Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-20T05:02:08.178Z Has data issue: false hasContentIssue false

Chapter 28 - Controversies in Radioimmunotherapy for Hematopoietic Cell Transplantation

from Section 9 - Selection of Conditioning Regimen and Challenges with Different Types of T-Cell Depletion Methods

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 258 - 270
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Thomas, E.D., Storb, R., Clift, R.A., et al., Bone-marrow transplantation (second of two parts). N Engl J Med, 1975. 292(17): p. 895902.Google Scholar
Clift, R.A., Buckner, C., Appelbaum, F.R., et al., Allogeneic marrow transplantation in patients with acute myeloid leukemia in first remission: a randomized trial of two irradiation regimens. Blood, 1990. 76(9): p. 1867–71.Google Scholar
Clift, R.A., Buckner, C., Appelbaum, F.R., et al., Allogeneic marrow transplantation in patients with chronic myeloid leukemia in the chronic phase: a randomized trial of two irradiation regimens. Blood, 1991. 77(8): p. 1660–5.Google Scholar
Gyurkocza, B. and Sandmaier, BM. Conditioning regimens for hematopoietic cell transplantation: one size does not fit all. Blood, 2014. 124(3): p. 344–53.CrossRefGoogle Scholar
Liu, S.Y., Eary, J.F., Petersdorf, S.H., et al., Follow-up of relapsed B-cell lymphoma patients treated with iodine-131- labeled anti-CD20 antibody and autologous stem-cell rescue. J Clin Oncol, 1998. 16(10): p. 3270–8.CrossRefGoogle ScholarPubMed
Press, O.W., Eary, J.F., Gooley, T., et al., A phase I/II trial of iodine-131-tositumomab (anti-CD20), etoposide, cyclophosphamide, and autologous stem cell transplantation for relapsed B-cell lymphomas. Blood, 2000. 96(9): p. 2934–42.Google Scholar
Nourigat, C., Badger, C.C., and Bernstein, I.D. Treatment of lymphoma with radiolabeled antibody: elimination of tumor cells lacking target antigen. J Natl Cancer Inst, 1990. 82(1): p. 4750.CrossRefGoogle ScholarPubMed
Press, O.W., Hansen, J.A., Farr, A., et al., Endocytosis and degradation of murine anti-human CD3 monoclonal antibodies by normal and malignant T-lymphocytes. Cancer Res, 1988. 48(8): p. 2249–57.Google Scholar
Press, O.W., Eary, J.F., Badger, C.C., et al., Treatment of refractory non-Hodgkin’s lymphoma with radiolabeled MB-1 (anti-CD37) antibody. J Clin Oncol, 1989. 7(8): p. 1027–38.CrossRefGoogle ScholarPubMed
Geissler, F., Anderson, S.K., and Press, O. Intracellular catabolism of radiolabeled anti-CD3 antibodies by leukemic T cells. Blood, 1991. 78(7): p. 1864–74.Google Scholar
Geissler, F., Anderson, S.K., Venkatesan, P., et al., Intracellular catabolism of radiolabeled anti-mu antibodies by malignant B cells. Cancer Res, 1992. 52(10): p. 2907−15Google Scholar
van der Jagt, R.H., Badger, C.C., Appelbaum, F.R., et al., Localization of radiolabeled antimyeloid antibodies in a human acute leukemia xenograft tumor model. Cancer Res, 1992. 52(1): p. 8994.Google Scholar
Press, O.W., Grogan, T.M., and Fisher, R.I. Evaluation and management of mantle cell lymphoma. Adv Leuk Lymphoma, 1996. 6: p. 311.Google Scholar
Winter, J.N., Inwards, D.J., Spies, S., et al., Yttrium-90 ibritumomab tiuxetan doses calculated to deliver up to 15 Gy to critical organs may be safely combined with high-dose BEAM and autologous transplantation in relapsed or refractory B-cell non-Hodgkin’s lymphoma. J Clin Oncol, 2009. 27(10): p. 1653–9.Google Scholar
