Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T14:54:27.273Z Has data issue: false hasContentIssue false

59 - Primate betaherpesviruses

from Part IV - Non-human primate herpesviruses

Published online by Cambridge University Press:  24 December 2009

Peter A. Barry
Affiliation:
Center for Comparative Medicine
W. L. William Chang
Affiliation:
Center for Comparative Medicine
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

The last few years have witnessed significant expansion of the simian cytomegalovirus (CMV) model of human CMV (HCMV) infection. Progress in the utilization of the simian CMV models has been highlighted by a better understanding of natural history, development of species-specific reagents and techniques, sequencing of several viral genomes, and generation of a bacterial artificial chromosome (BAC) containing a full-length CMV genome. This work has demonstrated that, not only is there strong conservation of genomic organization and coding content, but also that the simian CMV exhibit significant parallels to HCMV in the course of viral infection in both immunocompetent hosts and those without a fully functional immune system. A wide range of experimental approaches into the molecular biology of HCMV, mechanisms of HCMV persistence and pathogenesis, and the design of novel treatment and prevention strategies are now possible in different non-human primate (NHP) models.

Characterization of simian betaherpesviruses has been restricted almost exclusively to CMV. The single report that is consistent with the existence of human herpesvirus (HHV)-6/7-like viruses in non-human primates (NHP) is based on the amplification of a short DNA sequence with nucleic and amino acid homologies to DNA polymerase of HHV-6 and 7 (Lacoste et al., 2000). In contrast, CMV has been isolated from multiple genera and species of old and new world NHP. Each simian species probably harbors its own variant of CMV that has co-evolved with its host during primate evolution.

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 1051 - 1075
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akter, P., Cunningham, C., McSharry, B. P.et al. (2003). Two novel spliced genes in human cytomegalovirus. J. Gen. Virol., 84(5), 1117–1122.CrossRefGoogle ScholarPubMed
Alcendor, D. J., Barry, P. A., Pratt-Lowe, E., and Luciw, P. A. (1993). Analysis of the rhesus cytomegalovirus immediate-early gene promoter. Virology, 194, 815–821.CrossRefGoogle ScholarPubMed
Alford, C. A. and Britt, W. J. (1993). Cytomegalovirus. In The Human Herpesviruses, ed. Roizman, B., Whitley, B. J., and Lopez, C., pp. 227–255. New York: Raven Press.Google Scholar
Anders, D. G. and Punturieri, S. M. (1991). Multicomponent origin of cytomegalovirus lytic-phase DNA replication. J. Virol., 65(2), 931–937.Google ScholarPubMed
Andrade, M. R., Yee, J., Barry, P. A.et al. (2003). Prevalence of antibodies to selected viruses in a long–term closed breeding colony of rhesus macaques (Macaca mulatta) in Brazil. Am. J. Primatol., 59, 123–128.CrossRefGoogle Scholar
Asher, D. M., Gibbs, J. C. J., Lang, D. J., Gadjusek, D. C., and Chanock, R. M. (1974). Persistent shedding of cytomegalovirus in the urine of healthy rhesus monkeys. Proc. Soc. Exp. Biol. Med., 145, 794–801.CrossRefGoogle ScholarPubMed
Bahr, U. and Darai, G. (2001). Analysis and characterization of the complete genome of tupaia (tree shrew) herpesvirus. J. Virol., 75(10), 4854–4870.CrossRefGoogle ScholarPubMed
Barkovich, A. J. and Lindan, C. E. (1994). Congenital cytomegalovirus infection of the brain: imaging analysis and embryologic considerations. Am. J. Neuroradiol., 15, 703–715.Google ScholarPubMed
Baroncelli, S., Barry, P. A., Capitanio, J. P., Lerche, N. W., Otsyula, M., and Mendoza, S. P. (1997). Cytomegalovirus and simian immunodeficiency virus coinfection: longitudinal study of antibody responses and disease progression. J. AIDS, 15, 5–15.Google ScholarPubMed
