Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T09:06:08.480Z Has data issue: false hasContentIssue false

Section 12 - Hematopoietic Cell Transplants for Lymphomas: Changing Indications

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 361 - 444
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Townsend, W, Linch, D. Hodgkin’s lymphoma in adults. Lancet 2012;380(9844):836847.Google Scholar
Kuruvilla, J, Keating, A, Crump, M. How I treat relapsed and refractory Hodgkin lymphoma. Blood 2011;117(16):42084217.CrossRefGoogle Scholar
Carella, AM, Congiu, AM, Gaozza, E, Mazza, P, Ricci, P, Visani, G, et al. High-dose chemotherapy with autologous bone marrow transplantation in 50 advanced resistant Hodgkin’s disease patients: an Italian study group report. J Clin Oncol 1988;6(9):14111416.Google Scholar
Linch, DC, Winfield, D, Goldstone, AH, Moir, D, Hancock, B, McMillan, A, et al. Dose intensification with autologous bone-marrow transplantation in relapsed and resistant Hodgkin’s disease: results of a BNLI randomised trial. Lancet 1993;341(8852):10511054.CrossRefGoogle ScholarPubMed
Carella, AM. Role of hematopoietic stem cell transplantation in relapsed/refractory Hodgkin lymphoma. Mediterr J Hematol Infect Dis 2012;4(1):e2012059.Google Scholar
Schmitz, N, Pfistner, B, Sextro, M, Sieber, M, Carella, AM, Haenel, M, et al. Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin’s disease: a randomised trial. Lancet 2002;359(9323):20652071.Google Scholar
Bierman, PJ, Bagin, RG, Jagannath, S, Vose, JM, Spitzer, G, Kessinger, A, et al. High dose chemotherapy followed by autologous hematopoietic rescue in Hodgkin’s disease: long-term follow-up in 128 patients. Ann Oncol 1993;4(9):767773.Google Scholar
Crump, M, Smith, AM, Brandwein, J, Couture, F, Sherret, H, Sutton, DM, et al. High-dose etoposide and melphalan, and autologous bone marrow transplantation for patients with advanced Hodgkin’s disease: importance of disease status at transplant. J Clin Oncol 1993;11(4):704711.Google Scholar
Reece, DE, Nevill, TJ, Sayegh, A, Spinelli, JJ, Brockington, DA, Barnett, MJ, et al. Regimen-related toxicity and non-relapse mortality with high-dose cyclophosphamide, carmustine (BCNU) and etoposide (VP16-213) (CBV) and CBV plus cisplatin (CBVP) followed by autologous stem cell transplantation in patients with Hodgkin’s disease. Bone Marrow Transplant 1999;23(11):11311138.CrossRefGoogle ScholarPubMed
Stuart, MJ, Chao, NS, Horning, SJ, Wong, RM, Negrin, RS, Johnston, LJ, et al. Efficacy and toxicity of a CCNU-containing high-dose chemotherapy regimen followed by autologous hematopoietic cell transplantation in relapsed or refractory Hodgkin’s disease. Biol Blood Marrow Transplant 2001;7(10):552560.Google Scholar
Stewart, DA, Guo, D, Gluck, S, Morris, D, Chaudhry, A, deMetz, C, et al. Double high-dose therapy for Hodgkin’s disease with dose-intensive cyclophosphamide, etoposide, and cisplatin (DICEP) prior to high-dose melphalan and autologous stem cell transplantation. Bone Marrow Transplant 2000;26(4):383388.CrossRefGoogle ScholarPubMed
Moskowitz, CH, Nimer, SD, Zelenetz, AD, Trippett, T, Hedrick, EE, Filippa, DA, et al. A 2-step comprehensive high-dose chemoradiotherapy second-line program for relapsed and refractory Hodgkin disease: analysis by intent to treat and development of a prognostic model. Blood 2001;97(3):616623.Google Scholar
Visani, G, Stefani, PM, Capria, S, Malerba, L, Galieni, P, Gaudio, F, Specchia, G, et al. Bendamustine, etoposide, cytarabine and melphalan (BEEAM) followed by autologous stem cell transplantation produce a 3-year progression-free survival of 75% in heavily pre-treated Hodgkin and non-Hodgkin lymphoma. Blood 2013;122(21):2134.Google Scholar
Andre, M, Henry-Amar, M, Pico, JL, Brice, P, Blaise, D, Kuentz, M, et al. Comparison of high-dose therapy and autologous stem-cell transplantation with conventional therapy for Hodgkin’s disease induction failure: a case-control study. Societe Francaise de Greffe de Moelle. J Clin Oncol 1999;17(1):222229.Google Scholar
Lazarus, HM, Rowlings, PA, Zhang, MJ, Vose, JM, Armitage, JO, Bierman, PJ, et al. Autotransplants for Hodgkin’s disease in patients never achieving remission: a report from the Autologous Blood and Marrow Transplant Registry. J Clin Oncol 1999;17(2):534545.Google Scholar
Hertzberg, M. Relapsed/refractory Hodgkin lymphoma: what is the best salvage therapy and do we need RIC-alloSCT? Hematol Oncol Clin North Am 2014;28(1):123147.CrossRefGoogle ScholarPubMed
Bains, T, Chen, AI, Lemieux, A, Hayes-Lattin, BM, Leis, JF, Dibb, W, et al. Improved outcome with busulfan, melphalan and thiotepa conditioning in autologous hematopoietic stem cell transplant for relapsed/refractory Hodgkin lymphoma. Leuk Lymphoma 2014;55(3):583587.Google Scholar
Nieto, Y, Popat, U, Anderlini, P, Valdez, B, Andersson, B, Liu, P, et al. Autologous stem cell transplantation for refractory or poor-risk relapsed Hodgkin’s lymphoma: effect of the specific high-dose chemotherapy regimen on outcome. Biol Blood Marrow Transplant 2013;19(3):410417.Google Scholar
Shafey, M, Duan, Q, Russell, J, Duggan, P, Balogh, A, Stewart, DA. Double high-dose therapy with dose-intensive cyclophosphamide, etoposide, cisplatin (DICEP) followed by high-dose melphalan and autologous stem cell transplantation for relapsed/refractory Hodgkin lymphoma. Leuk Lymphoma 2012;53(4):596602.CrossRefGoogle ScholarPubMed
Josting, A, Sieniawski, M, Glossmann, JP, Staak, O, Nogova, L, Peters, N, et al. High-dose sequential chemotherapy followed by autologous stem cell transplantation in relapsed and refractory aggressive non-Hodgkin’s lymphoma: results of a multicenter phase II study. Ann Oncol 2005;16(8):13591365.Google Scholar
Josting, A, Muller, H, Borchmann, P, Baars, JW, Metzner, B, Dohner, H, et al. Dose intensity of chemotherapy in patients with relapsed Hodgkin’s lymphoma. J Clin Oncol 2010;28(34):50745080.Google Scholar
Fung, HC, Stiff, P, Schriber, J, Toor, A, Smith, E, Rodriguez, T, et al. Tandem autologous stem cell transplantation for patients with primary refractory or poor risk recurrent Hodgkin lymphoma. Biol Blood Marrow Transplant 2007;13(5):594600.CrossRefGoogle ScholarPubMed
Morschhauser, F, Brice, P, Ferme, C, Divine, M, Salles, G, Bouabdallah, R, et al. Risk-adapted salvage treatment with single or tandem autologous stem-cell transplantation for first relapse/refractory Hodgkin’s lymphoma: results of the prospective multicenter H96 trial by the GELA/SFGM study group. J Clin Oncol 2008;26(36):59805987.Google Scholar
Biswas, T, Culakova, E, Friedberg, JW, Kelly, JL, Dhakal, S, Liesveld, J, et al. Involved field radiation therapy following high dose chemotherapy and autologous stem cell transplant benefits local control and survival in refractory or recurrent Hodgkin lymphoma. Radiother Oncol 2012;103(3):367372.Google Scholar
Kahn, S, Flowers, C, Xu, Z, Esiashvili, N. Does the addition of involved field radiotherapy to high-dose chemotherapy and stem cell transplantation improve outcomes for patients with relapsed/refractory Hodgkin lymphoma? Int J Radiat Oncol Biol Phys 2011;81(1):175180.Google Scholar
Poen, JC, Hoppe, RT, Horning, SJ. High-dose therapy and autologous bone marrow transplantation for relapsed/refractory Hodgkin’s disease: the impact of involved field radiotherapy on patterns of failure and survival. Int J Radiat Oncol Biol Phys 1996;36(1):312.Google Scholar
von Tresckow, B, Muller, H, Eichenauer, DA, Glossmann, JP, Josting, A, Boll, B, et al. Outcome and risk factors of patients with Hodgkin Lymphoma who relapse or progress after autologous stem cell transplant. Leuk Lymphoma 2014;55(8):19221924.CrossRefGoogle ScholarPubMed
Martinez, C, Canals, C, Sarina, B, Alessandrino, EP, Karakasis, D, Pulsoni, A, et al. Identification of prognostic factors predicting outcome in Hodgkin’s lymphoma patients relapsing after autologous stem cell transplantation. Ann Oncol 2013;24(9):24302434.CrossRefGoogle ScholarPubMed
Gajewski, JL, Phillips, GL, Sobocinski, KA, Armitage, JO, Gale, RP, Champlin, RE, et al. Bone marrow transplants from HLA-identical siblings in advanced Hodgkin’s disease. J Clin Oncol 1996;14(2):572578.Google Scholar
Milpied, N, Fielding, AK, Pearce, RM, Ernst, P, Goldstone, AH. Allogeneic bone marrow transplant is not better than autologous transplant for patients with relapsed Hodgkin’s disease. European Group for Blood and Bone Marrow Transplantation. J Clin Oncol 1996;14(4):12911296.CrossRefGoogle ScholarPubMed
Peniket, AJ, Ruiz de Elvira, MC, Taghipour, G, Cordonnier, C, Gluckman, E, de Witte, T, et al. An EBMT registry matched study of allogeneic stem cell transplants for lymphoma: allogeneic transplantation is associated with a lower relapse rate but a higher procedure-related mortality rate than autologous transplantation. Bone Marrow Transplant 2003;31(8):667678.Google Scholar
Kharfan-Dabaja, MA, Hamadani, M, Sibai, H, Savani, BN. Managing Hodgkin lymphoma relapsing after autologous hematopoietic cell transplantation: a not-so-good cancer after all! Bone Marrow Transplant 2014;49(5):599606.Google Scholar
Sarina, B, Castagna, L, Farina, L, Patriarca, F, Benedetti, F, Carella, AM, et al. Allogeneic transplantation improves the overall and progression-free survival of Hodgkin lymphoma patients relapsing after autologous transplantation: a retrospective study based on the time of HLA typing and donor availability. Blood 2010;115(18):36713677.CrossRefGoogle ScholarPubMed
Sureda, A, Robinson, S, Canals, C, Carella, AM, Boogaerts, MA, Caballero, D, et al. Reduced-intensity conditioning compared with conventional allogeneic stem-cell transplantation in relapsed or refractory Hodgkin’s lymphoma: an analysis from the Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. J Clin Oncol 2008;26(3):455462.Google Scholar
Peggs, KS, Hunter, A, Chopra, R, Parker, A, Mahendra, P, Milligan, D, et al. Clinical evidence of a graft-versus-Hodgkin’s-lymphoma effect after reduced-intensity allogeneic transplantation. Lancet 2005;365(9475):19341941.Google Scholar
Anderlini, P, Saliba, R, Acholonu, S, Okoroji, GJ, Donato, M, Giralt, S, et al. Reduced-intensity allogeneic stem cell transplantation in relapsed and refractory Hodgkin’s disease: low transplant-related mortality and impact of intensity of conditioning regimen. Bone Marrow Transplant 2005;35(10):943951.CrossRefGoogle ScholarPubMed
Sureda, A, Canals, C, Arranz, R, Caballero, D, Ribera, JM, Brune, M, et al. Allogeneic stem cell transplantation after reduced intensity conditioning in patients with relapsed or refractory Hodgkin’s lymphoma. Results of the HDR-ALLO study − a prospective clinical trial by the Grupo Espanol de Linfomas/Trasplante de Medula Osea (GEL/TAMO) and the Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. Haematologica 2012;97(2):310317.Google Scholar
Anderlini, P, Saliba, RM, Ledesma, C, Chancoco, CM, Alexander, T, Alousi, A, Hosing, CM, et al. Reduced-intensity conditioning (RIC) and allogeneic stem cell transplantation (allo-SCT) for relapsed/refractory Hodgkin lymphoma (HL) in the brentuximab vedotin era: Favorable overall and progression-free survival (OS/PFS) with low transplant-related mortality (TRM). Blood 2013;122(21):410.CrossRefGoogle Scholar
Devetten, MP, Hari, PN, Carreras, J, Logan, BR, van Besien, K, Bredeson, CN, et al. Unrelated donor reduced-intensity allogeneic hematopoietic stem cell transplantation for relapsed and refractory Hodgkin lymphoma. Biol Blood Marrow Transplant 2009;15(1):109117.Google Scholar
Burroughs, LM, O’Donnell, PV, Sandmaier, BM, Storer, BE, Luznik, L, Symons, HJ, et al. Comparison of outcomes of HLA-matched related, unrelated, or HLA-haploidentical related hematopoietic cell transplantation following nonmyeloablative conditioning for relapsed or refractory Hodgkin lymphoma. Biol Blood Marrow Transplant 2008;14(11):12791287.Google Scholar
Castagna, L, Bramanti, S, Furst, S, Sarina, B, El-Cheikh, J, Granata, A, et al. Lower relapse and better PFS among chemosensitive patients undergoing allogeneic transplantation by haploidentical compared with HLA-identical donor: results on a cohort of 94 patients with Hodgkin’s lymphoma. Blood 2013;122(21):2144.Google Scholar
Majhail, NS, Weisdorf, DJ, Wagner, JE, Defor, TE, Brunstein, CG, Burns, LJ. Comparable results of umbilical cord blood and HLA-matched sibling donor hematopoietic stem cell transplantation after reduced-intensity preparative regimen for advanced Hodgkin lymphoma. Blood 2006;107(9):38043807.CrossRefGoogle ScholarPubMed
Marcais, A, Porcher, R, Robin, M, Mohty, M, Michalet, M, Blaise, D, et al. Impact of disease status and stem cell source on the results of reduced intensity conditioning transplant for Hodgkin’s lymphoma: a retrospective study from the French Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC). Haematologica 2013;98(9):14671475.Google Scholar
Peggs, KS, Kayani, I, Edwards, N, Kottaridis, P, Goldstone, AH, Linch, DC, et al. Donor lymphocyte infusions modulate relapse risk in mixed chimeras and induce durable salvage in relapsed patients after T-cell-depleted allogeneic transplantation for Hodgkin’s lymphoma. J Clin Oncol 2011;29(8):971978.Google Scholar
Anderlini, P, Saliba, R, Acholonu, S, Okoroji, GJ, Ledesma, C, Andersson, BS, et al. Donor leukocyte infusions in recurrent Hodgkin lymphoma following allogeneic stem cell transplant: 10-year experience at the M. D. Anderson Cancer Center. Leuk Lymphoma 2012;53(6):12391241.Google Scholar
Younes, A, Gopal, AK, Smith, SE, Ansell, SM, Rosenblatt, JD, Savage, KJ, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol 2012;30(18):21832189.CrossRefGoogle ScholarPubMed
Chen, R, Palmer, JM, Tsai, NC, Thomas, SH, Siddiqi, T, Popplewell, L, et al. Brentuximab vedotin is associated with improved progression-free survival after allogeneic transplantation for hodgkin lymphoma. Biol Blood Marrow Transplant 2014;20(11):18641868.Google Scholar
Younes, A. Brentuximab vedotin for the treatment of patients with Hodgkin lymphoma. Hematol Oncol Clin North Am 2014;28(1):2732.Google Scholar
Bartlett, NL, Chen, R, Fanale, MA, Brice, P, Gopal, A, Smith, SE, et al. Retreatment with brentuximab vedotin in patients with CD30-positive hematologic malignancies. J Hematol Oncol 2014;7:24.CrossRefGoogle ScholarPubMed
Onishi, M, Graf, SA, Holmberg, L, Behnia, S, Shustov, AR, Schiavo, K, et al. Brentuximab vedotin administered to platinum-refractory, transplant-naive Hodgkin lymphoma patients can increase the proportion achieving FDG PET negative status. Hematol Oncol 2015;33(4):187–91.Google Scholar