Gopal, A.K., Press, O.W., Wilbur, S.M., et al., Rituximab blocks binding of radiolabeled anti-CD20 antibodies (Ab) but not radiolabeled anti-CD45 Ab. Blood, 2008. 112(3): p. 830−5.CrossRefGoogle Scholar
Omary, M.B., Trowbridge, I.S., and Battifora, H.A. Human homologue of murine T200 glycoprotein. J Exp Med, 1980. 152(4): p. 842−52.CrossRefGoogle ScholarPubMed
Andres, T.L. and Kadin, M.E. Immunologic markers in the differential diagnosis of small round cell tumors from lymphocytic lymphoma and leukemia. Am J Clin Pathol, 1983. 79(5): p. 546−52.Google Scholar
Nakano, A., Harada, T., Morikawa, S., et al., Expression of leukocyte common antigen (CD45) on various human leukemia/lymphoma cell lines. Acta Pathol Jpn, 1990. 40(2): p. 107–15.Google Scholar
Taetle, R., Ostergaard, H., Smedsrud, M., et al., Regulation of CD45 expression in human leukemia cells. Leukemia, 1991. 5(4): p. 309−14.Google ScholarPubMed
Press, O.W., Howell-Clark, J., Anderson, S., et al., Retention of B-cell-specific monoclonal antibodies by human lymphoma cells. Blood, 1994. 83(5): p. 1390–7.Google Scholar
Becker, W., Goldenberg, D.M., and Wolf, F. The use of monoclonal antibodies and antibody fragments in the imaging of infectious lesions. Semin Nucl Med, 1994. 24(2): p. 142–53.Google Scholar
Gray-Owen, S.D. and Blumberg, R.S. CEACAM1: contact-dependent control of immunity. Nat Rev Immunol, 2006. 6(6): p. 433–46.Google Scholar
Wahren, B., Gahrton, G., and Hammarstrom, S. Nonspecific cross-reacting antigen in normal and leukemic myeloid cells and serum of leukemic patients. Cancer Res, 1980. 40(6): p. 2039–44.Google Scholar
Noworolska, A., Harlozinska, A., Richter, R., et al., Non-specific cross-reacting antigen (NCA) in individual maturation stages of myelocytic cell series. Br J Cancer, 1985. 51(3): p. 371–7.Google Scholar
Watt, S.M., Sala-Newby, G., Hoang, T., et al., CD66 identifies a neutrophil-specific epitope within the hematopoietic system that is expressed by members of the carcinoembryonic antigen family of adhesion molecules. Blood, 1991. 78(1): p. 6374.CrossRefGoogle ScholarPubMed
Carrasco, M., Munoz, L., Bellido, M., et al., CD66 expression in acute leukaemia. Ann Hematol, 2000. 79(6): p. 299303.Google Scholar
Boccuni, P., Di Noto, R., Lo Pardo, C., et al., CD66c antigen expression is myeloid restricted in normal bone marrow but is a common feature of CD10+ early-B-cell malignancies. Tissue Antigens, 1998. 52(1): p. 18.CrossRefGoogle ScholarPubMed
Bunjes, D., 118Re-labeled anti-CD66 monoclonal antibody in stem cell transplantation for patients wth high-risk acute myeloid leukemia. Leuk Lymphoma. 2002. 43(11): p. 2125–31.Google Scholar
Pollard, J.A., Alonzo, T.A., Loken, M., et al., Correlation of CD33 expression level with disease characteristics and response to gemtuzumab ozogamicin containing chemotherapy in childhood AML. Blood. 2012. 119(16): p. 3705-11.Google Scholar
Walter, R.B., Appelbaum, F.R., Estey, E.H., et al., Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood. 2012. 119(26): p. 6198−208.Google Scholar
Schlom, J., Eggensperger, D., Colcher, D., et al., Therapeutic advantage of high-affinity anticarcinoma radioimmunoconjugates. Cancer Res, 1992. 52(5): p. 1067–72.Google Scholar
Fujimori, K., Covell, D.G., Fletcher, J.E., et al., A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier. J Nucl Med, 1990. 31(7): p. 1191–8.Google ScholarPubMed
Matthews, D.C., Appelbaum, F.R., Eary, J.F., et al., Radiolabeled anti-CD45 monoclonal antibodies target lymphohematopoietic tissue in the macaque. Blood, 1991. 78(7): p. 1864–74.Google Scholar
