Skip to main content Accessibility help
  • Print publication year: 2000
  • Online publication date: May 2017

Chapter 28 - Controversies in Radioimmunotherapy for Hematopoietic Cell Transplantation

from Section 9 - Selection of Conditioning Regimen and Challenges with Different Types of T-Cell Depletion Methods
1.Thomas, E.D., Storb, R., Clift, R.A., et al., Bone-marrow transplantation (second of two parts). N Engl J Med, 1975. 292(17): p. 895902.
2.Clift, R.A., Buckner, C., Appelbaum, F.R., et al., Allogeneic marrow transplantation in patients with acute myeloid leukemia in first remission: a randomized trial of two irradiation regimens. Blood, 1990. 76(9): p. 1867–71.
3.Clift, R.A., Buckner, C., Appelbaum, F.R., et al., Allogeneic marrow transplantation in patients with chronic myeloid leukemia in the chronic phase: a randomized trial of two irradiation regimens. Blood, 1991. 77(8): p. 1660–5.
4.Gyurkocza, B. and Sandmaier, BM. Conditioning regimens for hematopoietic cell transplantation: one size does not fit all. Blood, 2014. 124(3): p. 344–53.
5.Liu, S.Y., Eary, J.F., Petersdorf, S.H., et al., Follow-up of relapsed B-cell lymphoma patients treated with iodine-131- labeled anti-CD20 antibody and autologous stem-cell rescue. J Clin Oncol, 1998. 16(10): p. 3270–8.
6.Press, O.W., Eary, J.F., Gooley, T., et al., A phase I/II trial of iodine-131-tositumomab (anti-CD20), etoposide, cyclophosphamide, and autologous stem cell transplantation for relapsed B-cell lymphomas. Blood, 2000. 96(9): p. 2934–42.
7.Nourigat, C., Badger, C.C., and Bernstein, I.D. Treatment of lymphoma with radiolabeled antibody: elimination of tumor cells lacking target antigen. J Natl Cancer Inst, 1990. 82(1): p. 4750.
8.Press, O.W., Hansen, J.A., Farr, A., et al., Endocytosis and degradation of murine anti-human CD3 monoclonal antibodies by normal and malignant T-lymphocytes. Cancer Res, 1988. 48(8): p. 2249–57.
9.Press, O.W., Eary, J.F., Badger, C.C., et al., Treatment of refractory non-Hodgkin’s lymphoma with radiolabeled MB-1 (anti-CD37) antibody. J Clin Oncol, 1989. 7(8): p. 1027–38.
10.Geissler, F., Anderson, S.K., and Press, O. Intracellular catabolism of radiolabeled anti-CD3 antibodies by leukemic T cells. Blood, 1991. 78(7): p. 1864–74.
11.Geissler, F., Anderson, S.K., Venkatesan, P., et al., Intracellular catabolism of radiolabeled anti-mu antibodies by malignant B cells. Cancer Res, 1992. 52(10): p. 2907−15
12.van der Jagt, R.H., Badger, C.C., Appelbaum, F.R., et al., Localization of radiolabeled antimyeloid antibodies in a human acute leukemia xenograft tumor model. Cancer Res, 1992. 52(1): p. 8994.
13.Press, O.W., Grogan, T.M., and Fisher, R.I. Evaluation and management of mantle cell lymphoma. Adv Leuk Lymphoma, 1996. 6: p. 311.
14.Winter, J.N., Inwards, D.J., Spies, S., et al., Yttrium-90 ibritumomab tiuxetan doses calculated to deliver up to 15 Gy to critical organs may be safely combined with high-dose BEAM and autologous transplantation in relapsed or refractory B-cell non-Hodgkin’s lymphoma. J Clin Oncol, 2009. 27(10): p. 1653–9.
15.Gopal, A.K., Press, O.W., Wilbur, S.M., et al., Rituximab blocks binding of radiolabeled anti-CD20 antibodies (Ab) but not radiolabeled anti-CD45 Ab. Blood, 2008. 112(3): p. 830−5.