References

Dohner, H, Stilgenbauer, S, Benner, A, Leupolt, E, Krober, A, Bullinger, L, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. The New England Journal of Medicine. 2000;343(26):1910–6. PubMed PMID: 11136261.Google Scholar
Gribben, JG, Zahrieh, D, Stephans, K, Bartlett-Pandite, L, Alyea, EP, Fisher, DC, et al. Autologous and allogeneic stem cell transplantations for poor-risk chronic lymphocytic leukemia. Blood. 2005;106(13):4389–96. PubMed PMID: 16131571. Pubmed Central PMCID: 1895235.Google Scholar
Jantunen, E, Itala, M, Siitonen, T, Juvonen, E, Koivunen, E, Koistinen, P, et al. Autologous stem cell transplantation in patients with chronic lymphocytic leukaemia: the Finnish experience. Bone Marrow Transplantation. 2006;37(12):1093–8. PubMed PMID: 16699533.Google Scholar
Pavletic, ZS, Bierman, PJ, Vose, JM, Bishop, MR, Wu, CD, Pierson, JL, et al. High incidence of relapse after autologous stem-cell transplantation for B-cell chronic lymphocytic leukemia or small lymphocytic lymphoma. Annals of Oncology : Official Journal of the European Society for Medical Oncology/ESMO. 1998;9(9):1023–6. PubMed PMID: 9818078.Google Scholar
Rabinowe, SN, Soiffer, RJ, Gribben, JG, Daley, H, Freedman, AS, Daley, J, et al. Autologous and allogeneic bone marrow transplantation for poor prognosis patients with B-cell chronic lymphocytic leukemia. Blood. 1993;82(4):1366–76. PubMed PMID: 7688995.Google Scholar
Milligan, DW, Fernandes, S, Dasgupta, R, Davies, FE, Matutes, E, Fegan, CD, et al. Results of the MRC pilot study show autografting for younger patients with chronic lymphocytic leukemia is safe and achieves a high percentage of molecular responses. Blood. 2005;105(1):397404. PubMed PMID: 15117764.Google Scholar
Dreger, P, Stilgenbauer, S, Benner, A, Ritgen, M, Krober, A, Kneba, M, et al. The prognostic impact of autologous stem cell transplantation in patients with chronic lymphocytic leukemia: a risk-matched analysis based on the VH gene mutational status. Blood. 2004;103(7):2850–8. PubMed PMID: 14670929.Google Scholar
Cheson, BD, Bennett, JM, Grever, M, Kay, N, Keating, MJ, O’Brien, S, et al. National Cancer Institute-sponsored Working Group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment. Blood. 1996;87(12):4990–7. PubMed PMID: 8652811.Google Scholar
Sutton, L, Chevret, S, Tournilhac, O, Divine, M, Leblond, V, Corront, B, et al. Autologous stem cell transplantation as a first-line treatment strategy for chronic lymphocytic leukemia: a multicenter, randomized, controlled trial from the SFGM-TC and GFLLC. Blood. 2011;117(23):6109–19. PubMed PMID: 21406717.Google Scholar
Michallet, M, Dreger, P, Sutton, L, Brand, R, Richards, S, van Os, M, et al. Autologous hematopoietic stem cell transplantation in chronic lymphocytic leukemia: results of European intergroup randomized trial comparing autografting versus observation. Blood. 2011;117(5):1516–21. PubMed PMID: 21106985.Google Scholar
de Wreede, LC, Watson, M, van Os, M, Milligan, D, van Gelder, M, Michallet, M, et al. Improved relapse-free survival after autologous stem cell transplantation does not translate into better quality of life in chronic lymphocytic leukemia: lessons from the randomized European Society for Blood and Marrow Transplantation-Intergroup study. American Journal of Hematology. 2014;89(2):174–80. PubMed PMID: 24123244.Google Scholar
Dreger, P, Dohner, H, McClanahan, F, Busch, R, Ritgen, M, Greinix, H, et al. Early autologous stem cell transplantation for chronic lymphocytic leukemia: long-term follow-up of the German CLL Study Group CLL3 trial. Blood. 2012;119(21):4851–9. PubMed PMID: 22490331.Google Scholar
Michallet, M, Archimbaud, E, Bandini, G, Rowlings, PA, Deeg, HJ, Gahrton, G, et al. HLA-identical sibling bone marrow transplantation in younger patients with chronic lymphocytic leukemia. European Group for Blood and Marrow Transplantation and the International Bone Marrow Transplant Registry. Annals of Internal Medicine. 1996;124(3):311–5. PubMed PMID: 8554226.Google Scholar
Pavletic, ZS, Arrowsmith, ER, Bierman, PJ, Goodman, SA, Vose, JM, Tarantolo, SR, et al. Outcome of allogeneic stem cell transplantation for B cell chronic lymphocytic leukemia. Bone Marrow Transplantation. 2000;25(7):717–22. PubMed PMID: 10745256.Google Scholar
Doney, KC, Chauncey, T, Appelbaum, FR, Seattle Bone Marrow Transplant T. Allogeneic related donor hematopoietic stem cell transplantation for treatment of chronic lymphocytic leukemia. Bone Marrow Transplantation. 2002;29(10):817–23. PubMed PMID: 12058231.Google Scholar
Toze, CL, Galal, A, Barnett, MJ, Shepherd, JD, Conneally, EA, Hogge, DE, et al. Myeloablative allografting for chronic lymphocytic leukemia: evidence for a potent graft-versus-leukemia effect associated with graft-versus-host disease. Bone Marrow Transplantation. 2005;36(9):825–30. PubMed PMID: 16151430.Google Scholar
Dreger, P, Brand, R, Hansz, J, Milligan, D, Corradini, P, Finke, J, et al. Treatment-related mortality and graft-versus-leukemia activity after allogeneic stem cell transplantation for chronic lymphocytic leukemia using intensity-reduced conditioning. Leukemia. 2003;17(5):841–8. PubMed PMID: 12750695.Google Scholar
Schetelig, J, van Biezen, A, Brand, R, Caballero, D, Martino, R, Itala, M, et al. Allogeneic hematopoietic stem-cell transplantation for chronic lymphocytic leukemia with 17p deletion: a retrospective European Group for Blood and Marrow Transplantation analysis. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2008;26(31):5094–100. PubMed PMID: 18711173.CrossRefGoogle Scholar
Dreger, P, Dohner, H, Ritgen, M, Bottcher, S, Busch, R, Dietrich, S, et al. Allogeneic stem cell transplantation provides durable disease control in poor-risk chronic lymphocytic leukemia: long-term clinical and MRD results of the German CLL Study Group CLL3X trial. Blood. 2010;116(14):2438–47. PubMed PMID: 20595516.Google Scholar
Sorror, ML, Storer, BE, Sandmaier, BM, Maris, M, Shizuru, J, Maziarz, R, et al. Five-year follow-up of patients with advanced chronic lymphocytic leukemia treated with allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2008;26(30):4912–20. PubMed PMID: 18794548. Pubmed Central PMCID: 2652085.Google Scholar
Brown, JR, Kim, HT, Li, S, Stephans, K, Fisher, DC, Cutler, C, et al. Predictors of improved progression-free survival after nonmyeloablative allogeneic stem cell transplantation for advanced chronic lymphocytic leukemia. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2006;12(10):1056–64. PubMed PMID: 17084369.CrossRefGoogle ScholarPubMed
Brown, JR, Kim, HT, Armand, P, Cutler, C, Fisher, DC, Ho, V, et al. Long-term follow-up of reduced-intensity allogeneic stem cell transplantation for chronic lymphocytic leukemia: prognostic model to predict outcome. Leukemia. 2013;27(2):362–9. PubMed PMID: 22955330. Pubmed Central PMCID: 3519975.Google Scholar
Khouri, IF, Wei, W, Korbling, M, Turturro, F, Ahmed, S, Alousi, A, et al. BFR (bendamustine, fludarabine, and rituximab) allogeneic conditioning for chronic lymphocytic leukemia/lymphoma: reduced myelosuppression and GVHD. Blood. 2014;124(14):2306–12. PubMed PMID: 25145344. Pubmed Central PMCID: 4260365.Google Scholar
Dreger, P, Brand, R, Milligan, D, Corradini, P, Finke, J, Lambertenghi Deliliers, G, et al. Reduced-intensity conditioning lowers treatment-related mortality of allogeneic stem cell transplantation for chronic lymphocytic leukemia: a population-matched analysis. Leukemia. 2005;19(6):1029–33. PubMed PMID: 15830011.Google Scholar
Toze, CL, Dalal, CB, Nevill, TJ, Gillan, TL, Abou Mourad, YR, Barnett, MJ, et al. Allogeneic haematopoietic stem cell transplantation for chronic lymphocytic leukaemia: outcome in a 20-year cohort. British Journal of Haematology. 2012;158(2):174–85. PubMed PMID: 22640008.CrossRefGoogle Scholar
Sobecks, RM, Leis, JF, Gale, RP, Ahn, KW, Zhu, X, Sabloff, M, et al. Outcomes of human leukocyte antigen-matched sibling donor hematopoietic cell transplantation in chronic lymphocytic leukemia: myeloablative versus reduced-intensity conditioning regimens. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2014;20(9):1390–8. PubMed PMID: 24880021. Pubmed Central PMCID: 4174349.Google Scholar
Caballero, D, Garcia-Marco, JA, Martino, R, Mateos, V, Ribera, JM, Sarra, J, et al. Allogeneic transplant with reduced intensity conditioning regimens may overcome the poor prognosis of B-cell chronic lymphocytic leukemia with unmutated immunoglobulin variable heavy-chain gene and chromosomal abnormalities (11q- and 17p-). Clinical Cancer Research: An Official Journal of the American Association for Cancer Research. 2005;11(21):7757–63. PubMed PMID: 16278397.Google Scholar
Dreger, P, Schnaiter, A, Zenz, T, Bottcher, S, Rossi, M, Paschka, P, et al. TP53, SF3B1, and NOTCH1 mutations and outcome of allotransplantation for chronic lymphocytic leukemia: six-year follow-up of the GCLLSG CLL3X trial. Blood. 2013;121(16):3284–8. PubMed PMID: 23435461.Google Scholar
Chavez, JC, Kharfan-Dabaja, MA, Kim, J, Yue, B, Dalia, S, Pinilla-Ibarz, J, et al. Genomic aberrations deletion 11q and deletion 17p independently predict for worse progression-free and overall survival after allogeneic hematopoietic cell transplantation for chronic lymphocytic leukemia. Leukemia Research. 2014;38(10):1165–72. PubMed PMID: 24889511.Google Scholar
Moreno, C, Villamor, N, Colomer, D, Esteve, J, Martino, R, Nomdedeu, J, et al. Allogeneic stem-cell transplantation may overcome the adverse prognosis of unmutated VH gene in patients with chronic lymphocytic leukemia. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2005;23(15):3433–8. PubMed PMID: 15809449.Google Scholar
Khouri, IF, Saliba, RM, Admirand, J, O’Brien, S, Lee, MS, Korbling, M, et al. Graft-versus-leukaemia effect after non-myeloablative haematopoietic transplantation can overcome the unfavourable expression of ZAP-70 in refractory chronic lymphocytic leukaemia. British Journal of Haematology. 2007;137(4):355–63. PubMed PMID: 17456058.Google Scholar
Schetelig, J, Thiede, C, Bornhauser, M, Schwerdtfeger, R, Kiehl, M, Beyer, J, et al. Evidence of a graft-versus-leukemia effect in chronic lymphocytic leukemia after reduced-intensity conditioning and allogeneic stem-cell transplantation: the Cooperative German Transplant Study Group. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2003;21(14):2747–53. PubMed PMID: 12860954.Google Scholar
Delgado, J, Thomson, K, Russell, N, Ewing, J, Stewart, W, Cook, G, et al. Results of alemtuzumab-based reduced-intensity allogeneic transplantation for chronic lymphocytic leukemia: a British Society of Blood and Marrow Transplantation Study. Blood. 2006;107(4):1724–30. PubMed PMID: 16239425.Google Scholar
Khouri, IF, Bassett, R, Poindexter, N, O’Brien, S, Bueso-Ramos, CE, Hsu, Y, et al. Nonmyeloablative allogeneic stem cell transplantation in relapsed/refractory chronic lymphocytic leukemia: long-term follow-up, prognostic factors, and effect of human leukocyte histocompatibility antigen subtype on outcome. Cancer. 2011;117(20):4679–88. PubMed PMID: 21455998.Google Scholar
Advani, RH, Buggy, JJ, Sharman, JP, Smith, SM, Boyd, TE, Grant, B, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2013;31(1):8894. PubMed PMID: 23045577.Google Scholar
Byrd, JC, Brown, JR, O’Brien, S, Barrientos, JC, Kay, NE, Reddy, NM, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. The New England Journal of Medicine. 2014;371(3):213–23. PubMed PMID: 24881631.Google Scholar
Byrd, JC, Furman, RR, Coutre, SE, Flinn, IW, Burger, JA, Blum, KA, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. The New England Journal of Medicine. 2013;369(1):3242. PubMed PMID: 23782158. Pubmed Central PMCID: 3772525.Google Scholar
de Rooij, MF, Kuil, A, Geest, CR, Eldering, E, Chang, BY, Buggy, JJ, et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood. 2012;119(11):2590–4. PubMed PMID: 22279054.Google Scholar
Herman, SE, Gordon, AL, Hertlein, E, Ramanunni, A, Zhang, X, Jaglowski, S, et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood. 2011;117(23):6287–96. PubMed PMID: 21422473. Pubmed Central PMCID: 3122947.CrossRefGoogle ScholarPubMed
Ponader, S, Chen, SS, Buggy, JJ, Balakrishnan, K, Gandhi, V, Wierda, WG, et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood. 2012;119(5):1182–9. PubMed PMID: 22180443.Google Scholar
Cuni, S, Perez-Aciego, P, Perez-Chacon, G, Vargas, JA, Sanchez, A, Martin-Saavedra, FM, et al. A sustained activation of PI3K/NF-kappaB pathway is critical for the survival of chronic lymphocytic leukemia B cells. Leukemia. 2004;18(8):1391–400. PubMed PMID: 15175625.Google Scholar
Hoellenriegel, J, Meadows, SA, Sivina, M, Wierda, WG, Kantarjian, H, Keating, MJ, et al. The phosphoinositide 3’-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood. 2011;118(13):3603–12. PubMed PMID: 21803855.Google Scholar
Longo, PG, Laurenti, L, Gobessi, S, Sica, S, Leone, G, Efremov, DG. The Akt/Mcl-1 pathway plays a prominent role in mediating antiapoptotic signals downstream of the B-cell receptor in chronic lymphocytic leukemia B cells. Blood. 2008;111(2):846–55. PubMed PMID: 17928528.Google Scholar
Brown, JR, Byrd, JC, Coutre, SE, Benson, DM, Flinn, IW, Wagner-Johnston, ND, et al. Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110delta, for relapsed/refractory chronic lymphocytic leukemia. Blood. 2014;123(22):3390–7. PubMed PMID: 24615777.Google Scholar
Furman, RR, Sharman, JP, Coutre, SE, Cheson, BD, Pagel, JM, Hillmen, P, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. The New England Journal of Medicine. 2014;370(11):9971007. PubMed PMID: 24450857.Google Scholar
Seymour, JF, Davids, MS, Pagel, JM, et al., editors. ABT-199 (GDC-0199) in Relapsed/Refractory (R/R) Chronic Lymphocytic Leukemia (CLL) and Small Lymphocytic Lymphoma (SLL): High Complete Response Rate and Durable Disease Control, American Society of Clinical Oncology Annual Meeting, 2014.Google Scholar
Ma, S, Seymour, JF, Brander, D, et al., editors. ABT-199 (GDC-0199) Combined with Rituximab in Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia: Interim Results of a Phase 1b Study. American Society of Clinical Oncology Annual Meeting, 2014.Google Scholar
Cruz, CR, Micklethwaite, KP, Savoldo, B, Ramos, CA, Lam, S, Ku, S, et al. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood. 2013;24:122(17):2965–73. PubMed PMID: 24030379. Pubmed Central PMCID: 3811171.Google Scholar
Kochenderfer, JN, Dudley, ME, Feldman, SA, Wilson, WH, Spaner, DE, Maric, I, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119(12):2709–20. PubMed PMID: 22160384. Pubmed Central PMCID: 3327450.Google Scholar
Goede, V, Fischer, K, Busch, R, Engelke, A, Eichhorst, B, Wendtner, CM, et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. The New England Journal of Medicine. 2014;370(12):1101–10. PubMed PMID: 24401022.Google Scholar
Woyach, JA, Johnson, AJ. Targeted therapies in CLL: mechanisms of resistance and strategies for management. Blood. 2015;126(4):471–7. PubMed PMID: 26065659.Google Scholar
Dreger, P, Corradini, P, Kimby, E, Michallet, M, Milligan, D, Schetelig, J, et al. Indications for allogeneic stem cell transplantation in chronic lymphocytic leukemia: the EBMT transplant consensus. Leukemia. 2007;21(1):12–7. PubMed PMID: 17109028.Google Scholar
Logan, AC, Zhang, B, Narasimhan, B, Carlton, V, Zheng, J, Moorhead, M, et al. Minimal residual disease quantification using consensus primers and high-throughput IGH sequencing predicts post-transplant relapse in chronic lymphocytic leukemia. Leukemia. 2013;27(8):1659–65. PubMed PMID: 23419792. Pubmed Central PMCID: 3740398.Google Scholar
Farina, L, Carniti, C, Dodero, A, Vendramin, A, Raganato, A, Spina, F, et al. Qualitative and quantitative polymerase chain reaction monitoring of minimal residual disease in relapsed chronic lymphocytic leukemia: early assessment can predict long-term outcome after reduced intensity allogeneic transplantation. Haematologica. 2009;94(5):654–62. PubMed PMID: 19377072. Pubmed Central PMCID: 2675677.Google Scholar
Moreno, C, Villamor, N, Colomer, D, Esteve, J, Gine, E, Muntanola, A, et al. Clinical significance of minimal residual disease, as assessed by different techniques, after stem cell transplantation for chronic lymphocytic leukemia. Blood. 2006;107(11):4563–9. PubMed PMID: 16449533.Google Scholar
Burkhardt, UE, Hainz, U, Stevenson, K, Goldstein, NR, Pasek, M, Naito, M, et al. Autologous CLL cell vaccination early after transplant induces leukemia-specific T cells. The Journal of Clinical Investigation. 2013;123(9):3756–65. PubMed PMID: 23912587. Pubmed Central PMCID: 3754265.Google Scholar
Rajasagi, M, Shukla, SA, Fritsch, EF, Keskin, DB, DeLuca, D, Carmona, E, et al. Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood. 2014;124(3):453–62. PubMed PMID: 24891321.Google Scholar
Richardson, SE, Khan, I, Rawstron, A, Sudak, J, Edwards, N, Verfuerth, S, et al. Risk-stratified adoptive cellular therapy following allogeneic hematopoietic stem cell transplantation for advanced chronic lymphocytic leukaemia. British Journal of Haematology. 2013;160(5):640–8. PubMed PMID: 23293871.Google Scholar
Bashey, A, Medina, B, Corringham, S, Pasek, M, Carrier, E, Vrooman, L, et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood. 2009;113(7):1581–8. PubMed PMID: 18974373. Pubmed Central PMCID: 2644086.Google Scholar
Xerri, L, Chetaille, B, Serriari, N, Attias, C, Guillaume, Y, Arnoulet, C, et al. Programmed death 1 is a marker of angioimmunoblastic T-cell lymphoma and B-cell small lymphocytic lymphoma/chronic lymphocytic leukemia. Human Pathology. 2008;39(7):1050–8. PubMed PMID: 18479731.Google Scholar
Ansell, SM, Lesokhin, AM, Borrello, I, Halwani, A, Scott, EC, Gutierrez, M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. The New England Journal of Medicine. 2015;372(4):311–9. PubMed PMID: 25482239.Google Scholar
Westin, JR, Chu, F, Zhang, M, Fayad, LE, Kwak, LW, Fowler, N, et al. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. The Lancet Oncology. 2014;15(1):6977. PubMed PMID: 24332512. Pubmed Central PMCID: 3922714.Google Scholar
Armand, P, Nagler, A, Weller, EA, Devine, SM, Avigan, DE, Chen, YB, et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2013;31(33):4199–206. PubMed PMID: 24127452.Google Scholar

References

Treon, SP, Patterson, CJ, Munshi, NC, Anderson, KC. Proceedings of the Seventh International Workshop on Waldenstrom Macroglobulinemia. Clin Lymphoma Myeloma Leuk 2013;13(2):181183.CrossRefGoogle ScholarPubMed
Gertz, MA. Waldenstrom macroglobulinemia: 2013 update on diagnosis, risk stratification, and management. Am J Hematol 2013;88(8):703711.Google Scholar
Sahota, SS, Forconi, F, Ottensmeier, CH, Provan, D, Oscier, DG, Hamblin, TJ, et al. Typical Waldenstrom macroglobulinemia is derived from a B-cell arrested after cessation of somatic mutation but prior to isotype switch events. Blood 2002;100(4):15051507.Google Scholar
Morton, LM, Wang, SS, Devesa, SS, Hartge, P, Weisenburger, DD, Linet, MS. Lymphoma incidence patterns by WHO subtype in the United States, 1992-2001. Blood 2006 Jan 1;107(1):265-276.Google Scholar
Boise, LH, Kaufman, JL, Heffner, LT, Shah, NN, Lechowicz, MJ, Lonial, S, et al. Changing epidemiology and improved survival in patients with Waldenstrom macroglobulinemia: review of surveillance, epidemiology, and end results (SEER) data. Blood 2013;122(21):31353135.Google Scholar
Castillo, JJ, Olszewski, AJ, Cronin, AM, Hunter, ZR, Treon, SP. Survival trends in Waldenstrom macroglobulinemia: an analysis of the Surveillance, Epidemiology and End Results database. Blood 2014;123(25):39994000.Google Scholar
Ciccarelli, BT, Patterson, CJ, Hunter, ZR, Hanzis, C, Ioakimidis, L, Manning, R, et al. Hepcidin is produced by lymphoplasmacytic cells and is associated with anemia in Waldenstrom’s macroglobulinemia. Clin Lymphoma Myeloma Leuk 2011;11(1):160163.Google Scholar
Ansell, SM, Kyle, RA, Reeder, CB, Fonseca, R, Mikhael, JR, Morice, WG, et al. Diagnosis and management of Waldenstrom macroglobulinemia: Mayo stratification of macroglobulinemia and risk-adapted therapy (mSMART) guidelines. Mayo Clin Proc 2010;85(9):824833.Google Scholar
Garcia-Sanz, R, Montoto, S, Torrequebrada, A, de Coca, AG, Petit, J, Sureda, A, et al. Waldenstrom macroglobulinaemia: presenting features and outcome in a series with 217 cases. Br J Haematol 2001;115(3):575582.Google Scholar
Michael, AB, Lawes, M, Kamalarajan, M, Huissoon, A, Pratt, G. Cryoglobulinaemia as an acute presentation of Waldenstrom’s macroglobulinaemia. Br J Haematol 2004;124(5):565.Google Scholar
Nobile-Orazio, E, Marmiroli, P, Baldini, L, Spagnol, G, Barbieri, S, Moggio, M, et al. Peripheral neuropathy in macroglobulinemia: incidence and antigen-specificity of M proteins. Neurology 1987;37(9):15061514.Google Scholar
Mauro, FR, Foa, R, Cerretti, R, Giannarelli, D, Coluzzi, S, Mandelli, F, et al. Autoimmune hemolytic anemia in chronic lymphocytic leukemia: clinical, therapeutic, and prognostic features. Blood 2000;95(9):27862792.Google Scholar
Treon, SP, Cao, Y, Xu, L, Yang, G, Liu, X, Hunter, ZR. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood 2014;123(18):27912796.Google Scholar
Ocio, EM, Schop, RFJ, Gonzalez, B, Van Wier, SA, Hernandez-Rivas, JM, Gutierrez, NC, et al. 6q deletion in Waldenström macroglobulinemia is associated with features of adverse prognosis. Br J Haematol 2007;136(1):8086.Google Scholar
Nguyen-Khac, F, Lambert, J, Chapiro, E, Grelier, A, Mould, S, Barin, C, et al. Chromosomal aberrations and their prognostic value in a series of 174 untreated patients with Waldenström’s macroglobulinemia. Haematologica 2013;98(4):649654.CrossRefGoogle Scholar
Sacco, A, Zhang, Y, Maiso, P, Manier, S, Rossi, G, Treon, SP, et al. microRNA aberrations in Waldenstrom macroglobulinemia. Clin Lymphoma Myeloma Leuk 2013;13(2):205207.Google Scholar
Roccaro, AM, Sacco, A, Jia, X, Azab, AK, Maiso, P, Ngo, HT, et al. microRNA-dependent modulation of histone acetylation in Waldenstrom macroglobulinemia. Blood 2010;116(9):15061514.Google Scholar
Morel, P, Duhamel, A, Gobbi, P, Dimopoulos, MA, Dhodapkar, MV, McCoy, J, et al. International prognostic scoring system for Waldenström macroglobulinemia. Blood 2009;113(18):41634170.Google Scholar
Kastritis, E, Zervas, K, Repoussis, P, Michali, E, Katodrytou, E, Zomas, A, et al. Prognostication in young and old patients with Waldenstrom’s macroglobulinemia: importance of the International Prognostic Scoring System and of serum lactate dehydrogenase. Clin Lymphoma Myeloma 2009;9(1):5052.Google Scholar
Kyle, RA, Treon, SP, Alexanian, R, Barlogie, B, Bjorkholm, M, Dhodapkar, M, et al. Prognostic markers and criteria to initiate therapy in Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin Oncol 2003;30(2):116120.Google Scholar
Dimopoulos, M, Kastritis, E, Owen, RG, Kyle, RA, Landgren, O, Morra, E, et al. Treatment recommendations for patients with Waldenström macroglobulinemia (WM) and related disorders: IWWM-7 consensus Blood 2014;124(9):14041411.Google Scholar
Ricci, F, Tedeschi, A, Montillo, M, Morra, E. Therapy-related myeloid neoplasms in chronic lymphocytic leukemia and Waldenstrom’s macroglobulinemia. Mediterr J Hematol Infect Dis 2011;3(1):e2011031.Google Scholar
Cornell, RF, Palmer, J. Adult acute leukemia. Dis Mon 2012;58(4):219238.Google Scholar
Leblond, V, Johnson, S, Chevret, S, Copplestone, A, Rule, S, Tournilhac, O, et al. Results of a randomized trial of chlorambucil versus fludarabine for patients with untreated Waldenström macroglobulinemia, marginal zone lymphoma, or lymphoplasmacytic lymphoma. J Clin Oncol 2013;31(3):301307.Google Scholar
Dimopoulos, MA, Alexanian, R, Gika, D, Anagnostopoulos, A, Zervas, C, Zomas, A, et al. Treatment of Waldenstrom’s macroglobulinemia with rituximab: prognostic factors for response and progression. Leuk Lymphoma 2004;45(10):20572061.Google Scholar
Gertz, MA, Rue, M, Blood, E, Kaminer, LS, Vesole, DH, Greipp, PR. Multicenter phase 2 trial of rituximab for Waldenstrom macroglobulinemia (WM): an Eastern Cooperative Oncology Group Study (E3A98). Leuk Lymphoma 2004;45(10):20472055.Google Scholar
Treon, SP, Emmanouilides, C, Kimby, E, Kelliher, A, Preffer, F, Branagan, AR, et al. Extended rituximab therapy in Waldenstrom’s macroglobulinemia. Ann Oncol 2005;16(1):132138.Google Scholar
Ghobrial, IM, Xie, W, Padmanabhan, S, Badros, A, Rourke, M, Leduc, R, et al. Phase II trial of weekly bortezomib in combination with rituximab in untreated patients with Waldenström Macroglobulinemia. Am J Hematol 2010;85(9):670674.Google Scholar
Dimopoulos, MA, Garcia-Sanz, R, Gavriatopoulou, M, Morel, P, Kyrtsonis, MC, Michalis, E, et al. Primary therapy of Waldenstrom macroglobulinemia (WM) with weekly bortezomib, low-dose dexamethasone, and rituximab (BDR): long-term results of a phase 2 study of the European Myeloma Network (EMN). Blood 2013;122(19):32763282.Google Scholar
Treon, SP, Soumerai, JD, Branagan, AR, Hunter, ZR, Patterson, CJ, Ioakimidis, L, et al. Thalidomide and rituximab in Waldenstrom macroglobulinemia. Blood 2008;112(12):44524457.Google Scholar
Treon, SP, Soumerai, JD, Branagan, AR, Hunter, ZR, Patterson, CJ, Ioakimidis, L, et al. Lenalidomide and rituximab in Waldenstrom’s macroglobulinemia. Clin Cancer Res 2009;15(1):355360.Google Scholar
Rosenthal, AC, Dueck, AC, Gano, K, Ansell, SM, Conley, C, Nowakowski, GS, et al. A Phase 2 Study of lenalidomide, rituximab, cyclophosphamide and dexamethasone (LR-CD) for untreated low grade non-Hodgkin lymphoma requiring therapy: Waldenström’s macroglobulinemia cohort results. Blood 2013;122(21):4352.Google Scholar
Chen, CI, Kouroukis, CT, White, D, Voralia, M, Stadtmauer, E, Stewart, AK, et al. Bortezomib is active in patients with untreated or relapsed Waldenstrom’s macroglobulinemia: a phase II study of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 2007;25(12):15701575.Google Scholar
Treon, SP, Hanzis, C, Tripsas, C, Ioakimidis, L, Patterson, CJ, Manning, RJ, et al. Bendamustine therapy in patients with relapsed or refractory Waldenstrom’s macroglobulinemia. Clin Lymphoma Myeloma Leuk 2011;11(1):133135.Google Scholar
Ghobrial, IM, Witzig, TE, Gertz, M, LaPlant, B, Hayman, S, Camoriano, J, et al. Long-term results of the phase II trial of the oral mTOR inhibitor everolimus (RAD001) in relapsed or refractory Waldenstrom Macroglobulinemia. Am J Hematol 2014;89(3):237242.Google Scholar
Tripsas, CK, Yang, G, Cao, Y, Xu, L, Hunter, Z, Cropper, SJ, et al. A prospective multicenter study of the bruton’s tyrosine kinase inhibitor ibrutinib in patients with relapsed or refractory Waldenstrom’s macroglobulinemia. Blood 2013;122(21):251251.Google Scholar
Anagnostopoulos, A, Dimopoulos, MA, Aleman, A, Weber, D, Alexanian, R, Champlin, R, et al. High-dose chemotherapy followed by stem cell transplantation in patients with resistant Waldenstrom’s macroglobulinemia. Bone Marrow Transplant 2001;27(10):10271029.Google Scholar
Anagnostopoulos, A, Hari, PN, Pérez, WS, Ballen, K, Bashey, A, Bredeson, CN, et al. Autologous or Allogeneic Stem Cell Transplantation in Patients with Waldenstrom’s Macroglobulinemia. Biology of Blood and Marrow Transplantation 2006;12(8):845854.Google Scholar
Gilleece, MH, Pearce, R, Linch, DC, Wilson, M, Towlson, K, Mackinnon, S, et al. The outcome of haemopoietic stem cell transplantation in the treatment of lymphoplasmacytic lymphoma in the UK: a British Society Bone Marrow Transplantation study. Hematology 2008;13(2):119127.Google Scholar
Dhedin, N, Tabrizi, R, Bulabois, PE, Le Gouill, S, Coiteux, V, Dartigeas, C, et al. Hematopoietic stem cell transplantation (HSCT) in Waldenstrom macroglobulinemia (Wm): update of the French experience in 54 cases. ASH Annual Meeting Abstracts 2007;110(11):3015.Google Scholar
Kyriakou, C, Canals, C, Sibon, D, Cahn, JY, Kazmi, M, Arcese, W, et al. High-dose therapy and autologous stem-cell transplantation in Waldenström macroglobulinemia: The Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. J Clin Oncol 2010;28(13):22272232.Google Scholar
Dreger, P, Schmitz, N. Autologous stem cell transplantation as part of first-line treatment of Waldenstrom’s macroglobulinemia. Biol Blood Marrow Transplant 2007;13(5):623624.Google Scholar
Caravita, T, Siniscalchi, A, Tendas, A, Cupelli, L, Dentamaro, T, Natale, G, et al. High-dose therapy with autologous PBSC transplantation in the front-line treatment of Waldenstrom’s macroglobulinemia. Bone Marrow Transplant 2009;43(7):587588.Google Scholar
Munshi, NC, Barlogie, B. Role for high-dose therapy with autologous hematopoietic stem cell support in Waldenstrom’s macroglobulinemia. Semin Oncol 2003;30(2):282.Google Scholar
Anagnostopoulos, A, Aleman, A, Giralt, S. Autologous and allogeneic stem cell transplantation in Waldenstrom’s macroglobulinemia: review of the literature and future directions. Semin Oncol 2003;30(2):286290.Google Scholar
Tournilhac, O, Leblond, V, Tabrizi, R, Gressin, R, Senecal, D, Milpied, N, et al. Transplantation in Waldenstrom’s macroglobulinemia: the French experience. Semin Oncol 2003;30(2):291296.Google Scholar
Stakiw, J, Kim, DH, Kuruvilla, J, Gupta, V, Messner, H, Lipton, JH. Evidence of graft-versus-Waldenstrom’s macroglobulinaemia effect after allogeneic stem cell transplantation: a single centre experience. Bone Marrow Transplant 2007;40(4):369372.Google Scholar
Meniane, JC, El-Cheikh, J, Faucher, C, Furst, S, Bouabdallah, R, Blaise, D, et al. Long-term graft-versus-Waldenstrom macroglobulinemia effect following reduced intensity conditioning allogeneic stem cell transplantation. Bone Marrow Transplant 2007;40(2):175177.Google Scholar
Maloney, D. Allogeneic transplantation following nonmyeloablative conditioning for aggressive lymphoma. Bone Marrow Transplant 2008;42(Suppl 1):S35S36.Google Scholar
Garnier, A, Robin, M, Larosa, F, Golmard, JL, Le Gouill, S, Coiteux, V, et al. Allogeneic hematopoietic stem cell transplantation allows long-term complete remission and curability in high-risk Waldenstrom’s macroglobulinemia. Results of a retrospective analysis of the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire. Haematologica 2010;95(6):950955.Google Scholar
Owen, RG, Pratt, G, Auer, RL, Flatley, R, Kyriakou, C, Lunn, MP, et al. Guidelines on the diagnosis and management of Waldenstrom macroglobulinaemia. Br J Haematol 2014;165(3):316333.Google Scholar

