ensser, A., Pfinder, A., Müller-Fleckenstein, I., and Fleckenstein, B. (1999). The URNA genes of herpesvirus saimiri (strain C488) are dispensable for transformation of human T cells in vitro. J. Virol., 73, 10551–10555.Google ScholarPubMed
Ensser, A., Glykofrydes, D., Niphuis, H.et al. (2001). Independence of herpesvirus-induced T cell lymphoma from viral cyclin D homologue. J. Exp. Med., 193, 637–642.CrossRefGoogle ScholarPubMed
Ensser, A., Neipel, F., and Fickenscher, H. (2002). Rhadinovirus pathogenesis. In Bogner, E. and Holzenburg, A. eds Structure–Function Relationships of Human Pathogenic Viruses, New York: Kluwer Academic Publishers / Plenum Publishers, pp. 349–429.Google Scholar
Ensser, A., Thurau, M., Wittmann, S., and Fickenscher, H. (2003). The primary structure of the herpesvirus saimiri strain C488 genome. Virology, 314, 471–487.CrossRefGoogle Scholar
Falk, L. A., Wolfe, L. G., and Deinhardt, F. (1972). Isolation of herpesvirus saimiri from blood of squirrel monkeys (Saimiri sciureus). J. Natl Cancer Inst., 48, 1499–1505.Google Scholar
Falk, L. A., Nigida, S. M., Deinhardt, F., et al. (1974). Herpesvirus ateles: properties of an oncogenic herpesvirus isolated from circulating lymphocytes of spider monkeys (Ateles sp.). Int. J. Cancer, 14, 473–482.CrossRefGoogle Scholar
Falk, L. A., Johnson, D., and Deinhardt, F. (1978). Transformation of marmoset lymphocytes in vitro with Herpesvirus ateles. Int. J. Cancer, 21, 652–657.CrossRefGoogle ScholarPubMed
Fickenscher, H. and Fleckenstein, B. (2001). Herpesvirus saimiri. Phil. Trans. Roy. Soc. Lond B Biol. Sci., 356, 545–567.CrossRefGoogle ScholarPubMed
Fickenscher, H. and Fleckenstein, B. (2002). Growth-transformation of human T cells. Meth. Microbiology 32, 657–692.CrossRefGoogle Scholar
Fickenscher, H., Biesinger, B., Knappe, A., Wittmann, S., and Fleckenstein, B. (1996). Regulation of the herpesvirus saimiri oncogene stpC, similar to that of T-cell activation genes, in growth-transformed human T lymphocytes. J. Virol., 70, 6012–6019.Google ScholarPubMed
Fickenscher, H., Bökel, C., Knappe, A.et al. (1997). Functional phenotype of transformed human alphabeta and gammadelta T cells determined by different subgroup C strains of herpesvirus saimiri. J. Virol., 71, 2252–2263.Google ScholarPubMed
Fleckenstein, B. and Desrosiers, R. C. (1982). Herpesvirus saimiri and herpesvirus ateles. In B. Roizman, ed. The Herpesviruses, Vol. 1, New York, London: Plenum Press, pp. 253–332.