16.Omary, M.B., Trowbridge, I.S., and Battifora, H.A. Human homologue of murine T200 glycoprotein. J Exp Med, 1980. 152(4): p. 842−52.
17.Andres, T.L. and Kadin, M.E. Immunologic markers in the differential diagnosis of small round cell tumors from lymphocytic lymphoma and leukemia. Am J Clin Pathol, 1983. 79(5): p. 546−52.
18.Nakano, A., Harada, T., Morikawa, S., et al., Expression of leukocyte common antigen (CD45) on various human leukemia/lymphoma cell lines. Acta Pathol Jpn, 1990. 40(2): p. 107–15.
19.Taetle, R., Ostergaard, H., Smedsrud, M., et al., Regulation of CD45 expression in human leukemia cells. Leukemia, 1991. 5(4): p. 309−14.
20.Press, O.W., Howell-Clark, J., Anderson, S., et al., Retention of B-cell-specific monoclonal antibodies by human lymphoma cells. Blood, 1994. 83(5): p. 1390–7.
21.Becker, W., Goldenberg, D.M., and Wolf, F. The use of monoclonal antibodies and antibody fragments in the imaging of infectious lesions. Semin Nucl Med, 1994. 24(2): p. 142–53.
22.Gray-Owen, S.D. and Blumberg, R.S. CEACAM1: contact-dependent control of immunity. Nat Rev Immunol, 2006. 6(6): p. 433–46.
23.Wahren, B., Gahrton, G., and Hammarstrom, S. Nonspecific cross-reacting antigen in normal and leukemic myeloid cells and serum of leukemic patients. Cancer Res, 1980. 40(6): p. 2039–44.
24.Noworolska, A., Harlozinska, A., Richter, R., et al., Non-specific cross-reacting antigen (NCA) in individual maturation stages of myelocytic cell series. Br J Cancer, 1985. 51(3): p. 371–7.
25.Watt, S.M., Sala-Newby, G., Hoang, T., et al., CD66 identifies a neutrophil-specific epitope within the hematopoietic system that is expressed by members of the carcinoembryonic antigen family of adhesion molecules. Blood, 1991. 78(1): p. 6374.
26.Carrasco, M., Munoz, L., Bellido, M., et al., CD66 expression in acute leukaemia. Ann Hematol, 2000. 79(6): p. 299303.
27.Boccuni, P., Di Noto, R., Lo Pardo, C., et al., CD66c antigen expression is myeloid restricted in normal bone marrow but is a common feature of CD10+ early-B-cell malignancies. Tissue Antigens, 1998. 52(1): p. 18.
28.Bunjes, D., 118Re-labeled anti-CD66 monoclonal antibody in stem cell transplantation for patients wth high-risk acute myeloid leukemia. Leuk Lymphoma. 2002. 43(11): p. 2125–31.
29.Pollard, J.A., Alonzo, T.A., Loken, M., et al., Correlation of CD33 expression level with disease characteristics and response to gemtuzumab ozogamicin containing chemotherapy in childhood AML. Blood. 2012. 119(16): p. 3705-11.
30.Walter, R.B., Appelbaum, F.R., Estey, E.H., et al., Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood. 2012. 119(26): p. 6198−208.
31.Schlom, J., Eggensperger, D., Colcher, D., et al., Therapeutic advantage of high-affinity anticarcinoma radioimmunoconjugates. Cancer Res, 1992. 52(5): p. 1067–72.
32.Fujimori, K., Covell, D.G., Fletcher, J.E., et al., A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier. J Nucl Med, 1990. 31(7): p. 1191–8.
33.Matthews, D.C., Appelbaum, F.R., Eary, J.F., et al., Radiolabeled anti-CD45 monoclonal antibodies target lymphohematopoietic tissue in the macaque. Blood, 1991. 78(7): p. 1864–74.
34.Colcher, D., Bird, R., Rosselli, M., et al., In vivo tumor targeting of a recombinant single-chain antigen-binding protein. J Natl Cancer Inst, 1990. 82(14): p. 1191–7.