Barry, P. A., Alcendor, D. J., Power, M. D., Kerr, H., and Luciw, P. A. (1996). Nucleotide sequence and molecular analysis of the rhesus cytomegalovirus immediate-early gene and the UL121–117 open reading frames. Virology, 215, 61–72.CrossRefGoogle ScholarPubMed
Barry, P. A., Lockridge, K. M., Salamat, S.et al. (2006). Nonhuman primate models of intrauterine cytomegalovirus infection. ILAR J., 47, 49–64.CrossRefGoogle ScholarPubMed
Baskin, G. B. (1987). Disseminated cytomegalovirus infection in immunodeficient rhesus macaques. Am. J. Path., 129, 345–352.Google Scholar
Baskin, G. B., Murphey-Corb, M., Watson, E. A., and Martin, L. N. (1988). Necropsy findings in rhesus monkeys experimentally infected with cultured simian immunodeficiency virus (SIV)/delta. Vet. Pathol., 25(6), 456–467.CrossRefGoogle Scholar
Black, P. H., Hartley, J. W., and Rowe, W. P. (1963). Isolation of a cytomegalovirus from African Green Monkey (28115). Proc. Soc. Exp. Biol. Med., 112, 601–605.CrossRefGoogle Scholar
Blewett, E. L., Lewis, J., Gadsby, E. L., Neubauer, S. R., and Eberle, R. (2003). Isolation of cytomegalovirus and foamy virus from the drill monkey (Mandrillus leucophaeus) and prevalence of antibodies to these viruses amongst wild-born and captive-bred individuals. Arch. Virol., 148(3), 423–433.CrossRefGoogle ScholarPubMed
Blewett, E. L., White, G., Saliki, J. T., and Eberle, R. (2001). Isolation and characterization of an endogenous cytomegalovirus (BaCMV) from baboons. Arch. Virol., 146(9), 1723–1738.CrossRefGoogle ScholarPubMed
Butcher, S. J., Aitken, J., Mitchell, J., Gowen, B., and Dargan, D. J. (1998). Structure of the human cytomegalovirus B capsid by electron cryomicroscopy and image reconstruction. J. Struct. Biol., 124(1), 70–76.CrossRefGoogle ScholarPubMed
Castro, B. A., Homsy, J., Lennette, E., Murthy, K. K., Eichberg, J. W., and Levy, J. A. (1992). HIV-1 expression in chimpanzees can be activated by CD8+ cell depletion or CMV infection. Clin. Immunol. Immunopathol., 65(3), 227–233.CrossRefGoogle ScholarPubMed
Cerboni, C., Mousavi-Jazi, M., Wakiguchi, H., Carbone, E., Karre, K., and Soderstrom, K. (2001). Synergistic effect of IFN-gamma and human cytomegalovirus protein UL40 in the HLA-E-dependent protection from NK cell-mediated cytotoxicity. Eur. J. Immunol., 31(10), 2926–2935.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Cha, T., Tom, E., Kemble, G., Duke, G., Mocarski, E., and Spaete, R. (1996). Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J. Virol., 70(1), 78–83.Google Scholar
Chan, C. K., Brignole, E. J., and Gibson, W. (2002). Cytomegalovirus assemblin (pUL80a): cleavage at internal site not essential for virus growth; proteinase absent from virions. J. Virol., 76(17), 8667–8674.CrossRefGoogle Scholar
Chang, W. L. and Barry, P. A. (2003). Cloning of the full-length rhesus cytomegalovirus genome as an infectious and self-excisable bacterial artificial chromosome for analysis of viral pathogenesis. J. Virol., 77(9), 5073–5083.CrossRefGoogle ScholarPubMed
Chang, W. L., Tarantal, A. F., Zhou, S. S., Borowsky, A. D., and Barry, P. A. (2002). A recombinant rhesus cytomegalovirus expressing enhanced green fluorescent protein retains the wild-type phenotype and pathogenicity in fetal macaques. J. Virol., 76(18), 9493–9504.CrossRefGoogle ScholarPubMed
Chang, Y.-N., Crawford, S., Stall, J., Rawlins, D. R., Jeang, K.-T., and Hayward, G. S. (1990). The palindromic series I repeats in the simian cytomegalovirus immediate-early promoter behave as both strong basal enhancers and cyclic AMP response elements. J. Virol., 64, 264–277.Google Scholar
Chang, Y.-N., Jeang, K.-T., Lietman, T., and Hayward, G. S. (1995). Structural organization of the spliced immediate-early gene complex that encodes the major acidic nuclear (IE1) and transactivator (IE2) proteins of African green monkey cytomegalovirus. J. Biomed. Sci., 2, 105–130.Google ScholarPubMed
Chee, M. S., Bankier, A. T., Beck, S.et al. (1990). Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr. Topics Microbiol. Immunol., 154, 125–169.Google ScholarPubMed