Fleckenstein, B., Bornkamm, G. W., Mulder, C.et al. (1978a). Herpesvirus ateles DNA and its homology with Herpesvirus saimiri nucleic acid. J. Virol., 25, 361–373.Google Scholar
Fleckenstein, B., Daniel, M. D., Hunt, R. D., Werner, J., Falk, L. A., and Mulder, C. (1978b). Tumour induction with DNA of oncogenic primate herpesviruses. Nature, 274, 57–59.CrossRefGoogle Scholar
Fodor, W. L., Rollins, S. A., Caron, Bianco S.et al. (1995). The complement control protein homolog of herpesvirus saimiri regulates serum complement by inhibiting C3 convertase activity. J. Virol., 69, 3889–3892.Google ScholarPubMed
Fossiez, F., Banchereau, J., Murray, R., Van, K. C., Garrone, P., and Lebecque, S. (1998). Interleukin-17. Int. Rev. Immunol., 16, 541–551.CrossRefGoogle ScholarPubMed
Frolova-Jones, E. A., Ensser, A., Stevenson, A. J., Kinsey, S. E., and Meredith, D. M. (2000). Stable marker gene transfer into human bone marrow stromal cells and their progenitors using novel herpesvirus saimiri-based vectors. J. Hematother. Stem Cell Res., 9, 573–581.CrossRefGoogle ScholarPubMed
Fujimuro, M. and Hayward, S. D. (2003). The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus manipulates the activity of glycogen synthase kinase-3beta. J. Virol., 77, 8019–8030.CrossRefGoogle ScholarPubMed
Glykofrydes, D., Niphuis, H., Kuhn, E. M.et al. (2000). Herpesvirus saimiri vFLIP provides an antiapoptotic function but is not essential for viral replication, transformation, or pathogenicity. J. Virol., 74, 11919–11927.CrossRefGoogle ScholarPubMed
Gompels, U. A., Craxton, M. A., and Honess, R. W. (1988). Conservation of gene organization in the lymphotropic herpesviruses herpesvirus saimiri and Epstein–Barr virus. J. Virol., 62, 757–767.Google ScholarPubMed
Goodwin, D. J., Hall, K. T., Stevenson, A. J., Markham, A. F., and Whitehouse, A. (1999). The open reading frame 57 gene product of herpesvirus saimiri shuttles between the nucleus and cytoplasm and is involved in viral RNA nuclear export. J. Virol., 73, 10519–10524.Google ScholarPubMed
Grassmann, R., Dengler, C., Müller-Fleckenstein, I.et al. (1989). Transformation to continuous growth of primary human T lymphocytes by human T-cell leukemia virus type I X-region genes transduced by a Herpesvirus saimiri vector. Proc. Natl Acad. Sci. USA, 86, 3351–3355.CrossRefGoogle Scholar
Grassmann, R., Berchtold, S., Radant, I.et al. (1992). Role of human T-cell leukemia virus type 1 X region proteins in immortalization of primary human lymphocytes in culture. J. Virol., 66, 4570–4575.Google ScholarPubMed
Greve, T., Tamguney, G., Fleischer, B., Fickenscher, H., and Bröker, B. M. (2001). Downregulation of p56(lck) tyrosine kinase activity in T cells of squirrel monkeys (Saimiri sciureus) correlates with the nontransforming and apathogenic properties of herpesvirus saimiri in its natural host. J. Virol., 75, 9252–9261.CrossRefGoogle Scholar
Grüter, P., Tabernero, C., Kobbe, C.et al. (1998). TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol. Cell, 1, 649–659.CrossRefGoogle ScholarPubMed
Guo, J., Duboise, M., Lee, H.et al. (1997). Enhanced downregulation of Lck-mediated signal transduction by a Y114 mutation of herpesvirus saimiri tip. J. Virol., 71, 7092–7096.Google ScholarPubMed
Guo, J., Williams, K., Duboise, S. M., Alexander, L., Veazey, R., and Jung, J. U. (1998). Substitution of ras for the herpesvirus saimiri STP oncogene in lymphocyte transformation. J. Virol., 72, 3698–3704.Google ScholarPubMed
Hall, K. T., Giles, M. S., Calderwood, M. A., Goodwin, D. J., Matthews, D. A., and Whitehouse, A. (2002). The Herpesvirus Saimiri open reading frame 73 gene product interacts with the cellular protein p32. J. Virol., 76, 11612–11622.CrossRefGoogle ScholarPubMed