35.Larson, S.M., Improved tumor targeting with radiolabeled, recombinant, single-chain, antigen-binding protein. J Natl Cancer Inst, 1990. 82(14): p. 1173–4.
36.Yokota, T., Milenic, D.E., Whitlow, M., et al., Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res, 1992. 52(12): p. 3402–8.
37.Matthews, D.C., Badger, C.C., Fisher, D.R., et al., Selective radiation of hematolymphoid tissue delivered by anti-CD45 antibody. Cancer Res, 1992. 52(5): p. 1228–34.
38.King, D.J., Turner, A., Farnsworth, A.P., et al., Improved tumor targeting with chemically cross-linked recombinant antibody fragments. Cancer Res, 1994. 54(23): p. 6176–85.
39.Nieroda, C.A., Milenic, D.E., Carrasquillo, J.A., et al., Improved tumor radioimmunodetection using a single-chain Fv and gamma- interferon: potential clinical applications for radioimmunoguided surgery and gamma scanning. Cancer Res, 1995. 55(13): p. 2858–65.
40.Milenic, D.E., Yokota, T., Filpula, D.R., et al., Construction, binding properties, metabolism, and tumor targeting of a single-chain Fv derived from the pancarcinoma monoclonal antibody CC49. Cancer Res, 1991. 51(23 Pt 1): p. 6363–71.
41.Larson, S.M., El-Shirbiny, A.M., Divgi, C.R., et al., Single chain antigen binding protein (sFv CC49): first human studies in colorectal carcinoma metastatic to liver. Cancer,1997. 80(12 Suppl): p. 2458–68.
42.Lamborn, K.R., DeNardo, G.L., DeNardo, S.J., et al., Treatment-related parameters predicting efficacy of Lym-1 radioimmunotherapy in patients with B-lymphocytic malignancies. Clin Cancer Res. 1997. 3(8):1253–60.
43.Press, O.W., Shan, D., Howell-Clark, J., et al., Comparative metabolism and retention of iodine-125, yttrium-90, and indium-111 radioimmunoconjugates by cancer cells. Cancer Res, 1996. 56(9): p. 2123–9.
44.Wilder, R.B., DeNardo, G.L., and DeNardo, S.J. Radioimmunotherapy: recent results and future directions. J Clin Oncol, 1996. 14(4): p. 1383–400.
45.Humm, J.L. and Chin, L.M. A model of cell inactivation by alpha-particle internal emitters. Radiat Res, 1993. 134(2): p. 143–50.
46.Zalutsky, M.R. and Pozzi, O.R. Radioimmunotherapy with alpha-particle emitting radionuclides. Q J Nucl Med Mol Imaging, 2004. 48(4): p. 289–96.
47.Zhang, M., Yao, Z., Garmestani, K., et al., Pretargeting radioimmunotherapy of a murine model of adult T-cell leukemia with the alpha-emitting radionuclide, bismuth 213. Blood, 2002. 100(1): p. 208−16.
48.McDevitt, M.R., Ma, D., Lai, L.T., et al., Tumor therapy with targeted atomic nanogenerators. Science, 2001. 294(5546): p. 1537–40.
49.Macklis, R.M., Kaplan, W.D., Ferrara, J.L., et al., Biodistribution studies of anti-Thy 1.2 IgM immunoconjugates: implications for radioimmunotherapy. Int J Radiat Oncol Biol Phys, 1988. 15(2): p. 383–9.
50.Couturier, O., Supiot, S., Degraef-Mougin, M., et al., Cancer radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med Mol Imaging, 2005. 32(5): p. 601−14.
51.Chen, P., Wang, J., Hope, K., et al., Nuclear localizing sequences promote nuclear translocation and enhance the radiotoxicity of the anti-CD33 monoclonal antibody HuM195 labeled with 111In in human myeloid leukemia cells. J Nucl Med, 2006. 47(5): p. 827−36.