Chen, D. H., Jiang, H., Lee, M., Liu, F., and Zhou, Z. H. (1999). Three-dimensional visualization of tegument/capsid interactions in the intact human cytomegalovirus. Virology, 260(1), 10–16.CrossRefGoogle ScholarPubMed
Choi, Y. K., Simon, M. A., Kim, D. Y.et al. (1999). Fatal measles virus infection in Japanese macaques (Macaca fuscata). Vet Pathol., 36(6), 594–600.CrossRefGoogle Scholar
Colberg-Poley, A. M., Santomenna, L. D., Harlow, P. P., Benfield, P. A., and Tenney, D. J. (1992). Human cytomegalovirus US3 and UL36–38 immediate-early proteins regulate gene expression. J. Virol., 66(1), 95–105.Google ScholarPubMed
Cole, R. and Kuttner, A. G. (1926). A filterable virus present in the submaxillary glands of guinea pigs. J. Exp. Med., 44, 855–873.CrossRefGoogle ScholarPubMed
Conway, M. D., Didier, P., Fairburn, B.et al. (1990). Ocular manifestation of simian immunodeficiency syndrome (SAIDS). Curr. Eye. Res., 9, 759–770.CrossRefGoogle Scholar
Cranmer, L. D., Clark, C. L., Morello, C. S., Farrell, H. E., Rawlinson, W. D., and Spector, D. H. (1996). Identification, analysis, and evolutionary relationships of the putative murine cytomegalovirus homologs of the human cytomegalovirus UL82 (pp71) and UL83 (pp65) matrix phosphoproteins. J. Virol., 70(11), 7929–7939.Google ScholarPubMed
Davison, A. J., Dolan, A., Akter, P.et al. (2003). The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J. Gen. Virol., 84(1), 17–28.CrossRefGoogle ScholarPubMed
Drew, W. L., Mills, J., Levy, J.et al. (1985). Cytomegalovirus infection and abnormal T-lymphocyte subset ratios in homosexual men. Ann. Intern. Med., 103(1), 61–63.CrossRefGoogle ScholarPubMed
Eizuru, Y., Tsuchiya, K., Mori, R., and Minamishima, Y. (1989). Immunological and molecular comparisons of simian cytomegaloviruses isolated from African green monkey (Ceropithicus aethiops) and Japanese macaque (Macaca fuscata). Arch. Virol., 107, 65–75.CrossRefGoogle Scholar
Emery, V. C. (2001). Progress in understanding cytomegalovirus drug resistance. J. Clin. Virol., 21(3), 223–228.CrossRefGoogle ScholarPubMed
Fowler, K. B., Stagno, S., and Pass, R. F. (2003). Maternal immunity and prevention of congenital cytomegalovirus infection. J. Am. Med. Assoc., 289(8), 1008–1011.CrossRefGoogle ScholarPubMed
Gardner, M. B., Endres, M., and Barry, P. A. (1994). The Simian retroviruses: SIV and SRV. In The Retroviridae, ed. Levy, J., pp. 133–276. New York: Plenum Press.CrossRefGoogle Scholar
Ghanekar, A., Lajoie, G., Luo, Y.et al. (2002). Improvement in rejection of human decay accelerating factor transgenic pig-to-primate renal xenografts with administration of rabbit antithymocyte serum. Transplantation, 74(1), 28–35.CrossRefGoogle ScholarPubMed
Gibson, W. (1996). Structure and assembly of the virion. Intervirology, 39(5–6), 389–400.CrossRefGoogle ScholarPubMed
Gillespie, G. M., Wills, M. R., Appay, V.et al. (2000). Functional heterogeneity and high frequencies of cytomegalovirus-specific CD8(+) T lymphocytes in healthy seropositive donors. J. Virol., 74(17), 8140–8150.CrossRefGoogle ScholarPubMed
Gompels, U. A., Nicholas, J., Lawrence, G.et al. (1995). The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology, 209(1), 29–51.CrossRefGoogle ScholarPubMed
Goodpasture, E. W. and Talbot, F. W. (1921). Concerning the nature of “protozoan–like” cells in certain lesions of infancy. Am. J. Dis. Child., 21, 415–421.Google Scholar
Hansen, S. G., Strelow, L. I., Franchi, D. C., Anders, D. G., and Wong, S. W. (2003). Complete sequence and genomic analysis of rhesus cytomegalovirus. J. Virol., 77, 6620–6636.CrossRefGoogle ScholarPubMed
Hayward, G. S., Ambinder, R., Ciufo, D., Hayward, S. D., and LaFemina, R. L. (1984). Structural organization of human herpesvirus DNA molecules. J. Invest. Dermatol., 83(1 Suppl.), 29s–41s.CrossRefGoogle ScholarPubMed
Hayward, J. C., Titelbaum, D. S., Clancy, R. R., and Zimmerman, R. A. (1991). Lissencephaly–pachygyria associated with congenital cytomegalovirus infection. J. Child Neurol., 6, 109–114.CrossRefGoogle ScholarPubMed
Hector, R. and Davison, A. J. (2003). In 9th International Cytomegaloviorus Workshop, May 20–25, Maastricht, the Netherlands.