Hall, K. T., Giles, M. S., Goodwin, D. J.et al. (2000). Analysis of gene expression in a human cell line stably transduced with herpesvirus saimiri. J. Virol., 74, 7331–7337.CrossRefGoogle Scholar
Hartley, D. A., Hurley, T. R., Hardwick, J. S., Lund, T. C., Medveczky, P. G., and Sefton, B. M. (1999). Activation of the lck tyrosine-protein kinase by the binding of the tip protein of herpesvirus saimiri in the absence of regulatory tyrosine phosphorylation. J. Biol. Chem., 274, 20056–20059.CrossRefGoogle ScholarPubMed
Hasham, M. G. and Tsygankov, A. Y. (2004). Tip, and Lck-inte racting protein of Herpesvirus saimiri, causes Fas-and Lck-dependent apoptosis of T lymphocytes. Virology, 320, 313–329.CrossRefGoogle ScholarPubMed
Hayashi, K., Ohara, N., Teramoto, N.et al. (2001). An animal model for human EBV-associated hemophagocytic syndrome: herpesvirus papio frequently induces fatal lymphoproliferative disorders with hemophagocytic syndrome in rabbits. Am. J. Pathol., 158, 1533–1542.CrossRefGoogle ScholarPubMed
Heck, E., Lengenfelder, D., Schmidt, M., Müller-Fleckenstein, I., Fleckenstein, B., Biesinger, B., and Ensser, A. (2005). T Cell Growth Transformation by Herpesvirus saimiri is independent of STAT3, Activation, J. Virol., 79, 5713–5720.CrossRefGoogle Scholar
Heck, E., Friedrich, U., Gack, M. U., Lengenfelder, D., Schmidt, M., Müller-Fleckenstein, I., Fleckenstein, B., Ensser, A., and Biesinger, B. (2006). Growth Transformation of Human T-cells by Herpesvirus saimiri Requires Multiple Tip-Lck Interaction Motifs. J. Virol., 80, 9934–9942.CrossRefGoogle ScholarPubMed
Heinemann, S., Biesinger, B., Fleckenstein, B., and Albrecht, J. C. (2006). NFkappaB signaling is induced by the oncoprotein Tio through direct interaction with TRAF6. J. Biol. Chem., 281, 8565–8572.CrossRefGoogle ScholarPubMed
Hiller, C., Tamguney, G., Stolte, N.et al. (2000a). Herpesvirus saimiri pathogenicity enhanced by thymidine kinase of herpes simplex virus. Virology, 278, 445–455.CrossRefGoogle Scholar
Hiller, C., Wittmann, S., Slavin, S., and Fickenscher, H. (2000b). Functional long-term thymidine kinase suicide gene expression in human T cells using a herpesvirus saimiri vector. Gene Ther., 7, 664–674.CrossRefGoogle Scholar
Hoge, A. T., Hendrickson, S. B., and Burns, W. H. (2000). Murine gammaherpesvirus 68 cyclin D homologue is required for efficient reactivation from latency. J. Virol., 74, 7016–7023.CrossRefGoogle ScholarPubMed
Hoggarth, J. H., Jones, E., Ensser, A., and Meredith, D. M. (2004). Functional expression of thymidine kinase in human leukaemic and colorectal cells, delivered as EGFP fusion protein by herpesvirus saimiri-based vector. Cancer Gene Ther., 11, 613–624.CrossRefGoogle ScholarPubMed
Hör, S., Pirzer, H., Dumoutier, L., Bauer, F., Wittmann, S., Sticht, H., Renauld, J. C., Waal, M. R., and Fickenscher, H. (2004). The T-cell lymphokine interleukin-26 targets epithelial cells through the interleukin-20 receptor 1 and interleukin-10 receptor 2 chains. J. Biol. Chem., 279, 33343–33351.CrossRefGoogle ScholarPubMed
Hör, S., Ensser, A., Reiss, C., Ballmer-Hofer, K., and Biesinger, B. (2001). Herpesvirus saimiri protein StpB associates with cellular Src. J. Gen. Virol. 82, 339–344.CrossRefGoogle ScholarPubMed
Hunt, R. D., Melendez, L. V., Garcia, F. G., and Trum, B. F. (1972). Pathologic features of Herpesvirus ateles lymphoma in cotton-topped marmosets (Saguinus oedipus). J. Natl Cancer Inst., 49, 1631–1639.CrossRefGoogle Scholar