Colcher, D., Bird, R., Rosselli, M., et al., In vivo tumor targeting of a recombinant single-chain antigen-binding protein. J Natl Cancer Inst, 1990. 82(14): p. 1191–7.Google Scholar
Larson, S.M., Improved tumor targeting with radiolabeled, recombinant, single-chain, antigen-binding protein. J Natl Cancer Inst, 1990. 82(14): p. 1173–4.CrossRefGoogle ScholarPubMed
Yokota, T., Milenic, D.E., Whitlow, M., et al., Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res, 1992. 52(12): p. 3402–8.Google Scholar
Matthews, D.C., Badger, C.C., Fisher, D.R., et al., Selective radiation of hematolymphoid tissue delivered by anti-CD45 antibody. Cancer Res, 1992. 52(5): p. 1228–34.Google Scholar
King, D.J., Turner, A., Farnsworth, A.P., et al., Improved tumor targeting with chemically cross-linked recombinant antibody fragments. Cancer Res, 1994. 54(23): p. 6176–85.Google Scholar
Nieroda, C.A., Milenic, D.E., Carrasquillo, J.A., et al., Improved tumor radioimmunodetection using a single-chain Fv and gamma- interferon: potential clinical applications for radioimmunoguided surgery and gamma scanning. Cancer Res, 1995. 55(13): p. 2858–65.Google Scholar
Milenic, D.E., Yokota, T., Filpula, D.R., et al., Construction, binding properties, metabolism, and tumor targeting of a single-chain Fv derived from the pancarcinoma monoclonal antibody CC49. Cancer Res, 1991. 51(23 Pt 1): p. 6363–71.Google ScholarPubMed
Larson, S.M., El-Shirbiny, A.M., Divgi, C.R., et al., Single chain antigen binding protein (sFv CC49): first human studies in colorectal carcinoma metastatic to liver. Cancer,1997. 80(12 Suppl): p. 2458–68.Google Scholar
Lamborn, K.R., DeNardo, G.L., DeNardo, S.J., et al., Treatment-related parameters predicting efficacy of Lym-1 radioimmunotherapy in patients with B-lymphocytic malignancies. Clin Cancer Res. 1997. 3(8):1253–60.Google Scholar
Press, O.W., Shan, D., Howell-Clark, J., et al., Comparative metabolism and retention of iodine-125, yttrium-90, and indium-111 radioimmunoconjugates by cancer cells. Cancer Res, 1996. 56(9): p. 2123–9.Google Scholar
Wilder, R.B., DeNardo, G.L., and DeNardo, S.J. Radioimmunotherapy: recent results and future directions. J Clin Oncol, 1996. 14(4): p. 1383–400.Google Scholar
Humm, J.L. and Chin, L.M. A model of cell inactivation by alpha-particle internal emitters. Radiat Res, 1993. 134(2): p. 143–50.Google Scholar
Zalutsky, M.R. and Pozzi, O.R. Radioimmunotherapy with alpha-particle emitting radionuclides. Q J Nucl Med Mol Imaging, 2004. 48(4): p. 289–96.Google Scholar
Zhang, M., Yao, Z., Garmestani, K., et al., Pretargeting radioimmunotherapy of a murine model of adult T-cell leukemia with the alpha-emitting radionuclide, bismuth 213. Blood, 2002. 100(1): p. 208−16.Google Scholar
McDevitt, M.R., Ma, D., Lai, L.T., et al., Tumor therapy with targeted atomic nanogenerators. Science, 2001. 294(5546): p. 1537–40.Google Scholar
Macklis, R.M., Kaplan, W.D., Ferrara, J.L., et al., Biodistribution studies of anti-Thy 1.2 IgM immunoconjugates: implications for radioimmunotherapy. Int J Radiat Oncol Biol Phys, 1988. 15(2): p. 383–9.Google Scholar
Couturier, O., Supiot, S., Degraef-Mougin, M., et al., Cancer radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med Mol Imaging, 2005. 32(5): p. 601−14.CrossRefGoogle ScholarPubMed