Henrickson, R. V., Maul, D. H., Osborn, K. G.et al. (1983). Epidemic of acquired immunodeficiency in rhesus monkeys. Lancet, 1(8321), 388–390.CrossRefGoogle ScholarPubMed
Henrickson, R. V., Maul, D. H., Lerche, N. W.et al. (1984). Clinical features of simian acquired immunodeficiency syndrome (SAIDS) in rhesus monkeys. Lab. Anim. Sci., 34(2), 140–145.Google Scholar
Huff, J. E., Eberle, R., Capitanio, J., Zhou, S.-S., and Barry, P. A. (2003). Differential detection of B virus and rhesus cytomegalovirus in rhesus macaques. J. Gen. Virol., 84, 83–92.CrossRefGoogle Scholar
Huff, J. L. and Barry, P. A. (2003). B-virus (Cercopithecine herpesvirus 1) infection in humans and macaques: potential for zoonotic disease. Emerg. Infect. Dis., 9(2), 246–250.CrossRefGoogle ScholarPubMed
Jackson, L. (1920). An intracellular protozoan parasite of the ducts of the salivary glands of the guinea pig. J. Infect. Dis., 26, 347–350.CrossRefGoogle Scholar
Jeang, K.-T., Cho, M.-S., and Hayward, G. S. (1984). Abundant constitutive expression of the immediate-early 94K protein from cytomegalovirus (Colburn) in a DNA-transfected mouse cell line. Mol. Cell. Biol., 4, 2214–2223.CrossRefGoogle Scholar
Jeang, K. T., Chin, G., and Hayward, G. S. (1982). Characterization of cytomegalovirus immediate-early genes. I. Nonpermissive rodent cells overproduce the IE94K protein form CMV (Colburn). Virology, 121, 393–403.CrossRefGoogle Scholar
Jeang, K.-T., Rawlins, D. R., Rosenfeld, P. J., Shero, J. D., Kelly, T. J., and Hayward, G. S. (1987). Multiple tandemly repeated binding sites for cellular nuclear factor 1 that surround the major immediate-early promoters of simian and human cytomegalovirus. J. Virol., 61, 1559–1570.Google ScholarPubMed
Jones, B. C., Logsdon, N. J., Josephson, K., Cook, J., Barry, P. A., and Walter, M. R. (2002). Crystal structure of human cytomegalovirus IL-10 bound to soluble human IL-10R1. Proc. Natl Acad. Sci. USA, 99(14), 9404–9409.CrossRefGoogle ScholarPubMed
Jones-Engel, L., Engel, G. A., Heidrich, J.et al. (2006). Temple monkeys and health implications of commensalism, Kathmandu, Nepal. Emerg. Infect. Dis., 12, 900–906.CrossRefGoogle ScholarPubMed
Kaur, A., Daniel, M. D., Hempel, D., Lee-Parritz, D., Hirsch, M. S., and Johnson, R. P. (1996). Cytotoxic T-lymphocyte responses to cytomegalovirus in normal and simian immunodeficiency virus-infected macaques. J. Virol., 70, 7725–7733.Google Scholar
Kaur, A., Hale, C. L., Noren, B., Kassis, N., Simon, M. A., and Johnson, R. P. (2002). Decreased frequency of cytomegalovirus (CMV)-specific CD4+ T lymphocytes in simian immunodeficiency virus-infected rhesus macaques: inverse relationship with CMV viremia. J. Virol., 76(8), 3646–3658.CrossRefGoogle ScholarPubMed
Kaur, A., Kassis, N., Hale, C. L.et al. (2003). Direct relationship between suppression of virus-specific immunity and emergence of cytomegalovirus disease in simian AIDS. J. Virol., 77(10), 5749–5758.CrossRefGoogle ScholarPubMed
Kern, F., Bunde, T., Faulhaber, N.et al. (2002). Cytomegalovirus (CMV) phosphoprotein 65 makes a large contribution to shaping the T cell repertoire in CMV-exposed individuals. J. Infect. Dis., 185(12), 1709–1716.CrossRefGoogle Scholar
Kessler, M. J., London, W. T., Madden, D. L.et al. (1989). Serological survey for viral diseases in the Cayo Santiago rhesus macaque population. Puerto Rican Health Sci. J., 8, 95–97.Google ScholarPubMed
King, N. W., Hunt, R. D., and Letvin, N. L. (1983). Histopathologic changes in macaques with an acquired immunodeficiency syndrome (AIDS). Am. J. Pathol., 113(3), 382–388.Google Scholar
Kotenko, S. V., Saccani, S., Izotova, L. S., Mirochnitchenko, O. V., and Pestka, S. (2000). Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10). Proc. Natl Acad. Sci. USA, 97(4), 1695–1700.CrossRefGoogle Scholar
Kravitz, R. H., Sciabica, K. S., Cho, K., Luciw, P. A., and Barry, P. A. (1997). Cloning and characterization of the rhesus cytomegalovirus glycoprotein B. J. Gen. Virol., 78, 2009–2013.CrossRefGoogle ScholarPubMed