Huppes, W., Fickenscher, H., 't Hart, B. A., and Fleckenstein, B. (1994). Cytokine dependence of human to mouse graft-versus-host disease. Scand. J. Immunol., 40, 26–36.Google Scholar
Ishido, S., Choi, J. K., Lee, B. S.et al. (2000a). Inhibition of natural killer cell-mediated cytotoxicity by Kaposi's sarcoma-associated herpesvirus K5 protein. Immunity, 13, 365–374.CrossRefGoogle Scholar
Ishido, S., Wang, C., Lee, B. S., Cohen, G. B., and Jung, J. U. (2000b). Downregulation of major histocompatibility complex class I molecules by Kaposi's sarcoma-associated herpesvirus K3 and K5 proteins. J. Virol., 74, 5300–5309.CrossRefGoogle Scholar
Jung, J. U. and Desrosiers, R. C. (1991). Identification and characterization of the herpesvirus saimiri oncoprotein STP-C488. J. Virol., 65, 6953–6960.Google ScholarPubMed
Jung, J. U. and Desrosiers, R. C. (1992). Herpesvirus saimiri oncogene STP-C488 encodes a phosphoprotein. J. Virol., 66, 1777–1780.Google ScholarPubMed
Jung, J. U. and Desrosiers, R. C. (1994). Distinct functional domains of STP-C488 of herpesvirus saimiri. Virology, 204, 751–758.CrossRefGoogle ScholarPubMed
Jung, J. U. and Desrosiers, R. C. (1995). Association of the viral oncoprotein STP-C488 with cellular ras. Mol. Cell Biol, 15, 6506–6512.CrossRefGoogle ScholarPubMed
Jung, J. U., Trimble, J. J., King, N. W., Biesinger, B., Fleckenstein, B. W., and Desrosiers, R. C. (1991). Identification of transforming genes of subgroup A and C strains of herpesvirus saimiri. Proc. Natl Acad. Sci. USA, 88, 7051–7055.CrossRefGoogle Scholar
Jung, J. U., Stager, M., and Desrosiers, R. C. (1994). Virus-encoded cyclin. Mol. Cell Biol., 14, 7235–7244.CrossRefGoogle ScholarPubMed
Jung, J. U., Lang, S. M., Friedrich, U.et al. (1995a). Identification of Lck-binding elements in tip of herpesvirus saimiri. J. Biol. Chem., 270, 20660–20667.CrossRefGoogle Scholar
Jung, J. U., Lang, S. M., Jun, T., Roberts, T. M., Veillette, A., and Desrosiers, R. C. (1995b). Downregulation of Lck-mediated signal transduction by tip of herpesvirus saimiri. J. Virol., 69, 7814–7822.Google Scholar
Kaschka-Dierich, C., Werner, F. J., Bauer, I., and Fleckenstein, B. (1982). Structure of nonintegrated, circular Herpesvirus saimiri and Herpesvirus ateles genomes in tumor cell lines and in vitro- transformed cells. J. Virol., 44, 295–310.Google ScholarPubMed
Kiyotaki, M., Desrosiers, R. C., and Letvin, N. L. (1986). Herpesvirus saimiri strain 11 immortalizes a restricted marmoset T8 lymphocyte subpopulation in vitro. J. Exp. Med., 164, 926–931.CrossRefGoogle ScholarPubMed
Knappe, A., Hiller, C., Thurau, M.et al. (1997). The superantigen-homologous viral immediate-early gene ie14/vsag in herpesvirus saimiri-transformed human T cells. J. Virol., 71, 9124–9133.Google ScholarPubMed
Knappe, A., Hiller, C., Niphuis, H.et al. (1998a). The interleukin-17 gene of herpesvirus saimiri. J. Virol., 72, 5797–5801.Google Scholar
Knappe, A., Thurau, M., Niphuis, H.et al. (1998b). T-cell lymphoma caused by herpesvirus saimiri C488 independently of ie14/vsag, a viral gene with superantigen homology. J. Virol., 72, 3469–3471.Google Scholar
Knappe, A., Feldmann, G., Dittmer, U.et al. (2000a). Herpesvirus saimiri-transformed macaque T cells are tolerated and do not cause lymphoma after autologous reinfusion. Blood, 95, 3256–3261.Google Scholar
Knappe, A., Hör, S., Wittmann, S., and Fickenscher, H. (2000b). Induction of a novel cellular homolog of interleukin-10, AK155, by transformation of T lymphocytes with herpesvirus saimiri. J. Virol., 74, 3881–3887.CrossRefGoogle Scholar
Koomey, J. M., Mulder, C., Burghoff, R. L., Fleckenstein, B., and Desrosiers, R. C. (1984). Deletion of DNA sequence in a nononcogenic variant of Herpesvirus saimiri. J. Virol., 50, 662–665.Google Scholar