52.Kersemans, V., Cornelissen, B., Minden, M.D., et al., Drug-resistant AML cells and primary AML specimens are killed by 111In-anti-CD33 monoclonal antibodies modified with nuclear localizing peptide sequences. J Nucl Med, 2008. 49(9): p. 1546–54.
53.Ali, S.A., Warren, S.D., Richter, K.Y., et al., Improving the tumor retention of radioiodinated antibody: aryl carbohydrate adducts. Cancer Res, 1990. 50(4): p. 1243–50.
54.Nemecek, E.R., Hamlin, D.K., Fisher, D.R., et al., Biodistribution of yttrium-90-labeled anti-CD45 antibody in a nonhuman primate model. Clin Cancer Res, 2005. 11(2 Pt 1): p. 787–94.
55.Burke, J.M., Caron, P.C., Papadopoulos, E.B., et al., Cytoreduction with iodine-131-anti-CD33 antibodies before bone marrow transplantation for advanced myeloid leukemias. Bone Marrow Transplant, 2003. 32(6): p. 549–56.
56.Illidge, T.M., Bayne, M., Brown, N.S., et al., Phase 1/2 study of fractionated (131)I-rituximab in low-grade B-cell lymphoma: the effect of prior rituximab dosing and tumor burden on subsequent radioimmunotherapy. Blood, 2009. 113(7): p. 1412–21.
57.Bianco, J.A., Sandmaier, B., Brown, P.A., et al., Specific marrow localization of an 131I-labeled anti-myeloid antibody in normal dogs: effects of a “cold” antibody pretreatment dose on marrow localization. Exp Hematol, 1989. 17(9): p. 929−34.
58.Matthews, D.C., Appelbaum, F.R., Eary, J.F., et al., Development of a marrow transplant regimen for acute leukemia using targeted hematopoietic irradiation delivered by 131I-labeled anti-CD45 antibody, combined with cyclophosphamide and total body irradiation. Blood, 1995. 85(4): p. 1122–31.
59.Glatting, G., Muller, M., Koop, B., et al., Anti-CD45 monoclonal antibody YAML568: A promising radioimmunoconjugate for targeted therapy of acute leukemia. J Nucl Med, 2006. 47(8): p. 1335–41.
60.Fisher, D.R., Internal dosimetry for systemic radiation therapy. Semin Radiat Oncol, 2000. 10(2): p. 123–32.
61.Rajendran, J.G., Fisher, D.R., Gopal, A.K., et al., High-dose I-131 tositumomab (anti-CD20) radioimmunotherapy for Non-Hodgkin’s Lymphoma: Adjusting radiation absorbed dose to actual organ volumes. J. Nucl Med, 2004. 45(6):1059–64.
62.Carrasquillo, J.A., Pandit-Taskar, N., O’Donoghue, J.A., et al., (124)I-huA33 antibody PET of colorectal cancer. J Nucl Med, 2011. 52(8): p. 1173–80.
63.Mulford, D.A., Scheinberg, D.A., and Jurcic, J.G. The promise of targeted {alpha}-particle therapy. J Nucl Med, 2005. 46(Suppl 1): p. 199S204S.
64.Clift, R.A., Buckner, C.D., Appelbaum, F.R., et al., Long-term follow-up of a randomized trial of two irradiation regimens for patients receiving allogeneic marrow transplants during first remission of acute myeloid leukemia. Blood, 1998. 92(4): 1455–6.
65.Knox, S.J., Levy, R., Miller, R.A., et al., Determinants of the antitumor effect of radiolabeled monoclonal antibodies. Cancer Res, 1990. 50(16): p. 4935−40.
66.Wessels, B.W., Vessella, R.L., Palme, D.F., et al., Radiobiological comparison of external beam irradiation and radioimmunotherapy in renal cell carcinoma xenografts. Int J Radiat Oncol Biol Phys, 1989. 17(6): p. 1257–63.
67.Fowler, J.F., Radiobiological aspects of low-dose rates in radioimmunotherapy. Int J Radiat Oncol Biol Phys, 1990. 18(5): p. 1261–9.
