Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T05:35:38.558Z Has data issue: false hasContentIssue false

Section 4 - Early Post-Transplant Interval

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 104 - 130
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Barrett, AJ, Le Blanc, K. Prophylaxis of acute GVHD: manipulate the graft or the environment? Best Practice & Research Clinical Haematology. 2008;21(2):165–76.CrossRefGoogle ScholarPubMed
Wysocki, CA, Panoskaltsis-Mortari, A, Blazar, BR, Serody, JS. Leukocyte migration and graft-versus-host disease. Blood. 2005;105(11):4191–9.Google Scholar
Goker, H, Haznedaroglu, IC, Chao, NJ. Acute graft-vs-host disease: pathobiology and management. Experimental Hematology. 2001;29(3):259–77.Google Scholar
Alousi, AM, Bolanos-Meade, J, Lee, SJ. Graft-versus-host disease: state of the science. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2013;19(1 Suppl):S102–8.Google Scholar
Al-Kadhimi, Z, Gul, Z, Chen, W, Smith, D, Abidi, M, Deol, A, et al. High incidence of severe acute graft-versus-host disease with tacrolimus and mycophenolate mofetil in a large cohort of related and unrelated allogeneic transplantation patients. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2014;20(7):979–85.Google Scholar
Sung, AD, Chao, NJ. Acute graft-versus-host disease: are we close to bringing the bench to the bedside? Best Practice & Research Clinical Haematology. 2013;26(3):285–92.CrossRefGoogle Scholar
Ferrara, JL, Levine, JE, Reddy, P, Holler, E. Graft-versus-host disease. Lancet. 2009;373(9674):1550–61.Google Scholar
Ruutu, T, van Biezen, A, Hertenstein, B, Henseler, A, Garderet, L, Passweg, J, et al. Prophylaxis and treatment of GVHD after allogeneic haematopoietic SCT: a survey of centre strategies by the European Group for Blood and Marrow Transplantation. Bone Marrow Transplantation. 2012;47(11):1459–64.Google Scholar
Hamad, N, Del Bel, R, Messner, HA, Kim, D, Kuruvilla, J, Lipton, JH, et al. Outcomes of hematopoietic cell transplantation in adult patients with acquired aplastic anemia using intermediate dose alemtuzumab-based conditioning. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2014;20(11):1722–8.Google Scholar
Kanda, J, Long, GD, Gasparetto, C, Horwitz, ME, Sullivan, KM, Chute, JP, et al. Reduced-intensity allogeneic transplantation using alemtuzumab from HLA-matched related, unrelated, or haploidentical related donors for patients with hematologic malignancies. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2014;20(2):257–63.Google Scholar
Grullich, C, Ziegler, C, Finke, J. Rabbit anti T-lymphocyte globulin induces apoptosis in peripheral blood mononuclear cell compartments and leukemia cells, while hematopoetic stem cells are apoptosis resistant. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2009;15(2):173–82.Google Scholar
Bacigalupo, A, Lamparelli, T, Bruzzi, P, Guidi, S, Alessandrino, PE, di Bartolomeo, P, et al. Antithymocyte globulin for graft-versus-host disease prophylaxis in transplants from unrelated donors: 2 randomized studies from Gruppo Italiano Trapianti Midollo Osseo (GITMO). Blood. 2001;98(10):2942–7.Google Scholar
Finke, J, Bethge, WA, Schmoor, C, Ottinger, HD, Stelljes, M, Zander, AR, et al. Standard graft-versus-host disease prophylaxis with or without anti-T-cell globulin in haematopoietic cell transplantation from matched unrelated donors: a randomised, open-label, multicentre phase 3 trial. The Lancet Oncology. 2009;10(9):855–64.Google Scholar
Soiffer, RJ, Lerademacher, J, Ho, V, Kan, F, Artz, A, Champlin, RE, et al. Impact of immune modulation with anti-T-cell antibodies on the outcome of reduced-intensity allogeneic hematopoietic stem cell transplantation for hematologic malignancies. Blood. 2011;117(25):6963–70.Google Scholar
Theurich, S, Fischmann, H, Shimabukuro-Vornhagen, A, Chemnitz, JM, Holtick, U, Scheid, C, et al. Polyclonal anti-thymocyte globulins for the prophylaxis of graft-versus-host disease after allogeneic stem cell or bone marrow transplantation in adults. The Cochrane Database of Systematic Reviews. 2012;9:CD009159.Google Scholar
Luznik, L, Bolanos-Meade, J, Zahurak, M, Chen, AR, Smith, BD, Brodsky, R, et al. High-dose cyclophosphamide as single-agent, short-course prophylaxis of graft-versus-host disease. Blood. 2010;115(16):3224–30.Google Scholar
Luznik, L, O’Donnell, PV, Symons, HJ, Chen, AR, Leffell, MS, Zahurak, M, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2008;14(6):641–50.Google Scholar
Reshef, R, Luger, SM, Hexner, EO, Loren, AW, Frey, NV, Nasta, SD, et al. Blockade of lymphocyte chemotaxis in visceral graft-versus-host disease. The New England Journal of Medicine. 2012;367(2):135–45.CrossRefGoogle ScholarPubMed
Ram, R, Storb, R. Pharmacologic prophylaxis regimens for acute graft-versus-host disease: past, present and future. Leukemia & Lymphoma. 2013;54(8):1591–601.Google Scholar
Koreth, J, Stevenson, KE, Kim, HT, McDonough, SM, Bindra, B, Armand, P, et al. Bortezomib-based graft-versus-host disease prophylaxis in HLA-mismatched unrelated donor transplantation. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2012;30(26):3202–8.CrossRefGoogle ScholarPubMed
Kraut, EH, Neff, JC, Bouroncle, BA, Gochnour, D, Grever, MR. Immunosuppressive effects of pentostatin. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 1990;8(5):848–55.CrossRefGoogle ScholarPubMed
Parmar, S, Andersson, BS, Couriel, D, Munsell, MF, Fernandez-Vina, M, Jones, RB, et al. Prophylaxis of graft-versus-host disease in unrelated donor transplantation with pentostatin, tacrolimus, and mini-methotrexate: a phase I/II controlled, adaptively randomized study. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2011;29(3):294302.CrossRefGoogle ScholarPubMed