Korty, P. E., Brando, C., and Shevach, E. M. (1991). CD59 functions as a signal-transducing molecule for human T cell activation. J. Immunol., 146, 4092–4098.Google ScholarPubMed
Kretschmer, C., Murphy, C., Biesinger, B.et al. (1996). A herpes saimiri oncogene causing peripheral T-cell lymphoma in transgenic mice. Oncogene, 12, 1609–1616.Google ScholarPubMed
Kung, S. H. and Medveczky, P. G. (1996). Identification of a herpesvirus saimiri cis-acting DNA fragment that permits stable replication of episomes in transformed T-cells. J. Virol., 70, 1738–1744.Google ScholarPubMed
Lang, G. and Fleckenstein, B. (1990). Trans-activation of the thymidylate synthase promoter of herpesvirus saimiri. J. Virol., 64, 5333–5341.Google ScholarPubMed
Lee, H., Trimble, J. J., Yoon, D. W., Regier, D., Desrosiers, R. C., and Jung, J. U. (1997). Genetic variation of herpesvirus saimiri subgroup A transforming protein and its association with cellular src. J. Virol., 71, 3817–3825.Google ScholarPubMed
Lee, H., Veazey, R., Williams, K.et al. (1998) Deregulation of cell growth by the K1 gene of Kaposi's sarcoma-associated herpesvirus. Nat. Med. 4, 435–440.CrossRefGoogle ScholarPubMed
Lee, H., Choi, J. K., Li, M., Kaye, K., Kieff, E., and Jung, J. U. (1999). Role of cellular tumor necrosis factor receptor-associated factors in NF-kappaB activation and lymphocyte transformation by herpesvirus saimiri STP. J. Virol., 73, 3913–3919.Google ScholarPubMed
Lund, T., Medveczky, M. M., and Medveczky, P. G. (1997a). Herpesvirus saimiri Tip-484 membrane protein markedly increases p56lck activity in T cells. J. Virol., 71, 378–382.Google Scholar
Lund, T. C., Garcia, R., Medveczky, M. M., Jove, R., and Medveczky, P. G. (1997b). Activation of STAT transcription factors by herpesvirus saimiri Tip-484 requires p56lck. J. Virol., 71, 6677–6682.Google Scholar
Means, R. E., Ishido, S., Alvarez, X., and Jung, J. U. (2002). Multiple endocytic trafficking pathways of MHC class I molecules induced by a Herpesvirus protein. EMBO. J., 21, 1638–1649.CrossRefGoogle ScholarPubMed
Medveczky, M. M., Szomolanyi, E., Hesselton, R., DeGrand, D., Geck, P., and Medveczky, P. G. (1989). Herpesvirus saimiri strains from three DNA subgroups have different oncogenic potentials in New Zealand white rabbits. J. Virol., 63, 3601–3611.Google ScholarPubMed
Medveczky, M. M., Geck, P., Sullivan, J. L., Serbousek, D., Djeu, J. Y., and Medveczky, P. G. (1993). IL-2 independent growth and cytotoxicity of herpesvirus saimiri-infected human CD8 cells and involvement of two open reading frame sequences of the virus. Virology, 196, 402–412.CrossRefGoogle ScholarPubMed
Medveczky, P., Szomolanyi, E., Desrosiers, R. C., and Mulder, C. (1984). Classification of herpesvirus saimiri into three groups based on extreme variation in a DNA region required for oncogenicity. J. Virol., 52, 938–944.Google Scholar
Melendez, L. V., Daniel, M. D., Hunt, R. D., and Garcia, F. G. (1968). An apparently new herpesvirus from primary kidney cultures of the squirrel monkey (Saimiri sciureus). Lab. Anim. Care, 18, 374–381.Google Scholar
Melendez, L. V., Hunt, R. D., King, N. W.et al. (1972). Herpesvirus ateles, a new lymphoma virus of monkeys. Nature New Biol., 235, 182–184.CrossRefGoogle ScholarPubMed
Meuer, S. C., Hussey, R. E., Fabbi, M.et al. (1984). An alternative pathway of T-cell activation: a functional role for the 50 kd T11 sheep erythrocyte receptor protein. Cell, 36, 897–906.CrossRefGoogle ScholarPubMed