68.Johnson, T.A. and Press, O.W. Synergistic cytotoxicity of iodine-131-anti-CD20 monoclonal antibodies and chemotherapy for treatment of B-cell lymphomas. Int J Cancer, 2000. 85(1): p. 104–12.
69.Press, O.W., Eary, J.F., Appelbaum, F.R., et al., Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support [see comments]. N Engl J Med, 1993. 329(17): p. 1219–24.
70.Press, O.W., Eary, J.F., Appelbaum, F.R., et al., Phase II trial of 131I-B1 (anti-CD20) antibody therapy with autologous stem cell transplantation for relapsed B cell lymphomas. Lancet, 1995. 346(8971): p. 336–40.
71.Gopal, A.K., Rajendran, J.G., Gooley, T.A., et al., High-dose [131]tositumomab (anti-CD20) radioimmunotherapy and autologous hematopoietic stem-cell transplantation for adults > or = 60 years old with relapsed or refractory B-cell lymphoma. J Clin Oncol, 2007. 25(11): p. 1396–402.
72.Berger, M.D., Branger, G., Klaeser, B., et al., Zevalin and BEAM (Z-BEAM) versus rituximab and BEAM (R-BEAM) conditioning chemotherapy prior to autologous stem cell transplantation in patients with mantle cell lymphoma. Hematol Oncol, 2015. doi: 10.1002/hon.2197.
73.Shimoni, A., Avivi, I., Rowe, J.M., et al., A randomized study comparing yttrium-90 ibritumomab tiuxetan (Zevalin) and high-dose BEAM chemotherapy versus BEAM alone as the conditioning regimen before autologous stem cell transplantation in patients with aggressive lymphoma. Cancer, 2012. 118(19): p. 4706−14.
74.Vose, J.M., Carter, S., Burns, L.J., et al., Phase III randomized study of rituximab/carmustine, etoposide, cytarabine, and melphalan (BEAM) compared with iodine-131 tositumomab/BEAM with autologous hemtopoietic cell transplantation for relapsed diffuse large B-cell lymphoma: results from the BMT CTN 0401 trial. J Clin Oncol, 2013. 31(13): p. 1662−8.
75.Gopal, A.K., Guthrie, K.A., Rajendran, J., et al., 90Y-Ibritumomab tiuxetan, fludarabine, and TBI-based nonmyeloablative allogeneic transplantation conditioning for patients with persistent high-risk B-cell lymphoma. Blood, 2011. 118(4): p. 1132–9.
76.Bethge, W.A., Wilbur, D.S., and Sandmaier, B.M. Radioimmunotherapy as non-myeloablative conditioning for allogeneic marrow transplantation. Leuk Lymphoma, 2006. 47(7): p. 1205–14.
77.Appelbaum, F.R., Matthews, D.C., Eary, J.F., et al., The use of radiolabeled anti-CD33 antibody to augment marrow irradiation prior to marrow transplanatation for acute myelogenous leukemia. Transplantation, 1992. 54(5): p. 829−33.
78.Pagel, J.M., Appelbaum, F.R., Eary, J.F., et al., 131I-anti-CD45 antibody plus busulfan and cyclophosphamide before allogeneic hemtopoietic cell transplantation for treatment of acute myeloid leukemia in first remission. Blood, 2006. 107(5): p. 2184–91.
79.Pagel, J.M., Gooley, T.A., Rajendran, J., et al. Allogeneic hemotpoietic cell transplantation after conditioning with 131I-anti-CD45 antibody plus fludarabine and low-dose total body irradiation for elderly patients with advanced acute myeloid leukemia or high-risk myelodysplastic syndrome. Blood, 2009. 114(27): p. 5444−53.
80.Mawad, R., Gooley, T.A., Rajendran, J., et al., Radiolabeled-anti-CD45 antibody with reduced-intensity conditioning and allogeneic transplantation for younger patients with advanced acute myeloid leukemia or myelodysplastic syndrome. Biol Blood Marrow Transplant, 2014. 20(9): p. 1363–8.