Dinarello, CA, Fossati, G, Mascagni, P. Histone deacetylase inhibitors for treating a spectrum of diseases not related to cancer. Molecular Medicine. 2011;17(5–6):333–52.CrossRefGoogle Scholar
Choi, SW, Braun, T, Chang, L, Ferrara, JL, Pawarode, A, Magenau, JM, et al. Vorinostat plus tacrolimus and mycophenolate to prevent graft-versus-host disease after related-donor reduced-intensity conditioning allogeneic haemopoietic stem-cell transplantation: a phase 1/2 trial. The Lancet Oncology. 2014;15(1):8795.Google Scholar
Zeiser, R, Youssef, S, Baker, J, Kambham, N, Steinman, L, Negrin, RS. Preemptive HMG-CoA reductase inhibition provides graft-versus-host disease protection by Th-2 polarization while sparing graft-versus-leukemia activity. Blood. 2007;110(13):4588–98.Google Scholar
Hamadani, M, Gibson, LF, Remick, SC, Wen, S, Petros, W, Tse, W, et al. Sibling donor and recipient immune modulation with atorvastatin for the prophylaxis of acute graft-versus-host disease. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2013;31(35):4416–23.CrossRefGoogle ScholarPubMed
Pillai, AB, George, TI, Dutt, S, Strober, S. Host natural killer T cells induce an interleukin-4-dependent expansion of donor CD4+CD25+Foxp3+ T regulatory cells that protects against graft-versus-host disease. Blood. 2009;113(18):4458–67.Google Scholar
Lowsky, R, Takahashi, T, Liu, YP, Dejbakhsh-Jones, S, Grumet, FC, Shizuru, JA, et al. Protective conditioning for acute graft-versus-host disease. The New England Journal of Medicine. 2005;353(13):1321–31.CrossRefGoogle ScholarPubMed
Kohrt, HE, Turnbull, BB, Heydari, K, Shizuru, JA, Laport, GG, Miklos, DB, et al. TLI and ATG conditioning with low risk of graft-versus-host disease retains antitumor reactions after allogeneic hematopoietic cell transplantation from related and unrelated donors. Blood. 2009;114(5):1099–109.Google Scholar
Messina, G, Giaccone, L, Festuccia, M, Irrera, G, Scortechini, I, Sorasio, R, et al. Multicenter experience using total lymphoid irradiation and antithymocyte globulin as conditioning for allografting in hematological malignancies. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2012;18(10):1600–7.Google Scholar
Ringden, O, Pihlstedt, P, Markling, L, Aschan, J, Baryd, I, Ljungman, P, et al. Prevention of graft-versus-host disease with T-cell depletion or cyclosporin and methotrexate. A randomized trial in adult leukemic marrow recipients. Bone Marrow Transplantation. 1991;7(3):221–6.Google ScholarPubMed
Wagner, JE, Thompson, JS, Carter, SL, Kernan, NA, members of the Unrelated Donor Marrow Transplantation Trial. Effect of graft-versus-host disease prophylaxis on 3-year disease-free survival in recipients of unrelated donor bone marrow (T-cell Depletion Trial): a multi-centre, randomised phase II-III trial. Lancet. 2005;366(9487):733–41.CrossRefGoogle Scholar
Pavletic, SZ, Carter, SL, Kernan, NA, Henslee-Downey, J, Mendizabal, AM, Papadopoulos, E, et al. Influence of T-cell depletion on chronic graft-versus-host disease: results of a multicenter randomized trial in unrelated marrow donor transplantation. Blood. 2005;106(9):3308–13.Google Scholar
Pasquini, MC, Devine, S, Mendizabal, A, Baden, LR, Wingard, JR, Lazarus, HM, et al. Comparative outcomes of donor graft CD34+ selection and immune suppressive therapy as graft-versus-host disease prophylaxis for patients with acute myeloid leukemia in complete remission undergoing HLA-matched sibling allogeneic hematopoietic cell transplantation. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2012;30(26):3194–201.CrossRefGoogle ScholarPubMed
Cutler, C, Logan, B, Nakamura, R, Johnston, L, Choi, S, Porter, D, et al. Tacrolimus/sirolimus versus tacrolimus/methotrexate as GVHD prophylaxis after matched, related donor allogeneic hematopoietic cell transplantation. Blood. 2014;124(8):1372–7.Google Scholar

References

Luznik, L, O’Donnell, PV, Fuchs, EJ. Post-transplantation cyclophosphamide for tolerance induction in HLA-haploidentical bone marrow transplantation. Semin Oncol. 2012;39(6):683–93.Google Scholar
Martin, PJ, Rizzo, JD, Wingard, JR, Ballen, K, Curtin, PT, Cutler, C, et al. First-and second-line systemic treatment of acute graft-versus-host disease: recommendations of the American Society of Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2012;18(8):1150–63.Google Scholar
Ruutu, T, Gratwohl, A, de Witte, T, Afanasyev, B, Apperley, J, Bacigalupo, A, et al. Prophylaxis and treatment of GVHD: EBMT-ELN working group recommendations for a standardized practice. Bone Marrow Transplant. 2014;49(2):168–73Google Scholar
Wolff, D, Ayuk, F, Elmaagacli, A, Bertz, H, Lawitschka, A, Schleuning, M, et al. Current practice in diagnosis and treatment of acute graft-versus-host disease: results from a survey among German-Austrian-Swiss hematopoietic stem cell transplant centers. Biol Blood Marrow Transplant. 2013;19(5):767–76.Google Scholar
Salmasian, H, Rohanizadegan, M, Banihosseini, S, Rahimi Darabad, R, Rabbani-Anari, M, Shakiba, A, Ferrara, JL. Corticosteroid regimens for treatment of acute and chronic graft versus host disease (GvHD) after allogenic stem cell transplantation. Cochrane Database Syst Rev. 2010;(1):CD005565.Google Scholar
Alousi, AM, Weisdorf, DJ, Logan, BR, Bolaños-Meade, J, Carter, S, Difronzo, N, et al. Blood and Marrow Transplant Clinical Trials Network. Etanercept, mycophenolate, denileukin, or pentostatin plus corticosteroids for acute graft-versus-host disease: a randomized phase 2 trial from the Blood and Marrow Transplant Clinical Trials Network. Blood. 2009;114(3):511–7.Google Scholar
Bolaños-Meade, J, Logan, BR, Alousi, AM, Antin, JH, Barowski, K, Carter, SL, et al. Phase 3 clinical trial of steroids/mycophenolate mofetil vs steroids/placebo as therapy for acute GVHD: BMT CTN 0802. Blood. 2014;124(22):3221–7.Google Scholar