References

Marcus, R, Imrie, K, Solal-Celigny, P, Catalano, JV, Dmoszynska, A, Raposo, JC, et al. Phase III study of R-CVP compared with cyclophosphamide, vincristine, and prednisone alone in patients with previously untreated advanced follicular lymphoma. J Clin Oncol. 2008;26(28):4579–86.Google Scholar
Hiddemann, W, Kneba, M, Dreyling, M, Schmitz, N, Lengfelder, E, Schmits, R, et al. Frontline therapy with rituximab added to the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) significantly improves the outcome for patients with advanced-stage follicular lymphoma compared with therapy with CHOP alone: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood. 2005;106(12):3725−32.Google Scholar
Forstpointner, R, Dreyling, M, Repp, R, Hermann, S, Hanel, A, Metzner, B, et al. The addition of rituximab to a combination of fludarabine, cyclophosphamide, mitoxantrone (FCM) significantly increases the response rate and prolongs survival as compared with FCM alone in patients with relapsed and refractory follicular and mantle cell lymphomas: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood. 2004;104(10):3064–71.Google Scholar
van Oers, MH, Klasa, R, Marcus, RE, Wolf, M, Kimby, E, Gascoyne, RD, et al. Rituximab maintenance improves clinical outcome of relapsed/resistant follicular non-Hodgkin lymphoma in patients both with and without rituximab during induction: results of a prospective randomized phase 3 intergroup trial. Blood. 2006;108(10):3295−301.Google Scholar
Salles, G, Seymour, JF, Offner, F, Lopez-Guillermo, A, Belada, D, Xerri, L, et al. Rituximab maintenance for 2 years in patients with high tumour burden follicular lymphoma responding to rituximab plus chemotherapy (PRIMA): a phase 3, randomised controlled trial. Lancet. 2011;377(9759):4251.Google Scholar
Morschhauser, F, Radford, J, Van Hoof, A, Vitolo, U, Soubeyran, P, Tilly, H, et al. Phase III trial of consolidation therapy with yttrium-90-ibritumomab tiuxetan compared with no additional therapy after first remission in advanced follicular lymphoma. J Clin Oncol. 2008;26(32):5156–64.Google Scholar
Rummel, MJ, Niederle, N, Maschmeyer, G, Banat, GA, von Grunhagen, U, Losem, C, et al. Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: an open-label, multicentre, randomised, phase 3 non-inferiority trial. Lancet. 2013;381(9873):1203−10.Google Scholar
Flinn, IW, van der Jagt, R, Kahl, BS, Wood, P, Hawkins, TE, Macdonald, D, et al. Randomized trial of bendamustine-rituximab or R-CHOP/R-CVP in first-line treatment of indolent NHL or MCL: the BRIGHT study. Blood. 2014;123(19):2944–52.Google Scholar
Federico, M, Luminari, S, Dondi, A, Tucci, A, Vitolo, U, Rigacci, L, et al. R-CVP versus R-CHOP versus R-FM for the initial treatment of patients with advanced-stage follicular lymphoma: results of the FOLL05 trial conducted by the Fondazione Italiana Linfomi. J Clin Oncol. 2013;31(12):1506−13.Google Scholar
Lenz, G, Dreyling, M, Schiegnitz, E, Forstpointner, R, Wandt, H, Freund, M, et al. Myeloablative radiochemotherapy followed by autologous stem cell transplantation in first remission prolongs progression-free survival in follicular lymphoma: results of a prospective, randomized trial of the German Low-Grade Lymphoma Study Group. Blood. 2004;104(9):2667–74.Google Scholar
Deconinck, E, Foussard, C, Milpied, N, Bertrand, P, Michenet, P, Cornillet-LeFebvre, P, et al. High-dose therapy followed by autologous purged stem-cell transplantation and doxorubicin-based chemotherapy in patients with advanced follicular lymphoma: a randomized multicenter study by GOELAMS. Blood. 2005;105(10):3817−23.CrossRefGoogle ScholarPubMed
Sebban, C, Mounier, N, Brousse, N, Belanger, C, Brice, P, Haioun, C, et al. Standard chemotherapy with interferon compared with CHOP followed by high-dose therapy with autologous stem cell transplantation in untreated patients with advanced follicular lymphoma: the GELF-94 randomized study from the Groupe d’Etude des Lymphomes de l’Adulte (GELA). Blood. 2006;108(8):2540–4.Google Scholar
Al Khabori, M, de Almeida, JR, Guyatt, GH, Kuruvilla, J, Crump, M. Autologous stem cell transplantation in follicular lymphoma: a systematic review and meta-analysis. J Natl Cancer Inst. 2012;104(1):1828.Google Scholar
Ladetto, M, De Marco, F, Benedetti, F, Vitolo, U, Patti, C, Rambaldi, A, et al. Prospective, multicenter randomized GITMO/IIL trial comparing intensive (R-HDS) versus conventional (CHOP-R) chemoimmunotherapy in high-risk follicular lymphoma at diagnosis: the superior disease control of R-HDS does not translate into an overall survival advantage. Blood. 2008;111(8):4004−13.Google Scholar
Schaaf, M, Reiser, M, Borchmann, P, Engert, A, Skoetz, N. High-dose therapy with autologous stem cell transplantation versus chemotherapy or immuno-chemotherapy for follicular lymphoma in adults. Cochrane Database Syst Rev. 2012;1:CD007678.Google Scholar
Wang, B, Ren, C, Zhang, W, Ma, X, Xia, B, Sheng, Z. Intensified therapy followed by autologous stem-cell transplantation versus conventional therapy as first-line treatment of follicular lymphoma: a meta-analysis. Hematol Oncol. 2013;31(1):2933.Google Scholar
Montoto, S, Canals, C, Rohatiner, AZ, Taghipour, G, Sureda, A, Schmitz, N, et al. Long-term follow-up of high-dose treatment with autologous haematopoietic progenitor cell support in 693 patients with follicular lymphoma: an EBMT registry study. Leukemia. 2007;21(11):2324–31.Google Scholar
Akhtari, M, Bhatt, VR, Tandra, PK, Krishnamurthy, J, Horstman, H, Dreessen, A, et al. Therapy-related myeloid neoplasms after autologous hematopoietic stem cell transplantation in lymphoma patients. Cancer Biol Ther. 2013 1;14(12):1077–88.Google Scholar
Schouten, HC, Qian, W, Kvaloy, S, Porcellini, A, Hagberg, H, Johnsen, HE, et al. High-dose therapy improves progression-free survival and survival in relapsed follicular non-Hodgkin’s lymphoma: results from the randomized European CUP trial. J Clin Oncol. 2003;21(21):3918−27.Google Scholar
Le Gouill, S, De Guibert, S, Planche, L, Brice, P, Dupuis, J, Cartron, G, et al. Impact of the use of autologous stem cell transplantation at first relapse both in naive and previously rituximab exposed follicular lymphoma patients treated in the GELA/GOELAMS FL2000 study. Haematologica. 2011;96(8):1128–35.Google Scholar
Vose, JM, Bierman, PJ, Loberiza, FR, Lynch, JC, Bociek, GR, Weisenburger, DD, et al. Long-term outcomes of autologous stem cell transplantation for follicular non-Hodgkin lymphoma: effect of histological grade and Follicular International Prognostic Index. Biol Blood Marrow Transplant. 2008;14(1):3642.Google Scholar
Gisselbrecht, C, Glass, B, Mounier, N, Singh Gill, D, Linch, DC, Trneny, M, et al. Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era. J Clin Oncol. 2010;28(27):4184–90.Google Scholar
Kothari, J, Peggs, KS, Bird, A, Thomson, KJ, Morris, E, Virchis, AE, et al. Autologous stem cell transplantation for follicular lymphoma is of most benefit early in the disease course and can result in durable remissions, irrespective of prior rituximab exposure. Br J Haematol. 2014;165(3):334–40.Google Scholar
Evens, AM, Vanderplas, A, LaCasce, AS, Crosby, AL, Nademanee, AP, Kaminski, MS, et al. Stem cell transplantation for follicular lymphoma relapsed/refractory after prior rituximab: a comprehensive analysis from the NCCN lymphoma outcomes project. Cancer. 2013;119(20):3662–71.Google Scholar
Peters, AC, Duan, Q, Russell, JA, Duggan, P, Owen, C, Stewart, DA. Durable event-free survival following autologous stem cell transplant for relapsed or refractory follicular lymphoma: positive impact of recent rituximab exposure and low-risk Follicular Lymphoma International Prognostic Index score. Leuk Lymphoma. 2011;52(11):2124–9.Google Scholar
Phipps, C, Gopal, AK, Storer, BE, Cassaday, RD, Press, OW, Till, BG, et al. Autologous transplant for relapsed follicular lymphoma: impact of pre-transplant rituximab sensitivity. Leuk Lymphoma. 2014;17:15.Google Scholar
Gopal, AK, Gooley, TA, Rajendran, JG, Pagel, JM, Fisher, DR, Maloney, DG, et al. Myeloablative I-131-tositumomab with escalating doses of fludarabine and autologous hematopoietic transplantation for adults age >/= 60 years with B cell lymphoma. Biol Blood Marrow Transplant. 2014;20(6):770−5.Google Scholar
Decaudin, D, Mounier, N, Tilly, H, Ribrag, V, Ghesquières, H, Bouabdallah, K, et al. 90Y Ibritumomab tiuxetan (zevalin) combined with BEAM (Z -BEAM) conditioning regimen plus autologous stem cell transplantation in relapsed or refractory low-grade CD20-positive B-cell lymphoma. A GELA phase II prospective study. Clin Lymphoma Myeloma Leuk. 2011;11(2):212–8.Google Scholar
Brown, JR, Feng, Y, Gribben, JG, Neuberg, D, Fisher, DC, Mauch, P, et al. Long-term survival after autologous bone marrow transplantation for follicular lymphoma in first remission. Biol Blood Marrow Transplant. 2007;13(9):1057–65.Google Scholar
Arcaini, L, Montanari, F, Alessandrino, EP, Tucci, A, Brusamolino, E, Gargantini, L, et al. Immunochemotherapy with in vivo purging and autotransplant induces long clinical and molecular remission in advanced relapsed and refractory follicular lymphoma. Ann Oncol. 2008;19(7):1331–5.Google Scholar
Hicks, LK, Woods, A, Buckstein, R, Mangel, J, Pennell, N, Zhang, L, et al. Rituximab purging and maintenance combined with auto-SCT: long-term molecular remissions and prolonged hypogammaglobulinemia in relapsed follicular lymphoma. Bone Marrow Transplant. 2009;43(9):701–8.Google Scholar
Brugger, W, Hirsch, J, Grunebach, F, Repp, R, Brossart, P, Vogel, W, et al. Rituximab consolidation after high-dose chemotherapy and autologous blood stem cell transplantation in follicular and mantle cell lymphoma: a prospective, multicenter phase II study. Ann Oncol. 2004;15(11):1691–8.Google Scholar
Morschhauser, F, Recher, C, Milpied, N, Gressin, R, Salles, G, Brice, P, et al. A 4-weekly course of rituximab is safe and improves tumor control for patients with minimal residual disease persisting 3 months after autologous hematopoietic stem-cell transplantation: results of a prospective multicenter phase II study in patients with follicular lymphoma. Ann Oncol. 2012;23(10):2687–95.Google Scholar
Pettengell, R, Schmitz, N, Gisselbrecht, C, Smith, G, Patton, WN, Metzner, B, et al. Rituximab purging and/or maintenance in patients undergoing autologous transplantation for relapsed follicular lymphoma: a prospective randomized trial from the Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. J Clin Oncol. 2013;31(13):1624–30.Google Scholar
Hari, P, Carreras, J, Zhang, MJ, Gale, RP, Bolwell, BJ, Bredeson, CN, et al. Allogeneic transplants in follicular lymphoma: higher risk of disease progression after reduced-intensity compared to myeloablative conditioning. Biol Blood Marrow Transplant. 2008;14(2):236–45.Google Scholar
Auer, RL, MacDougall, F, Oakervee, HE, Taussig, D, Davies, JK, Syndercombe-Court, D, et al. T-cell replete fludarabine/cyclophosphamide reduced intensity allogeneic stem cell transplantation for lymphoid malignancies. Br J Haematol. 2012;157(5):580−5.Google Scholar
Shea, T, Johnson, J, Westervelt, P, Farag, S, McCarty, J, Bashey, A, et al. Reduced-intensity allogeneic transplantation provides high event-free and overall survival in patients with advanced indolent B cell malignancies: CALGB 109901. Biol Blood Marrow Transplant. 2011;17(9):1395–403.Google Scholar
Khouri, IF, Champlin, RE. Nonmyeloablative allogeneic stem cell transplantation for non-hodgkin lymphoma. Cancer J. 2012;18(5):457–62.Google Scholar
Mortensen, BK, Petersen, SL, Kornblit, B, Andersen, PK, Braendstrup, P, Andersen, NS, et al. Single-institution long-term outcomes for patients receiving nonmyeloablative conditioning hematopoeitic cell transplantation for chronic lymphocytic leukemia and follicular lymphoma. Eur J Haematol. 2012;89(2):151–9.Google Scholar
Abou-Nassar, KE, Stevenson, KE, Antin, JH, McDermott, K, Ho, VT, Cutler, CS, et al. (90)Y-ibritumomab tiuxetan followed by reduced-intensity conditioning and allo-SCT in patients with advanced follicular lymphoma. Bone Marrow Transplant. 2011;46(12):1503–9.Google Scholar
Freytes, CO, Zhang, MJ, Carreras, J, Burns, LJ, Gale, RP, Isola, L, et al. Outcome of lower-intensity allogeneic transplantation in non-Hodgkin lymphoma after autologous transplantation failure. Biol Blood Marrow Transplant. 2012;18(8):1255–64.Google Scholar
Cohen, S, Kiss, T, Lachance, S, Roy, DC, Sauvageau, G, Busque, L, et al. Tandem autologous-allogeneic nonmyeloablative sibling transplantation in relapsed follicular lymphoma leads to impressive progression-free survival with minimal toxicity. Biol Blood Marrow Transplant. 2012;18(6):951−7.Google Scholar
Crocchiolo, R, Castagna, L, Furst, S, El-Cheikh, J, Faucher, C, Oudin, C, et al. Tandem autologous-allo-SCT is feasible in patients with high-risk relapsed non-Hodgkin’s lymphoma. Bone Marrow Transplant. 2013;48(2):249–52.Google Scholar
van Besien, K, Loberiza, FR Jr., Bajorunaite, R, Armitage, JO, Bashey, A, Burns, LJ, et al. Comparison of autologous and allogeneic hematopoietic stem cell transplantation for follicular lymphoma. Blood. 2003;102(10):3521–9.Google Scholar
Ingram, W, Devereux, S, Das-Gupta, EP, Russell, NH, Haynes, AP, Byrne, JL, et al. Outcome of BEAM-autologous and BEAM-alemtuzumab allogeneic transplantation in relapsed advanced stage follicular lymphoma. Br J Haematol. 2008;141(2):235–43.Google Scholar
Tomblyn, MR, Ewell, M, Bredeson, C, Kahl, BS, Goodman, SA, Horowitz, MM, et al. Autologous versus reduced-intensity allogeneic hematopoietic cell transplantation for patients with chemosensitive follicular non-Hodgkin lymphoma beyond first complete response or first partial response. Biol Blood Marrow Transplant. 2011;17(7):1051–7.Google Scholar
Delgado, J, Canals, C, Attal, M, Thomson, K, Campos, A, Martino, R, et al. The role of in vivo T-cell depletion on reduced-intensity conditioning allogeneic stem cell transplantation from HLA-identical siblings in patients with follicular lymphoma. Leukemia. 2011;25(3):551−5.Google Scholar
Noriega, V, Kaur, H, Devereux, S, Byrne, J, Marcus, R, Haynes, A, et al. Long-term follow-up of BEAM-autologous and BEAM-alemtuzumab allogeneic stem cell transplantation in relapsed advanced stage follicular lymphoma. Leuk Res. 2014;38(7):737−43.Google Scholar
Thomson, KJ, Morris, EC, Milligan, D, Parker, AN, Hunter, AE, Cook, G, et al. T-cell-depleted reduced-intensity transplantation followed by donor leukocyte infusions to promote graft-versus-lymphoma activity results in excellent long-term survival in patients with multiply relapsed follicular lymphoma. J Clin Oncol. 2010;28(23):3695–700.Google Scholar
Robinson, SP, Canals, C, Luang, JJ, Tilly, H, Crawley, C, Cahn, JY, et al. The outcome of reduced intensity allogeneic stem cell transplantation and autologous stem cell transplantation when performed as a first transplant strategy in relapsed follicular lymphoma: an analysis from the Lymphoma Working Party of the EBMT. Bone Marrow Transplant. 2013;48(11):1409−14.Google Scholar