Mittrücker, H. W., Müller-Fleckenstein, I., Fleckenstein, B., and Fleischer, B. (1992). CD2-mediated autocrine growth of herpes virus saimiri-transformed human T lymphocytes. J. Exp. Med., 176, 909–913.CrossRefGoogle ScholarPubMed
Moghaddam, A., Koch, J., Annis, B., and Wang, F. (1998). Infection of human B lymphocytes with lymphocryptoviruses related to Epstein–Barr virus. J. Virol., 72, 3205–3212.Google Scholar
Murphy, C., Kretschmer, C., Biesinger, B.et al. (1994). Epithelial tumours induced by a herpesvirus oncogene in transgenic mice. Oncogene, 9, 221–226.Google ScholarPubMed
Murphy, P. M. (1994). The molecular biology of leukocyte chemoattractant receptors. Annu. Rev. Immunol., 12, 593–633.CrossRefGoogle ScholarPubMed
Murthy, S. C., Trimble, J. J., and Desrosiers, R. C. (1989). Deletion mutants of herpesvirus saimiri define an open reading frame necessary for transformation. J. Virol., 63, 3307–3314.Google ScholarPubMed
Nava, V. E., Cheng, E. H. Y., Veliuona, M.et al. (1997). Herpesvirus saimiri encodes a functional homolog of the human bcl-2 oncogene. J. Virol., 71, 4118–4122.Google ScholarPubMed
Neipel, F., Albrecht, J. C., and Fleckenstein, B. (1997). Cell-homologous genes in the Kaposi's sarcoma associated rhadinovirus human herpesvirus 8: determinants of its pathogenicity?J. Virol., 71, 4187–4192.Google ScholarPubMed
Nicholas, J., Gompels, U. A., Craxton, M. A., and Honess, R. W. (1988). Conservation of sequence and function between the product of the 52-kilodalton immediate-early gene of herpesvirus saimiri and the BMLF1-encoded transcriptional effector (EB2) of Epstein–Barr virus. J. Virol., 62, 3250–3257.Google ScholarPubMed
Nicholas, J., Coles, L. S., Newman, C., and Honess, R. W. (1991). Regulation of the herpesvirus saimiri (HVS) delayed-early 110- kilodalton promoter by HVS immediate-early gene products and a homolog of the Epstein–Barr virus R trans activator. J. Virol., 65, 2457–2466.Google Scholar
Nicholas, J., Cameron, K. R., and Honess, R. W. (1992). Herpesvirus saimiri encodes homologues of G protein-coupled receptors and cyclins. Nature, 355, 362–365.CrossRefGoogle ScholarPubMed
Nick, S., Fickenscher, H., Biesinger, B., Born, G., Jahn, G., and Fleckenstein, B. (1993). Herpesvirus saimiri transformed human T cell lines: a permissive system for human immunodeficiency viruses. Virology, 194, 875–877.CrossRefGoogle Scholar
Park, J., Lee, B. S., Choi, J. K., Means, R. E., Choe, J., and Jung, J. U. (2002). Herpesviral protein targets a cellular WD repeat endosomal protein to downregulate T lymphocyte receptor expression. Immunity., 17, 221–233.CrossRefGoogle Scholar
Park, J., Cho, N. H., Choi, J. K., Feng, P., Choe, J., and Jung, J. U. (2003). Distinct roles of cellular Lck and p80 proteins in herpesvirus saimiri Tip function on lipid rafts. J. Virol., 77, 9041–9051.CrossRefGoogle ScholarPubMed
Ramer, J. C., Garber, R. L., Steele, K. E., Boyson, J. F., O'Rourke, C., and Thomson, J. A. (2000). Fatal lymphoproliferative disease associated with a novel gammaherpesvirus in a captive population of common marmosets. Comp. Med., 50, 59–68.Google Scholar
Randall, R. E., Newman, C., and Honess, R. W. (1984). A single major immediate-early virus gene product is synthesized in cells productively infected with herpesvirus saimiri. J. Gen. Virol., 65, 1215–1219.CrossRefGoogle ScholarPubMed
Randall, R. E., Newman, C., and Honess, R. W. (1985). Asynchronous expression of the immediate-early protein of herpesvirus saimiri in populations of productively infected cells. J. Gen. Virol., 66, 2199–2213.CrossRefGoogle ScholarPubMed