Couriel, DR, Saliba, R, de Lima, M, Giralt, S, Andersson, B, Khouri, I, et al. A phase III study of infliximab and corticosteroids for the initial treatment of acute graft-versus-host disease. Biol Blood Marrow Transplant. 2009;15(12):1555–62.Google Scholar
Gatza, E, Braun, T, Levine, JE, Ferrara, JL, Zhao, S, Wang, T, et al. Etanercept plus topical corticosteroids as initial therapy for grade one acute graft-versus-host disease after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2014;20(9):1426–34.CrossRefGoogle ScholarPubMed
Takashima, S, Eto, T, Shiratsuchi, M, Hidaka, M, Mori, Y, Kato, K, et al. The use of oral beclomethasone dipropionate in the treatment of gastrointestinal graft-versus-host disease: the experience of the Fukuoka blood and marrow transplantation (BMT) group. Intern Med. 2014;53(12):1315–20.CrossRefGoogle ScholarPubMed
Bürgler, D, Medinger, M, Passweg, J, Fischmann, A, Bucher, C. Intra-arterial catheter guided steroid administration for the treatment of steroid-refractory intestinal GvHD. Leuk Res. 2014;38(2):184–7.Google Scholar
Milner, LA, Becker, MW, Bernstein, SH, Bruckner, L, Friedberg, JW, Holland, GA, et al. Intra-arterial methylprednisolone for the management of steroid-refractory acute gastrointestinal and hepatic graft versus host disease. Am J Hematol. 2011;86(8):712–4.Google Scholar
Feldstein, JV, Bolaños-Meade, J, Anders, VL, Abuav, R. Narrowband ultraviolet B phototherapy for the treatment of steroid-refractory and steroid-dependent acute graft-versus-host disease of the skin. J Am Acad Dermatol. 2011;65(4):733–8.Google Scholar
Hoda, D, Pidala, J, Salgado-Vila, N, Kim, J, Perkins, J, Bookout, R, et al. Sirolimus for treatment of steroid-refractory acute graft-versus-host disease. Bone Marrow Transplant. 2010;45(8):1347–51.Google Scholar
Mielke, S, Lutz, M, Schmidhuber, J, Kapp, M, Ditz, D, Ammer, J, et al. Salvage therapy with everolimus reduces the severity of treatment-refractory chronic GVHD without impairing disease control: A dual center retrospective analysis. Bone Marrow Transplant. 2014;49(11):1412–8.CrossRefGoogle ScholarPubMed
García-Cadenas, I, Valcárcel, D, Martino, R, Piñana, JL, Novelli, S, Esquirol, A, et al. Updated experience with inolimomab as treatment for corticosteroid-refractory acute graft-versus-host disease. Biol Blood Marrow Transplant. 2013;19(3):435–9.Google Scholar
Wang, JZ, Liu, KY, Xu, LP, Liu, DH, Han, W, Chen, H, et al. Basiliximab for the treatment of steroid-refractory acute graft-versus-host disease after unmanipulated HLA-mismatched/haploidentical hematopoietic stem cell transplantation. Transplant Proc. 2011;43(5):1928–33.Google Scholar
Xhaard, A, Rocha, V, Bueno, B, de Latour, RP, Lenglet, J, Petropoulou, A, et al. Steroid-refractory acute GvHD: lack of long-term improved survival using new generation anticytokine treatment. Biol Blood Marrow Transplant. 2012;18(3):406–13.Google Scholar
Drobyski, WR, Pasquini, M, Kovatovic, K, Palmer, J, Douglas Rizzo, J, Saad, A, et al. Tocilizumab for the treatment of steroid refractory graft-versus-host disease. Biol Blood Marrow Transplant. 2011;17(12):1862–8.Google Scholar
Meunier, M, Bulabois, CE, Thiebaut-Bertrand, A, Itzykson, R, Carre, M, Carras, S, et al. Alemtuzumab for severe steroid-refractory gastrointestinal acute graft-versus-host disease. Biol Blood Marrow Transplant. 2014;20(9):1451–4.Google Scholar
Khandelwal, P, Lawrence, J, Filipovich, AH, Davies, SM, Bleesing, JJ, Jordan, MB, et al. The successful use of alemtuzumab for treatment of steroid-refractory acute graft-versus-host disease in pediatric patients. Pediatr Transplant. 2014;18(1):94102.CrossRefGoogle ScholarPubMed
Schub, N, Günther, A, Schrauder, A, Claviez, A, Ehlert, C, Gramatzki, M, Repp, R. Therapy of steroid-refractory acute GVHD with CD52 antibody alemtuzumab is effective. Bone Marrow Transplant. 2011;46(1):143–7.Google Scholar
Abu-Dalle, I, Reljic, T, Nishihori, T, Antar, A, Bazarbachi, A, Djulbegovic, B,et al. Extracorporeal photopheresis in steroid-refractory acute or chronic graft-versus-host disease: results of a systematic review of prospective studies. Biol Blood Marrow Transplant. 2014;20(11):1677–86.CrossRefGoogle ScholarPubMed
Das-Gupta, E, Dignan, F, Shaw, B, Raj, K, Malladi, R, Gennery, A, et al. Extracorporeal photopheresis for treatment of adults and children with acute GvHD: UK consensus statement and review of published literature. Bone Marrow Transplant. 2014;49(10):1251–8.Google Scholar
Pierelli, L, Perseghin, P, Marchetti, M, Messina, C, Perotti, C, Mazzoni, A, et al.; Società Italiana di Emaferesi and Manipolazione Cellulare (SIdEM); Gruppo Italiano Trapianto Midollo Osseo (GITMO). Extracorporeal photopheresis for the treatment of acute and chronic graft-versus-host disease in adults and children: best practice recommendations from an Italian Society of Hemapheresis and Cell Manipulation (SIdEM) and Italian Group for Bone Marrow Transplantation (GITMO) consensus process. Transfusion. 2013;53(10):2340–52.Google Scholar
Jagasia, M, Greinix, H, Robin, M, Das-Gupta, E, Jacobs, R, Savani, BN, et al. Extracorporeal photopheresis versus anticytokine therapy as a second-line treatment for steroid-refractory acute GVHD: a multicenter comparative analysis. Biol Blood Marrow Transplant. 2013;19(7):1129–33.Google Scholar
Rieber, N, Wecker, I, Neri, D, Fuchs, K, Schäfer, I, Brand, A, et al. Extracorporeal photopheresis increases neutrophilic myeloid-derived suppressor cells in patients with GvHD. Bone Marrow Transplant. 2014;49(4):545–52.Google Scholar