References

Harris, NL, Jaffe, ES, Stein, H, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood. 1994;84: 13611392.Google Scholar
Swerdlow, SH, Williams, ME. From centrocytic to mantle cell lymphoma: a clinicopathologic and molecular review of 3 decades. Hum Pathol. 2002;33: 720.Google Scholar
van Leeuwen, MT, Turner, JJ, Joske, DJ, et al. Lymphoid neoplasm incidence by WHO subtype in Australia 1982-2006. Int J Cancer. 2014;135(9): 21462156.Google Scholar
Project TN-HsLC. A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma. The Non-Hodgkin’s Lymphoma Classification Project. Blood. 1997;89: 3909-3918.Google Scholar
Ohshima, K, Suzumiya, J, Sato, K, Kanda, M, Haraoka, S, Kikuchi, M. B-cell lymphoma of 708 cases in Japan: incidence rates and clinical prognosis according to the REAL classification. Cancer Lett. 1999;135: 7381.Google Scholar
Zhou, Y, Wang, H, Fang, W, et al. Incidence trends of mantle cell lymphoma in the United States between 1992 and 2004. Cancer. 2008;113: 791798.Google Scholar
Argatoff, LH, Connors, JM, Klasa, RJ, Horsman, DE, Gascoyne, RD. Mantle cell lymphoma: a clinicopathologic study of 80 cases. Blood. 1997;89: 20672078.Google Scholar
Bosch, F, Lopez-Guillermo, A, Campo, E, et al. Mantle cell lymphoma: presenting features, response to therapy, and prognostic factors. Cancer. 1998;82: 567575.Google Scholar
Romaguera, JE, Medeiros, LJ, Hagemeister, FB, et al. Frequency of gastrointestinal involvement and its clinical significance in mantle cell lymphoma. Cancer. 2003;97: 586591.Google Scholar
Dreyling, M, Hiddemann, W. Current treatment standards and emerging strategies in mantle cell lymphoma. Hematology Am Soc Hematol Educ Program. 2009:542–551.Google Scholar
Leitch, HA, Gascoyne, RD, Chhanabhai, M, Voss, NJ, Klasa, R, Connors, JM. Limited-stage mantle-cell lymphoma. Ann Oncol. 2003;14: 15551561.Google Scholar
Hoster, E, Dreyling, M, Klapper, W, et al. A new prognostic index (MIPI) for patients with advanced-stage mantle cell lymphoma. Blood. 2008;111: 558565.Google Scholar
Hoster, E, Klapper, W, Hermine, O, et al. Confirmation of the mantle-cell lymphoma International Prognostic Index in randomized trials of the European Mantle-Cell Lymphoma Network. J Clin Oncol. 2014;32: 13381346.Google Scholar
Royo, C, Salaverria, I, Hartmann, EM, Rosenwald, A, Campo, E, Bea, S. The complex landscape of genetic alterations in mantle cell lymphoma. Semin Cancer Biol. 2011;21: 322334.Google Scholar
Rosenwald, A, Wright, G, Wiestner, A, et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell. 2003;3: 185197.Google Scholar
Jares, P, Campo, E. Advances in the understanding of mantle cell lymphoma. Br J Haematol. 2008;142: 149165.Google Scholar
Klapper, W, Hoster, E, Determann, O, et al. Ki-67 as a prognostic marker in mantle cell lymphoma-consensus guidelines of the pathology panel of the European MCL Network. J Hematop. 2009;2: 103111.Google Scholar
Cohen, JB, Ruppert, AS, Heerema, NA, et al. Complex Karyotype (CK) Is Associated with a Shortened Progression-Free Survival (PFS) in Patients (pts) with Newly Diagnosed Mantle Cell Lymphoma (MCL). ASH Annual Meeting Abstracts. 2012.Google Scholar
Espinet, B, Salaverria, I, Bea, S, et al. Incidence and prognostic impact of secondary cytogenetic aberrations in a series of 145 patients with mantle cell lymphoma. Genes Chromosomes Cancer. 2010;49: 439451.Google Scholar
Dreyling, M, Thieblemont, C, Gallamini, A, et al. ESMO Consensus conferences: guidelines on malignant lymphoma. part 2: marginal zone lymphoma, mantle cell lymphoma, peripheral T-cell lymphoma. Ann Oncol. 2013;24: 857877.Google Scholar
Herrmann, A, Hoster, E, Zwingers, T, et al. Improvement of overall survival in advanced stage mantle cell lymphoma. J Clin Oncol. 2009;27: 511518.Google Scholar
Lenz, G, Dreyling, M, Hoster, E, et al. Immunochemotherapy with rituximab and cyclophosphamide, doxorubicin, vincristine, and prednisone significantly improves response and time to treatment failure, but not long-term outcome in patients with previously untreated mantle cell lymphoma: results of a prospective randomized trial of the German Low Grade Lymphoma Study Group (GLSG). J Clin Oncol. 2005;23: 19841992.Google Scholar
Tam, CS, Bassett, R, Ledesma, C, et al. Mature results of the M. D. Anderson Cancer Center risk-adapted transplantation strategy in mantle cell lymphoma. Blood. 2009;113: 41444152.Google Scholar
Schulz, H, Bohlius, JF, Trelle, S, et al. Immunochemotherapy with rituximab and overall survival in patients with indolent or mantle cell lymphoma: a systematic review and meta-analysis. J Natl Cancer Inst. 2007;99: 706714.Google Scholar
Lefrere, F, Delmer, A, Suzan, F, et al. Sequential chemotherapy by CHOP and DHAP regimens followed by high-dose therapy with stem cell transplantation induces a high rate of complete response and improves event-free survival in mantle cell lymphoma: a prospective study. Leukemia. 2002;16: 587593.Google Scholar
van ’t Veer, MB, de Jong, D, MacKenzie, M, et al. High-dose Ara-C and beam with autograft rescue in R-CHOP responsive mantle cell lymphoma patients. Br J Haematol. 2009;144: 524530.Google Scholar
Eskelund, CW, Kolstad, A, Jerkeman, M, et al. 15-year follow-up of the Second Nordic Mantle Cell Lymphoma trial (MCL2): prolonged remissions without survival plateau. Br J Haematol. 2016; July 5. doi: 10.1111/bjh.14241.Google Scholar
Hermine, O, Hoster, E, Walewski, J, et al. Addition of high-dose cytarabine to immunochemotherapy before autologous stem-cell transplantation in patients aged 65 years or younger with mantle cell lymphoma (MCL Younger): a randomised, open-label, phase 3 trial of the European Mantle Cell Lymphoma Network. Lancet. 2016; Aug 6;388(10044):565–75. doi: 10.1016/S0140-6736(16)00739-X.Google Scholar
Chihara, D, Cheah, CY, Westin, JR, et al. Rituximab plus hyper-CVAD alternating with MTX/Ara-C in patients with newly diagnosed mantle cell lymphoma: 15-year follow-up of a phase II study from the MD Anderson Cancer Center. Br J Haematol. 2016 Jan;172(1):80–8. doi: 10.1111/bjh.13796.Google Scholar
Bernstein, SH, Epner, E, Unger, JM, et al. A phase II multicenter trial of hyperCVAD MTX/Ara-C and rituximab in patients with previously untreated mantle cell lymphoma; SWOG 0213. Ann Oncol. 2013;24: 15871593.Google Scholar
Merli, F, Luminari, S, Ilariucci, F, et al. Rituximab plus HyperCVAD alternating with high dose cytarabine and methotrexate for the initial treatment of patients with mantle cell lymphoma, a multicentre trial from Gruppo Italiano Studio Linfomi. Br J Haematol. 2012;156: 346353.Google Scholar
Chang, JE, Li, H, Smith, MR, et al. Phase 2 study of VcR-CVAD with maintenance rituximab for untreated mantle cell lymphoma: an Eastern Cooperative Oncology Group study (E1405). Blood. 2014;123: 16651673.Google Scholar
Kenkre, VP, Long, WL, Eickhoff, JC, et al. Maintenance rituximab following induction chemo-immunotherapy for mantle cell lymphoma: long-term follow-up of a pilot study from the Wisconsin Oncology Network. Leuk Lymphoma. 2011;52: 16751680.Google Scholar
Jantunen, E, Canals, C, Attal, M, et al. Autologous stem-cell transplantation in patients with mantle cell lymphoma beyond 65 years of age: a study from the European Group for Blood and Marrow Transplantation (EBMT). Ann Oncol. 2012;23: 166171.Google Scholar
Rummel, MJ, Niederle, N, Maschmeyer, G, et al. Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: an open-label, multicentre, randomised, phase 3 non-inferiority trial. Lancet. 2013;381: 12031210.Google Scholar
Flinn, IW, van der Jagt, R, Kahl, BS, et al. Randomized trial of bendamustine-rituximab or R-CHOP/R-CVP in first-line treatment of indolent NHL or MCL: the BRIGHT study. Blood. 2014;123: 29442952.Google Scholar
Burke, JM, Van der Jagt, RH, Kahl, BS, et al. Differences in quality of life between bendamustine plus rituximab compared with standard first-line treatments in patients with previously untreated advanced indolent non-Hodgkin’s lymphoma or mantle cell lymphoma. ASH Annual Meeting Abstracts. 2012;120: 155.Google Scholar
Cavalli, F, Rooney, B, Pei, L, Van De Velde, H, Robak, T. Investigators aobotL. Randomized phase 3 study of rituximab, cyclophosphamide, doxorubicin, and prednisone plus vincristine (R-CHOP) or bortezomib (VR-CAP) in newly diagnosed mantle cell lymphoma (MCL) patients (pts) ineligible for bone marrow transplantation (BMT). ASCO Meeting Abstracts. 2014;8500.Google Scholar
Visco, C, Finotto, S, Zambello, R, et al. Combination of rituximab, bendamustine, and cytarabine for patients with mantle-cell non-Hodgkin lymphoma ineligible for intensive regimens or autologous transplantation. J Clin Oncol. 2013;31: 14421449.Google Scholar
Kluin-Nelemans, HC, Hoster, E, Hermine, O, et al. Treatment of older patients with mantle-cell lymphoma. N Engl J Med. 2012;367: 520531.Google Scholar
Martin, P, Smith, M, Till, B. Management of mantle cell lymphoma in the elderly. Best Pract Res Clin Haematol. 2012;25: 221231.Google Scholar
Weidmann, E, Neumann, A, Fauth, F, et al. Phase II study of bendamustine in combination with rituximab as first-line treatment in patients 80 years or older with aggressive B-cell lymphomas. Ann Oncol. 2011;22: 18391844.Google Scholar
Ghielmini, M, Zucca, E. How I treat mantle cell lymphoma. Blood. 2009;114: 14691476.Google Scholar
Ghielmini, M, Schmitz, SF, Cogliatti, S, et al. Effect of single-agent rituximab given at the standard schedule or as prolonged treatment in patients with mantle cell lymphoma: a study of the Swiss Group for Clinical Cancer Research (SAKK). J Clin Oncol. 2005;23: 705711.Google Scholar
Dreyling, M, Lenz, G, Hoster, E, et al. Early consolidation by myeloablative radiochemotherapy followed by autologous stem cell transplantation in first remission significantly prolongs progression-free survival in mantle-cell lymphoma: results of a prospective randomized trial of the European MCL Network. Blood. 2005;105: 26772684.Google Scholar
Hoster, E, Metzner, B, Forstpointner, R, et al. Autologous stem cell transplantation and addition of rituximab independently prolong response duration in advanced stage mantle cell lymphoma. Blood. 2009;114: 880.Google Scholar
Fenske, TS, Zhang, MJ, Carreras, J, et al. Autologous or reduced-intensity conditioning allogeneic hematopoietic cell transplantation for chemotherapy-sensitive mantle-cell lymphoma: analysis of transplantation timing and modality. J Clin Oncol. 2014;32: 273281.Google Scholar
LaCasce, AS, Vandergrift, JL, Rodriguez, MA, et al. Comparative outcome of initial therapy for younger patients with mantle cell lymphoma: an analysis from the NCCN NHL Database. Blood. 2012;119: 20932099.Google Scholar
Geisler, CH, Kolstad, A, Laurell, A, et al. Long-term progression-free survival of mantle cell lymphoma after intensive front-line immunochemotherapy with in vivo-purged stem cell rescue: a nonrandomized phase 2 multicenter study by the Nordic Lymphoma Group. Blood. 2008;112: 26872693.Google Scholar
Ladetto, M, Magni, M, Pagliano, G, et al. Rituximab induces effective clearance of minimal residual disease in molecular relapses of mantle cell lymphoma. Biol Blood Marrow Transplant. 2006;12: 12701276.Google Scholar
Andersen, NS, Pedersen, LB, Laurell, A, et al. Pre-emptive treatment with rituximab of molecular relapse after autologous stem cell transplantation in mantle cell lymphoma. J Clin Oncol. 2009;27: 43654370.Google Scholar
Dietrich, S, Weidle, J, Rieger, M, et al. Rituximab maintenance therapy after autologous stem cell transplantation prolongs progression-free survival in patients with mantle cell lymphoma. Leukemia. 2014;28: 708709.Google Scholar
Le Gouill, S, Thieblemont, G, Oberic, L, et al. Maintenance after autologous stem cell transplantation prolongs survival in younger patients with mantle cell lymphoma: final results of randomized phase 3 LyMa trial of the Lysa/Goelams group. ASH Annual Meeting Abstracts, 2016 [Abstract 145].Google Scholar
Rubio Marie, T, Boumendil, A, Luan, JJ, et al. Is there still a place for total body irradiation (TBI) in the conditioning regimen of autologous stem cell transplantation in mantle cell lymphoma?: a retrospective study from the Lymphoma Working Party of the EBMT. ASH Annual Meeting Abstracts. 2010;116:688.Google Scholar
Hoster, E, Geisler, Christian H, Doorduijn, Jeanette K, et al. Role of high-dose cytarabine and total body irradiation conditioning before autologous stem cell transplantation in mantle cell lymphoma: a comparison of nordic MCL2, HOVON 45, and European MCL Younger Trials. Blood. 2013;122: 3367.Google Scholar
Kolstad, A, Laurell, A, Jerkeman, M, et al. Nordic MCL3 study: 90Y-ibritumomab-tiuxetan added to BEAM/C in non-CR patients before transplant in mantle cell lymphoma. Blood. 2014;123: 29532959.Google Scholar
Khouri, IF, Lee, MS, Romaguera, J, et al. Allogeneic hematopoietic transplantation for mantle-cell lymphoma: molecular remissions and evidence of graft-versus-malignancy. Ann Oncol. 1999;10: 12931299.Google Scholar
Khouri, IF, Lee, MS, Saliba, RM, et al. Nonablative allogeneic stem-cell transplantation for advanced/recurrent mantle-cell lymphoma. J Clin Oncol. 2003;21: 44074412.Google Scholar
Maris, MB, Sandmaier, BM, Storer, BE, et al. Allogeneic hematopoietic cell transplantation after fludarabine and 2 Gy total body irradiation for relapsed and refractory mantle cell lymphoma. Blood. 2004;104: 35353542.Google Scholar
Dietrich, S, Boumendil, A, Finel, H, et al. Outcome and prognostic factors in patients with mantle-cell lymphoma relapsing after autologous stem-cell transplantation: a retrospective study of the European Group for Blood and Marrow Transplantation (EBMT). Ann Oncol. 2014;25: 10531058.Google Scholar
Le Gouill, S, Kroger, N, Dhedin, N, et al. Reduced-intensity conditioning allogeneic stem cell transplantation for relapsed/refractory mantle cell lymphoma: a multicenter experience. Ann Oncol. 2012;23: 26952703.Google Scholar
Hari, PN , Maloney, DG , Carreras, J, et al. Allogeneic transplantation (AlloHCT) for patients with mantle cell lymphoma (MCL) progressing after autologous transplantation (AutoHCT). on behalf of the writing committee, Center for International Blood & Marrow Transplant Research (CIBMTR), Medical College of Wisconsin, Milwaukee, WI 11th International Conference on Malignant Lymphoma. Lugano, Switzerland. Ann Oncol 2011;Suppl 4:Abstract 038.Google Scholar
Hamadani, M, Saber, W, Ahn, KW, et al. Allogeneic hematopoietic cell transplantation for chemotherapy-unresponsive mantle cell lymphoma: a cohort analysis from the center for international blood and marrow transplant research. Biol Blood Marrow Transplant. 2013;19: 625631.Google Scholar
Perez-Galan, P, Dreyling, M, Wiestner, A. Mantle cell lymphoma: biology, pathogenesis, and the molecular basis of treatment in the genomic era. Blood. 2011;117: 2638.Google Scholar
Wang, ML, Rule, S, Martin, P, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013;369: 507516.Google Scholar
Hess, G, Herbrecht, R, Romaguera, J, et al. Phase III study to evaluate temsirolimus compared with investigator’s choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J Clin Oncol. 2009;27: 38223829.Google Scholar
Renner, C, Zinzani, PL, Gressin, R, et al. A multicenter phase II trial (SAKK 36/06) of single-agent everolimus (RAD001) in patients with relapsed or refractory mantle cell lymphoma. Haematologica. 2012;97: 10851091.Google Scholar
Goy, A, Bernstein, SH, Kahl, BS, et al. Bortezomib in patients with relapsed or refractory mantle cell lymphoma: updated time-to-event analyses of the multicenter phase 2 PINNACLE study. Ann Oncol. 2009;20: 520525.Google Scholar
Goy, A, Sinha, R, Williams, ME, et al. Single-agent lenalidomide in patients with mantle-cell lymphoma who relapsed or progressed after or were refractory to bortezomib: phase II MCL-001 (EMERGE) study. J Clin Oncol. 2013;31: 36883695.Google Scholar
Wang, M, Fayad, L, Wagner-Bartak, N, et al. Lenalidomide in combination with rituximab for patients with relapsed or refractory mantle-cell lymphoma: a phase 1/2 clinical trial. Lancet Oncol. 2012;13: 716723.Google Scholar
Wang, M, Oki, Y, Pro, B, et al. Phase II study of yttrium-90-ibritumomab tiuxetan in patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol. 2009;27: 52135218.Google Scholar
Kahl, BS, Spurgeon, SE, Furman, RR, et al. A phase 1 study of the PI3Kdelta inhibitor idelalisib in patients with relapsed/refractory mantle cell lymphoma (MCL). Blood. 2014;123: 33983405.Google Scholar
Evens, AM, Vose, JM, Harb, W, et al. A Phase II multicenter study of the histone deacetylase inhibitor (HDACi) abexinostat (PCI-24781) in relapsed/refractory follicular lymphoma (FL) and mantle cell lymphoma (MCL). ASH Annual Meeting Abstracts. 2012;120: 55.Google Scholar
Davids, MS, Seymour, JF, Gerecitano, JF, et al. The single-agent Bcl-2 inhibitor ABT-199 (GDC-0199) in patients with relapsed/refractory (R/R) non-Hodgkin lymphoma (NHL): responses observed in all mantle cell lymphoma (MCL) patients. Blood. 2013;122(21)1789.Google Scholar
Robinson, S, Dreger, P, Caballero, D, et al. The EBMT/EMCL consensus project on the role of autologous and allogeneic stem cell transplantation in mantle cell lymphoma. Leukemia. 2015;29(2):464473.Google Scholar
Kruger, WH, Hirt, C, Basara, N, et al. Allogeneic stem cell transplantation for mantle cell lymphoma-final report from the prospective trials of the East German Study Group Haematology/Oncology (OSHO). Ann Hematol. 2014;93(9): 15871597.Google Scholar
Dreyling, M. Mantle cell lymphoma: biology, clinical presentation, and therapeutic approaches. Am Soc Clin Oncol Educ Book. 2014: 191–198.Google Scholar
Tiemann, M, Schrader, C, Klapper, W, et al. Histopathology, cell proliferation indices and clinical outcome in 304 patients with mantle cell lymphoma (MCL): a clinicopathological study from the European MCL Network. Br J Haematol. 2005;131: 2938.Google Scholar
Jares, P, Colomer, D, Campo, E. Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer. 2007;7: 750762.Google Scholar
Fernàndez, V, Salamero, O, Espinet, B, et al. Genomic and gene expression profiling defines indolent forms of mantle cell lymphoma. Cancer Res. 2010;70: 14081418.Google Scholar
Ondrejka, SL, Lai, R, Smith, SD, Hsi, ED. Indolent mantle cell leukemia: a clinicopathological variant characterized by isolated lymphocytosis, interstitial bone marrow involvement, kappa light chain restriction, and good prognosis. Haematologica. 2011;96: 11211127.Google Scholar
Nygren, L, Baumgartner Wennerholm, S, Klimkowska, M, Christensson, B, Kimby, E, Sander, B. Prognostic role of SOX11 in a population-based cohort of mantle cell lymphoma. Blood. 2012;119: 42154223.Google Scholar
Martin, P, Chadburn, A, Christos, P, et al. Outcome of deferred initial therapy in mantle-cell lymphoma. J Clin Oncol. 2009;27: 12091213.Google Scholar
Swerdlow, SH. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: World Health Organization, 2008.Google Scholar
Cheah, CY, George, A, Gine, E, et al. Central nervous system involvement in mantle cell lymphoma: clinical features, prognostic factors and outcomes from the European Mantle Cell Lymphoma Network. Ann Oncol. 2013;24: 21192123.Google Scholar
Conconi, A, Franceschetti, S, Lobetti-Bodoni, C, et al. Risk factors of central nervous system relapse in mantle cell lymphoma. Leuk Lymphoma. 2013;54: 19081914.Google Scholar
Ferrer, A, Bosch, F, Villamor, N, et al. Central nervous system involvement in mantle cell lymphoma. Ann Oncol. 2008;19: 135141.Google Scholar
Vose, JM. Mantle cell lymphoma: 2012 update on diagnosis, risk-stratification, and clinical management. Am J Hematol. 2012;87: 604609.Google Scholar
Schlette, E, Lai, R, Onciu, M, Doherty, D, Bueso-Ramos, C, Medeiros, LJ. Leukemic mantle cell lymphoma: clinical and pathologic spectrum of twenty-three cases. Mod Pathol. 2001;14: 11331140.Google Scholar
Bernard, M, Tsang, RW, Le, LW, et al. Limited-stage mantle cell lymphoma: treatment outcomes at the Princess Margaret Hospital. Leuk Lymphoma. 2013;54: 261267.Google Scholar
Damon, LE, Johnson, JL, Niedzwiecki, D, et al. Immunochemotherapy and autologous stem-cell transplantation for untreated patients with mantle-cell lymphoma: CALGB 59909. J Clin Oncol. 2009;27: 61016108.Google Scholar
Delarue, R, Haioun, C, Ribrag, V, et al. CHOP and DHAP plus rituximab followed by autologous stem cell transplantation in mantle cell lymphoma: a phase 2 study from the Groupe d’Etude des Lymphomes de l’Adulte. Blood. 2013;121: 4853.Google Scholar
Gressin, R, Caulet-Maugendre, S, Deconinck, E, et al. Evaluation of the (R)VAD+C regimen for the treatment of newly diagnosed mantle cell lymphoma. Combined results of two prospective phase II trials from the French GOELAMS group. Haematologica. 2010;95: 13501357.Google Scholar
Vandenberghe, E, Ruiz de Elvira, C, Loberiza, FR, et al. Outcome of autologous transplantation for mantle cell lymphoma: a study by the European Blood and Bone Marrow Transplant and Autologous Blood and Marrow Transplant Registries. Br J Haematol. 2003;120: 793800.Google Scholar
Touzeau, C, Leux, C, Bouabdallah, R, et al. Autologous stem cell transplantation in mantle cell lymphoma: a report from the SFGM-TC. Ann Hematol. 2014;93: 233242.Google Scholar
Herold, M, Haas, A, Srock, S, et al. Rituximab added to first-line mitoxantrone, chlorambucil, and prednisolone chemotherapy followed by interferon maintenance prolongs survival in patients with advanced follicular lymphoma: an East German Study Group Hematology and Oncology Study. J Clin Oncol. 2007;25: 19861992.Google Scholar
Smith, MR, Li, H, Gordon, L, et al. Phase II study of rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone immunochemotherapy followed by yttrium-90-ibritumomab tiuxetan in untreated mantle-cell lymphoma: Eastern Cooperative Oncology Group Study E1499. J Clin Oncol. 2012;30: 31193126.Google Scholar
Houot, R, Le Gouill, S, Ojeda Uribe, M, et al. Combination of rituximab, bortezomib, doxorubicin, dexamethasone and chlorambucil (RiPAD+C) as first-line therapy for elderly mantle cell lymphoma patients: results of a phase II trial from the GOELAMS. Ann Oncol. 2012;23: 15551561.Google Scholar
Ruan, J, Gregory, SA, Christos, P, et al. Long-term follow-up of R-CHOP with bevacizumab as initial therapy for mantle cell lymphoma: clinical and correlative results. Clin Lymphoma Myeloma Leuk. 2014;14: 107113.Google Scholar
Cook, G, Smith, GM, Kirkland, K, et al. Outcome following reduced-intensity allogeneic stem cell transplantation (RIC AlloSCT) for relapsed and refractory mantle cell lymphoma (MCL): a study of the British Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2010;16: 14191427.Google Scholar
Hamadani, M, Saber, W, Ahn, KW, et al. Allogeneic hematopoietic cell transplantation for chemotherapy-unresponsive mantle cell lymphoma: a cohort analysis from the Center for International Blood and Marrow Transplant Research. Biol Blood Marrow Transplant. 2013;19: 625631.Google Scholar
Forstpointner, R, Unterhalt, M, Dreyling, M, et al. Maintenance therapy with rituximab leads to a significant prolongation of response duration after salvage therapy with a combination of rituximab, fludarabine, cyclophosphamide, and mitoxantrone (R-FCM) in patients with recurring and refractory follicular and mantle cell lymphomas: Results of a prospective randomized study of the German Low Grade Lymphoma Study Group (GLSG). Blood. 2006;108: 40034008.Google Scholar
Robinson, KS, Williams, ME, van der Jagt, RH, et al. Phase II multicenter study of bendamustine plus rituximab in patients with relapsed indolent B-cell and mantle cell non-Hodgkin’s lymphoma. J Clin Oncol. 2008;26: 44734479.Google Scholar
Rummel, MJ, Al-Batran, SE, Kim, SZ, et al. Bendamustine plus rituximab is effective and has a favorable toxicity profile in the treatment of mantle cell and low-grade non-Hodgkin’s lymphoma. J Clin Oncol. 2005;23: 33833389.Google Scholar
Thomas, DW, Owen, RG, Johnson, SA, et al. Superior quality and duration of responses among patients with mantle-cell lymphoma treated with fludarabine and cyclophosphamide with or without rituximab compared with prior responses to CHOP. Leuk Lymphoma. 2005;46: 549552.Google Scholar
Kouroukis, CT, Fernandez, LA, Crump, M, et al. A phase II study of bortezomib and gemcitabine in relapsed mantle cell lymphoma from the National Cancer Institute of Canada Clinical Trials Group (IND 172). Leuk Lymphoma. 2011;52: 394399.Google Scholar
Hitz, F, Martinelli, G, Zucca, E, et al. A multicentre phase II trial of gemcitabine for the treatment of patients with newly diagnosed, relapsed or chemotherapy resistant mantle cell lymphoma: SAKK 36/03. Hematol Oncol. 2009;27: 154159.Google Scholar
Garbo, LE, Flynn, PJ, MacRae, MA, Rauch, MA, Wang, Y, Kolibaba, KS. Results of a Phase II trial of gemcitabine, mitoxantrone, and rituximab in relapsed or refractory mantle cell lymphoma. Invest New Drugs. 2009;27: 476481.Google Scholar
Rodriguez, J, Gutierrez, A, Palacios, A, et al. Rituximab, gemcitabine and oxaliplatin: an effective regimen in patients with refractory and relapsing mantle cell lymphoma. Leuk Lymphoma. 2007;48: 21722178.Google Scholar
Morschhauser, F, Depil, S, Jourdan, E, et al. Phase II study of gemcitabine-dexamethasone with or without cisplatin in relapsed or refractory mantle cell lymphoma. Ann Oncol. 2007;18: 370375.Google Scholar
Lamm, W, Kaufmann, H, Raderer, M, et al. Bortezomib combined with rituximab and dexamethasone is an active regimen for patients with relapsed and chemotherapy-refractory mantle cell lymphoma. Haematologica. 2011;96: 10081014.Google Scholar
Friedberg, JW, Vose, JM, Kelly, JL, et al. The combination of bendamustine, bortezomib, and rituximab for patients with relapsed/refractory indolent and mantle cell non-Hodgkin lymphoma. Blood. 2011;117: 28072812.Google Scholar
Baiocchi, RA, Alinari, L, Lustberg, ME, et al. Phase 2 trial of rituximab and bortezomib in patients with relapsed or refractory mantle cell and follicular lymphoma. Cancer. 2011;117: 24422451.Google Scholar
Zinzani, PL, Vose, JM, Czuczman, MS, et al. Long-term follow-up of lenalidomide in relapsed/refractory mantle cell lymphoma: subset analysis of the NHL-003 study. Ann Oncol. 2013;24: 28922897.Google Scholar
Zaja, F, De Luca, S, Vitolo, U, et al. Salvage treatment with lenalidomide and dexamethasone in relapsed/refractory mantle cell lymphoma: clinical results and effects on microenvironment and neo-angiogenic biomarkers. Haematologica. 2012;97: 416422.Google Scholar
Ruan, J, Martin, P, Coleman, M, et al. Durable responses with the metronomic rituximab and thalidomide plus prednisone, etoposide, procarbazine, and cyclophosphamide regimen in elderly patients with recurrent mantle cell lymphoma. Cancer. 2010;116: 26552664.Google Scholar
Witzig, TE, Geyer, SM, Ghobrial, I, et al. Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J Clin Oncol. 2005;23: 53475356.Google Scholar
Ansell, SM, Tang, H, Kurtin, PJ, et al. Temsirolimus and rituximab in patients with relapsed or refractory mantle cell lymphoma: a phase 2 study. Lancet Oncol. 2011;12: 361368.Google Scholar
Ansell, SM, Inwards, DJ, Rowland, KM Jr., et al. Low-dose, single-agent temsirolimus for relapsed mantle cell lymphoma: a phase 2 trial in the North Central Cancer Treatment Group. Cancer. 2008;113: 508514.Google Scholar
Morschhauser, FA, Cartron, G, Thieblemont, C, et al. Obinutuzumab (GA101) monotherapy in relapsed/refractory diffuse large B-cell lymphoma or mantle-cell lymphoma: results from the phase II GAUGUIN study. J Clin Oncol. 2013;31: 29122919.Google Scholar
Chen, RW, Hongli, L, Bernstein, SH, Rimsza, LM, Foreman, SJ, Constine, L, et al. BR but not R-HCVAD is a feasible induction prior to ASCT in frontline MCL: Results of SWOG study 1106. Br J Haematol; in press.Google Scholar
Robak, T, Huang, H, Jin, J, Zhu, J, Liu, T, Samoilova, O, et al. Bortezomib-based therapy for newly diagnosed mantle-cell lymphoma. N Engl J Med. 2015;372(10):944–53.Google Scholar
Ruan, J, Martin, P, Shah, B, Chuster, SJ, Smith, SM, Furman, RR, et al. Lenalidomide plus rituximab as initial treatment for mantle-cell lymphoma. N Engl J Med. 2015;373(19):1835–44.Google Scholar