81.Klein, S.A., Hermann, S., Dietrich, J.W., et al., Transplantation-related toxicity and acute intestinal graft-versus-host disease after conditioning regimens intensified with Rhenium 188-labeled anti-CD66 monoclonal antibodies. Blood, 2002. 99(6): p. 2270-1.
82.Ringhoffer, M., Blumstein, N., Neumaier, B., et al., 118Re or 90Y-labelled anti-CD66 antibody as part of a dose-reduced conditioning regimen for patients with acute leukemia or myelodysplastic syndrome over the age of 55: results of a phase I-II study. Br J Haematol, 2005. 130(4): p. 604−13.
83.Koenecke, C., Hofmann, M., Bolte, O., et al., Radioimmunotherapy with [(188)Re]-labelled anti-CD66 antibody in the conditioning for allogeneic stem cell transplantation for high-risk acute myeloid leukemia. Int J Hematol, 2008. 87(4): p. 414−21.
84.Grossbard, M.L., Press, O.W., Applebaum, F.R., et al., Monoclonal antibody-based therapies of leukemia and lymphoma. Blood, 1992. 80(4): p. 863−78.
85.Waldmann, T.A., White, J.D., Carrasquillo, J.A., et al., Radioimmunotherapy of interleukin-2R alpha-expressing adult T-cell leukemia with Yttrium-90-labeled anti-Tac. Blood, 1995. 86(11): p. 4063–75.
86.Waldmann, T.A., Daclizumab (anti-Tac, Zenapax) in the treatment of leukemia/lymphoma. Oncogene, 2007. 26(25): p. 3699–703.
87.Zhang, M., Yao, Z., Zhang, Z., et al., The anti-CD25 monoclonal antibody 7G7/B6, armed with the alpha-emitter 211At, provides effective radioimmunotherapy for a murine model of leukemia. Cancer Res, 2006. 66(16): p. 8227−32.
88.Zhang, M., Yao, Z., Patel, H., et al., Effective therapy of murine models of human leukemia and lymphoma with radiolabeled anti-CD30 antibody, HeFi-1. Proc Natl Acad Sci U S A, 2007. 104(20): p. 8444−8.
89.Alinari, L., Lapalombella, R., Andritsos, L., et al., Alemtuzumab (Campath-1H) in the treatment of chronic lymphocytic leukemia. Oncogene, 2007. 26(25): p. 3644–53.
90.Tam, C.S. and Keating, M.J. Chemoimmunotherapy of chronic lymphocytic leukemia. Best Pract Res Clin Haematol, 2007. 20(3): p. 479–98.
91.Robak, T., Recent progress in the management of chronic lymphocytic leukemia. Cancer Treat Rev, 2007. 33(8): p. 710−28.
92.De Decker, M., Bacher, K., Thierens, H., et al., In vitro and in vivo evaluation of direct rhenium-188-labeled anti-CD52 monoclonal antibody alemtuzumab for radioimmunotherapy of B-cell chronic lymphocytic leukemia. Nucl Med Biol, 2008. 35(5): p. 599604.
93.Mavromatis, B. and Cheson, B.D., Monoclonal antibody therapy of chronic lymphocytic leukemia. J Clin Oncol, 2003. 21(9): p. 1874–81.
94.Cheson, B.D., Monoclonal antibody therapy of chronic lymphocytic leukemia. Cancer Immunol Immunother, 2006. 55(2): p. 188–96.
95.Witzig, T.E., Tomblyn, M.B., Misleh, J.G., et al., Anti-CD22 90Y-epratuzumab tetraxetan combined with anti-CD20 veltuzumab: a phase I study in patients with relapsed/refractory, aggressive non-Hodgkin lymphoma. Haematologica, 2014. 99(11): p. 1738–45.
96.Friesen, C., Glatting, G., Koop, B., et al., Breaking chemoresistance and radioresistance with [213Bi]anti-CD45 antibodies in leukemia cells. Cancer Res, 2007. 67(5): p. 1950–8.