Mevorach, D, Zuckerman, T, Reiner, I, Shimoni, A, Samuel, S, Nagler, A, et al. Single infusion of donor mononuclear early apoptotic cells as prophylaxis for graft-versus-host disease in myeloablative HLA-matched allogeneic bone marrow transplantation: a phase I/IIa clinical trial. Biol Blood Marrow Transplant. 2014;20(1):5865.Google Scholar
Sánchez-Guijo, F, Caballero-Velázquez, T, López-Villar, O, Redondo, A, Parody, R, Martínez, C, et al. Sequential third-party mesenchymal stromal cell therapy for refractory acute graft-versus-host disease. Biol Blood Marrow Transplant. 2014;20(10):1580–5.Google Scholar
Introna, M, Lucchini, G, Dander, E, Galimberti, S, Rovelli, A, Balduzzi, A, et al. Treatment of graft versus host disease with mesenchymal stromal cells: a phase I study on 40 adult and pediatric patients. Biol Blood Marrow Transplant. 2014;20(3):375–81.Google Scholar
Ball, LM, Bernardo, ME, Roelofs, H, van Tol, MJ, Contoli, B, Zwaginga, JJ, et al. Multiple infusions of mesenchymal stromal cells induce sustained remission in children with steroid-refractory, grade III–IV acute graft-versus-host disease. Br J Haematol 2013;163(4):501–9.Google Scholar
Schneidawind, D, Pierini, A, Negrin, RS. Regulatory T cells and natural killer T cells for modulation of GvHD following allogeneic hematopoietic cell transplantation. Blood. 2013;122(18):3116–21.Google Scholar
Reddy, P. Targeting deacetylases to improve outcomes after allogeneic bone marrow transplantation. Trans Am Clin Climatol Assoc. 2013;124:152–62.Google Scholar
Marcondes, AM, Li, X, Tabellini, L, Bartenstein, M, Kabacka, J, Sale, GE, et al. Inhibition of IL-32 activation by α-1 antitrypsin suppresses alloreactivity and increases survival in an allogeneic murine marrow transplantation model. Blood. 2011;118(18):5031–9.Google Scholar
Tawara, I, Sun, Y, Lewis, EC, Toubai, T, Evers, R, Nieves, E, et al. Alpha-1-antitrypsin monotherapy reduces graft-versus-host disease after experimental allogeneic bone marrow transplantation. Proc Natl Acad Sci U S A. 2012;109(2):564–9.Google Scholar
Landfried, K, Zhu, W, Waldhier, MC, Schulz, U, Ammer, J, Holler, B, et al. Tryptophan catabolism is associated with acute GvHD after human allogeneic stem cell transplantation and indicates activation of indoleamine 2,3-dioxygenase. Blood. 2011;118(26):6971–4.Google Scholar
Elmaagacli, AH, Ditschkowski, M, Steckel, NK, Gromke, T, Ottinger, H, Hillen, U, et al. Human chorionic gonadotropin and indolamine 2,3-dioxygenase in patients with GvHD. Bone Marrow Transplant. 2014;49(6):800–5.Google Scholar
Holler, E, Butzhammer, P, Schmid, K, Hundsrucker, C, Koestler, J, Peter, K, et al. Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease. Biol Blood Marrow Transplant. 2014;20(5):640–5.Google Scholar
Jenq, RR, Ubeda, C, Taur, Y, Menezes, CC, Khanin, R, Dudakov, JA, et al. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J Exp Med. 2012;209(5):903–11.Google Scholar
Eriguchi, Y, Takashima, S, Oka, H, Shimoji, S, Nakamura, K, Uryu, H, et al. Graft-versus-host disease disrupts intestinal microbial ecology by inhibiting Paneth cell production of α-defensins. Blood. 2012;120(1):223–31.Google Scholar
Munneke, JM, Björklund, AT, Mjösberg, JM, Garming-Legert, K, Bernink, JH, Blom, B, et al. Activated innate lymphoid cells are associated with a reduced susceptibility to graft-versus-host disease. Blood. 2014;124(5):812–21.Google Scholar
Hanash, AM, Dudakov, JA, Hua, G, O’Connor, MH, Young, LF, Singer, NV, et al. Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease. Immunity. 2012;37(2):339–50.Google Scholar
Spoerl, S, Mathew, NR, Bscheider, M, Schmitt-Graeff, A, Chen, S, Mueller, T, et al. Activity of therapeutic JAK 1/2 blockade in graft-versus-host disease. Blood. 2014;123(24):3832–42.Google Scholar
Pai, CC, Hsiao, HH, Sun, K, Chen, M, Hagino, T, Tellez, J, et al. Therapeutic benefit of bortezomib on acute graft-versus-host disease is tissue specific and is associated with interleukin-6 levels. Biol Blood Marrow Transplant. 2014 Jul 23. pii: S1083-8791(14)00448-0. doi: 10.1016/j.bbmt.2014.07.022. [Epub ahead of print]Google Scholar
Castilla-Llorente, C, Martin, PJ, McDonald, GB, Storer, BE, Appelbaum, FR, Deeg, HJ, et al. Prognostic factors and outcomes of severe gastrointestinal GVHD after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2014;49(7):966–71.Google Scholar
Ayuk, F, Bussmann, L, Zabelina, T, Veit, R, Alchalby, H, Wolschke, C, et al. Serum albumin level predicts survival of patients with gastrointestinal acute graft-versus-host disease after allogeneic stem cell transplantation. Ann Hematol. 2014;93(5):855–61.Google Scholar
MacMillan, ML, DeFor, TE, Weisdorf, DJ. What predicts high risk acute graft-versus-host disease (GvHD) at onset?: identification of those at highest risk by a novel acute GvHD risk score. Br J Haematol. 2012;157(6):732–41.CrossRefGoogle ScholarPubMed
Weissinger, EM, Metzger, J, Dobbelstein, C, Wolff, D, Schleuning, M, Kuzmina, Z, et al. Proteomic peptide profiling for preemptive diagnosis of acute graft-versus-host disease after allogeneic stem cell transplantation. Leukemia. 2014;28(4):842–52.Google Scholar
Ferrara, JL, Harris, AC, Greenson, JK, Braun, TM, Holler, E, Teshima, T, et al. Regenerating islet-derived 3-alpha is a biomarker of gastrointestinal graft-versus-host disease. Blood. 2011;118(25):6702–8.Google Scholar
Vander Lugt, MT, Braun, TM, Hanash, S, Ritz, J, Ho, VT, Antin, JH, et al. ST2 as a marker for risk of therapy-resistant graft-versus-host disease and death. N Engl J Med. 2013;369(6):529–39.Google Scholar

References

Gisselbrecht, C, Prentice, HG, Bacigalupo, A, Biron, P, Milpied, N, Rubie, H, et al. Placebo-controlled phase III trial of lenograstim in bone-marrow transplantation. Lancet 1994;343(8899):696700.Google Scholar