References

Sehn, LH, Berry, B, Chhanabhai, M, Fitzgerald, C, Gill, K, Hoskins, P, et al. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood. 2007;109(5):1857–61.Google Scholar
Philip, T, Guglielmi, C, Hagenbeek, A, Somers, R, Van der Lelie, H, Bron, D, et al. Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin’s lymphoma. The New England Journal of Medicine. 1995;333(23):1540–5.Google Scholar
Gisselbrecht, C, Glass, B, Mounier, N, Singh Gill, D, Linch, DC, Trneny, M, et al. Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2010;28(27):4184–90.Google Scholar
Gisselbrecht, C, Schmitz, N, Mounier, N, Ma, D, Trneny, M, Hagberg, H, et al. R-ICE versus R-DHAP in relapsed patients with CD20 diffuse large B-cell lymphoma (DLBCL) followed by stem cell transplantation and maintenance treatment with rituximab or not: first interim analysis on 200 patients. CORAL Study. Blood. 2007;110(Abstract 517).Google Scholar
Crump, M, Kuruvilla, J, Couban, S, MacDonald, DA, Kukreti, V, Kouroukis, CT, et al. Randomized comparison of gemcitabine, dexamethasone, and cisplatin versus dexamethasone, cytarabine, and cisplatin chemotherapy before autologous stem-cell transplantation for relapsed and refractory aggressive lymphomas: NCIC-CTG LY.12. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2014;32(31):3490–6.Google Scholar
Van Imhoff, GW, McMillan, A, Matasar, MJ, Radford, J, Ardeshna, KM, Kuliczkowski, L, et al. Ofatumumab Versus Rituximab Salvage Chemoimmunotherapy in Relapsed or Refractory Diffuse Large B-Cell Lymphoma: The Orcharrd Study (OMB110928) Blood. 2014;124(630 abstract).Google Scholar
Hamadani, M, Hari, PN, Zhang, Y, Carreras, J, Akpek, G, Aljurf, MD, et al. Early failure of frontline rituximab-containing chemo-immunotherapy in diffuse large B cell lymphoma does not predict futility of autologous hematopoietic cell transplantation. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2014;20(11):1729−36.Google Scholar
Kansara, RR, Savage, KJ, Villa, D, Shenkier, T, Gerrie, AS, Klasa, R, et al. Outcome in unselected patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL) following R-CHOP when stem cell transplantation is not feasible. Blood. 2014;124(Abstract 3069).Google Scholar
Colosia, A, Njue, A, Trask, PC, Olivares, R, Khan, S, Abbe, A, et al. Clinical efficacy and safety in relapsed/refractory diffuse large b-cell lymphoma: a systematic literature review. Clinical Lymphoma, Myeloma & Leukemia. 2014;14(5):343–55 e6.Google Scholar
Gisselbrecht, C, Lepage, E, Molina, T, Quesnel, B, Fillet, G, Lederlin, P, et al. Shortened first-line high-dose chemotherapy for patients with poor-prognosis aggressive lymphoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2002;20(10):2472–9.Google Scholar
Kaiser, U, Uebelacker, I, Abel, U, Birkmann, J, Trumper, L, Schmalenberg, H, et al. Randomized study to evaluate the use of high-dose therapy as part of primary treatment for “aggressive” lymphoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2002;20(22):4413–9.Google Scholar
Martelli, M, Gherlinzoni, F, De Renzo, A, Zinzani, PL, De Vivo, A, Cantonetti, M, et al. Early autologous stem-cell transplantation versus conventional chemotherapy as front-line therapy in high-risk, aggressive non-Hodgkin’s lymphoma: an Italian multicenter randomized trial. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2003;21(7):1255–62.Google Scholar
Haioun, C, Lepage, E, Gisselbrecht, C, Bastion, Y, Coiffier, B, Brice, P, et al. Benefit of autologous bone marrow transplantation over sequential chemotherapy in poor-risk aggressive non-Hodgkin’s lymphoma: updated results of the prospective study LNH87-2. Groupe d’Etude des Lymphomes de l’Adulte. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 1997;15(3):1131–7.Google Scholar
Haioun, C, Lepage, E, Gisselbrecht, C, Salles, G, Coiffier, B, Brice, P, et al. Survival benefit of high-dose therapy in poor-risk aggressive non-Hodgkin’s lymphoma: final analysis of the prospective LNH87-2 protocol–a groupe d’Etude des lymphomes de l’Adulte study. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2000;18(16):3025−30.Google Scholar
Milpied, N, Deconinck, E, Gaillard, F, Delwail, V, Foussard, C, Berthou, C, et al. Initial treatment of aggressive lymphoma with high-dose chemotherapy and autologous stem-cell support. The New England Journal of Medicine. 2004;350(13):1287–95.Google Scholar
Greb, A, Bohlius, J, Trelle, S, Schiefer, D, De Souza, CA, Gisselbrecht, C, et al. High-dose chemotherapy with autologous stem cell support in first-line treatment of aggressive non-Hodgkin lymphoma - results of a comprehensive meta-analysis. Cancer Treatment Reviews. 2007;33(4):338–46.Google Scholar
Vitolo, U, Liberati, AM, Cabras, MG, Federico, M, Angelucci, E, Baldini, L, et al. High dose sequential chemotherapy with autologous transplantation versus dose-dense chemotherapy MegaCEOP as first line treatment in poor-prognosis diffuse large cell lymphoma: an “Intergruppo Italiano Linfomi” randomized trial. Haematologica. 2005;90(6):793801.Google Scholar
Betticher, DC, Martinelli, G, Radford, JA, Kaufmann, M, Dyer, MJ, Kaiser, U, et al. Sequential high dose chemotherapy as initial treatment for aggressive sub-types of non-Hodgkin lymphoma: results of the international randomized phase III trial (MISTRAL). Annals of Oncology: Official Journal of the European Society for Medical Oncology/ESMO. 2006;17(10):1546–52.Google Scholar
Stiff, PJ, Unger, JM, Cook, JR, Constine, LS, Couban, S, Stewart, DA, et al. Autologous transplantation as consolidation for aggressive non-Hodgkin’s lymphoma. The New England Journal of Medicine. 2013;369(18):1681–90.Google Scholar
Oliansky, DM, Czuczman, M, Fisher, RI, Irwin, FD, Lazarus, HM, Omel, J, et al. The role of cytotoxic therapy with hematopoietic stem cell transplantation in the treatment of diffuse large B cell lymphoma: update of the 2001 evidence-based review. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2011;17(1):2047 e30.Google Scholar
McCarthy, PL Jr., Hahn, T, Hassebroek, A, Bredeson, C, Gajewski, J, Hale, G, et al. Trends in use of and survival after autologous hematopoietic cell transplantation in North America, 1995–2005: significant improvement in survival for lymphoma and myeloma during a period of increasing recipient age. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2013;19(7):1116–23.Google Scholar
Kim, JE, Lee, DH, Yoo, C, Kim, S, Kim, SW, Lee, JS, et al. BEAM or BuCyE high-dose chemotherapy followed by autologous stem cell transplantation in non-Hodgkin’s lymphoma patients: a single center comparative analysis of efficacy and toxicity. Leukemia Research. 2011;35(2):183–7.Google Scholar
Shimoni, A, Avivi, I, Rowe, JM, Yeshurun, M, Levi, I, Or, R, et al. A randomized study comparing yttrium-90 ibritumomab tiuxetan (Zevalin) and high-dose BEAM chemotherapy versus BEAM alone as the conditioning regimen before autologous stem cell transplantation in patients with aggressive lymphoma. Cancer. 2012;118(19):4706−14.Google Scholar
Vose, JM, Carter, S, Burns, LJ, Ayala, E, Press, OW, Moskowitz, CH, et al. Phase III randomized study of rituximab/carmustine, etoposide, cytarabine, and melphalan (BEAM) compared with iodine-131 tositumomab/BEAM with autologous hematopoietic cell transplantation for relapsed diffuse large B-cell lymphoma: results from the BMT CTN 0401 trial. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2013;31(13):1662–8.Google Scholar
Winter, JN, Inwards, DJ, Spies, S, Wiseman, G, Patton, D, Erwin, W, et al. Yttrium-90 ibritumomab tiuxetan doses calculated to deliver up to 15 Gy to critical organs may be safely combined with high-dose BEAM and autologous transplantation in relapsed or refractory B-cell non-Hodgkin’s lymphoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2009;27(10):1653–9.Google Scholar
Gisselbrecht, C, Schmitz, N, Mounier, N, Singh Gill, D, Linch, DC, Trneny, M, et al. Rituximab maintenance therapy after autologous stem-cell transplantation in patients with relapsed CD20(+) diffuse large B-cell lymphoma: final analysis of the collaborative trial in relapsed aggressive lymphoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2012;30(36):4462–9.Google Scholar
Bolanos-Meade, J, Garrett-Mayer, E, Luznik, L, Anders, V, Webb, J, Fuchs, EJ, et al. Induction of autologous graft-versus-host disease: results of a randomized prospective clinical trial in patients with poor risk lymphoma. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2007;13(10):1185–91.Google Scholar
Thompson, JA, Fisher, RI, Leblanc, M, Forman, SJ, Press, OW, Unger, JM, et al. Total body irradiation, etoposide, cyclophosphamide, and autologous peripheral blood stem-cell transplantation followed by randomization to therapy with interleukin-2 versus observation for patients with non-Hodgkin lymphoma: results of a phase 3 randomized trial by the Southwest Oncology Group (SWOG 9438). Blood. 2008;111(8):4048–54.Google Scholar
Armand, P, Nagler, A, Weller, EA, Devine, SM, Avigan, DE, Chen, YB, et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2013;31(33):4199−206.Google Scholar
van Besien, KW, de Lima, M, Giralt, SA, Moore, DF Jr., Khouri, IF, Rondon, G, et al. Management of lymphoma recurrence after allogeneic transplantation: the relevance of graft-versus-lymphoma effect. Bone Marrow Transplantation. 1997;19(10):977–82.Google Scholar
Bishop, MR, Dean, RM, Steinberg, SM, Odom, J, Pavletic, SZ, Chow, C, et al. Clinical evidence of a graft-versus-lymphoma effect against relapsed diffuse large B-cell lymphoma after allogeneic hematopoietic stem-cell transplantation. Annals of Oncology: Official Journal of the European Society for Medical Oncology/ESMO. 2008;19(11):1935–40.Google Scholar
Rigacci, L, Puccini, B, Dodero, A, Iacopino, P, Castagna, L, Bramanti, S, et al. Allogeneic hematopoietic stem cell transplantation in patients with diffuse large B cell lymphoma relapsed after autologous stem cell transplantation: a GITMO study. Annals of Hematology. 2012;91(6):931−9.Google Scholar
van Kampen, RJ, Canals, C, Schouten, HC, Nagler, A, Thomson, KJ, Vernant, JP, et al. Allogeneic stem-cell transplantation as salvage therapy for patients with diffuse large B-cell non-Hodgkin’s lymphoma relapsing after an autologous stem-cell transplantation: an analysis of the European Group for Blood and Marrow Transplantation Registry. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2011;29(10):1342–8.Google Scholar
Freytes, CO, Loberiza, FR, Rizzo, JD, Bashey, A, Bredeson, CN, Cairo, MS, et al. Myeloablative allogeneic hematopoietic stem cell transplantation in patients who experience relapse after autologous stem cell transplantation for lymphoma: a report of the International Bone Marrow Transplant Registry. Blood. 2004;104(12):3797–803.Google Scholar
Freytes, CO, Zhang, MJ, Carreras, J, Burns, LJ, Gale, RP, Isola, L, et al. Outcome of lower-intensity allogeneic transplantation in non-Hodgkin lymphoma after autologous transplantation failure. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2012;18(8):1255–64.Google Scholar
Peniket, AJ, Ruiz de Elvira, MC, Taghipour, G, Cordonnier, C, Gluckman, E, de Witte, T, et al. An EBMT registry matched study of allogeneic stem cell transplants for lymphoma: allogeneic transplantation is associated with a lower relapse rate but a higher procedure-related mortality rate than autologous transplantation. Bone Marrow Transplantation. 2003;31(8):667–78.Google Scholar
Lazarus, HM, Zhang, MJ, Carreras, J, Hayes-Lattin, BM, Ataergin, AS, Bitran, JD, et al. A comparison of HLA-identical sibling allogeneic versus autologous transplantation for diffuse large B cell lymphoma: a report from the CIBMTR. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2010;16(1):3545.Google Scholar
Glass, B, Hasenkamp, J, Wulf, G, Dreger, P, Pfreundschuh, M, Gramatzki, M, et al. Rituximab after lymphoma-directed conditioning and allogeneic stem-cell transplantation for relapsed and refractory aggressive non-Hodgkin lymphoma (DSHNHL R3): an open-label, randomised, phase 2 trial. The Lancet Oncology. 2014;15(7):757−66.Google Scholar
Bacher, U, Klyuchnikov, E, Le-Rademacher, J, Carreras, J, Armand, P, Bishop, MR, et al. Conditioning regimens for allotransplants for diffuse large B-cell lymphoma: myeloablative or reduced intensity? Blood. 2012;120(20):4256–62.Google Scholar
Klyuchnikov, E, Bacher, U, Kroll, T, Shea, TC, Lazarus, HM, Bredeson, C, et al. Allogeneic hematopoietic cell transplantation for diffuse large B cell lymphoma: who, when and how? Bone Marrow Transplantation. 2014;49(1):17.Google Scholar
Rizzieri, DA, Johnson, JL, Byrd, JC, Lozanski, G, Blum, KA, Powell, BL, et al. Improved efficacy using rituximab and brief duration, high intensity chemotherapy with filgrastim support for Burkitt or aggressive lymphomas: cancer and Leukemia Group B study 10 002. British Journal of Haematology. 2014;165(1):102–11.Google Scholar
Hoelzer, D, Walewski, J, Dohner, H, Schmid, M, Hiddemann, W, Baumann, A, et al. Substantially improved outcome of adult Burkitt non-Hodgkin lymphoma and leukemia patients with rituximab and a short-intensive chemotherapy; report of a large prospective multicenter trial. ASH Annual Meeting Abstracts. 2012;120(21):667.Google Scholar
van Imhoff, GW, van der Holt, B, MacKenzie, MA, Ossenkoppele, GJ, Wijermans, PW, Kramer, MH, et al. Short intensive sequential therapy followed by autologous stem cell transplantation in adult Burkitt, Burkitt-like and lymphoblastic lymphoma. Leukemia. 2005;19(6):945−52.Google Scholar
Maramattom, LV, Hari, PN, Burns, LJ, Carreras, J, Arcese, W, Cairo, MS, et al. Autologous and allogeneic transplantation for burkitt lymphoma outcomes and changes in utilization: a report from the center for international blood and marrow transplant research. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2013;19(2):173–9.Google Scholar
Johnson, NA, Slack, GW, Savage, KJ, Connors, JM, Ben-Neriah, S, Rogic, S, et al. Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2012;30(28):3452–9.Google Scholar
Oki, Y, Noorani, M, Lin, P, Davis, RE, Neelapu, SS, Ma, L, et al. Double hit lymphoma: the MD Anderson Cancer Center clinical experience. British Journal of Haematology. 2014;166(6):891901.Google Scholar
Gandi, M, Petrich, AM, Cassaday, RD, Press, OW, Shah, K, Whyman, J, et al. Impact of induction regimen and consolidative stem cell transplantation in patients with double hit lymphoma (DHL): a large multicenter retrospective analysis. Blood. 2014;124(15):2354−61.Google Scholar
Petrich, AM, Gandhi, M, Jovanovic, B, Castillo, JJ, Rajguru, S, Yang, DT, et al. Impact of induction regimen and stem cell transplantation on outcomes in double-hit lymphoma: a multicenter retrospective analysis. Blood. 2014;124(15):2354–61.Google Scholar
Oki, Y, Noorani, M, Lin, P, Davis, RE, Neelapu, SS, Ma, L, et al. Double hit lymphoma: the MD Anderson Cancer Center clinical experience. British Journal of Haematology. 2014;166(6):891901.Google Scholar
Cuccuini, W, Briere, J, Mounier, N, Voelker, HU, Rosenwald, A, Sundstrom, C, et al. MYC+ diffuse large B-cell lymphoma is not salvaged by classical R-ICE or R-DHAP followed by BEAM plus autologous stem cell transplantation. Blood. 2012;119(20):4619−24.Google Scholar
Al-Tourah, AJ, Gill, KK, Chhanabhai, M, Hoskins, PJ, Klasa, RJ, Savage, KJ, et al. Population-based analysis of incidence and outcome of transformed non-Hodgkin’s lymphoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2008;26(32):5165–9.Google Scholar
Villa, D, Crump, M, Panzarella, T, Savage, KJ, Toze, CL, Stewart, DA, et al. Autologous and allogeneic stem-cell transplantation for transformed follicular lymphoma: a report of the Canadian blood and marrow transplant group. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2013;31(9):1164–71.Google Scholar
Wirk, B, Fenske, TS, Hamadani, M, Zhang, MJ, Hu, ZH, Akpek, G, et al. Outcomes of hematopoietic cell transplantation for diffuse large B cell lymphoma transformed from follicular lymphoma. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2014;20(7):951−9.Google Scholar