Chen, P., Wang, J., Hope, K., et al., Nuclear localizing sequences promote nuclear translocation and enhance the radiotoxicity of the anti-CD33 monoclonal antibody HuM195 labeled with 111In in human myeloid leukemia cells. J Nucl Med, 2006. 47(5): p. 827−36.Google Scholar
Kersemans, V., Cornelissen, B., Minden, M.D., et al., Drug-resistant AML cells and primary AML specimens are killed by 111In-anti-CD33 monoclonal antibodies modified with nuclear localizing peptide sequences. J Nucl Med, 2008. 49(9): p. 1546–54.Google Scholar
Ali, S.A., Warren, S.D., Richter, K.Y., et al., Improving the tumor retention of radioiodinated antibody: aryl carbohydrate adducts. Cancer Res, 1990. 50(4): p. 1243–50.Google Scholar
Nemecek, E.R., Hamlin, D.K., Fisher, D.R., et al., Biodistribution of yttrium-90-labeled anti-CD45 antibody in a nonhuman primate model. Clin Cancer Res, 2005. 11(2 Pt 1): p. 787–94.Google Scholar
Burke, J.M., Caron, P.C., Papadopoulos, E.B., et al., Cytoreduction with iodine-131-anti-CD33 antibodies before bone marrow transplantation for advanced myeloid leukemias. Bone Marrow Transplant, 2003. 32(6): p. 549–56.Google Scholar
Illidge, T.M., Bayne, M., Brown, N.S., et al., Phase 1/2 study of fractionated (131)I-rituximab in low-grade B-cell lymphoma: the effect of prior rituximab dosing and tumor burden on subsequent radioimmunotherapy. Blood, 2009. 113(7): p. 1412–21.Google Scholar
Bianco, J.A., Sandmaier, B., Brown, P.A., et al., Specific marrow localization of an 131I-labeled anti-myeloid antibody in normal dogs: effects of a “cold” antibody pretreatment dose on marrow localization. Exp Hematol, 1989. 17(9): p. 929−34.Google Scholar
Matthews, D.C., Appelbaum, F.R., Eary, J.F., et al., Development of a marrow transplant regimen for acute leukemia using targeted hematopoietic irradiation delivered by 131I-labeled anti-CD45 antibody, combined with cyclophosphamide and total body irradiation. Blood, 1995. 85(4): p. 1122–31.Google Scholar
Glatting, G., Muller, M., Koop, B., et al., Anti-CD45 monoclonal antibody YAML568: A promising radioimmunoconjugate for targeted therapy of acute leukemia. J Nucl Med, 2006. 47(8): p. 1335–41.Google Scholar
Fisher, D.R., Internal dosimetry for systemic radiation therapy. Semin Radiat Oncol, 2000. 10(2): p. 123–32.Google Scholar
Rajendran, J.G., Fisher, D.R., Gopal, A.K., et al., High-dose I-131 tositumomab (anti-CD20) radioimmunotherapy for Non-Hodgkin’s Lymphoma: Adjusting radiation absorbed dose to actual organ volumes. J. Nucl Med, 2004. 45(6):1059–64.Google Scholar
Carrasquillo, J.A., Pandit-Taskar, N., O’Donoghue, J.A., et al., (124)I-huA33 antibody PET of colorectal cancer. J Nucl Med, 2011. 52(8): p. 1173–80.Google Scholar
Mulford, D.A., Scheinberg, D.A., and Jurcic, J.G. The promise of targeted {alpha}-particle therapy. J Nucl Med, 2005. 46(Suppl 1): p. 199S204S.Google Scholar
Clift, R.A., Buckner, C.D., Appelbaum, F.R., et al., Long-term follow-up of a randomized trial of two irradiation regimens for patients receiving allogeneic marrow transplants during first remission of acute myeloid leukemia. Blood, 1998. 92(4): 1455–6.Google Scholar
Knox, S.J., Levy, R., Miller, R.A., et al., Determinants of the antitumor effect of radiolabeled monoclonal antibodies. Cancer Res, 1990. 50(16): p. 4935−40.Google Scholar
Wessels, B.W., Vessella, R.L., Palme, D.F., et al., Radiobiological comparison of external beam irradiation and radioimmunotherapy in renal cell carcinoma xenografts. Int J Radiat Oncol Biol Phys, 1989. 17(6): p. 1257–63.Google Scholar