Stahel, RA, Jost, LM, Cerny, T, Pichert, G, Honegger, H, Tobler, A, et al. Randomized study of recombinant human granulocyte colony-stimulating factor after high-dose chemotherapy and autologous bone marrow transplantation for high-risk lymphoid malignancies. J Clin Oncol 1994;12(9):1931–8.Google Scholar
Klumpp, TR, Mangan, KF, Goldberg, SL, Pearlman, ES, Macdonald, JS. Granulocyte colony-stimulating factor accelerates neutrophil engraftment following peripheral-blood stem-cell transplantation: a prospective, randomized trial. J Clin Oncol 1995;13(6):1323–7.Google Scholar
Schmitz, N, Dreger, P, Zander, AR, Ehninger, G, Wandt, H, Fauser, AA, et al. Results of a randomised, controlled, multicentre study of recombinant human granulocyte colony-stimulating factor (filgrastim) in patients with Hodgkin’s disease and non-Hodgkin’s lymphoma undergoing autologous bone marrow transplantation. Bone Marrow Transplant 1995;15(2):261–6.Google Scholar
Linch, DC, Milligan, DW, Winfield, DA, Kelsey, SM, Johnson, SA, Littlewood, TJ, et al. G-CSF after peripheral blood stem cell transplantation in lymphoma patients significantly accelerated neutrophil recovery and shortened time in hospital: results of a randomized BNLI trial. Br J Haematol 1997;99(4):933–8.Google Scholar
Faucher, C, Le Corroller, AG, Chabannon, C, Novakovitch, G, Manonni, P, Moatti, JP, et al. Administration of G-CSF can be delayed after transplantation of autologous G-CSF-primed blood stem cells: a randomized study. Bone Marrow Transplant 1996;17(4):533–6.Google Scholar
Bolwell, BJ, Pohlman, B, Andresen, S, Kalaycio, M, Goormastic, M, Wise, K, et al. Delayed G-CSF after autologous progenitor cell transplantation: a prospective randomized trial. Bone Marrow Transplant 1998;21(4):369–73.Google Scholar
Bence-Bruckler, I, Bredeson, C, Atkins, H, McDiarmid, S, Hamelin, L, Hopkins, H, et al. A randomized trial of granulocyte colony-stimulating factor (Neupogen) starting day 1 vs day 7 post-autologous stem cell transplantation. Bone Marrow Transplant 1998;22(10):965–9.Google Scholar
Piccirillo, N, Sica, S, Laurenti, L, Chiusolo, P, La Barbera, EO, Sora, F, et al. Optimal timing of G-CSF administration after CD34+ immunoselected peripheral blood progenitor cell transplantation. Bone Marrow Transplant 1999;23(12):1245–50.Google Scholar
Martino, M, Pratico, G, Messina, G, Irrera, G, Massara, E, Messina, G, et al. Pegfilgrastim compared with filgrastim after high-dose melphalan and autologous hematopoietic peripheral blood stem cell transplantation in multiple myeloma patients. Eur J Haematol 2006;77(5):410–5.Google Scholar
Rifkin, R, Spitzer, G, Orloff, G, Mandanas, R, McGaughey, D, Zhan, F, et al. Pegfilgrastim appears equivalent to daily dosing of filgrastim to treat neutropenia after autologous peripheral blood stem cell transplantation in patients with non-Hodgkin lymphoma. Clin Lymphoma Myeloma Leuk 2010;10(3):186–91.Google Scholar
Gerds, A, Fox-Geiman, M, Dawravoo, K, Rodriguez, T, Toor, A, Smith, S, et al. Randomized phase III trial of pegfilgrastim versus filgrastim after autologus peripheral blood stem cell transplantation. Biol Blood Marrow Transplant 2010;16(5):678–85.Google Scholar
Sebban, C, Lefranc, A, Perrier, L, Moreau, P, Espinouse, D, Schmidt, A, et al. A randomised phase II study of the efficacy, safety and cost-effectiveness of pegfilgrastim and filgrastim after autologous stem cell transplant for lymphoma and myeloma (PALM study). Eur J Cancer 2012;48(5):713–20.Google Scholar
Schriber, JR, Chao, NJ, Long, GD, Negrin, RS, Tierney, DK, Kusnierz-Glaz, C, et al. Granulocyte colony-stimulating factor after allogeneic bone marrow transplantation. Blood 1994;84(5):1680–4.Google Scholar
Locatelli, F, Pession, A, Zecca, M, Bonetti, F, Prete, L, Carra, AM, et al. Use of recombinant human granulocyte colony-stimulating factor in children given allogeneic bone marrow transplantation for acute or chronic leukemia. Bone Marrow Transplant 1996;17(1):31–7.Google Scholar
Hagglund, H, Ringden, O, Oman, S, Remberger, M, Carlens, S, Mattsson, J. A prospective randomized trial of Filgrastim (r-metHuG-CSF) given at different times after unrelated bone marrow transplantation. Bone Marrow Transplant 1999;24(8):831–6.Google Scholar
Bishop, MR, Tarantolo, SR, Geller, RB, Lynch, JC, Bierman, PJ, Pavletic, ZS, et al. A randomized, double-blind trial of filgrastim (granulocyte colony- stimulating factor) versus placebo following allogeneic blood stem cell transplantation. Blood 2000;96(1):80–5.Google Scholar
Przepiorka, D, Smith, TL, Folloder, J, Anderlini, P, Chan, KW, Korbling, M, et al. Controlled trial of filgrastim for acceleration of neutrophil recovery after allogeneic blood stem cell transplantation from human leukocyte antigen-matched related donors. Blood 2001;97(11):3405–10.Google Scholar
Ciernik, IF, Schanz, U, Gmur, J. Delaying treatment with granulocyte colony-stimulating factor after allogeneic bone marrow transplantation for hematological malignancies: a prospective randomized trial. Bone Marrow Transplant 1999;24(2):147–51.Google Scholar
Schwab, L, Goroncy, L, Palaniyandi, S, Gautam, S, Triantafyllopoulou, A, Mocsai, A, et al. Neutrophil granulocytes recruited upon translocation of intestinal bacteria enhance graft-versus-host disease via tissue damage. Nat Med 2014;20(6):648–54.Google Scholar
Ringden, O, Labopin, M, Gorin, NC, Le Blanc, K, Rocha, V, Gluckman, E, et al. Treatment with granulocyte colony-stimulating factor after allogeneic bone marrow transplantation for acute leukemia increases the risk of graft-versus-host disease and death: a study from the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation. J Clin Oncol 2004;22(3):416–23.Google Scholar