References

Swerdlow, SH, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA, Stein, H, et al., Editors. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissue, 4th Edition. WHO; 2008.Google Scholar
Vose, J, Armitage, J, Weisenburger, D. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol 2008;26(25):4124−30.Google Scholar
Foss, FM, Zinzani, PL, Vose, JM, Gascoyne, RD, Rosen, ST, Tobinai, K. Peripheral T-cell lymphoma. Blood 2011;117(25):6756−67.Google Scholar
Gisselbrecht, C, Gaulard, P, Lepage, E, Coiffier, B, Briere, J, Haioun, C, et al. Prognostic significance of T-cell phenotype in aggressive non-Hodgkin’s lymphomas. Groupe d’Etudes des Lymphomes de l’Adulte (GELA). Blood 1998;92(1):7682.Google Scholar
Falini, B, Pileri, S, Zinzani, PL, Carbone, A, Zagonel, V, Wolf-Peeters, C, et al. ALK+ lymphoma: clinico-pathological findings and outcome. Blood 1999;93(8):2697–706.Google Scholar
Savage, KJ, Harris, NL, Vose, JM, Ullrich, F, Jaffe, ES, Connors, JM, et al. ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. Blood 2008;111(12):5496−504.Google Scholar
Sibon, D, Fournier, M, Briere, J, Lamant, L, Haioun, C, Coiffier, B, et al. Long-term outcome of adults with systemic anaplastic large-cell lymphoma treated within the Groupe d’Etude des Lymphomes de l’Adulte trials. J Clin Oncol 2012;30(32):3939–46.Google Scholar
Suzuki, R, Kagami, Y, Takeuchi, K, Kami, M, Okamoto, M, Ichinohasama, R, et al. Prognostic significance of CD56 expression for ALK-positive and ALK-negative anaplastic large-cell lymphoma of T/null cell phenotype. Blood 2000;96(9):29933000.Google Scholar
Pedersen, MB, Hamilton-Dutoit, SJ, Bendix, K, Moller, MB, Norgaard, P, Johansen, P, et al. Evaluation of clinical trial eligibility and prognostic indices in a population-based cohort of systemic peripheral T-cell lymphomas from the Danish Lymphoma Registry. Hematol Oncol 2015;33(4):120−8.Google Scholar
Ellin, F, Landstrom, J, Jerkeman, M, Relander, T. Real-world data on prognostic factors and treatment in peripheral T-cell lymphomas: a study from the Swedish Lymphoma Registry. Blood 2014;124(10):1570–7.Google Scholar
Parrilla Castellar, ER, Jaffe, ES, Said, JW, Swerdlow, SH, Ketterling, RP, Knudson, RA, et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood 2014;124(9):1473–80.Google Scholar
Feldman, AL, Dogan, A, Smith, DI, Law, ME, Ansell, SM, Johnson, SH, et al. Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing. Blood 2011;117(3):915−9.Google Scholar
Abouyabis, AN, Shenoy, PJ, Sinha, R, Flowers, CR, Lechowicz, MJ. A systematic review and meta-analysis of front-line anthracycline-based chemotherapy regimens for peripheral T-cell lymphoma. ISRN Hematol 2011;2011:623924. doi: 10.5402/2011/623924. Epub;%2011 Jun 16.:623924.Google Scholar
Schmitz, N, Trumper, L, Ziepert, M, Nickelsen, M, Ho, AD, Metzner, B, et al. Treatment and prognosis of mature T-cell and NK-cell lymphoma: an analysis of patients with T-cell lymphoma treated in studies of the German High-Grade Non-Hodgkin Lymphoma Study Group. Blood 2010;116(18):3418−25.Google Scholar
Karakas, T, Bergmann, L, Stutte, HJ, Jager, E, Knuth, A, Weidmann, E, et al. Peripheral T-cell lymphomas respond well to vincristine, adriamycin, cyclophosphamide, prednisone and etoposide (VACPE) and have a similar outcome as high-grade B-cell lymphomas. Leuk Lymphoma 1996;24(1–2):121–9.Google Scholar
Escalon, MP, Liu, NS, Yang, Y, Hess, M, Walker, PL, Smith, TL, et al. Prognostic factors and treatment of patients with T-cell non-Hodgkin lymphoma: the M. D. Anderson Cancer Center experience. Cancer 2005;103(10):2091–8.Google Scholar
Chihara, D, Pro, B, Loghavi, S, Miranda, RN, Medeiros, LJ, Fanale, MA, et al. Phase II study of HCVIDD/MA in patients with newly diagnosed peripheral T-cell lymphoma. Br J Haematol. 2015;171(4):509−16.Google Scholar
Sung, HJ, Kim, SJ, Seo, HY, Sul, HR, Choi, JG, Choi, IK, et al. Prospective analysis of treatment outcome and prognostic factors in patients with T-cell lymphomas treated by CEOP-B: single institutional study. Br J Haematol 2006;134(1):4553.Google Scholar
Zinzani, PL, Venturini, F, Stefoni, V, Fina, M, Pellegrini, C, Derenzini, E, et al. Gemcitabine as single agent in pretreated T-cell lymphoma patients: evaluation of the long-term outcome. Ann Oncol 2010;21(4):860−3.Google Scholar
Zinzani, PL, Baliva, G, Magagnoli, M, Bendandi, M, Modugno, G, Gherlinzoni, F, et al. Gemcitabine treatment in pretreated cutaneous T-cell lymphoma: experience in 44 patients. J Clin Oncol 2000;18(13):2603–6.Google Scholar
Kim, JG, Sohn, SK, Chae, YS, Kim, DH, Baek, JH, Lee, KB, et al. CHOP plus etoposide and gemcitabine (CHOP-EG) as front-line chemotherapy for patients with peripheral T cell lymphomas. Cancer Chemother Pharmacol 2006;58(1):35–9.Google Scholar
Mahadevan, D, Unger, JM, Spier, CM, Persky, DO, Young, F, LeBlanc, M, et al. Phase 2 trial of combined cisplatin, etoposide, gemcitabine, and methylprednisolone (PEGS) in peripheral T-cell non-Hodgkin lymphoma: Southwest Oncology Group Study S0350. Cancer 2013;119(2):371–9.Google Scholar
Kwong, YL, Kim, WS, Lim, ST, Kim, SJ, Tang, T, Tse, E, et al. SMILE for natural killer/T-cell lymphoma: analysis of safety and efficacy from the Asia Lymphoma Study Group. Blood 2012;120(15):2973–80.Google Scholar
Jaccard, A, Gachard, N, Marin, B, Rogez, S, Audrain, M, Suarez, F, et al. Efficacy of L-asparaginase with methotrexate and dexamethasone (AspaMetDex regimen) in patients with refractory or relapsing extranodal NK/T-cell lymphoma, a phase 2 study. Blood 2011;117(6):1834–9.Google Scholar
Kim, WS, Song, SY, Ahn, YC, Ko, YH, Baek, CH, Kim, DY, et al. CHOP followed by involved field radiation: is it optimal for localized nasal natural killer/T-cell lymphoma? Ann Oncol 2001;12(3):349–52.Google Scholar
Rodriguez, J, Conde, E, Gutierrez, A, Arranz, R, Leon, A, Marin, J, et al. Frontline autologous stem cell transplantation in high-risk peripheral T-cell lymphoma: a prospective study from The Gel-Tamo Study Group. Eur J Haematol 2007;79(1):32–8.Google Scholar
Reimer, P, Rudiger, T, Geissinger, E, Weissinger, F, Nerl, C, Schmitz, N, et al. Autologous stem-cell transplantation as first-line therapy in peripheral T-cell lymphomas: results of a prospective multicenter study. J Clin Oncol 2009;27(1):106–13.Google Scholar
d’Amore, F, Relander, T, Lauritzsen, GF, Jantunen, E, Hagberg, H, Anderson, H, et al. Up-front autologous stem-cell transplantation in peripheral T-cell lymphoma: NLG-T-01. J Clin Oncol 2012;30(25):3093–9.Google Scholar
Corradini, P, Tarella, C, Zallio, F, Dodero, A, Zanni, M, Valagussa, P, et al. Long-term follow-up of patients with peripheral T-cell lymphomas treated up-front with high-dose chemotherapy followed by autologous stem cell transplantation. Leukemia 2006;20(9):1533–8.Google Scholar
Kyriakou, C, Canals, C, Goldstone, A, Caballero, D, Metzner, B, Kobbe, G, et al. High-dose therapy and autologous stem-cell transplantation in angioimmunoblastic lymphoma: complete remission at transplantation is the major determinant of Outcome-Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. J Clin Oncol 2008;26(2):218–24.Google Scholar
Schetelig, J, Fetscher, S, Reichle, A, Berdel, WE, Beguin, Y, Brunet, S, et al. Long-term disease-free survival in patients with angioimmunoblastic T-cell lymphoma after high-dose chemotherapy and autologous stem cell transplantation. Haematologica 2003;88(11):1272–8.Google Scholar
Rodriguez, J, Conde, E, Gutierrez, A, Arranz, R, Gandarillas, M, Leon, A, et al. Prolonged survival of patients with angioimmunoblastic T-cell lymphoma after high-dose chemotherapy and autologous stem cell transplantation: the GELTAMO experience. Eur J Haematol 2007;78(4):290–6.Google Scholar
Jantunen, E, Juvonen, E, Wiklund, T, Putkonen, M, Nousiainen, T. High-dose therapy supported by autologous stem cell transplantation in patients with enteropathy-associated T-cell lymphoma. Leuk Lymphoma 2003;44(12):2163–4.Google Scholar
Jantunen, E, Boumendil, A, Finel, H, Luan, JJ, Johnson, P, Rambaldi, A, et al. Autologous stem cell transplantation for enteropathy-associated T-cell lymphoma: a retrospective study by the EBMT. Blood 2013;121(13):2529–32.Google Scholar
Au, WY, Lie, AK, Liang, R, Kwong, YL, Yau, CC, Cheung, MM, et al. Autologous stem cell transplantation for nasal NK/T-cell lymphoma: a progress report on its value. Ann Oncol 2003;14(11):1673–6.Google Scholar
Deconinck, E, Lamy, T, Foussard, C, Gaillard, F, Delwail, V, Colombat, P, et al. Autologous stem cell transplantation for anaplastic large-cell lymphomas: results of a prospective trial. Br J Haematol 2000;109(4):736−42.Google Scholar
Jagasia, M, Morgan, D, Goodman, S, Hamilton, K, Kinney, M, Shyr, Y, et al. Histology impacts the outcome of peripheral T-cell lymphomas after high dose chemotherapy and stem cell transplant. Leuk Lymphoma 2004;45(11):2261–7.Google Scholar
Rodriguez, J, Conde, E, Gutierrez, A, Arranz, R, Leon, A, Marin, J, et al. Frontline autologous stem cell transplantation in high-risk peripheral T-cell lymphoma: a prospective study from The Gel-Tamo Study Group. Eur J Haematol 2007;79(1):32–8.Google Scholar
Mercadal, S, Briones, J, Xicoy, B, Pedro, C, Escoda, L, Estany, C, et al. Intensive chemotherapy (high-dose CHOP/ESHAP regimen) followed by autologous stem-cell transplantation in previously untreated patients with peripheral T-cell lymphoma. Ann Oncol 2008;19(5):958–63.Google Scholar
Sieniawski, M, Angamuthu, N, Boyd, K, Chasty, R, Davies, J, Forsyth, P, et al. Evaluation of enteropathy-associated T-cell lymphoma comparing standard therapies with a novel regimen including autologous stem cell transplantation. Blood 2010;115(18):3664–70.Google Scholar
Philip, T, Guglielmi, C, Hagenbeek, A, Somers, R, Van der Lelie, H, Bron, D, et al. Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin’s lymphoma. N Engl J Med 1995;333(23):1540–5.Google Scholar
Fanin, R, Ruiz de Elvira, MC, Sperotto, A, Baccarani, M, Goldstone, A. Autologous stem cell transplantation for T and null cell CD30-positive anaplastic large cell lymphoma: analysis of 64 adult and paediatric cases reported to the European Group for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant 1999;23(5):437−42.Google Scholar
Zamkoff, KW, Matulis, MD, Mehta, AC, Beaty, MW, Hutchison, RE, Gentile, TC. High-dose therapy and autologous stem cell transplant does not result in long-term disease-free survival in patients with recurrent chemotherapy-sensitive ALK-negative anaplastic large-cell lymphoma. Bone Marrow Transplant 2004;33(6):635–8.Google Scholar
Kewalramani, T, Zelenetz, AD, Teruya-Feldstein, J, Hamlin, P, Yahalom, J, Horwitz, S, et al. Autologous transplantation for relapsed or primary refractory peripheral T-cell lymphoma. Br J Haematol 2006;134(2):202–7.Google Scholar
Kim, MK, Kim, S, Lee, SS, Sym, SJ, Lee, DH, Jang, S, et al. High-dose chemotherapy and autologous stem cell transplantation for peripheral T-cell lymphoma: complete response at transplant predicts survival. Ann Hematol 2007;86(6):435−42.Google Scholar
Rodriguez, J, Caballero, MD, Gutierrez, A, Gandarillas, M, Sierra, J, Lopez-Guillermo, A, et al. High dose chemotherapy and autologous stem cell transplantation in patients with peripheral T-cell lymphoma not achieving complete response after induction chemotherapy. The GEL-TAMO experience. Haematologica 2003;88(12):1372–7.Google Scholar
Song, KW, Mollee, P, Keating, A, Crump, M. Autologous stem cell transplant for relapsed and refractory peripheral T-cell lymphoma: variable outcome according to pathological subtype. Br J Haematol 2003;120(6):978−85.Google Scholar
Jantunen, E, Itala, M, Juvonen, E, Leppa, S, Keskinen, L, Vasala, K, et al. Autologous stem cell transplantation in elderly (>60 years) patients with non-Hodgkin’s lymphoma: a nation-wide analysis. Bone Marrow Transplant 2006;37(4):367–72.Google Scholar
Kwong, YL, Anderson, BO, Advani, R, Kim, WS, Levine, AM, Lim, ST. Management of T-cell and natural-killer-cell neoplasms in Asia: consensus statement from the Asian Oncology Summit 2009. Lancet Oncol 2009;10(11):1093−101.Google Scholar
Loirat, M, Chevallier, P, Leux, C, Moreau, A, Bossard, C, Guillaume, T, et al. Upfront allogeneic-stem cell transplantation for patients with non-localized untreated peripheral T-cell lymphoma: an intention-to-treat analysis from a single center. Ann Oncol 2015;26(2):386−92.Google Scholar
Corradini, P, Dodero, A, Zallio, F, Caracciolo, D, Casini, M, Bregni, M, et al. Graft-versus-lymphoma effect in relapsed peripheral T-cell non-Hodgkin’s lymphomas after reduced-intensity conditioning followed by allogeneic transplantation of hematopoietic cells. J Clin Oncol 2004;22(11):2172–6.Google Scholar
Dodero, A, Spina, F, Narni, F, Patriarca, F, Cavattoni, I, Benedetti, F, et al. Allogeneic transplantation following a reduced-intensity conditioning regimen in relapsed/refractory peripheral T-cell lymphomas: long-term remissions and response to donor lymphocyte infusions support the role of a graft-versus-lymphoma effect. Leukemia 2012;26(3):520–6.Google Scholar
Kim, SW, Tanimoto, TE, Hirabayashi, N, Goto, S, Kami, M, Yoshioka, S, et al. Myeloablative allogeneic hematopoietic stem cell transplantation for non-Hodgkin lymphoma: a nationwide survey in Japan. Blood 2006;108(1):382–9.Google Scholar
Le, GS, Milpied, N, Buzyn, A, De Latour, RP, Vernant, JP, Mohty, M, et al. Graft-versus-lymphoma effect for aggressive T-cell lymphomas in adults: a study by the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire. J Clin Oncol 2008;26(14):2264–71.Google Scholar
Smith, SM, Burns, LJ, van BK, Lerademacher, J, He, W, Fenske, TS, et al. Hematopoietic cell transplantation for systemic mature T-cell non-Hodgkin lymphoma. J Clin Oncol 2013;31(25):3100–9.Google Scholar
Corradini, P, Vitolo, U, Rambaldi, A, Miceli, R, Patriarca, F, Gallamini, A, et al. Intensified chemo-immunotherapy with or without stem cell transplantation in newly diagnosed patients with peripheral T-cell lymphoma. Leukemia 2014;28(9):1885−91.Google Scholar
Voss, MH, Lunning, MA, Maragulia, JC, Papadopoulos, EB, Goldberg, J, Zelenetz, AD, et al. Intensive induction chemotherapy followed by early high-dose therapy and hematopoietic stem cell transplantation results in improved outcome for patients with hepatosplenic T-cell lymphoma: a single institution experience. Clin Lymphoma Myeloma Leuk 2013;13(1):814.Google Scholar
Bazarbachi, A, Cwynarski, K, Boumendil, A, Finel, H, Fields, P, Raj, K, et al. Outcome of patients with HTLV-1-associated adult T-cell leukemia/lymphoma after SCT: a retrospective study by the EBMT LWP. Bone Marrow Transplant 2014;49(10):1266–8.Google Scholar
Utsunomiya, A, Miyazaki, Y, Takatsuka, Y, Hanada, S, Uozumi, K, Yashiki, S, et al. Improved outcome of adult T cell leukemia/lymphoma with allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2001;27(1):1520.Google Scholar
Tsukasaki, K, Maeda, T, Arimura, K, Taguchi, J, Fukushima, T, Miyazaki, Y, et al. Poor outcome of autologous stem cell transplantation for adult T cell leukemia/lymphoma: a case report and review of the literature. Bone Marrow Transplant 1999;23(1):87–9.Google Scholar
Woessmann, W, Peters, C, Lenhard, M, Burkhardt, B, Sykora, KW, Dilloo, D, et al. Allogeneic haematopoietic stem cell transplantation in relapsed or refractory anaplastic large cell lymphoma of children and adolescents–a Berlin-Frankfurt-Munster group report. Br J Haematol 2006;133(2):176–82.Google Scholar
Wulf, GG, Hasenkamp, J, Jung, W, Chapuy, B, Truemper, L, Glass, B. Reduced intensity conditioning and allogeneic stem cell transplantation after salvage therapy integrating alemtuzumab for patients with relapsed peripheral T-cell non-Hodgkin’s lymphoma. Bone Marrow Transplant 2005;36(3):271–3.Google Scholar
Jacobsen, ED, Kim, HT, Ho, VT, Cutler, CS, Koreth, J, Fisher, DC, et al. A large single-center experience with allogeneic stem-cell transplantation for peripheral T-cell non-Hodgkin lymphoma and advanced mycosis fungoides/Sezary syndrome. Ann Oncol 2011;22(7):1608−13.Google Scholar
Feyler, S, Prince, HM, Pearce, R, Towlson, K, Nivison-Smith, I, Schey, S, et al. The role of high-dose therapy and stem cell rescue in the management of T-cell malignant lymphomas: a BSBMT and ABMTRR study. Bone Marrow Transplant 2007;40(5):443–50.Google Scholar
Corradini, P, Dodero, A, Farina, L, Fanin, R, Patriarca, F, Miceli, R, et al. Allogeneic stem cell transplantation following reduced-intensity conditioning can induce durable clinical and molecular remissions in relapsed lymphomas: pretransplant disease status and histotype heavily influence outcome. Leukemia 2007;21(11):2316−23.Google Scholar
Corradini, P, Vitolo, U, Rambaldi, A, Miceli, R, Patriarca, F, Gallamini, A, et al. Intensified chemo-immunotherapy with or without stem cell transplantation in newly diagnosed patients with peripheral T-cell lymphoma. Leukemia 2014;28(9):1885–91.Google Scholar
Rodriguez, J, Conde, E, Gutierrez, A, Arranz, R, Leon, A, Marin, J, et al. The results of consolidation with autologous stem-cell transplantation in patients with peripheral T-cell lymphoma (PTCL) in first complete remission: the Spanish Lymphoma and Autologous Transplantation Group experience. Ann Oncol 2007;18(4):652–7.Google Scholar
Kyriakou, C, Canals, C, Finke, J, Kobbe, G, Harousseau, JL, Kolb, HJ, et al. Allogeneic stem cell transplantation is able to induce long-term remissions in angioimmunoblastic T-cell lymphoma: a retrospective study from the lymphoma working party of the European group for blood and marrow transplantation. J Clin Oncol 2009;27(24):3951–8.Google Scholar
Swerdlow, SH, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA, Stein, H, et al., Editors. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissue, 4th Edition. WHO; 2008.Google Scholar
Vose, J, Armitage, J, Weisenburger, D. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol 2008;26(25):4124−30.Google Scholar
Foss, FM, Zinzani, PL, Vose, JM, Gascoyne, RD, Rosen, ST, Tobinai, K. Peripheral T-cell lymphoma. Blood 2011;117(25):6756−67.Google Scholar
Gisselbrecht, C, Gaulard, P, Lepage, E, Coiffier, B, Briere, J, Haioun, C, et al. Prognostic significance of T-cell phenotype in aggressive non-Hodgkin’s lymphomas. Groupe d’Etudes des Lymphomes de l’Adulte (GELA). Blood 1998;92(1):7682.Google Scholar
Falini, B, Pileri, S, Zinzani, PL, Carbone, A, Zagonel, V, Wolf-Peeters, C, et al. ALK+ lymphoma: clinico-pathological findings and outcome. Blood 1999;93(8):2697–706.Google Scholar
Savage, KJ, Harris, NL, Vose, JM, Ullrich, F, Jaffe, ES, Connors, JM, et al. ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. Blood 2008;111(12):5496−504.Google Scholar
Sibon, D, Fournier, M, Briere, J, Lamant, L, Haioun, C, Coiffier, B, et al. Long-term outcome of adults with systemic anaplastic large-cell lymphoma treated within the Groupe d’Etude des Lymphomes de l’Adulte trials. J Clin Oncol 2012;30(32):3939–46.Google Scholar
Suzuki, R, Kagami, Y, Takeuchi, K, Kami, M, Okamoto, M, Ichinohasama, R, et al. Prognostic significance of CD56 expression for ALK-positive and ALK-negative anaplastic large-cell lymphoma of T/null cell phenotype. Blood 2000;96(9):29933000.Google Scholar
Pedersen, MB, Hamilton-Dutoit, SJ, Bendix, K, Moller, MB, Norgaard, P, Johansen, P, et al. Evaluation of clinical trial eligibility and prognostic indices in a population-based cohort of systemic peripheral T-cell lymphomas from the Danish Lymphoma Registry. Hematol Oncol 2015;33(4):120−8.Google Scholar
Ellin, F, Landstrom, J, Jerkeman, M, Relander, T. Real-world data on prognostic factors and treatment in peripheral T-cell lymphomas: a study from the Swedish Lymphoma Registry. Blood 2014;124(10):1570–7.Google Scholar
Parrilla Castellar, ER, Jaffe, ES, Said, JW, Swerdlow, SH, Ketterling, RP, Knudson, RA, et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood 2014;124(9):1473–80.Google Scholar
Feldman, AL, Dogan, A, Smith, DI, Law, ME, Ansell, SM, Johnson, SH, et al. Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing. Blood 2011;117(3):915−9.Google Scholar
Abouyabis, AN, Shenoy, PJ, Sinha, R, Flowers, CR, Lechowicz, MJ. A systematic review and meta-analysis of front-line anthracycline-based chemotherapy regimens for peripheral T-cell lymphoma. ISRN Hematol 2011;2011:623924. doi: 10.5402/2011/623924. Epub;%2011 Jun 16.:623924.Google Scholar
Schmitz, N, Trumper, L, Ziepert, M, Nickelsen, M, Ho, AD, Metzner, B, et al. Treatment and prognosis of mature T-cell and NK-cell lymphoma: an analysis of patients with T-cell lymphoma treated in studies of the German High-Grade Non-Hodgkin Lymphoma Study Group. Blood 2010;116(18):3418−25.Google Scholar
Karakas, T, Bergmann, L, Stutte, HJ, Jager, E, Knuth, A, Weidmann, E, et al. Peripheral T-cell lymphomas respond well to vincristine, adriamycin, cyclophosphamide, prednisone and etoposide (VACPE) and have a similar outcome as high-grade B-cell lymphomas. Leuk Lymphoma 1996;24(1–2):121–9.Google Scholar
Escalon, MP, Liu, NS, Yang, Y, Hess, M, Walker, PL, Smith, TL, et al. Prognostic factors and treatment of patients with T-cell non-Hodgkin lymphoma: the M. D. Anderson Cancer Center experience. Cancer 2005;103(10):2091–8.Google Scholar
Chihara, D, Pro, B, Loghavi, S, Miranda, RN, Medeiros, LJ, Fanale, MA, et al. Phase II study of HCVIDD/MA in patients with newly diagnosed peripheral T-cell lymphoma. Br J Haematol. 2015;171(4):509−16.Google Scholar
Sung, HJ, Kim, SJ, Seo, HY, Sul, HR, Choi, JG, Choi, IK, et al. Prospective analysis of treatment outcome and prognostic factors in patients with T-cell lymphomas treated by CEOP-B: single institutional study. Br J Haematol 2006;134(1):4553.Google Scholar
Zinzani, PL, Venturini, F, Stefoni, V, Fina, M, Pellegrini, C, Derenzini, E, et al. Gemcitabine as single agent in pretreated T-cell lymphoma patients: evaluation of the long-term outcome. Ann Oncol 2010;21(4):860−3.Google Scholar
Zinzani, PL, Baliva, G, Magagnoli, M, Bendandi, M, Modugno, G, Gherlinzoni, F, et al. Gemcitabine treatment in pretreated cutaneous T-cell lymphoma: experience in 44 patients. J Clin Oncol 2000;18(13):2603–6.Google Scholar
Kim, JG, Sohn, SK, Chae, YS, Kim, DH, Baek, JH, Lee, KB, et al. CHOP plus etoposide and gemcitabine (CHOP-EG) as front-line chemotherapy for patients with peripheral T cell lymphomas. Cancer Chemother Pharmacol 2006;58(1):35–9.Google Scholar
Mahadevan, D, Unger, JM, Spier, CM, Persky, DO, Young, F, LeBlanc, M, et al. Phase 2 trial of combined cisplatin, etoposide, gemcitabine, and methylprednisolone (PEGS) in peripheral T-cell non-Hodgkin lymphoma: Southwest Oncology Group Study S0350. Cancer 2013;119(2):371–9.Google Scholar
Kwong, YL, Kim, WS, Lim, ST, Kim, SJ, Tang, T, Tse, E, et al. SMILE for natural killer/T-cell lymphoma: analysis of safety and efficacy from the Asia Lymphoma Study Group. Blood 2012;120(15):2973–80.Google Scholar
Jaccard, A, Gachard, N, Marin, B, Rogez, S, Audrain, M, Suarez, F, et al. Efficacy of L-asparaginase with methotrexate and dexamethasone (AspaMetDex regimen) in patients with refractory or relapsing extranodal NK/T-cell lymphoma, a phase 2 study. Blood 2011;117(6):1834–9.Google Scholar
Kim, WS, Song, SY, Ahn, YC, Ko, YH, Baek, CH, Kim, DY, et al. CHOP followed by involved field radiation: is it optimal for localized nasal natural killer/T-cell lymphoma? Ann Oncol 2001;12(3):349–52.Google Scholar
Rodriguez, J, Conde, E, Gutierrez, A, Arranz, R, Leon, A, Marin, J, et al. Frontline autologous stem cell transplantation in high-risk peripheral T-cell lymphoma: a prospective study from The Gel-Tamo Study Group. Eur J Haematol 2007;79(1):32–8.Google Scholar
Reimer, P, Rudiger, T, Geissinger, E, Weissinger, F, Nerl, C, Schmitz, N, et al. Autologous stem-cell transplantation as first-line therapy in peripheral T-cell lymphomas: results of a prospective multicenter study. J Clin Oncol 2009;27(1):106–13.Google Scholar
d’Amore, F, Relander, T, Lauritzsen, GF, Jantunen, E, Hagberg, H, Anderson, H, et al. Up-front autologous stem-cell transplantation in peripheral T-cell lymphoma: NLG-T-01. J Clin Oncol 2012;30(25):3093–9.Google Scholar
Corradini, P, Tarella, C, Zallio, F, Dodero, A, Zanni, M, Valagussa, P, et al. Long-term follow-up of patients with peripheral T-cell lymphomas treated up-front with high-dose chemotherapy followed by autologous stem cell transplantation. Leukemia 2006;20(9):1533–8.Google Scholar
Kyriakou, C, Canals, C, Goldstone, A, Caballero, D, Metzner, B, Kobbe, G, et al. High-dose therapy and autologous stem-cell transplantation in angioimmunoblastic lymphoma: complete remission at transplantation is the major determinant of Outcome-Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. J Clin Oncol 2008;26(2):218–24.Google Scholar
Schetelig, J, Fetscher, S, Reichle, A, Berdel, WE, Beguin, Y, Brunet, S, et al. Long-term disease-free survival in patients with angioimmunoblastic T-cell lymphoma after high-dose chemotherapy and autologous stem cell transplantation. Haematologica 2003;88(11):1272–8.Google Scholar
Rodriguez, J, Conde, E, Gutierrez, A, Arranz, R, Gandarillas, M, Leon, A, et al. Prolonged survival of patients with angioimmunoblastic T-cell lymphoma after high-dose chemotherapy and autologous stem cell transplantation: the GELTAMO experience. Eur J Haematol 2007;78(4):290–6.Google Scholar
Jantunen, E, Juvonen, E, Wiklund, T, Putkonen, M, Nousiainen, T. High-dose therapy supported by autologous stem cell transplantation in patients with enteropathy-associated T-cell lymphoma. Leuk Lymphoma 2003;44(12):2163–4.Google Scholar
Jantunen, E, Boumendil, A, Finel, H, Luan, JJ, Johnson, P, Rambaldi, A, et al. Autologous stem cell transplantation for enteropathy-associated T-cell lymphoma: a retrospective study by the EBMT. Blood 2013;121(13):2529–32.Google Scholar
Au, WY, Lie, AK, Liang, R, Kwong, YL, Yau, CC, Cheung, MM, et al. Autologous stem cell transplantation for nasal NK/T-cell lymphoma: a progress report on its value. Ann Oncol 2003;14(11):1673–6.Google Scholar
Deconinck, E, Lamy, T, Foussard, C, Gaillard, F, Delwail, V, Colombat, P, et al. Autologous stem cell transplantation for anaplastic large-cell lymphomas: results of a prospective trial. Br J Haematol 2000;109(4):736−42.Google Scholar
Jagasia, M, Morgan, D, Goodman, S, Hamilton, K, Kinney, M, Shyr, Y, et al. Histology impacts the outcome of peripheral T-cell lymphomas after high dose chemotherapy and stem cell transplant. Leuk Lymphoma 2004;45(11):2261–7.Google Scholar