Fowler, J.F., Radiobiological aspects of low-dose rates in radioimmunotherapy. Int J Radiat Oncol Biol Phys, 1990. 18(5): p. 1261–9.Google Scholar
Johnson, T.A. and Press, O.W. Synergistic cytotoxicity of iodine-131-anti-CD20 monoclonal antibodies and chemotherapy for treatment of B-cell lymphomas. Int J Cancer, 2000. 85(1): p. 104–12.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Press, O.W., Eary, J.F., Appelbaum, F.R., et al., Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support [see comments]. N Engl J Med, 1993. 329(17): p. 1219–24.Google Scholar
Press, O.W., Eary, J.F., Appelbaum, F.R., et al., Phase II trial of 131I-B1 (anti-CD20) antibody therapy with autologous stem cell transplantation for relapsed B cell lymphomas. Lancet, 1995. 346(8971): p. 336–40.Google Scholar
Gopal, A.K., Rajendran, J.G., Gooley, T.A., et al., High-dose [131]tositumomab (anti-CD20) radioimmunotherapy and autologous hematopoietic stem-cell transplantation for adults > or = 60 years old with relapsed or refractory B-cell lymphoma. J Clin Oncol, 2007. 25(11): p. 1396–402.Google Scholar
Berger, M.D., Branger, G., Klaeser, B., et al., Zevalin and BEAM (Z-BEAM) versus rituximab and BEAM (R-BEAM) conditioning chemotherapy prior to autologous stem cell transplantation in patients with mantle cell lymphoma. Hematol Oncol, 2015. doi: 10.1002/hon.2197.Google Scholar
Shimoni, A., Avivi, I., Rowe, J.M., et al., A randomized study comparing yttrium-90 ibritumomab tiuxetan (Zevalin) and high-dose BEAM chemotherapy versus BEAM alone as the conditioning regimen before autologous stem cell transplantation in patients with aggressive lymphoma. Cancer, 2012. 118(19): p. 4706−14.Google Scholar
Vose, J.M., Carter, S., Burns, L.J., et al., Phase III randomized study of rituximab/carmustine, etoposide, cytarabine, and melphalan (BEAM) compared with iodine-131 tositumomab/BEAM with autologous hemtopoietic cell transplantation for relapsed diffuse large B-cell lymphoma: results from the BMT CTN 0401 trial. J Clin Oncol, 2013. 31(13): p. 1662−8.Google Scholar
Gopal, A.K., Guthrie, K.A., Rajendran, J., et al., 90Y-Ibritumomab tiuxetan, fludarabine, and TBI-based nonmyeloablative allogeneic transplantation conditioning for patients with persistent high-risk B-cell lymphoma. Blood, 2011. 118(4): p. 1132–9.Google Scholar
Bethge, W.A., Wilbur, D.S., and Sandmaier, B.M. Radioimmunotherapy as non-myeloablative conditioning for allogeneic marrow transplantation. Leuk Lymphoma, 2006. 47(7): p. 1205–14.Google Scholar
Appelbaum, F.R., Matthews, D.C., Eary, J.F., et al., The use of radiolabeled anti-CD33 antibody to augment marrow irradiation prior to marrow transplanatation for acute myelogenous leukemia. Transplantation, 1992. 54(5): p. 829−33.Google Scholar
Pagel, J.M., Appelbaum, F.R., Eary, J.F., et al., 131I-anti-CD45 antibody plus busulfan and cyclophosphamide before allogeneic hemtopoietic cell transplantation for treatment of acute myeloid leukemia in first remission. Blood, 2006. 107(5): p. 2184–91.CrossRefGoogle Scholar
Pagel, J.M., Gooley, T.A., Rajendran, J., et al. Allogeneic hemotpoietic cell transplantation after conditioning with 131I-anti-CD45 antibody plus fludarabine and low-dose total body irradiation for elderly patients with advanced acute myeloid leukemia or high-risk myelodysplastic syndrome. Blood, 2009. 114(27): p. 5444−53.Google Scholar