Rivailler, P., Cho, Y. G., and Wang, F. (2002a). Complete genomic sequence of an Epstein–Barr virus-related herpesvirus naturally infecting a new world primate: a defining point in the evolution of oncogenic lymphocryptoviruses. J. Virol., 76, 12055–12068.CrossRefGoogle Scholar
Rivailler, P., Jiang, H., Cho, Y. G., Quink, C., and Wang, F. (2002b). Complete nucleotide sequence of the rhesus lymphocryptovirus: genetic validation for an Epstein–Barr virus animal model. J. Virol., 76, 421–426.CrossRefGoogle Scholar
Roizman, B., Desrosiers, R. C., Fleckenstein, B., Lopez, C., Minson, A. C., and Studdert, M. J. (1992). The family Herpesviridae: an update. The Herpesvirus Study Group of the International Committee on Taxonomy of Viruses. Arch. Virol., 123, 425–449.Google Scholar
Rother, R. P., Rollins, S. A., Fodor, W. L.et al. (1994). Inhibition of complement-mediated cytolysis by the terminal complement inhibitor of herpesvirus saimiri. J. Virol., 68, 730–737.Google ScholarPubMed
Rouvier, E., Luciani, M. F., Mattei, M. G., Denizot, F., and Golstein, P. (1993). CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J. Immunol., 150, 5445–5456.Google ScholarPubMed
Russo, J. J., Bohenzky, R. A., Chien, M.-C.et al. (1996). Nucleotide sequence of the Kaposi's sarcoma associated herpesvirus (HHV8). Proc. Natl Acad. Sci. USA, 93, 14862–14867.CrossRefGoogle Scholar
Schäfer, A., Lengenfelder, D., Grillhösl, C., Wieser, C., Fleckenstein, B., and Ensser, A. (2003). The latency-associated nuclear antigen homolog of herpesvirus saimiri inhibits lytic virus replication. J. Virol., 77, 5911–5925.CrossRefGoogle ScholarPubMed
Schirm, S., Müller, I., Desrosiers, R. C., and Fleckenstein, B. (1984). Herpesvirus saimiri DNA in a lymphoid cell line established by in vitro transformation. J. Virol., 49, 938–946.Google Scholar
Schneider, U., Schwenk, H. U., and Bornkamm, G. (1977). Characterization of EBV-genome negative “null” and “T” cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int. J. Cancer, 19, 621–626.CrossRefGoogle ScholarPubMed
Schofield, A. (1994). Investigations of the origins of replication of herpesvirus saimiri. Open University, 1–220.
Schweimer, K., Hoffmann, S., Bauer, F.et al. (2002). Structural investigation of the binding of a herpesviral protein to the SH3 domain of tyrosine kinase Lck. Biochemistry, 41, 5120–5130.CrossRefGoogle ScholarPubMed
Searles, R. P., Bergquam, E. P., Axthelm, M. K., and Wong, S. W. (1999). Sequence and genomic analysis of a Rhesus macaque rhadinovirus with similarity to Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J. Virol., 73, 3040–3053.Google ScholarPubMed
Simmer, B., Alt, M., Buckreus, I.et al. (1991). Persistence of selectable herpesvirus saimiri in various human haematopoietic and epithelial cell lines. J. Gen. Virol., 72, 1953–1958.CrossRefGoogle ScholarPubMed
Sinclair, A. J. (2003). bZIP proteins of human gammaherpesviruses. J. Gen. Virol., 84, 1941–1949.CrossRefGoogle ScholarPubMed
Sorokina, E. M., Merlo, J. J. Jr., and Tsygankov, A. Y. (2004). Molecular mechanisms of the effect of Herpesvirus saimiri protein StpC on the signaling pathway leading to NF-kappa B activation. J. Biol. Chem. 279, 13469–13477.CrossRefGoogle Scholar
Stevenson, A. J., Cooper, M., Griffiths, J. C.et al. (1999). Assessment of Herpesvirus saimiri as a potential human gene therapy vector. J. Med. Virol., 57, 269–277.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Stevenson, A. J., Clarke, D., Meredith, D. M., Kinsey, S. E., Whitehouse, A., and Bonifer, C. (2000a). Herpesvirus saimiri-based gene delivery vectors maintain heterologous expression throughout mouse embryonic stem cell differentiation in vitro. Gene Ther., 7, 464–471.CrossRefGoogle Scholar