97.Vandenbulcke, K., Thierens, H., De Vos, F., et al., In vitro screening for synergism of high-linear energy transfer 213Bi-radiotherapy with other therapeutic agents for the treatment of B-cell chronic lymphocytic leukemia. Cancer Biother Radiopharm, 2006. 21(4): p. 364–72.
98.Scheinberg, D.A. and McDevitt, M.R. Actinium-225 in targeted alpha-particle therapeutic applications. Curr Radiopharm, 2011. 4(4): p. 306−20.
99.Ma, D., McDevitt, M.R., Barendswaard, E., et al., Radioimmunotherapy for model B cell malignancies using 90Y-labeled anti-CD19 and anti-CD20 monoclonal antibodies. Leukemia, 2002. 16(1): p. 60−6.
100.Vallera, D.A., Elson, M., Brechbiel, M.W., et al., Radiotherapy of CD19 expressing Daudi tumors in nude mice with Yttrium-90-labeled anti-CD19 antibody. Cancer Biother Radiopharm, 2004. 19(1): p. 1123.
101.Vallera, D.A., Brechbiel, M.W., Burns, L.J., et al., Radioimmunotherapy of CD22-expressing Daudi tumors in nude mice with a 90Y-labeled anti-CD22 monoclonal antibody. Clin Cancer Res, 2005. 11(21): p. 7920–8.
102.Wesley, J.N., McGee, E.C., Garmestani, K., et al., Systemic radioimmunotherapy using a monoclonal antibody, anti-Tac directed toward the alpha subunit of the IL-2 receptor armed with the alpha-emitting radionuclides (212)Bi or (211)At. Nucl Med Biol, 2004. 31(3): p. 357–64.
103.Vandenbulcke, K., DeVos, F., Offner, F., et al., In vitro evaluation of 213Bi-rituximab versus external gamma irradiation for the treatment of B-CLL patients: relative biological efficacy with respect to apoptosis induction and chromosomal damage. Eur J Nucl Med Mol Imaging, 2003. 30(10): p. 1357–64.
104.Michel, R.B., Andrews, P.M., Rosario, A.V., et al., 177Lu-antibody conjugates for single-cell kill of B-lymphoma cells in vitro and for therapy of micrometastases in vivo. Nucl Med Biol, 2005. 32(3): p. 269–78.
105.Postema, E.J., Frielink, C., Oyen, W.J., et al., Biodistribution of 131I-, 186Re-, 177Lu-, and 88Y-labeled hLL2 (Epratuzumab) in nude mice with CD22-positive lymphoma. Cancer Biother Radiopharm, 2003. 18(4): p. 525−33.
106.Press, O.W., Corcoran, M., Subbiah, K., et al., A comparative evaluation of conventional and pretargeted radioimmunotherapy of CD20-expressing lymphoma xenografts. Blood, 2001. 98(8): p. 2535–43.
107.Pagel, J.M., Lin, Y., Hedin, N., et al., Comparison of a tetravalent single-chain antibody-strepavidin fusion protein and an antibody-streptavidin chemical conjugate for pretargeted anti-CD20 radioimmunotherapy of B-cell lymphomas. Blood, 2006. 108(1): p. 328–36.
108.Axworthy, D.B., Reno, J.M., Hylarides, M.D., et al., Cure of human carcinoma xenografts by a single dose of pretargeted yttrium-90 with negligible toxicity. Proc Natl Acad Sci U S A, 2000. 97(4): p. 1802–7.
109.Forero, A., Weiden, P.L., Vose, J.M., et al., Phase 1 trial of a novel anti-CD20 fusion protein in pretargeted radioimmunotherapy for B-cell non-Hodgkin lymphoma. Blood., 2004. 104(1): p. 227–36. Epub 2004 Mar 2.
110.Forero-Torres, A., Shen, S., Breitz, H., et al., Pretargeted radioimmunotherapy (RIT) with a novel anti-TAG-72 fusion protein. Cancer Biother Radiopharm, 2005. 20(4): p. 379–90.