Mawad, R., Gooley, T.A., Rajendran, J., et al., Radiolabeled-anti-CD45 antibody with reduced-intensity conditioning and allogeneic transplantation for younger patients with advanced acute myeloid leukemia or myelodysplastic syndrome. Biol Blood Marrow Transplant, 2014. 20(9): p. 1363–8.Google Scholar
Klein, S.A., Hermann, S., Dietrich, J.W., et al., Transplantation-related toxicity and acute intestinal graft-versus-host disease after conditioning regimens intensified with Rhenium 188-labeled anti-CD66 monoclonal antibodies. Blood, 2002. 99(6): p. 2270-1.Google Scholar
Ringhoffer, M., Blumstein, N., Neumaier, B., et al., 118Re or 90Y-labelled anti-CD66 antibody as part of a dose-reduced conditioning regimen for patients with acute leukemia or myelodysplastic syndrome over the age of 55: results of a phase I-II study. Br J Haematol, 2005. 130(4): p. 604−13.CrossRefGoogle ScholarPubMed
Koenecke, C., Hofmann, M., Bolte, O., et al., Radioimmunotherapy with [(188)Re]-labelled anti-CD66 antibody in the conditioning for allogeneic stem cell transplantation for high-risk acute myeloid leukemia. Int J Hematol, 2008. 87(4): p. 414−21.Google Scholar
Grossbard, M.L., Press, O.W., Applebaum, F.R., et al., Monoclonal antibody-based therapies of leukemia and lymphoma. Blood, 1992. 80(4): p. 863−78.Google Scholar
Waldmann, T.A., White, J.D., Carrasquillo, J.A., et al., Radioimmunotherapy of interleukin-2R alpha-expressing adult T-cell leukemia with Yttrium-90-labeled anti-Tac. Blood, 1995. 86(11): p. 4063–75.Google Scholar
Waldmann, T.A., Daclizumab (anti-Tac, Zenapax) in the treatment of leukemia/lymphoma. Oncogene, 2007. 26(25): p. 3699–703.Google Scholar
Zhang, M., Yao, Z., Zhang, Z., et al., The anti-CD25 monoclonal antibody 7G7/B6, armed with the alpha-emitter 211At, provides effective radioimmunotherapy for a murine model of leukemia. Cancer Res, 2006. 66(16): p. 8227−32.Google Scholar
Zhang, M., Yao, Z., Patel, H., et al., Effective therapy of murine models of human leukemia and lymphoma with radiolabeled anti-CD30 antibody, HeFi-1. Proc Natl Acad Sci U S A, 2007. 104(20): p. 8444−8.Google Scholar
Alinari, L., Lapalombella, R., Andritsos, L., et al., Alemtuzumab (Campath-1H) in the treatment of chronic lymphocytic leukemia. Oncogene, 2007. 26(25): p. 3644–53.Google Scholar
Tam, C.S. and Keating, M.J. Chemoimmunotherapy of chronic lymphocytic leukemia. Best Pract Res Clin Haematol, 2007. 20(3): p. 479–98.Google Scholar
Robak, T., Recent progress in the management of chronic lymphocytic leukemia. Cancer Treat Rev, 2007. 33(8): p. 710−28.CrossRefGoogle ScholarPubMed
De Decker, M., Bacher, K., Thierens, H., et al., In vitro and in vivo evaluation of direct rhenium-188-labeled anti-CD52 monoclonal antibody alemtuzumab for radioimmunotherapy of B-cell chronic lymphocytic leukemia. Nucl Med Biol, 2008. 35(5): p. 599604.Google Scholar
Mavromatis, B. and Cheson, B.D., Monoclonal antibody therapy of chronic lymphocytic leukemia. J Clin Oncol, 2003. 21(9): p. 1874–81.Google Scholar
Cheson, B.D., Monoclonal antibody therapy of chronic lymphocytic leukemia. Cancer Immunol Immunother, 2006. 55(2): p. 188–96.Google Scholar
Witzig, T.E., Tomblyn, M.B., Misleh, J.G., et al., Anti-CD22 90Y-epratuzumab tetraxetan combined with anti-CD20 veltuzumab: a phase I study in patients with relapsed/refractory, aggressive non-Hodgkin lymphoma. Haematologica, 2014. 99(11): p. 1738–45.Google Scholar
Friesen, C., Glatting, G., Koop, B., et al., Breaking chemoresistance and radioresistance with [213Bi]anti-CD45 antibodies in leukemia cells. Cancer Res, 2007. 67(5): p. 1950–8.Google Scholar