Rodriguez, J, Conde, E, Gutierrez, A, Arranz, R, Leon, A, Marin, J, et al. Frontline autologous stem cell transplantation in high-risk peripheral T-cell lymphoma: a prospective study from The Gel-Tamo Study Group. Eur J Haematol 2007;79(1):32–8.Google Scholar
Mercadal, S, Briones, J, Xicoy, B, Pedro, C, Escoda, L, Estany, C, et al. Intensive chemotherapy (high-dose CHOP/ESHAP regimen) followed by autologous stem-cell transplantation in previously untreated patients with peripheral T-cell lymphoma. Ann Oncol 2008;19(5):958–63.Google Scholar
Sieniawski, M, Angamuthu, N, Boyd, K, Chasty, R, Davies, J, Forsyth, P, et al. Evaluation of enteropathy-associated T-cell lymphoma comparing standard therapies with a novel regimen including autologous stem cell transplantation. Blood 2010;115(18):3664–70.Google Scholar
Philip, T, Guglielmi, C, Hagenbeek, A, Somers, R, Van der Lelie, H, Bron, D, et al. Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin’s lymphoma. N Engl J Med 1995;333(23):1540–5.Google Scholar
Fanin, R, Ruiz de Elvira, MC, Sperotto, A, Baccarani, M, Goldstone, A. Autologous stem cell transplantation for T and null cell CD30-positive anaplastic large cell lymphoma: analysis of 64 adult and paediatric cases reported to the European Group for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant 1999;23(5):437−42.Google Scholar
Zamkoff, KW, Matulis, MD, Mehta, AC, Beaty, MW, Hutchison, RE, Gentile, TC. High-dose therapy and autologous stem cell transplant does not result in long-term disease-free survival in patients with recurrent chemotherapy-sensitive ALK-negative anaplastic large-cell lymphoma. Bone Marrow Transplant 2004;33(6):635–8.Google Scholar
Kewalramani, T, Zelenetz, AD, Teruya-Feldstein, J, Hamlin, P, Yahalom, J, Horwitz, S, et al. Autologous transplantation for relapsed or primary refractory peripheral T-cell lymphoma. Br J Haematol 2006;134(2):202–7.Google Scholar
Kim, MK, Kim, S, Lee, SS, Sym, SJ, Lee, DH, Jang, S, et al. High-dose chemotherapy and autologous stem cell transplantation for peripheral T-cell lymphoma: complete response at transplant predicts survival. Ann Hematol 2007;86(6):435−42.Google Scholar
Rodriguez, J, Caballero, MD, Gutierrez, A, Gandarillas, M, Sierra, J, Lopez-Guillermo, A, et al. High dose chemotherapy and autologous stem cell transplantation in patients with peripheral T-cell lymphoma not achieving complete response after induction chemotherapy. The GEL-TAMO experience. Haematologica 2003;88(12):1372–7.Google Scholar
Song, KW, Mollee, P, Keating, A, Crump, M. Autologous stem cell transplant for relapsed and refractory peripheral T-cell lymphoma: variable outcome according to pathological subtype. Br J Haematol 2003;120(6):978−85.Google Scholar
Jantunen, E, Itala, M, Juvonen, E, Leppa, S, Keskinen, L, Vasala, K, et al. Autologous stem cell transplantation in elderly (>60 years) patients with non-Hodgkin’s lymphoma: a nation-wide analysis. Bone Marrow Transplant 2006;37(4):367–72.Google Scholar
Kwong, YL, Anderson, BO, Advani, R, Kim, WS, Levine, AM, Lim, ST. Management of T-cell and natural-killer-cell neoplasms in Asia: consensus statement from the Asian Oncology Summit 2009. Lancet Oncol 2009;10(11):1093−101.Google Scholar
Loirat, M, Chevallier, P, Leux, C, Moreau, A, Bossard, C, Guillaume, T, et al. Upfront allogeneic-stem cell transplantation for patients with non-localized untreated peripheral T-cell lymphoma: an intention-to-treat analysis from a single center. Ann Oncol 2015;26(2):386−92.Google Scholar
Corradini, P, Dodero, A, Zallio, F, Caracciolo, D, Casini, M, Bregni, M, et al. Graft-versus-lymphoma effect in relapsed peripheral T-cell non-Hodgkin’s lymphomas after reduced-intensity conditioning followed by allogeneic transplantation of hematopoietic cells. J Clin Oncol 2004;22(11):2172–6.Google Scholar
Dodero, A, Spina, F, Narni, F, Patriarca, F, Cavattoni, I, Benedetti, F, et al. Allogeneic transplantation following a reduced-intensity conditioning regimen in relapsed/refractory peripheral T-cell lymphomas: long-term remissions and response to donor lymphocyte infusions support the role of a graft-versus-lymphoma effect. Leukemia 2012;26(3):520–6.Google Scholar
Kim, SW, Tanimoto, TE, Hirabayashi, N, Goto, S, Kami, M, Yoshioka, S, et al. Myeloablative allogeneic hematopoietic stem cell transplantation for non-Hodgkin lymphoma: a nationwide survey in Japan. Blood 2006;108(1):382–9.Google Scholar
Le, GS, Milpied, N, Buzyn, A, De Latour, RP, Vernant, JP, Mohty, M, et al. Graft-versus-lymphoma effect for aggressive T-cell lymphomas in adults: a study by the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire. J Clin Oncol 2008;26(14):2264–71.Google Scholar
Smith, SM, Burns, LJ, van BK, Lerademacher, J, He, W, Fenske, TS, et al. Hematopoietic cell transplantation for systemic mature T-cell non-Hodgkin lymphoma. J Clin Oncol 2013;31(25):3100–9.Google Scholar
Corradini, P, Vitolo, U, Rambaldi, A, Miceli, R, Patriarca, F, Gallamini, A, et al. Intensified chemo-immunotherapy with or without stem cell transplantation in newly diagnosed patients with peripheral T-cell lymphoma. Leukemia 2014;28(9):1885−91.Google Scholar
Voss, MH, Lunning, MA, Maragulia, JC, Papadopoulos, EB, Goldberg, J, Zelenetz, AD, et al. Intensive induction chemotherapy followed by early high-dose therapy and hematopoietic stem cell transplantation results in improved outcome for patients with hepatosplenic T-cell lymphoma: a single institution experience. Clin Lymphoma Myeloma Leuk 2013;13(1):814.Google Scholar
Bazarbachi, A, Cwynarski, K, Boumendil, A, Finel, H, Fields, P, Raj, K, et al. Outcome of patients with HTLV-1-associated adult T-cell leukemia/lymphoma after SCT: a retrospective study by the EBMT LWP. Bone Marrow Transplant 2014;49(10):1266–8.Google Scholar
Utsunomiya, A, Miyazaki, Y, Takatsuka, Y, Hanada, S, Uozumi, K, Yashiki, S, et al. Improved outcome of adult T cell leukemia/lymphoma with allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2001;27(1):1520.Google Scholar
Tsukasaki, K, Maeda, T, Arimura, K, Taguchi, J, Fukushima, T, Miyazaki, Y, et al. Poor outcome of autologous stem cell transplantation for adult T cell leukemia/lymphoma: a case report and review of the literature. Bone Marrow Transplant 1999;23(1):87–9.Google Scholar
Woessmann, W, Peters, C, Lenhard, M, Burkhardt, B, Sykora, KW, Dilloo, D, et al. Allogeneic haematopoietic stem cell transplantation in relapsed or refractory anaplastic large cell lymphoma of children and adolescents–a Berlin-Frankfurt-Munster group report. Br J Haematol 2006;133(2):176–82.Google Scholar
Wulf, GG, Hasenkamp, J, Jung, W, Chapuy, B, Truemper, L, Glass, B. Reduced intensity conditioning and allogeneic stem cell transplantation after salvage therapy integrating alemtuzumab for patients with relapsed peripheral T-cell non-Hodgkin’s lymphoma. Bone Marrow Transplant 2005;36(3):271–3.Google Scholar
Jacobsen, ED, Kim, HT, Ho, VT, Cutler, CS, Koreth, J, Fisher, DC, et al. A large single-center experience with allogeneic stem-cell transplantation for peripheral T-cell non-Hodgkin lymphoma and advanced mycosis fungoides/Sezary syndrome. Ann Oncol 2011;22(7):1608−13.Google Scholar
Feyler, S, Prince, HM, Pearce, R, Towlson, K, Nivison-Smith, I, Schey, S, et al. The role of high-dose therapy and stem cell rescue in the management of T-cell malignant lymphomas: a BSBMT and ABMTRR study. Bone Marrow Transplant 2007;40(5):443–50.Google Scholar
Corradini, P, Dodero, A, Farina, L, Fanin, R, Patriarca, F, Miceli, R, et al. Allogeneic stem cell transplantation following reduced-intensity conditioning can induce durable clinical and molecular remissions in relapsed lymphomas: pretransplant disease status and histotype heavily influence outcome. Leukemia 2007;21(11):2316−23.Google Scholar
Corradini, P, Vitolo, U, Rambaldi, A, Miceli, R, Patriarca, F, Gallamini, A, et al. Intensified chemo-immunotherapy with or without stem cell transplantation in newly diagnosed patients with peripheral T-cell lymphoma. Leukemia 2014;28(9):1885–91.Google Scholar
Rodriguez, J, Conde, E, Gutierrez, A, Arranz, R, Leon, A, Marin, J, et al. The results of consolidation with autologous stem-cell transplantation in patients with peripheral T-cell lymphoma (PTCL) in first complete remission: the Spanish Lymphoma and Autologous Transplantation Group experience. Ann Oncol 2007;18(4):652–7.Google Scholar
Kyriakou, C, Canals, C, Finke, J, Kobbe, G, Harousseau, JL, Kolb, HJ, et al. Allogeneic stem cell transplantation is able to induce long-term remissions in angioimmunoblastic T-cell lymphoma: a retrospective study from the lymphoma working party of the European group for blood and marrow transplantation. J Clin Oncol 2009;27(24):3951–8.Google Scholar
Swerdlow, SH, Campo, E, Harris, NL, Jaffe, ES, Pileri, SA, Stein, H, et al., Editors. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissue, 4th Edition. WHO; 2008.Google Scholar
Vose, J, Armitage, J, Weisenburger, D. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol 2008;26(25):4124−30.Google Scholar
Foss, FM, Zinzani, PL, Vose, JM, Gascoyne, RD, Rosen, ST, Tobinai, K. Peripheral T-cell lymphoma. Blood 2011;117(25):6756−67.Google Scholar
Gisselbrecht, C, Gaulard, P, Lepage, E, Coiffier, B, Briere, J, Haioun, C, et al. Prognostic significance of T-cell phenotype in aggressive non-Hodgkin’s lymphomas. Groupe d’Etudes des Lymphomes de l’Adulte (GELA). Blood 1998;92(1):7682.Google Scholar
Falini, B, Pileri, S, Zinzani, PL, Carbone, A, Zagonel, V, Wolf-Peeters, C, et al. ALK+ lymphoma: clinico-pathological findings and outcome. Blood 1999;93(8):2697–706.Google Scholar
Savage, KJ, Harris, NL, Vose, JM, Ullrich, F, Jaffe, ES, Connors, JM, et al. ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. Blood 2008;111(12):5496−504.Google Scholar
Sibon, D, Fournier, M, Briere, J, Lamant, L, Haioun, C, Coiffier, B, et al. Long-term outcome of adults with systemic anaplastic large-cell lymphoma treated within the Groupe d’Etude des Lymphomes de l’Adulte trials. J Clin Oncol 2012;30(32):3939–46.Google Scholar
Suzuki, R, Kagami, Y, Takeuchi, K, Kami, M, Okamoto, M, Ichinohasama, R, et al. Prognostic significance of CD56 expression for ALK-positive and ALK-negative anaplastic large-cell lymphoma of T/null cell phenotype. Blood 2000;96(9):29933000.Google Scholar
Pedersen, MB, Hamilton-Dutoit, SJ, Bendix, K, Moller, MB, Norgaard, P, Johansen, P, et al. Evaluation of clinical trial eligibility and prognostic indices in a population-based cohort of systemic peripheral T-cell lymphomas from the Danish Lymphoma Registry. Hematol Oncol 2015;33(4):120−8.Google Scholar
Ellin, F, Landstrom, J, Jerkeman, M, Relander, T. Real-world data on prognostic factors and treatment in peripheral T-cell lymphomas: a study from the Swedish Lymphoma Registry. Blood 2014;124(10):1570–7.Google Scholar
Parrilla Castellar, ER, Jaffe, ES, Said, JW, Swerdlow, SH, Ketterling, RP, Knudson, RA, et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood 2014;124(9):1473–80.Google Scholar
Feldman, AL, Dogan, A, Smith, DI, Law, ME, Ansell, SM, Johnson, SH, et al. Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing. Blood 2011;117(3):915−9.Google Scholar
Abouyabis, AN, Shenoy, PJ, Sinha, R, Flowers, CR, Lechowicz, MJ. A systematic review and meta-analysis of front-line anthracycline-based chemotherapy regimens for peripheral T-cell lymphoma. ISRN Hematol 2011;2011:623924. doi: 10.5402/2011/623924. Epub;%2011 Jun 16.:623924.Google Scholar
Schmitz, N, Trumper, L, Ziepert, M, Nickelsen, M, Ho, AD, Metzner, B, et al. Treatment and prognosis of mature T-cell and NK-cell lymphoma: an analysis of patients with T-cell lymphoma treated in studies of the German High-Grade Non-Hodgkin Lymphoma Study Group. Blood 2010;116(18):3418−25.Google Scholar
Karakas, T, Bergmann, L, Stutte, HJ, Jager, E, Knuth, A, Weidmann, E, et al. Peripheral T-cell lymphomas respond well to vincristine, adriamycin, cyclophosphamide, prednisone and etoposide (VACPE) and have a similar outcome as high-grade B-cell lymphomas. Leuk Lymphoma 1996;24(1–2):121–9.Google Scholar
Escalon, MP, Liu, NS, Yang, Y, Hess, M, Walker, PL, Smith, TL, et al. Prognostic factors and treatment of patients with T-cell non-Hodgkin lymphoma: the M. D. Anderson Cancer Center experience. Cancer 2005;103(10):2091–8.Google Scholar
Chihara, D, Pro, B, Loghavi, S, Miranda, RN, Medeiros, LJ, Fanale, MA, et al. Phase II study of HCVIDD/MA in patients with newly diagnosed peripheral T-cell lymphoma. Br J Haematol. 2015;171(4):509−16.Google Scholar
Sung, HJ, Kim, SJ, Seo, HY, Sul, HR, Choi, JG, Choi, IK, et al. Prospective analysis of treatment outcome and prognostic factors in patients with T-cell lymphomas treated by CEOP-B: single institutional study. Br J Haematol 2006;134(1):4553.Google Scholar
Zinzani, PL, Venturini, F, Stefoni, V, Fina, M, Pellegrini, C, Derenzini, E, et al. Gemcitabine as single agent in pretreated T-cell lymphoma patients: evaluation of the long-term outcome. Ann Oncol 2010;21(4):860−3.Google Scholar
Zinzani, PL, Baliva, G, Magagnoli, M, Bendandi, M, Modugno, G, Gherlinzoni, F, et al. Gemcitabine treatment in pretreated cutaneous T-cell lymphoma: experience in 44 patients. J Clin Oncol 2000;18(13):2603–6.Google Scholar
Kim, JG, Sohn, SK, Chae, YS, Kim, DH, Baek, JH, Lee, KB, et al. CHOP plus etoposide and gemcitabine (CHOP-EG) as front-line chemotherapy for patients with peripheral T cell lymphomas. Cancer Chemother Pharmacol 2006;58(1):35–9.Google Scholar
Mahadevan, D, Unger, JM, Spier, CM, Persky, DO, Young, F, LeBlanc, M, et al. Phase 2 trial of combined cisplatin, etoposide, gemcitabine, and methylprednisolone (PEGS) in peripheral T-cell non-Hodgkin lymphoma: Southwest Oncology Group Study S0350. Cancer 2013;119(2):371–9.Google Scholar
Kwong, YL, Kim, WS, Lim, ST, Kim, SJ, Tang, T, Tse, E, et al. SMILE for natural killer/T-cell lymphoma: analysis of safety and efficacy from the Asia Lymphoma Study Group. Blood 2012;120(15):2973–80.Google Scholar
Jaccard, A, Gachard, N, Marin, B, Rogez, S, Audrain, M, Suarez, F, et al. Efficacy of L-asparaginase with methotrexate and dexamethasone (AspaMetDex regimen) in patients with refractory or relapsing extranodal NK/T-cell lymphoma, a phase 2 study. Blood 2011;117(6):1834–9.Google Scholar
Kim, WS, Song, SY, Ahn, YC, Ko, YH, Baek, CH, Kim, DY, et al. CHOP followed by involved field radiation: is it optimal for localized nasal natural killer/T-cell lymphoma? Ann Oncol 2001;12(3):349–52.Google Scholar
Rodriguez, J, Conde, E, Gutierrez, A, Arranz, R, Leon, A, Marin, J, et al. Frontline autologous stem cell transplantation in high-risk peripheral T-cell lymphoma: a prospective study from The Gel-Tamo Study Group. Eur J Haematol 2007;79(1):32–8.Google Scholar
Reimer, P, Rudiger, T, Geissinger, E, Weissinger, F, Nerl, C, Schmitz, N, et al. Autologous stem-cell transplantation as first-line therapy in peripheral T-cell lymphomas: results of a prospective multicenter study. J Clin Oncol 2009;27(1):106–13.Google Scholar
d’Amore, F, Relander, T, Lauritzsen, GF, Jantunen, E, Hagberg, H, Anderson, H, et al. Up-front autologous stem-cell transplantation in peripheral T-cell lymphoma: NLG-T-01. J Clin Oncol 2012;30(25):3093–9.Google Scholar
Corradini, P, Tarella, C, Zallio, F, Dodero, A, Zanni, M, Valagussa, P, et al. Long-term follow-up of patients with peripheral T-cell lymphomas treated up-front with high-dose chemotherapy followed by autologous stem cell transplantation. Leukemia 2006;20(9):1533–8.Google Scholar
Kyriakou, C, Canals, C, Goldstone, A, Caballero, D, Metzner, B, Kobbe, G, et al. High-dose therapy and autologous stem-cell transplantation in angioimmunoblastic lymphoma: complete remission at transplantation is the major determinant of Outcome-Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. J Clin Oncol 2008;26(2):218–24.Google Scholar
Schetelig, J, Fetscher, S, Reichle, A, Berdel, WE, Beguin, Y, Brunet, S, et al. Long-term disease-free survival in patients with angioimmunoblastic T-cell lymphoma after high-dose chemotherapy and autologous stem cell transplantation. Haematologica 2003;88(11):1272–8.Google Scholar
Rodriguez, J, Conde, E, Gutierrez, A, Arranz, R, Gandarillas, M, Leon, A, et al. Prolonged survival of patients with angioimmunoblastic T-cell lymphoma after high-dose chemotherapy and autologous stem cell transplantation: the GELTAMO experience. Eur J Haematol 2007;78(4):290–6.Google Scholar
Jantunen, E, Juvonen, E, Wiklund, T, Putkonen, M, Nousiainen, T. High-dose therapy supported by autologous stem cell transplantation in patients with enteropathy-associated T-cell lymphoma. Leuk Lymphoma 2003;44(12):2163–4.Google Scholar
Jantunen, E, Boumendil, A, Finel, H, Luan, JJ, Johnson, P, Rambaldi, A, et al. Autologous stem cell transplantation for enteropathy-associated T-cell lymphoma: a retrospective study by the EBMT. Blood 2013;121(13):2529–32.Google Scholar
Au, WY, Lie, AK, Liang, R, Kwong, YL, Yau, CC, Cheung, MM, et al. Autologous stem cell transplantation for nasal NK/T-cell lymphoma: a progress report on its value. Ann Oncol 2003;14(11):1673–6.Google Scholar
Deconinck, E, Lamy, T, Foussard, C, Gaillard, F, Delwail, V, Colombat, P, et al. Autologous stem cell transplantation for anaplastic large-cell lymphomas: results of a prospective trial. Br J Haematol 2000;109(4):736−42.Google Scholar
Jagasia, M, Morgan, D, Goodman, S, Hamilton, K, Kinney, M, Shyr, Y, et al. Histology impacts the outcome of peripheral T-cell lymphomas after high dose chemotherapy and stem cell transplant. Leuk Lymphoma 2004;45(11):2261–7.Google Scholar
Rodriguez, J, Conde, E, Gutierrez, A, Arranz, R, Leon, A, Marin, J, et al. Frontline autologous stem cell transplantation in high-risk peripheral T-cell lymphoma: a prospective study from The Gel-Tamo Study Group. Eur J Haematol 2007;79(1):32–8.Google Scholar
Mercadal, S, Briones, J, Xicoy, B, Pedro, C, Escoda, L, Estany, C, et al. Intensive chemotherapy (high-dose CHOP/ESHAP regimen) followed by autologous stem-cell transplantation in previously untreated patients with peripheral T-cell lymphoma. Ann Oncol 2008;19(5):958–63.Google Scholar
Sieniawski, M, Angamuthu, N, Boyd, K, Chasty, R, Davies, J, Forsyth, P, et al. Evaluation of enteropathy-associated T-cell lymphoma comparing standard therapies with a novel regimen including autologous stem cell transplantation. Blood 2010;115(18):3664–70.Google Scholar
Philip, T, Guglielmi, C, Hagenbeek, A, Somers, R, Van der Lelie, H, Bron, D, et al. Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin’s lymphoma. N Engl J Med 1995;333(23):1540–5.Google Scholar
Fanin, R, Ruiz de Elvira, MC, Sperotto, A, Baccarani, M, Goldstone, A. Autologous stem cell transplantation for T and null cell CD30-positive anaplastic large cell lymphoma: analysis of 64 adult and paediatric cases reported to the European Group for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant 1999;23(5):437−42.Google Scholar
Zamkoff, KW, Matulis, MD, Mehta, AC, Beaty, MW, Hutchison, RE, Gentile, TC. High-dose therapy and autologous stem cell transplant does not result in long-term disease-free survival in patients with recurrent chemotherapy-sensitive ALK-negative anaplastic large-cell lymphoma. Bone Marrow Transplant 2004;33(6):635–8.Google Scholar
Kewalramani, T, Zelenetz, AD, Teruya-Feldstein, J, Hamlin, P, Yahalom, J, Horwitz, S, et al. Autologous transplantation for relapsed or primary refractory peripheral T-cell lymphoma. Br J Haematol 2006;134(2):202–7.Google Scholar
Kim, MK, Kim, S, Lee, SS, Sym, SJ, Lee, DH, Jang, S, et al. High-dose chemotherapy and autologous stem cell transplantation for peripheral T-cell lymphoma: complete response at transplant predicts survival. Ann Hematol 2007;86(6):435−42.Google Scholar
Rodriguez, J, Caballero, MD, Gutierrez, A, Gandarillas, M, Sierra, J, Lopez-Guillermo, A, et al. High dose chemotherapy and autologous stem cell transplantation in patients with peripheral T-cell lymphoma not achieving complete response after induction chemotherapy. The GEL-TAMO experience. Haematologica 2003;88(12):1372–7.Google Scholar
Song, KW, Mollee, P, Keating, A, Crump, M. Autologous stem cell transplant for relapsed and refractory peripheral T-cell lymphoma: variable outcome according to pathological subtype. Br J Haematol 2003;120(6):978−85.Google Scholar
Jantunen, E, Itala, M, Juvonen, E, Leppa, S, Keskinen, L, Vasala, K, et al. Autologous stem cell transplantation in elderly (>60 years) patients with non-Hodgkin’s lymphoma: a nation-wide analysis. Bone Marrow Transplant 2006;37(4):367–72.Google Scholar
Kwong, YL, Anderson, BO, Advani, R, Kim, WS, Levine, AM, Lim, ST. Management of T-cell and natural-killer-cell neoplasms in Asia: consensus statement from the Asian Oncology Summit 2009. Lancet Oncol 2009;10(11):1093−101.Google Scholar
Loirat, M, Chevallier, P, Leux, C, Moreau, A, Bossard, C, Guillaume, T, et al. Upfront allogeneic-stem cell transplantation for patients with non-localized untreated peripheral T-cell lymphoma: an intention-to-treat analysis from a single center. Ann Oncol 2015;26(2):386−92.Google Scholar
Corradini, P, Dodero, A, Zallio, F, Caracciolo, D, Casini, M, Bregni, M, et al. Graft-versus-lymphoma effect in relapsed peripheral T-cell non-Hodgkin’s lymphomas after reduced-intensity conditioning followed by allogeneic transplantation of hematopoietic cells. J Clin Oncol 2004;22(11):2172–6.Google Scholar
Dodero, A, Spina, F, Narni, F, Patriarca, F, Cavattoni, I, Benedetti, F, et al. Allogeneic transplantation following a reduced-intensity conditioning regimen in relapsed/refractory peripheral T-cell lymphomas: long-term remissions and response to donor lymphocyte infusions support the role of a graft-versus-lymphoma effect. Leukemia 2012;26(3):520–6.Google Scholar
Kim, SW, Tanimoto, TE, Hirabayashi, N, Goto, S, Kami, M, Yoshioka, S, et al. Myeloablative allogeneic hematopoietic stem cell transplantation for non-Hodgkin lymphoma: a nationwide survey in Japan. Blood 2006;108(1):382–9.Google Scholar
Le, GS, Milpied, N, Buzyn, A, De Latour, RP, Vernant, JP, Mohty, M, et al. Graft-versus-lymphoma effect for aggressive T-cell lymphomas in adults: a study by the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire. J Clin Oncol 2008;26(14):2264–71.Google Scholar
Smith, SM, Burns, LJ, van BK, Lerademacher, J, He, W, Fenske, TS, et al. Hematopoietic cell transplantation for systemic mature T-cell non-Hodgkin lymphoma. J Clin Oncol 2013;31(25):3100–9.Google Scholar
Corradini, P, Vitolo, U, Rambaldi, A, Miceli, R, Patriarca, F, Gallamini, A, et al. Intensified chemo-immunotherapy with or without stem cell transplantation in newly diagnosed patients with peripheral T-cell lymphoma. Leukemia 2014;28(9):1885−91.Google Scholar
Voss, MH, Lunning, MA, Maragulia, JC, Papadopoulos, EB, Goldberg, J, Zelenetz, AD, et al. Intensive induction chemotherapy followed by early high-dose therapy and hematopoietic stem cell transplantation results in improved outcome for patients with hepatosplenic T-cell lymphoma: a single institution experience. Clin Lymphoma Myeloma Leuk 2013;13(1):814.Google Scholar
Bazarbachi, A, Cwynarski, K, Boumendil, A, Finel, H, Fields, P, Raj, K, et al. Outcome of patients with HTLV-1-associated adult T-cell leukemia/lymphoma after SCT: a retrospective study by the EBMT LWP. Bone Marrow Transplant 2014;49(10):1266–8.Google Scholar
Utsunomiya, A, Miyazaki, Y, Takatsuka, Y, Hanada, S, Uozumi, K, Yashiki, S, et al. Improved outcome of adult T cell leukemia/lymphoma with allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2001;27(1):1520.Google Scholar
Tsukasaki, K, Maeda, T, Arimura, K, Taguchi, J, Fukushima, T, Miyazaki, Y, et al. Poor outcome of autologous stem cell transplantation for adult T cell leukemia/lymphoma: a case report and review of the literature. Bone Marrow Transplant 1999;23(1):87–9.Google Scholar
Woessmann, W, Peters, C, Lenhard, M, Burkhardt, B, Sykora, KW, Dilloo, D, et al. Allogeneic haematopoietic stem cell transplantation in relapsed or refractory anaplastic large cell lymphoma of children and adolescents–a Berlin-Frankfurt-Munster group report. Br J Haematol 2006;133(2):176–82.Google Scholar
Wulf, GG, Hasenkamp, J, Jung, W, Chapuy, B, Truemper, L, Glass, B. Reduced intensity conditioning and allogeneic stem cell transplantation after salvage therapy integrating alemtuzumab for patients with relapsed peripheral T-cell non-Hodgkin’s lymphoma. Bone Marrow Transplant 2005;36(3):271–3.Google Scholar
Jacobsen, ED, Kim, HT, Ho, VT, Cutler, CS, Koreth, J, Fisher, DC, et al. A large single-center experience with allogeneic stem-cell transplantation for peripheral T-cell non-Hodgkin lymphoma and advanced mycosis fungoides/Sezary syndrome. Ann Oncol 2011;22(7):1608−13.Google Scholar
Feyler, S, Prince, HM, Pearce, R, Towlson, K, Nivison-Smith, I, Schey, S, et al. The role of high-dose therapy and stem cell rescue in the management of T-cell malignant lymphomas: a BSBMT and ABMTRR study. Bone Marrow Transplant 2007;40(5):443–50.Google Scholar
Corradini, P, Dodero, A, Farina, L, Fanin, R, Patriarca, F, Miceli, R, et al. Allogeneic stem cell transplantation following reduced-intensity conditioning can induce durable clinical and molecular remissions in relapsed lymphomas: pretransplant disease status and histotype heavily influence outcome. Leukemia 2007;21(11):2316−23.Google Scholar
Corradini, P, Vitolo, U, Rambaldi, A, Miceli, R, Patriarca, F, Gallamini, A, et al. Intensified chemo-immunotherapy with or without stem cell transplantation in newly diagnosed patients with peripheral T-cell lymphoma. Leukemia 2014;28(9):1885–91.Google Scholar
Rodriguez, J, Conde, E, Gutierrez, A, Arranz, R, Leon, A, Marin, J, et al. The results of consolidation with autologous stem-cell transplantation in patients with peripheral T-cell lymphoma (PTCL) in first complete remission: the Spanish Lymphoma and Autologous Transplantation Group experience. Ann Oncol 2007;18(4):652–7.Google Scholar
Kyriakou, C, Canals, C, Finke, J, Kobbe, G, Harousseau, JL, Kolb, HJ, et al. Allogeneic stem cell transplantation is able to induce long-term remissions in angioimmunoblastic T-cell lymphoma: a retrospective study from the lymphoma working party of the European group for blood and marrow transplantation. J Clin Oncol 2009;27(24):3951–8.Google Scholar