Ringden, O, Labopin, M, Gorin, NC, Volin, L, Torelli, GF, Attal, M, et al. Growth factor-associated graft-versus-host disease and mortality 10 years after allogeneic bone marrow transplantation. Br J Haematol 2012;157(2):220–9.Google Scholar
Volpi, I, Perruccio, K, Tosti, A, Capanni, M, et al. Postgrafting administration of granulocyte colony-stimulating factor impairs functional immune recovery in recipients of human leukocyte antigen haplotype-mismatched hematopoietic transplants. Blood 2001;97(8):2514–21.Google Scholar
Dekker, A, Bulley, S, Beyene, J, Dupuis, LL, Doyle, JJ, Sung, L. Meta-analysis of randomized controlled trials of prophylactic granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor after autologous and allogeneic stem cell transplantation. J Clin Oncol 2006;24(33):5207–15.Google Scholar
Vannucchi, AM, Bosi, A, Ieri, A, Guidi, S, Saccardi, R, Lombardini, L, et al. Combination therapy with G-CSF and erythropoietin after autologous bone marrow transplantation for lymphoid malignancies: a randomized trial. Bone Marrow Transplant 1996;17(4):527–31.Google Scholar
Chao, NJ, Schriber, JR, Long, GD, Negrin, RS, Catolico, M, Brown, BW, et al. A randomized study of erythropoietin and granulocyte colony-stimulating factor (G-CSF) versus placebo and G-CSF for patients with Hodgkin’s and non-Hodgkin’s lymphoma undergoing autologous bone marrow transplantation. Blood 1994;83(10):2823–8.Google Scholar
Ballen, KK, Becker, PS, Yeap, BY, Matthews, B, Henry, DH, Ford, PA. Autologous stem-cell transplantation can be performed safely without the use of blood-product support. J Clin Oncol 2004;22(20):4087–94.Google Scholar
Klaesson, S, Ringden, O, Ljungman, P, Lonnqvist, B, Wennberg, L. Reduced blood transfusions requirements after allogeneic bone marrow transplantation: results of a randomised, double-blind study with high- dose erythropoietin. Bone Marrow Transplant 1994;13(4):397402.Google Scholar
Link, H, Boogaerts, MA, Fauser, AA, Slavin, S, Reiffers, J, Gorin, NC, et al. A controlled trial of recombinant human erythropoietin after bone marrow transplantation. Blood 1994;84(10):3327–35.Google Scholar
Biggs, JC, Atkinson, KA, Booker, V, Concannon, A, Dart, GW, Dodds, A, et al. Prospective randomised double-blind trial of the in vivo use of recombinant human erythropoietin in bone marrow transplantation from HLA-identical sibling donors. The Australian Bone Marrow Transplant Study Group. Bone Marrow Transplant 1995;15(1):129–34.Google Scholar
Paltiel, O, Cournoyer, D, Rybka, W. Pure red cell aplasia following ABO-incompatible bone marrow transplantation: response to erythropoietin. Transfusion 1993;33(5):418–21.Google Scholar
Fujisawa, S, Maruta, A, Sakai, R, Taguchi, J, Tomita, N, Ogawa, K, et al. Pure red cell aplasia after major ABO-incompatible bone marrow transplantation: two case reports of treatment with recombinant human erythropoietin. Transpl Int 1996;9(5):506–8.CrossRefGoogle ScholarPubMed
Gaya, A, Urbano-Ispizua, A, Fernandez-Aviles, F, Salamero, O, Roncero, JM, Rovira, M, et al. Anemia associated with impaired erythropoietin secretion after allogeneic stem cell transplantation: incidence, risk factors, and response to treatment. Biol Blood Marrow Transplant 2008;14(8):880–7.Google Scholar
Jaspers, A, Baron, F, Willems, E, et al. Erythropoietin therapy after allogeneic hematopoietic cell transplantation: a prospective, randomized trial. Blood. 2014;124(1):3341.Google Scholar
Bolwell, B, Vredenburgh, J, Overmoyer, B, Gilbert, C, Chap, L, Menchaca, DM, et al. Phase 1 study of pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) in breast cancer patients after autologous peripheral blood progenitor cell (PBPC) transplantation. Bone Marrow Transplant 2000;26(2):141–5.Google Scholar
Cheng, G, Saleh, MN, Marcher, C, Vasey, S, Mayer, B, Aivado, M, et al. Eltrombopag for management of chronic immune thrombocytopenia (RAISE): a 6-month, randomised, phase 3 study. Lancet 2011;377(9763):393402.Google Scholar
Molineux, G, Newland, A. Development of romiplostim for the treatment of patients with chronic immune thrombocytopenia: from bench to bedside. Br J Haematol 2010;150(1):920.Google Scholar
Kuter, DJ. New thrombopoietic growth factors. Blood 2007;109(11):4607–16.Google Scholar
Ruiz-Delgado, GJ, Lutz-Presno, J, Ruiz-Arguelles, GJ. Romiplostin may revert the thrombocytopenia in graft-versus-host disease. Hematology 2011;16(2):108–9.Google Scholar
Reid, R, Bennett, JM, Becker, M, Chen, Y, Milner, L, Phillips, GL, et al. Use of eltrombopag, a thrombopoietin receptor agonist, in post-transplantation thrombocytopenia. Am J Hematol 2012;87(7):743–5.Google Scholar
Liesveld, JL, Phillips, GL, Becker, M, Constine, LS, Friedberg, J, Andolina, JR, et al. A phase 1 trial of eltrombopag in patients undergoing stem cell transplantation after total body irradiation. Biol Blood Marrow Transplant 2013;19(12):1745–52.Google Scholar

References

Goldman, J, Liesveld, J, Nichols, D, et al. ABO incompatibility between donor and recipient and clinical outcomes in allogeneic stem cell transplantation. Leuk Res 2003; 27:489–91.Google Scholar
Remberger, M, Watz, E, Ringden, O, Mattsson, J, Shjanwell, A, Wikman, A. Major ABO blood group mismatch increases the risk for graft failure after, unrelated donor hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2007;13(6):675–82.Google Scholar
Buckner, CD, Clift, RA, Sanders, JE, et al. ABO-incompatible marrow transplants. Transplantation 1978; 26:233–8.Google Scholar
Warkentin, Pl, Yomtovian, R, Hurd, D, et al. Severe delayed hemolytic transfusion reaction complicating an ABO-incompatible bone marrow transplantation. Vox Sang 1983; 45:40–7.Google Scholar
Klummp, TR, Herman, JH, Ulicny, J, et al. Lack of effect of donor-recipient ABO mismatching outcome following allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2006; 38:615–20.Google Scholar