Vandenbulcke, K., Thierens, H., De Vos, F., et al., In vitro screening for synergism of high-linear energy transfer 213Bi-radiotherapy with other therapeutic agents for the treatment of B-cell chronic lymphocytic leukemia. Cancer Biother Radiopharm, 2006. 21(4): p. 364–72.Google Scholar
Scheinberg, D.A. and McDevitt, M.R. Actinium-225 in targeted alpha-particle therapeutic applications. Curr Radiopharm, 2011. 4(4): p. 306−20.Google Scholar
Ma, D., McDevitt, M.R., Barendswaard, E., et al., Radioimmunotherapy for model B cell malignancies using 90Y-labeled anti-CD19 and anti-CD20 monoclonal antibodies. Leukemia, 2002. 16(1): p. 60−6.Google Scholar
Vallera, D.A., Elson, M., Brechbiel, M.W., et al., Radiotherapy of CD19 expressing Daudi tumors in nude mice with Yttrium-90-labeled anti-CD19 antibody. Cancer Biother Radiopharm, 2004. 19(1): p. 1123.Google Scholar
Vallera, D.A., Brechbiel, M.W., Burns, L.J., et al., Radioimmunotherapy of CD22-expressing Daudi tumors in nude mice with a 90Y-labeled anti-CD22 monoclonal antibody. Clin Cancer Res, 2005. 11(21): p. 7920–8.Google Scholar
Wesley, J.N., McGee, E.C., Garmestani, K., et al., Systemic radioimmunotherapy using a monoclonal antibody, anti-Tac directed toward the alpha subunit of the IL-2 receptor armed with the alpha-emitting radionuclides (212)Bi or (211)At. Nucl Med Biol, 2004. 31(3): p. 357–64.Google Scholar
Vandenbulcke, K., DeVos, F., Offner, F., et al., In vitro evaluation of 213Bi-rituximab versus external gamma irradiation for the treatment of B-CLL patients: relative biological efficacy with respect to apoptosis induction and chromosomal damage. Eur J Nucl Med Mol Imaging, 2003. 30(10): p. 1357–64.CrossRefGoogle ScholarPubMed
Michel, R.B., Andrews, P.M., Rosario, A.V., et al., 177Lu-antibody conjugates for single-cell kill of B-lymphoma cells in vitro and for therapy of micrometastases in vivo. Nucl Med Biol, 2005. 32(3): p. 269–78.Google Scholar
Postema, E.J., Frielink, C., Oyen, W.J., et al., Biodistribution of 131I-, 186Re-, 177Lu-, and 88Y-labeled hLL2 (Epratuzumab) in nude mice with CD22-positive lymphoma. Cancer Biother Radiopharm, 2003. 18(4): p. 525−33.Google Scholar
Press, O.W., Corcoran, M., Subbiah, K., et al., A comparative evaluation of conventional and pretargeted radioimmunotherapy of CD20-expressing lymphoma xenografts. Blood, 2001. 98(8): p. 2535–43.Google Scholar
Pagel, J.M., Lin, Y., Hedin, N., et al., Comparison of a tetravalent single-chain antibody-strepavidin fusion protein and an antibody-streptavidin chemical conjugate for pretargeted anti-CD20 radioimmunotherapy of B-cell lymphomas. Blood, 2006. 108(1): p. 328–36.Google Scholar
Axworthy, D.B., Reno, J.M., Hylarides, M.D., et al., Cure of human carcinoma xenografts by a single dose of pretargeted yttrium-90 with negligible toxicity. Proc Natl Acad Sci U S A, 2000. 97(4): p. 1802–7.Google Scholar
Forero, A., Weiden, P.L., Vose, J.M., et al., Phase 1 trial of a novel anti-CD20 fusion protein in pretargeted radioimmunotherapy for B-cell non-Hodgkin lymphoma. Blood., 2004. 104(1): p. 227–36. Epub 2004 Mar 2.Google Scholar
Forero-Torres, A., Shen, S., Breitz, H., et al., Pretargeted radioimmunotherapy (RIT) with a novel anti-TAG-72 fusion protein. Cancer Biother Radiopharm, 2005. 20(4): p. 379–90.Google Scholar