Stevenson, A. J., Giles, M. S., Hall, K. T.et al. (2000b). Specific oncolytic activity of herpesvirus saimiri in pancreatic cancer cells. Br. J. Cancer, 83, 329–332.CrossRefGoogle Scholar
Swanton, C., Mann, D. J., Fleckenstein, B., Neipel, F., Peters, G., and Jones, N. (1997). Herpes viral cyclin/Cdk6 complexes evade inhibition by CDK inhibitor proteins. Nature, 390, 184–187.CrossRefGoogle ScholarPubMed
Szomolanyi, E., Medveczky, P., and Mulder, C. (1987). In vitro immortalization of marmoset cells with three subgroups of herpesvirus saimiri. J. Virol., 61, 3485–3490.Google ScholarPubMed
Thome, M., Schneider, P., Hofmann, K.et al. (1997). Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature, 386, 517–521.CrossRefGoogle ScholarPubMed
Thomson, B. J. and Nicholas, J. (1991). Superantigen function. Nature, 351, 530.CrossRefGoogle ScholarPubMed
Thurau, M., Whitehouse, A., Wittmann, S., Meredith, D., and Fickenscher, H. (2000). Distinct transcriptional and functional properties of the R transactivator gene orf50 of the transforming herpesvirus saimiri strain C488. Virology, 268, 167–177.CrossRefGoogle Scholar
Troidl, B., Simmer, B., Fickenscher, H.et al. (1994). Karyotypic characterization of human T-cell lines immortalized by Herpesvirus saimiri. Int. J. Cancer, 56, 433–438.CrossRefGoogle ScholarPubMed
Virgin, H. W., Latreille, P., Wamsley, P.et al. (1997). Complete sequence and genomic analysis of murine gammaherpesvirus 68. J. Virol., 71, 5894–5904.Google ScholarPubMed
Wang, F., Rivailler, P., Rao, P., and Cho, Y. (2001). Simian homologues of Epstein–Barr virus. Phil. Trans. Roy. Soc. Lond B Biol. Sci., 356, 489–497.CrossRefGoogle ScholarPubMed
Weber, F., Meinl, E., Drexler, K.et al. (1993). Transformation of human T-cell clones by Herpesvirus saimiri: intact antigen recognition by autonomously growing myelin basic protein-specific T cells. Proc. Natl Acad. Sci. USA, 90, 11049–11053.CrossRefGoogle ScholarPubMed
Whitehouse, A., Cooper, M., and Meredith, D. M. (1998). The immediate-early gene product encoded by open reading frame 57 of herpesvirus saimiri modulates gene expression at a posttranscriptional level. J. Virol., 72, 857–861.Google Scholar
Wiese, N., Tsygankov, A. Y., Klauenberg, U., Bolen, J. B., Fleischer, B., and Bröker, B. M. (1996). Selective activation of T cell kinase p56lck by Herpesvirus saimiri protein tip. J. Biol. Chem., 271, 847–852.CrossRefGoogle ScholarPubMed
Wieser, C., Stumpf, D., Grillhösl, C., Lengenfelder, D., Gay, S., Fleckenstein, B., and Ensser, A. (2005). Regulated and constitutive expression of anti-inflamatory cytokines by non-transforming Herpesvirus saimiri vectors. Gene Ther., 12, 396–406.CrossRefGoogle Scholar
Wright, J., Falk, L. A., Collins, D., and Deinhardt, F. (1976). Mononuclear cell fraction carrying Herpesvirus saimiri in persistently infected squirrel monkeys. J. Natl Cancer Inst., 57, 959–962.CrossRefGoogle ScholarPubMed
Yao, Z. B., Fanslow, W. C., Seldin, M. F.et al. (1995). Herpesvirus saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity, 3, 811–821.CrossRefGoogle ScholarPubMed
Yao, Z. B., Maraskovsky, E., Spriggs, M. K., Cohen, J. I., Armitage, R. J., and Alderson, M. R. (1996). Herpesvirus saimiri open reading frame 14, a protein encoded by a T-lymphotropic herpesvirus, binds to MHC class-II molecules and stimulates T-cell proliferation. J. Immunol., 156, 3260–3266.Google ScholarPubMed
Yoon, D. W., Lee, H., Seol, W., DeMaria, M., Rosenzweig, M., and Jung, J. U. (1997). Tap: a novel cellular protein that interacts with tip of herpesvirus saimiri and induces lymphocyte aggregation. Immunity, 6, 571–582.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×