Curley, C, Pillai, E, Mudie, K, et al. Outcomes after major or bidirectional ABO-mismatched allogeneic hematopoietic progenitor cell transplantation after pretransplant isoagglutinin reduction with donor-type secreter plasma with or without plasma exchange. Transfusion 2012; 52:291–7.Google Scholar
Robeck, JD, Grossman, BJ, Harris, T, Hillyer, CD. Technical manual. Bethesda, MD: AABB; 2011.Google Scholar
Bender, JG, Bikto, L, Williams, S, et al. Defining a therapy dose of peripheral blood stem cells. J Hematother 1992; 1:329–41.Google Scholar
Rowley, SD. Hematopoietic stem cell transplantation between red cell incompatible donor-recipient pairs. Bone Marrow Transplant 2001; 28(4):315–21.Google Scholar
Cohn, C, Gaensler, K, Nambiar, A. Engraftment associated complications: Is it an allo-or an autoantibody? Transfusion 2010; 50(2S).Google Scholar
Akel, S, Regan, D, Petz, L, McCullough, J. Current thawing and infusion practice of cryopreserved cord blood: the impact on graft quality, recipient safety, and transplantation outcomes. Transfusion 2014; 54(11):29973009.Google Scholar
Stroncek, DF, Fautsch, SK, Lasky, LC, Hurd, DD, Ramsay, NKC, McCullough, J. Adverse reactions in patients transfused with cryopreserved marrow. Transfusion 1991; 31:521–7.Google Scholar
Malfuson, JV, Amor, RB, Bonin, P, Rodet, M, Boccaccio, C, Pautas, C, et al. Impact of nonmyeloablative conditioning regimens on the occurrence of pure red cell aplasia after ABO-incompatible allogeneic haematopoietic stem cell transplantation. Vax Sang 2007; 92(1):85–9.Google Scholar
Petz, LD. Immune hemolysis associated with transplantation. Semin Hematol 2005; 42(3):145–55.Google Scholar
Fleur, MA, Lichtiger, B, Bassett, R, et al. Incidence and natural history of pure red cell aplasia in major ABO-mismatched haematopoietc cell transplantation. Br J Haematol 2013; 160:798805.Google Scholar
Yazar, MH, Triulzi, DJ. Immune hemolysis following ABO-mismatched stem cell or solid organ transplantation. Curr Opin Hematol 2007; 14:664–70.Google Scholar
Karafin, MS, Blagg, L, Tobian, AA, et al. ABO antibody titers are not predictive of hemolytic reactions due to plasma-incompatible platelet transfusions. Transfusion 2012; 52:2087–93.Google Scholar
Mollison, P, Engelfriet, C, Contreras, M, editors. ABO, lewis and P groups and l antigens. 10th ed. Oxford, UK: Blackwell Science; 1997.Google Scholar
Petz, LO. Hemolysis associated with transplantation. Transfusion 1998; 38:224–8.Google Scholar
Bolan, CD, Childs, RW, Proter, JL, et al. Massive immune haemolysis after allogeneic peripheral blood stem cell transplantation with minor ABO incompatibility. Br J Haematol 2001; 112:787–95.Google Scholar
Daniel-Johnson, J, Schwartz, J. How do I approach ABO-incompatible hematopoietic progenitor cell transplantation? Transfusion 2011; 51:1143–9.Google Scholar
Gajewski, JL, Johnson, VV, Sandler, SG, et al. A review of transfusion practice before, during, and after hematopoietic progenitor cell transplantation. Blood 2008; 112:3036–47.Google Scholar
McCullough, J. Transfusion medicine. 3rd ed, Chapter 8. Oxford, UK: Wiley-Blackwell; 2012: 1597.Google Scholar
Boctor, FN, Ali, NM, Mohandas, K, et al. Absence of D-alloimmunization in AIDS patients receiving D-mismatched RBCs. Transfusion 2003; 43:(2):173–6.Google Scholar
Ramsey, G, Hahn, LF, Cornell, FW, et al. Low rate of Rhesus immunization from Rh-incompatible blood transfusions during liver and heart transplant surgery. Transplantation 1989; 47(6):993–5.Google Scholar
Cummins, D, Contreras, M, Amin, S, et al. Red cell alloantibody development associated with heart and lung transplantation. Transplantation 1995; 59:1432–5.Google Scholar
Casanueva, M, Valdes, MD, Ribera, MC. Lack of alloimmunisation to D antigen in D-negative immunosuppressed liver transplant patients. Transfusion 1994; 34:570–2.Google Scholar
Menitove, JE. Immunoprophylaxis for D-patients receiving platelets from D+ donors? Transfusion 2002; 42:136–8.Google Scholar
Abou-Elells, AA, Camarillo, TA, Allen, BM, et al. Low incidence of red cell and HLA antibody formation by bone marrow transplant patients. Transfusion 1995; 35:931–5.Google Scholar
Parkman, R. Immunological reconstitution following bone marrow transplantation. In Bone marrow transplantation. Boston, MA: Blackwell Scientific; 1994; 504–12.Google Scholar
Atkinson, K. Reconstruction of the haemopoietic and immune systems after marrow transplantation. Bone Marrow Transplant 1990; 5(4):209–26.Google Scholar
Friedberg, RC. Transfusion therapy in the patient undergoing hematopoietic stem cell transplantation. Hematol Oncol Clin North Am 1994; 8(6):1105–16. Review.Google Scholar
Heddle, NM, Soutar, RL, O’Hoski, PL, et al. A prospective study to determine the frequency and clinical significance of alloimmunization post-transfusion. Br J Haematol 1995; 91(4):1000–5.Google Scholar
Azuma, E, Nishihara, H, Hanada, M. Recurrent cold hemagglutinin disease following allogeneic bone marrow transplantation successfully treated with plasmapheresis, corticosteroid and cyclophosphamide. Bone Marrow Transplant 1996; 18(1):243–6.Google Scholar
Wennerberg, A, Backman, KA, Gillerlain, C. Mixed erythrocyte chimerism: implications for tolerance of the donor immune system to recipient non-ABO system red cell antigens. Bone Marrow Transplant 1996; 18(2):433–5.Google Scholar
Sachs, V. Immune haemolysis after organ transplantation. Transf Med 1995; 5(1):87.Google Scholar
Chen, F, Owen, I, Savage, D, et al. Late onset haemolysis and red cell autoimmunisation after allogeneic bone marrow transplant. Bone Marrow Transplant 1997; 19:491–5.Google Scholar
Drobyski, WR, Potluri, J, Sauer, D, Gottschall, JL. Autoimmune hemolytic anemia following T cell-depleted allogeneic bone marrow transplantation. Bone Marrow Transplant 1996; 17(6):1093–9.Google Scholar