Knox, S.J., Goris, M.L., Tempero, M., et al., Phase II trial of yttrium-90-DOTA-biotin pretargeted by NR-LU-10 antibody/streptavidin in patients with metastatic colon cancer. Clin Cancer Res, 2000. 6(2): p. 406−14.Google Scholar
Linden, O., Kurkus, J., Garkavij, M., et al., A novel platform for radioimmunotherapy: extracorporeal depletion of biotinylated and 90Y-labeled rituximab in patients with refractory B-cell lymphoma. Cancer Biother Radiopharm, 2005. 20(4): p. 457–66.Google Scholar
Moghimi, S.M., Hunter, A.C., and Murray, J.C., Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev, 2001. 53(2): p. 283318.Google Scholar
Zhang, H., Burnum, K.E., Luna, M.L., et al., Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size. Proteomics, 2011. 11(23): p. 4569–77.Google Scholar
Torchilin, V.P., Multifunctional nanocarriers. Adv Drug Deliv Rev, 2006. 58(14): p. 1532–55.Google Scholar
Alexis, F., Pridgen, E., Molnar, L.K., et al., Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm, 2008. 5(4): p. 505−15.Google Scholar
Fang, C., Shi, B., Pei, Y.Y., et al., In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci, 2006. 27(1): p. 2736.Google Scholar
Cole, A.J., David, A.E., Wang, J., et al., Magnetic brain tumor targeting and biodistribution of long-circulating PEG-modified, cross-linked starch-coated iron oxide nanoparticles. Biomaterials, 2011. 32(26): p. 6291−301.Google Scholar
Goncalves, C., Torrado, E., Martins, T., et al., Dextrin nanoparticles: studies on the interaction with murine macrophages and blood clearance. Colloids Surf B Biointerfaces, 2010. 75(2): p. 483–9.Google Scholar
Karmali, P.P., Chao, Y., Park, J.H., et al., Different effect of hydrogelation on antifouling and circulation properties of dextran-iron oxide nanoparticles. Mol Pharm, 2012. 9(3): p. 539−45.Google Scholar
Bartlett, D.W., Su, H., Hildebrandt, I.J., et al., Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A, 2007. 104(39): p. 15549–54.Google Scholar
Henriksen, G., Schoultz, B.W., Michaelsen, T.E., et al., Sterically stabilized liposomes as a carrier for alpha-emitting radium and actinium radionuclides. Nucl Med Biol, 2004. 31(4): p. 441–9.Google Scholar
Jonasdottir, T.J., Fisher, D.R., Borrebaek, J., et al., First in vivo evaluation of liposome-encapsulated 223Ra as a potential alpha-particle-emitting cancer therapeutic agent. Anticancer Res, 2006. 26(4B): p. 2841–8.Google Scholar
van Vlerken, L.E., Vyas, T.K., and Amiji, M.M. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res, 2007. 24(8): p. 1405-14.Google Scholar
Kommareddy, S. and Amiji, M. Biodistribution and pharmacokinetic analysis of long-circulating thiolated gelatin nanoparticles following systemic administration in breast cancer-bearing mice. J Pharm Sci, 2007. 96(2): p. 397407.Google Scholar
DeNardo, G.L., Hok, S., Van Natarajan, A., et al., Characteristics of dimeric (bis) bidentate selective high affinity ligands as HLA-DR10 beta antibody mimics targeting non-Hodgkin’s lymphoma. Int J Oncol, 2007. 31(4): p. 729−40.Google Scholar
Balhorn, R., Hok, S., Burke, P.A., et al., Selective high-affinity ligand antibody mimics for cancer diagnosis and therapy: initial application to lymphoma/leukemia. Clin Cancer Res, 2007. 13(18 Pt 2): p. 5621s5628s.CrossRefGoogle ScholarPubMed
DeNardo, G.L., Kukis, D.L., DeNardo, S.J., et al., Enhancement of 67Cu-2IT-BAT-LYM-1 therapy in mice with human Burkitt’s lymphoma (Raji) using interleukin-2. Cancer, 1997. 80(12 Suppl): p. 2576–82.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×