Kropff, B. and Mach, M. (1997). Identification of the gene coding for rhesus cytomegalovirus glycoprotein B and immunological analysis of the protein. J. Gen. Virol., 78, 1999–2007.CrossRefGoogle ScholarPubMed
Krosky, P. M, Underwood, M. R., Turk, S. R.et al. (1998). Resistance of human cytomegalovirus to benzimidazole ribonucleosides maps to two open reading frames: UL89 and UL56. J. Virol., 72(6), 4721–4728.Google ScholarPubMed
Kuhn, E. M., Stolte, N., Matz-Rensing, K.et al. (1999). Immunohistochemical studies of productive rhesus cytomegalovirus infection in rhesus monkeys (Macaca mulatta) infected with simian immunodeficiency virus. Vet. Pathol., 36(1), 51–56.CrossRefGoogle ScholarPubMed
Lacoste, V., Mauclere, P., Dubreuil, G.et al. (2000). Simian homologues of human gamma-2 and betaherpesviruses in mandrill and drill monkeys. J. Virol., 74(24), 11993–11999.CrossRefGoogle ScholarPubMed
Lai, L. and Britt, W. J. (2003). The interaction between the major capsid protein and the smallest capsid protein of human cytomegalovirus is dependent on two linear sequences in the smallest capsid protein. J. Virol., 77(4), 2730–2735.CrossRefGoogle ScholarPubMed
Lee, J. Y., Irmiere, A., and Gibson, W. (1988). Primate cytomegalovirus assembly: evidence that DNA packaging occurs subsequent to B capsid assembly. Virology, 167(1), 87–96.CrossRefGoogle ScholarPubMed
Letvin, N. L., Eaton, K. A., Aldrich, W. R.et al. (1983a). Acquired immunodeficiency syndrome in a colony of macaque monkeys. Proc. Natl Acad. Sci. USA, 80(9), 2718–2722.CrossRefGoogle Scholar
Letvin, N. L., Aldrich, W. R., King, N. W., Blake, B. J., Daniel, M. D., and Hunt, R. D. (1983b). Experimental transmission of macaque AIDS by means of inoculation of macaque lymphoma tissue. Lancet, 2(8350), 599–602.CrossRefGoogle Scholar
Lischka, P., Sorg, G., Kann, M., Winkler, M., and Stamminger, T. (2003). A nonconventional nuclear localization signal within the UL84 protein of human cytomegalovirus mediates nuclear import via the importin alpha/beta pathway. J. Virol., 77(6), 3734–3748.CrossRefGoogle ScholarPubMed
Lockridge, K. M., Sequar, G., Zhou, S. S., Yue, Y., Mandell, C. M., and Barry, P. A. (1999). Pathogenesis of experimental rhesus cytomegalovirus infection. J. Virol., 73, 9576–9583.Google Scholar
Lockridge, K. M., Zhou, S. S., Kravitz, R. H.et al. (2000). Primate cytomegaloviruses encode and express an IL-10-like protein. Virology, 268(2), 272–280.CrossRefGoogle ScholarPubMed
London, W. T., Sever, J. L., Madden, D. L.et al. (1983). Experimental transmission of simian acquired immunodeficiency syndrome (SAIDS) and Kaposi-like skin lesions. Lancet, 2(8355), 869–873.CrossRefGoogle ScholarPubMed
London, W. T., Martinez, A. J., Houff, S. A.et al. (1986). Experimental congenital disease with simian cytomegalovirus in rhesus monkeys. Teratology, 33, 323–331.CrossRefGoogle ScholarPubMed
Mach, M., Kropff, B., Monte, P., and Britt, W. (2000). Complex formation by human cytomegalovirus glycoproteins M (gpUL100) and N (gpUL73). J. Virol., 74(24), 11881–11892.CrossRefGoogle Scholar
McChesney, M. B., Miller, C. J., Rota, P. A.et al. (1997). Experimental measles. I. Pathogenesis in the normal and the immunized host. Virology, 233(1), 74–84.CrossRefGoogle ScholarPubMed
McCormick, A. L., Skaletskaya, A., , Barry P. A., Mocarski, E. S., and Goldmacher, V. S. (2003). Differential function and expression of the viral inhibitor of caspase 8-induced apoptosis (vICA) and the viral mitochondria-localized inhibitor of apoptosis (vMIA) cell death suppressors conserved in primate and rodent cytomegaloviruses. Virology, in press.CrossRefGoogle ScholarPubMed
McGeoch, D. J., Cook, S., Dolan, A., Jamieson, F. E., and Telford, E. A. (1995). Molecular phylogeny and evolutionary timescale for the family of mammalian herpesviruses. J. Mol. Biol., 247(3), 443–458.CrossRefGoogle ScholarPubMed
McGeoch, D. J., Dolan, A., and Ralph, A. C. (2000). Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J. Virol., 74(22), 10401–10406.CrossRefGoogle Scholar