Horn, B, Viele, M, Mentzer, W, et al. Autoimmune hemolytic anemia in patients with SCID after T cell-depleted BM and PBSC transplantation. Bone Marrow Transplant 1999; 24(9):1009–13.Google Scholar
Mijovic, A. Alloimmunization to RhD antigen in RhD-incompatible haemopoietic cell transplants with non-myeloablative conditioning. Vox Sang 2002; 83:358362.Google Scholar
Erker, CG, Steins, MB, Fischer, RJ, et al. The influence of blood group differences in allogeneic hematopoietic peripheral blood progenitor cell transplantation. Transfusion 2005; 45:1382–90.Google Scholar
Wirk, B, Klumpp, TR, Ulicny, J, et al. Lack of effect of donor-recipient Rh mismatch on outcomes after allogeneic hematopoietic stem cell transplantation. Transfusion 2008; 48:163–8.Google Scholar
Berkman, EM, Caplan, SN. Engraftment of RH-positive marrow in a recipient with RH antibody. Transplant Proc 1977; 9(1 Suppl 1):215–8.Google Scholar
Rigal, D, Monestier, M, Meyer, F, Tremisi, PJ, et al. Transplant of rhesus-positive bone marrow in a rhesus-negative woman having anti-rhesus D alloantibodies. Acta Haematol 1985; 73(3):153–6.Google Scholar
Taylor, PA, Ehrhardt, MJ, Roforth, MM, et al. Preformed antibody, not primed T cells, is the initial and major barrier to bone marrow engraftment in allosensitized recipients. Blood 2007; 109:1307–15.Google Scholar
Warkentin, PI, Hilden, JM, Kersey, JH, et al. Transplantation of major ABO-incompatible bone marrow depleted of red cells by hydroxyethyl starch. Vox Sang 1985; 48(2):89104.Google Scholar
Kalacioglu, M, Copelan, E, Avalos, B, et al. Survival after ABO-incompatible allogeneic bone marrow transplant after a preparative regimen of busulfan and cyclophosphamide. Bone Marrow Transplant 1995; 15:105–10.Google Scholar
Booth, GS, Gerhie, EA, Bolan, CD, Savani, BN. Clinical guide to ABO-incompatible allogeneic stem cell transplantation. Biol Blood Marrow Transplant 2013; 19:1152–8Google Scholar
Lichtiger, B, Hester, JP. Transfusion of Rh-incompatible blood components to cancer patients. Haematologia 1986; 19:81–8.Google Scholar
Asfour, M, Narvios, A, Lichtiger, B. Transfusion of RhD-incompatible blood components in RhD-negative blood marrow transplant recipients. Med Gen Med 2004; 13:22.Google Scholar
Goldfinger, D, MGinniss, MH. Rh-incompatible platelet transfusion: risks and consequences of sensitizing immunosuppressed patients. N Engl J Med 1971; 284:942.Google Scholar
McLeod, BC, Piehl, MR, Sassetti, RJ. Alloimmunizaation to RhD by platelet transfusion in autologous bone marrow transplant recipients. Vox Sang 1990; 59:185–9.Google Scholar
Avache, S, Herman, JH. Prevention of D sensitization after mismatched transfusion of blood components: toward optimal use of RhIG. Transfusion 2008; 48:1990–9.Google Scholar
Pfisterer, H, Thierfelder, S, Kottusch, H, et al. Examination of human thrombocytes for Rhesus antigens using decomposition studies in vivo following Cr 51 labelling. Klin Wochenschr 1967; 45(10):519–22.Google Scholar
Burnie, KM, Barr, RM. Unpublished observations cited by Mollsion, PL, Engelfriet, CP, Contreras, M. In Blood transfusion in clinical medicine, 9th edition. Oxford: Blackwell; 1993: 235.Google Scholar
McBride, JA, O’Hoski, P, Blasjchman, MA, et al. Rhesus alloimmunisation following intensive plasmapheresis. Transfusion 1978; 18:626–7.Google Scholar
O’Shaughnessy, DF, Atterbury, C, Bolton Maggs, P, et al. Guidelines for the use of fresh-frozen plasma, cryoprecipitate and cryosupernatant. British Committee for Standards in Haematology, Blood Transfusion Task Force. Br J Haematol 2004; 126(1):1128.Google Scholar
Barclay, GR, Greiss, MA, Urbaniak, SJ. Adverse effect of plasma exchange on anti-D production in rhesus immunization owing to removal of inhibitory factors. BMJ 1980; 280(6231):1569–71.Google Scholar
Schorr, JB, Schorr, PT, Francis, R, et al. The antigenicity of C and E antigens when transfused into Rh-negative (rr) and Rh-positive recipients. Chicago, IL: Commun Am Assoc Blood Banks; 1971.Google Scholar
Huestis, DW. International forum: what constitutes adequate routine Rh typing on donors and recipients? Vox Sang 1971; 21:183.Google Scholar
Leo, A, Mytilineos, J, Voso, MT, et al. Passenger lymphocyte syndrome with severe hemolytic anemia due to an anti-Jk(a) after allogeneic PBPC transplantation. Transfusion 2000; 40(6):632–6.Google Scholar
Ting, A, Pun, A, Dodds, AJ, Atkinson, K, et al. Red cell alloantibodies produced after bone marrow transplantation. Red cell alloantibodies produced after bone marrow transplantation. Transfusion 1987; 27(2):145–7.Google Scholar
de la Rubia, J, Arriaga, F, Andreu, R, et al. Development of non-ABO RBC alloantibodies in patients undergoing allogeneic HPC transplantation. Is ABO incompatibility a predisposing factor? Transfusion 2001; 41:106–10.Google Scholar
Zupańska, B, Zaucha, JM, Michalewska, B, et al. Multiple red cell alloantibodies, including anti-Dib, after allogeneic ABO-matched peripheral blood progenitor cell transplantation. Transfusion 2005; 45(1):1620.Google Scholar
López, A, de la Rubia, J, Arriaga, F, et al. Severe hemolytic anemia due to multiple red cell alloantibodies after an ABO-incompatible allogeneic bone marrow transplant. Transfusion 1998; 38(3):247–51.Google Scholar
Dinsmore, RE, Reich, LM, Kapoor, N, et al. ABH incompatible bone marrow transplantation: removal of erythrocytes by starch sedimentation. Br J Haematol 1983; 54(3):441–9.Google Scholar
Lasky, LC, Warkentin, PI, Kersey, JH, et al. Hemotherapy in patients undergoing blood group incompatible bone marrow transplantation. Transfusion 1983; 23(4):277–85.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×