References

Camilleri-Broet, S, Criniere, E, Broet, P, Delwail, V, Mokhtari, K, Moreau, A, et al. A uniform activated B-cell-like immunophenotype might explain the poor prognosis of primary central nervous system lymphomas: analysis of 83 cases. Blood. 2006;107(1):190–6.Google Scholar
Rubenstein, JL, Fridlyand, J, Shen, A, Aldape, K, Ginzinger, D, Batchelor, T, et al. Gene expression and angiotropism in primary CNS lymphoma. Blood. 2006;107(9):3716–23.Google Scholar
Sung, CO, Kim, SC, Karnan, S, Karube, K, Shin, HJ, Nam, DH, et al. Genomic profiling combined with gene expression profiling in primary central nervous system lymphoma. Blood. 2011;117(4):1291–300.Google Scholar
Montesinos-Rongen, M, Schmitz, R, Brunn, A, Gesk, S, Richter, J, Hong, K, et al. Mutations of CARD11 but not TNFAIP3 may activate the NF-kappaB pathway in primary CNS lymphoma. Acta Neuropathologica. 2010;120(4):529–35.Google Scholar
Fischer, L, Korfel, A, Pfeiffer, S, Kiewe, P, Volk, HD, Cakiroglu, H, et al. CXCL13 and CXCL12 in central nervous system lymphoma patients. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research. 2009;15(19):5968–73.Google Scholar
Abrey, LE, Ben-Porat, L, Panageas, KS, Yahalom, J, Berkey, B, Curran, W, et al. Primary central nervous system lymphoma: the Memorial Sloan-Kettering Cancer Center prognostic model. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2006;24(36):5711–5.Google Scholar
Ferreri, AJ, Blay, JY, Reni, M, Pasini, F, Spina, M, Ambrosetti, A, et al. Prognostic scoring system for primary CNS lymphomas: the International Extranodal Lymphoma Study Group experience. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2003;21(2):266–72.Google Scholar
Rubenstein, JL, Hsi, ED, Johnson, JL, Jung, SH, Nakashima, MO, Grant, B, et al. Intensive chemotherapy and immunotherapy in patients with newly diagnosed primary CNS lymphoma: CALGB 50202 (Alliance 50202). Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2013;31(25):3061–8.Google Scholar
Reni, M, Ferreri, AJ, Guha-Thakurta, N, Blay, JY, Dell’Oro, S, Biron, P, et al. Clinical relevance of consolidation radiotherapy and other main therapeutic issues in primary central nervous system lymphomas treated with upfront high-dose methotrexate. International Journal of Radiation Oncology, Biology, Physics. 2001;51(2):419–25.Google Scholar
Blay, JY, Conroy, T, Chevreau, C, Thyss, A, Quesnel, N, Eghbali, H, et al. High-dose methotrexate for the treatment of primary cerebral lymphomas: analysis of survival and late neurologic toxicity in a retrospective series. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 1998;16(3):864–71.Google Scholar
Gerstner, ER, Carson, KA, Grossman, SA, Batchelor, TT. Long-term outcome in PCNSL patients treated with high-dose methotrexate and deferred radiation. Neurology. 2008;70(5):401–2.Google Scholar
Ferreri, AJ, Reni, M, Foppoli, M, Martelli, M, Pangalis, GA, Frezzato, M, et al. High-dose cytarabine plus high-dose methotrexate versus high-dose methotrexate alone in patients with primary CNS lymphoma: a randomised phase 2 trial. Lancet. 2009;374(9700):1512–20.Google Scholar
Morris, PG, Correa, DD, Yahalom, J, Raizer, JJ, Schiff, D, Grant, B, et al. Rituximab, methotrexate, procarbazine, and vincristine followed by consolidation reduced-dose whole-brain radiotherapy and cytarabine in newly diagnosed primary CNS lymphoma: final results and long-term outcome. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2013;31(31):3971–9.Google Scholar
Khan, RB, Shi, W, Thaler, HT, DeAngelis, LM, Abrey, LE. Is intrathecal methotrexate necessary in the treatment of primary CNS lymphoma? Journal of Neuro-Oncology. 2002;58(2):175–8.Google Scholar
Rubenstein, JL, Li, J, Chen, L, Advani, R, Drappatz, J, Gerstner, E, et al. Multicenter phase 1 trial of intraventricular immunochemotherapy in recurrent CNS lymphoma. Blood. 2013;121(5):745–51.Google Scholar
DeAngelis, LM, Seiferheld, W, Schold, SC, Fisher, B, Schultz, CJ, Radiation Therapy Oncology Group S. Combination chemotherapy and radiotherapy for primary central nervous system lymphoma: Radiation Therapy Oncology Group Study 93-10. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2002;20(24):4643–8.Google Scholar
Thiel, E, Korfel, A, Martus, P, Kanz, L, Griesinger, F, Rauch, M, et al. High-dose methotrexate with or without whole brain radiotherapy for primary CNS lymphoma (G-PCNSL-SG-1): a phase 3, randomised, non-inferiority trial. The Lancet Oncology. 2010;11(11):1036–47.Google Scholar
Abrey, LE, Moskowitz, CH, Mason, WP, Crump, M, Stewart, D, Forsyth, P, et al. Intensive methotrexate and cytarabine followed by high-dose chemotherapy with autologous stem-cell rescue in patients with newly diagnosed primary CNS lymphoma: an intent-to-treat analysis. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2003;21(22):4151–6.Google Scholar
Colombat, P, Lemevel, A, Bertrand, P, Delwail, V, Rachieru, P, Brion, A, et al. High-dose chemotherapy with autologous stem cell transplantation as first-line therapy for primary CNS lymphoma in patients younger than 60 years: a multicenter phase II study of the GOELAMS group. Bone Marrow Transplantation. 2006;38(6):417–20.Google Scholar
Illerhaus, G, Marks, R, Ihorst, G, Guttenberger, R, Ostertag, C, Derigs, G, et al. High-dose chemotherapy with autologous stem-cell transplantation and hyperfractionated radiotherapy as first-line treatment of primary CNS lymphoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2006;24(24):3865–70.Google Scholar
Illerhaus, G, Muller, F, Feuerhake, F, Schafer, AO, Ostertag, C, Finke, J. High-dose chemotherapy and autologous stem-cell transplantation without consolidating radiotherapy as first-line treatment for primary lymphoma of the central nervous system. Haematologica. 2008;93(1):147–8.Google Scholar
Kasenda, B, Schorb, E, Fritsch, K, Finke, J, Illerhaus, G. Prognosis after high-dose chemotherapy followed by autologous stem-cell transplantation as first-line treatment in primary CNS lymphoma–a long-term follow-up study. Annals of Oncology: Official Journal of the European Society for Medical Oncology/ESMO. 2012;23(10):2670–5.Google Scholar
Montemurro, M, Kiefer, T, Schuler, F, Al-Ali, HK, Wolf, HH, Herbst, R, et al. Primary central nervous system lymphoma treated with high-dose methotrexate, high-dose busulfan/thiotepa, autologous stem-cell transplantation and response-adapted whole-brain radiotherapy: results of the multicenter Ostdeutsche Studiengruppe Hamato-Onkologie OSHO-53 phase II study. Annals of Oncology: Official Journal of the European Society for Medical Oncology/ESMO. 2007;18(4):665–71.Google Scholar
Hassan, M, Ehrsson, H, Smedmyr, B, Totterman, T, Wallin, I, Oberg, G, et al. Cerebrospinal fluid and plasma concentrations of busulfan during high-dose therapy. Bone Marrow Transplantation. 1989;4(1):113–4.Google Scholar
Heideman, RL, Cole, DE, Balis, F, Sato, J, Reaman, GH, Packer, RJ, et al. Phase I and pharmacokinetic evaluation of thiotepa in the cerebrospinal fluid and plasma of pediatric patients: evidence for dose-dependent plasma clearance of thiotepa. Cancer Research. 1989;49(3):736–41.Google Scholar
Wiebe, VJ, Smith, BR, DeGregorio, MW, Rappeport, JM. Pharmacology of agents used in bone marrow transplant conditioning regimens. Critical Reviews in Oncology/Hematology. 1992;13(3):241–70.Google Scholar
Soussain, C, Hoang-Xuan, K, Taillandier, L, Fourme, E, Choquet, S, Witz, F, et al. Intensive chemotherapy followed by hematopoietic stem-cell rescue for refractory and recurrent primary CNS and intraocular lymphoma: Societe Francaise de Greffe de Moelle Osseuse-Therapie Cellulaire. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2008;26(15):2512–8.Google Scholar
Chen, YB, Batchelor, T, Li, S, Hochberg, E, Brezina, M, Jones, S, et al. Phase 2 trial of high-dose rituximab with high-dose cytarabine mobilization therapy and high-dose thiotepa, busulfan, and cyclophosphamide autologous stem cell transplantation in patients with central nervous system involvement by non-Hodgkin lymphoma. Cancer. 2015;121(2):226–33.Google Scholar
Boehme, V, Schmitz, N, Zeynalova, S, Loeffler, M, Pfreundschuh, M. CNS events in elderly patients with aggressive lymphoma treated with modern chemotherapy (CHOP-14) with or without rituximab: an analysis of patients treated in the RICOVER-60 trial of the German High-Grade Non-Hodgkin Lymphoma Study Group (DSHNHL). Blood. 2009;113(17):3896–902.Google Scholar
Schmitz, N, Zeynalova, S, Nickelsen, M, Kansara, R, Villa, D, Sehn, LH, et al. CNS international prognostic index: A risk model for CNS relapse in patients with diffuse large B-cell lymphoma treated with R-CHOP. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2016;34(26):3150–6.Google Scholar
Bernstein, SH, Unger, JM, Leblanc, M, Friedberg, J, Miller, TP, Fisher, RI. Natural history of CNS relapse in patients with aggressive non-Hodgkin’s lymphoma: a 20-year follow-up analysis of SWOG 8516 – the Southwest Oncology Group. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2009;27(1):114–9.Google Scholar
Tilly, H, Lepage, E, Coiffier, B, Blanc, M, Herbrecht, R, Bosly, A, et al. Intensive conventional chemotherapy (ACVBP regimen) compared with standard CHOP for poor-prognosis aggressive non-Hodgkin lymphoma. Blood. 2003;102(13):4284–9.Google Scholar
Abramson, JS, Hellmann, M, Barnes, JA, Hammerman, P, Toomey, C, Takvorian, T, et al. Intravenous methotrexate as central nervous system (CNS) prophylaxis is associated with a low risk of CNS recurrence in high-risk patients with diffuse large B-cell lymphoma. Cancer. 2010;116(18):4283–90.Google Scholar
Bromberg, JE, Doorduijn, JK, Illerhaus, G, Jahnke, K, Korfel, A, Fischer, L, et al. Central nervous system recurrence of systemic lymphoma in the era of stem cell transplantation: an International Primary Central Nervous System Lymphoma Study Group project. Haematologica. 2013;98(5):808–13.Google Scholar
Cote, GM, Hochberg, EP, Muzikansky, A, Hochberg, FH, Drappatz, J, McAfee, SL, et al. Autologous stem cell transplantation with thiotepa, busulfan, and cyclophosphamide (TBC) conditioning in patients with CNS involvement by non-Hodgkin lymphoma. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2012;18(1):7683.Google Scholar
Korfel, A, Elter, T, Thiel, E, Hanel, M, Mohle, R, Schroers, R, et al. Phase II study of central nervous system (CNS)-directed chemotherapy including high-dose chemotherapy with autologous stem cell transplantation for CNS relapse of aggressive lymphomas. Haematologica. 2013;98(3):364–70.Google Scholar
Maziarz, RT, Wang, Z, Zhang, MJ, Bolwell, BJ, Chen, AI, Fenske, TS, et al. Autologous haematopoietic cell transplantation for non-Hodgkin lymphoma with secondary CNS involvement. British Journal of Haematology. 2013;162(5):648–56.Google Scholar
Soussain, C, Suzan, F, Hoang-Xuan, K, Cassoux, N, Levy, V, Azar, N, et al. Results of intensive chemotherapy followed by hematopoietic stem-cell rescue in 22 patients with refractory or recurrent primary CNS lymphoma or intraocular lymphoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2001;19(3):742–9.Google Scholar
Williams, CD, Pearce, R, Taghipour, G, Green, ES, Philip, T, Goldstone, AH. Autologous bone marrow transplantation for patients with non-Hodgkin’s lymphoma and CNS involvement: those transplanted with active CNS disease have a poor outcome–a report by the European Bone Marrow Transplant Lymphoma Registry. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 1994;12(11):2415–22.Google Scholar
Plotkin, SR, Betensky, RA, Hochberg, FH, Grossman, SA, Lesser, GJ, Nabors, LB, et al. Treatment of relapsed central nervous system lymphoma with high-dose methotrexate. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research. 2004;10(17):5643–6.Google Scholar
Doolittle, ND, Abrey, LE, Shenkier, TN, Tali, S, Bromberg, JE, Neuwelt, EA, et al. Brain parenchyma involvement as isolated central nervous system relapse of systemic non-Hodgkin lymphoma: an International Primary CNS Lymphoma Collaborative Group report. Blood. 2008;111(3):1085–93.Google Scholar
Lotze, C, Schuler, F, Kruger, WH, Hirt, C, Kirsch, M, Vogelgesang, S, et al. Combined immunoradiotherapy induces long-term remission of CNS relapse of peripheral, diffuse, large-cell lymphoma after allogeneic stem cell transplantation: case study. Neuro-oncology. 2005;7(4):508–10.Google Scholar
Varadi, G, Or, R, Kapelushnik, J, Naparstek, E, Nagler, A, Brautbar, C, et al. Graft-versus-lymphoma effect after allogeneic peripheral blood stem cell transplantation for primary central nervous system lymphoma. Leukemia & Lymphoma. 1999;34(1–2):185–90.Google Scholar
Saad, AG, Alyea, EP, 3rd, Wen, PY, Degirolami, U, Kesari, S. Graft-versus-host disease of the CNS after allogeneic bone marrow transplantation. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2009;27(30):e147–9.Google Scholar
Kickingereder, P, Wiestler, B, Sahm, F, Heiland, S, Roethke, M, Schlemmer, HP, et al. Primary central nervous system lymphoma and atypical glioblastoma: multiparametric differentiation by using diffusion-, perfusion-, and susceptibility-weighted MR imaging. Radiology. 2014;272(3):843–50.Google Scholar
Maza, S, Buchert, R, Brenner, W, Munz, DL, Thiel, E, Korfel, A, et al. Brain and whole-body FDG-PET in diagnosis, treatment monitoring and long-term follow-up of primary CNS lymphoma. Radiology and Oncology. 2013;47(2):103–10.Google Scholar
Kasenda, B, Haug, V, Schorb, E, Fritsch, K, Finke, J, Mix, M, et al. 18F-FDG PET is an independent outcome predictor in primary central nervous system lymphoma. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine. 2013;54(2):184–91.Google Scholar
Treon, SP, Cao, Y, Xu, L, Yang, G, Liu, X, Hunter, ZR. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood. 2014;123(18):2791–6.Google Scholar
Grupp, SA, Kalos, M, Barrett, D, Aplenc, R, Porter, DL, Rheingold, SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. The New England Journal of Medicine. 2013;368(16):1509–18.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×