McVoy, M. A., Nixon, D. E., and Adler, S. P. (1997). Circularization and cleavage of guinea pig cytomegalovirus genomes. J. Virol., 71(6), 4209–4217.Google ScholarPubMed
Minamishima, Y., Graham, B. J., and Benyesh-Melnick, M. (1971). Neutralizing antibodies to cytomegaloviruses in normal simian and human sera. Infect. Immun., 4(4), 368–373.Google ScholarPubMed
Morello, C. S., Cranmer, L. D., and Spector, D. H. (1999). In vivo replication, latency, and immunogenicity of murine cytomegalovirus mutants with deletions in the M83 and M84 genes, the putative homologs of human cytomegalovirus pp65 (UL83). J. Virol., 73(9), 7678–7693.Google Scholar
Mueller, N. J., Barth, R. N., Yamamoto, S.et al. (2002). Activation of cytomegalovirus in pig-to-primate organ xenotransplantation. J. Virol., 76(10), 4734–4740.CrossRefGoogle ScholarPubMed
Murphy, E., Rigoutsos, I., Shibuya, T., and Shenk, T. E. (2003a). Reevaluation of human cytomegalovirus coding potential. Proc. Natl Acad. Sci. USA, in press.Google Scholar
Murphy, E., Yu, D., Grimwood, J.et al. (2003b). Coding potential of laboratory and clinical strains of human cytomegalovirus. Proc. Natl Acad. Sci. USA, in press.Google Scholar
Nicholas, J. (1994). Nucleotide sequence analysis of a 21-kbp region of the genome of human herpesvirus-6 containing homologues of human cytomegalovirus major immediate-early and replication genes. Virology, 204(2), 738–750.CrossRefGoogle ScholarPubMed
Nicholas, J. (1996). Determination and analysis of the complete nucleotide sequence of human herpesvirus 7. J. Virol., 70(9), 5975–5989.Google Scholar
Nigida, S. M., Falk, L. A., Wolfe, L. G., and Deinhardt, F. (1979). Isolation of a cytomegalovirus from salivary glands of white-lipped marmosets (Saguinus fuscicollis). Lab. Anim. Sci., 29(1), 53–60.Google Scholar
North, T. W., Sequar, G., Townsend, L. B.et al. (2004). Rhesus cytomegalovirus is similar to human cytomegalovirus in susceptibility to benzimidizole nucleosides. Antimicrob. Agents Chemother., 48, 2760–2765.CrossRefGoogle Scholar
Ohtaki, S., Kodama, H., Hondo, R., and Kurata, T. (1986). Activation of cytomegalovirus infection in immunosuppressed cynomolgous monkeys inoculated with varicella-zoster virus. Acta Patholog. Jpn., 36, 1553–1563.Google Scholar
Ohtaki, S., Hondo, R., Kodama, H., and Kurata, T. (1988). Experimental activation of latent cytomegalovirus infection of the captive bred (F1) cynomolgous monkeys by live or killed varicella-zoster virus inoculated under immunosuppression. Acta Pathol. Jpn., 38, 967–978.Google ScholarPubMed
Osborn, K. G., Prahalada, S., Lowenstine, L. J., Gardner, M. B., Maul, D. H., and Henrickson, R. V. (1984). The pathology of an epizootic of acquired immunodeficiency in rhesus macaques. Am. J. Pathol., 114, 94–103.Google ScholarPubMed
Pearson, T. C., Trambley, J., Odom, K.et al. (2002). Anti-CD40 therapy extends renal allograft survival in rhesus macaques. Transplantation, 74(7), 933–940.CrossRefGoogle ScholarPubMed
Penfold, M. E., Schmidt, T. L., Dairaghi, D. J., Barry, P. A., and Schall, T. J. (2003). Characterization of the rhesus cytomegalovirus US28 locus. J. Virol., 77(19), 10404–10413.CrossRefGoogle ScholarPubMed
Peterman, T. A., Drotman, D. P., and Curran, J. W. (1985). Epidemiology of the acquired immunodeficiency syndrome (AIDS). Epidemiol. Rev., 7, 1–21.CrossRefGoogle Scholar
Pitcher, C. J., Hagen, S. I., Walker, J. M.et al. (2002). Development and homeostasis of T cell memory in rhesus macaque. J. Immunol., 168(1), 29–43.CrossRefGoogle ScholarPubMed
Prichard, M. N., Penfold, M. E., Duke, G. M., Spaete, R. R., and Kemble, G. W. (2001). A review of genetic differences between limited and extensively passaged human cytomegalovirus strains. Rev. Med. Virol., 11(3), 191–200.CrossRefGoogle ScholarPubMed
Rasmussen, L., Geissler, A., and Winters, M. (2003). Inter- and intragenic variations complicate the molecular epidemiology of human cytomegalovirus. J. Infect. Dis., 2003, 187(5), 809–819.CrossRefGoogle ScholarPubMed
Rawlinson, W. D., Farrell, H. E., and Barrell, B. G. (1996). Analysis of the complete DNA sequence of murine cytomegalovirus. J. Virol., 70(12), 8833–8849.Google ScholarPubMed