111.Knox, S.J., Goris, M.L., Tempero, M., et al., Phase II trial of yttrium-90-DOTA-biotin pretargeted by NR-LU-10 antibody/streptavidin in patients with metastatic colon cancer. Clin Cancer Res, 2000. 6(2): p. 406−14.
112.Linden, O., Kurkus, J., Garkavij, M., et al., A novel platform for radioimmunotherapy: extracorporeal depletion of biotinylated and 90Y-labeled rituximab in patients with refractory B-cell lymphoma. Cancer Biother Radiopharm, 2005. 20(4): p. 457–66.
113.Moghimi, S.M., Hunter, A.C., and Murray, J.C., Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev, 2001. 53(2): p. 283318.
114.Zhang, H., Burnum, K.E., Luna, M.L., et al., Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size. Proteomics, 2011. 11(23): p. 4569–77.
115.Torchilin, V.P., Multifunctional nanocarriers. Adv Drug Deliv Rev, 2006. 58(14): p. 1532–55.
116.Alexis, F., Pridgen, E., Molnar, L.K., et al., Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm, 2008. 5(4): p. 505−15.
117.Fang, C., Shi, B., Pei, Y.Y., et al., In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci, 2006. 27(1): p. 2736.
118.Cole, A.J., David, A.E., Wang, J., et al., Magnetic brain tumor targeting and biodistribution of long-circulating PEG-modified, cross-linked starch-coated iron oxide nanoparticles. Biomaterials, 2011. 32(26): p. 6291−301.
119.Goncalves, C., Torrado, E., Martins, T., et al., Dextrin nanoparticles: studies on the interaction with murine macrophages and blood clearance. Colloids Surf B Biointerfaces, 2010. 75(2): p. 483–9.
120.Karmali, P.P., Chao, Y., Park, J.H., et al., Different effect of hydrogelation on antifouling and circulation properties of dextran-iron oxide nanoparticles. Mol Pharm, 2012. 9(3): p. 539−45.
121.Bartlett, D.W., Su, H., Hildebrandt, I.J., et al., Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A, 2007. 104(39): p. 15549–54.
122.Henriksen, G., Schoultz, B.W., Michaelsen, T.E., et al., Sterically stabilized liposomes as a carrier for alpha-emitting radium and actinium radionuclides. Nucl Med Biol, 2004. 31(4): p. 441–9.
123.Jonasdottir, T.J., Fisher, D.R., Borrebaek, J., et al., First in vivo evaluation of liposome-encapsulated 223Ra as a potential alpha-particle-emitting cancer therapeutic agent. Anticancer Res, 2006. 26(4B): p. 2841–8.
124.van Vlerken, L.E., Vyas, T.K., and Amiji, M.M. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res, 2007. 24(8): p. 1405-14.
125.Kommareddy, S. and Amiji, M. Biodistribution and pharmacokinetic analysis of long-circulating thiolated gelatin nanoparticles following systemic administration in breast cancer-bearing mice. J Pharm Sci, 2007. 96(2): p. 397407.
126.DeNardo, G.L., Hok, S., Van Natarajan, A., et al., Characteristics of dimeric (bis) bidentate selective high affinity ligands as HLA-DR10 beta antibody mimics targeting non-Hodgkin’s lymphoma. Int J Oncol, 2007. 31(4): p. 729−40.
127.Balhorn, R., Hok, S., Burke, P.A., et al., Selective high-affinity ligand antibody mimics for cancer diagnosis and therapy: initial application to lymphoma/leukemia. Clin Cancer Res, 2007. 13(18 Pt 2): p. 5621s5628s.
128.DeNardo, G.L., Kukis, D.L., DeNardo, S.J., et al., Enhancement of 67Cu-2IT-BAT-LYM-1 therapy in mice with human Burkitt’s lymphoma (Raji) using interleukin-2. Cancer, 1997. 80(12 Suppl): p. 2576–82.