Redpath, S., Angulo, A., Gascoigne, N. R., and Ghazal, P. (1999). Murine cytomegalovirus infection down-regulates MHC class II expression on macrophages by induction of IL-10. J. Immunol., 162(11), 6701–6707.Google ScholarPubMed
Ribbert, D. (1904). Uber protozoenartige zellen in der niere eines syphilitischen neugoborenen und in der parotis von kindern. Zentralbl. Allg. Pathol., 15, 945–948.Google Scholar
Rivailler, P., Kaur, A., Johnson, R. P.et al. (2006). Genomic sequence of rhesus cytomegalovirus 180.92: insights into the coding potential of rhesus cytomegalovirus. J. Virol., 80, 4179–4182.CrossRefGoogle ScholarPubMed
Robain, M., Boufassa, F., Hubert, J. B., Persoz, A., Burgard, M., and Meyer, L. (2001). Cytomegalovirus seroconversion as a cofactor for progression to AIDS. AIDS, 15(2), 251–256.CrossRefGoogle ScholarPubMed
Roizman, B. and Pellet, P. E. (2001). The Family Herpesviridae: A brief introduction. In Field's Virology, 4th edn. ed. Knipe, D. M. and Howley, P. M., pp. 2381–2397. Philadelphia: Lippincott Williams & Wilkins.Google Scholar
Sahagun-Ruiz, A., Sierra-Honigmann, A. M., Krause, P.et al. (2004). Simian cytomegalovirus encodes five rapidly evolving chemokine receptor homologues. Virus Genes, 28, 71–83.CrossRefGoogle ScholarPubMed
Schiewe, U., Neipel, F., Schreiner, D., and Fleckenstein, B. (1994). Structure and transcription of an immediate-early region in the human herpesvirus 6 genome. J. Virol., 68(5), 2978–2985.Google ScholarPubMed
Sequar, G., Britt, W. J., Lakeman, F. D.et al. (2002). Experimental coinfection of rhesus macaques with rhesus cytomegalovirus and simian immunodeficiency virus: pathogenesis. J Virol., 76(15), 7661–7671.CrossRefGoogle ScholarPubMed
Smith, K. O., Thiel, J. F., Newman, J. T.et al. (1969). Cytomegaloviruses as common adventitious contaminants in primary African green monkey kidney cell cultures. J. Natl Cancer Inst., 42(3), 489–496.Google ScholarPubMed
Spencer, J. V., Lockridge, K. M., Barry, P. A.et al. (2002). Potent immunosuppressive activities of cytomegalovirus- encoded interleukin-10. J. Virol., 76(3), 1285–1292.CrossRefGoogle ScholarPubMed
Stenberg, R. M., Depto, A. S., Fortney, J., and Nelson, J. A. (1989). Regulated expression of early and late RNAs and proteins from the human cytomegalovirus immediate-early gene region. J. Virol., 63, 2699–2708.Google ScholarPubMed
Stewart, F. W. and Rhoads, C. P. (1929). Lesions in nasal mucous membranes of monkeys with acute poliomyelitis. Proc. Soc. Exp. Biol. Med., 26, 664–665.CrossRefGoogle Scholar
Swack, N. S. and Hsiung, G. D. (1982). Natural and experimental simian cytomegalovirus infections at a primate center. J. Med. Primatol., 11, 169–177.Google Scholar
Swack, N. S., Liu, O. C., and Hsiung, G. D. (1971). Cytomegalovirus infections of monkeys and baboons. Am. J. Epidemiol., 94, 397–402.CrossRefGoogle ScholarPubMed
Swanson, R., Bergquam, E., and Wong, S. W. (1998). Characterization of rhesus cytomegalovirus genes associated with anti-viral susceptibility. Virology, 240(2), 338–348.CrossRefGoogle ScholarPubMed
Swinkels, B. W., Geelen, J. L., Wertheim-van Dillen, P., Es, A. A., and Noordaa, J. (1984). Initial characterization of four cytomegalovirus strains isolated from chimpanzees. Brief report. Arch. Virol., 82(1–2), 125–128.CrossRefGoogle ScholarPubMed
Sylwester, A. W., Mitchell, B. L., Edgar, J. B.et al. (2005). Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J. Exp. Med., 202, 673–685.CrossRefGoogle ScholarPubMed
Tarantal, A. F. (1990). Interventional ultrasound in pregnant macaques: embryonic/fetal applications. J. Med. Primatol., 19(1), 47–58.Google ScholarPubMed
Tarantal, A. F. and Hendrickx, A. G. (1988a). Use of ultrasound for early pregnancy detection in the rhesus and cynomolgus macaque (Macaca mulatta and Macaca fascicularis). J. Med. Primatol., 17(2), 105–112.Google Scholar
Tarantal, A. F. and Hendrickx, A. G. (1988b). The use of ultrasonography for evaluating pregnancy in macaques. In Nonhuman Primates – Developmental Biology and Toxicology, ed. Newbert, D., Merker, H.-J., and Hendrickx, A. G., pp. 91–99. Berlin: Ueberreuter Wissenschaft.Google Scholar
Tarantal, A. F., Salamat, S., Britt, W. J., Luciw, P. A., Hendrickx, A. G., and Barry, P. A. (1998). Neuropathogenesis induced by rhesus cytomegalovirus in fetal rhesus monkeys (Macaca mulatta). J. Infect. Dis., 177, 446–450.CrossRefGoogle Scholar
Teranishi, K., Alwayn, I. P., Buhler, L.et al. (2003). Depletion of anti-Gal antibodies by the intravenous infusion of Gal type 2 and 6 glycoconjugates in baboons. Xenotransplantation 10(4), 357–367.CrossRefGoogle ScholarPubMed
Trus, B. L., Gibson, W., Cheng, N., and Steven, A. C. (1999). Capsid structure of simian cytomegalovirus from cryoelectron microscopy: evidence for tegument attachment sites. J. Virol., 73(3), 2181–2192.Google ScholarPubMed
Twickler, D. M., Perlman, J., and Maberry, M. C. (1993). Congenital cytomegalovirus infection presenting as cerebral ventriculomegaly on antenatal sonography. Am. J. Perinatol., 10, 404–406.CrossRefGoogle ScholarPubMed
Underwood, M. R., Harvey, R. J., Stanat, S. C.et al. (1998). Inhibition of human cytomegalovirus DNA maturation by a benzimidazole ribonucleoside is mediated through the UL89 gene product. J. Virol., 72(1), 717–725.Google ScholarPubMed
Urban, M., Klein, M., Britt, W. J., Hassfurther, E., and Mach, M. (1996). Glycoprotein H of human cytomegalovirus is a major antigen for the neutralizing humoral immune response. J. Gen. Virol., 77, 1537–1547.CrossRefGoogle ScholarPubMed
van Regenmortel, M. H. V., Fauquet, C. M., Bishop, D. H. L. et al. (2000). Seventh Report of the International Committee on Taxonomy of Viruses. http://www.virustaxonomyonline.com/virtax/lpext.dll?f=templates&fn=main-h.htm.
Vink, C., Beuken, E., and Bruggeman, C. A. (2000). Complete DNA sequence of the rat cytomegalovirus genome. J Virol., 74(16), 7656–7665.CrossRefGoogle ScholarPubMed
Vogel, F. S. and Pinkerton, H. (1955). Spontaneous salivary gland disease virus in chimpanzees. Arch. Pathol., 60, 281–285.Google ScholarPubMed
Vogel, P., Weigler, B. J., Kerr, H., Hendrickx, A., and Barry, P. A. (1994). Seroepidemiologic studies of cytomegalovirus infection in a breeding population of rhesus macaques. Lab. Anim. Sci., 44, 25–30.Google Scholar
Webster, A. (1991). Cytomegalovirus as a possible cofactor in HIV disease progression. J. AIDS, 4(Suppl. 1), S47–S52.Google ScholarPubMed
Welch, A. R., Woods, A. S., McNally, L. M., Cotter, R. J., and Gibson, W. (1991). A herpesvirus maturational proteinase, assemblin: identification of its gene, putative active site domain, and cleavage site. Proc. Natl Acad. Sci. USA, 88(23), 10792–10796.CrossRefGoogle ScholarPubMed
Willy, M. E., Woodward, R. A., Thornton, V. B.et al. (1999). Management of a measles outbreak among Old World nonhuman primates. Lab. Anim. Sci., 49(1), 42–48.Google ScholarPubMed
Wood, L. J., Baxter, M. K., Plafker, S. M., and Gibson, W. (1997). Human cytomegalovirus capsid assembly protein precursor (pUL80.5) interacts with itself and with the major capsid protein (pUL86) through two different domains. J. Virol., 71(1), 179–190.Google ScholarPubMed
Yue, Y., Zhou, S. S., and Barry, P. A. (2003). Antibody responses to rhesus cytomegalovirus glycoprotein B in naturally infected rhesus macaques. J. Gen. Virol., in press.CrossRefGoogle ScholarPubMed
Yue, Y., Kaur, A., Zhou, S. S.et al. (2006). Characterization and immunological analysis of the rhesus cytomegalovirus homologue (Rh112) of the human cytomegalovirus UL83 lower matrix phosphoprotein (pp. 65). J. Gen. Virol., 87, 777–787.CrossRefGoogle Scholar
Zhu, H., Cong, J. P., Mamtora, G., Gingeras, T., and Shenk, T. (1998). Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proc. Natl Acad. Sci. USA, 95(24), 14470–14475.CrossRefGoogle ScholarPubMed
Zhu, H., Cong, J. P., Yu, D., Bresnahan, W. A., and Shenk, T. E. (2002). Inhibition of cyclooxygenase 2 blocks human cytomegalovirus replication. Proc. Natl Acad. Sci. USA, 99(6), 3932–3937.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×