Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T05:35:59.768Z Has data issue: false hasContentIssue false

13 - Secondary eyewall formation in tropical cyclones

from Part III - Tropical cyclones

Published online by Cambridge University Press:  05 March 2016

Jianping Li
Affiliation:
Beijing Normal University
Richard Swinbank
Affiliation:
Met Office, Exeter
Richard Grotjahn
Affiliation:
University of California, Davis
Hans Volkert
Affiliation:
Deutsche Zentrum für Luft- und Raumfahrt eV (DLR)
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarca, S. F. and Corbosiero, K. L. (2011). Secondary eyewall formation in WRF simulations of hurricanes Rita and Katrina (2005). Geophys. Res. Lett., 38, L07802, doi:10.1029/2011GL047015.CrossRefGoogle Scholar
Abarca, S. F. and Montgomery, M. T. (2013). Essential dynamics of secondary eyewall formation. J. Atmos. Sci., 70, 32163230.CrossRefGoogle Scholar
Black, M. L. and Willoughby, H. E. (1992). The concentric eyewall cycle of Hurricane Gilbert. Mon. Wea. Rev. 120, 947957.2.0.CO;2>CrossRefGoogle Scholar
Bell, M. M., Montgomery, M. T., and Lee, W.-C. (2012). An axisymmetric view of eyewall evolution in Hurricane Rita (2005). J. Atmos. Sci., 8, 24142432.CrossRefGoogle Scholar
Chen, Y. and Yau, M. K. (2001). Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification, J. Atmos. Sci., 58, 21282145.2.0.CO;2>CrossRefGoogle Scholar
Chen, Y., Brunet, G., and Yau, M. K. (2003). Spiral bands in a simulated hurricane. Part II: Wave activity diagnostics, J. Atmos. Sci., 60, 12391256.2.0.CO;2>CrossRefGoogle Scholar
Corbosiero, K. L., Molinari, J., Aiyyer, A. R., and Black, M. L. (2006). The structure and evolution of Hurricane Elena (1985). Part II: Convective asymmetries and evidence for vortex Rossby waves. Mon. Wea. Rev., 134, 30733091.CrossRefGoogle Scholar
Corbosiero, K. L., Abarca, S., and Montgomery, M. T. (2012). Vortex Rossby waves and secondary eyewall formation in a high-resolution simulation of Hurricane Katrina (2005). 30th Conference on Hurricanes and Tropical Meteorology. Amer. Meteor. Soc., Jacksonville, FL. 1A.6.Google Scholar
Didlake, A. C. and Houze, R. A. Jr. (2011). Kinematics of the secondary eyewall observed in Hurricane Rita (2005). J. Atmos. Sci., 68, 16201636.CrossRefGoogle Scholar
Dritschel, D. G. and Waugh, D. (1992). Quantification of the inelastic interaction of unequal vortices in two-dimensional vortex dynamics. Phys. Fluids, 4A, 17371744.CrossRefGoogle Scholar
Eliassen, A. (1951). Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5, 1960.Google Scholar
Elsberry, R. L. and Harr, P. A. (2008). Tropical cyclone structure (TCS08) field experiment science basis, observational platforms, and strategy. Asia-Pacific J. Atmos. Sci., 44, 3, 209231.Google Scholar
Fang, J. and Zhang, F. (2012). Effect of beta shear on simulated tropical cyclones. Mon. Wea. Rev., 140, 33273346.CrossRefGoogle Scholar
Fuentes, O. U. V. (2004). Vortex filamentation its onset and its role on axisymmetrization and merger. Dyn. Atmos. Oceans, 40, 2342.CrossRefGoogle Scholar
Hack, J. J. and Schubert, W. H. (1986). Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 15591573.2.0.CO;2>CrossRefGoogle Scholar
Hawkins, J. D. and Helveston, M. (2008). Tropical cyclone multiple eyewall characteristics. 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL. Amer. Meteor. Soc., 14B.1.Google Scholar
Hence, D. A. and Houze, R. A. Jr. (2012). Vertical structure of tropical cyclones with concentric eyewalls as seen by the TRMM precipitation radar. J. Atmos. Sci., 69, 10211036.CrossRefGoogle Scholar
Hill, K. A. and Lackmann, G. M. (2009). Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 32943315.CrossRefGoogle Scholar
Houze, R. A. Jr., Chen, S. S., Lee, W.-C., et al. (2006). The Hurricane Rainband and Intensity Change Experiment: Observations and modeling of Hurricanes Katrina, Ophelia, and Rita. Bull. Am. Meteor. Soc. 87, 15031521.CrossRefGoogle Scholar
Houze, R. A. Jr., Chen, S. S., Smull, B. F., Lee, W.-C., and Bell, M. M. (2007). Hurricane intensity and eyewall replacement, Science, 315, 12351239.CrossRefGoogle ScholarPubMed
Huang, H.-P. and Robinson, W. A. (1998). Two-dimensional turbulence and persistent zonal jets in a global barotropic model, J. Atmos. Sci., 55, 611632.2.0.CO;2>CrossRefGoogle Scholar
Huang, Y.-H., Montgomery, M. T., and Wu, C.-C. (2012). Concentric eyewall formation in Typhoon Sinlaku (2008). Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662674.CrossRefGoogle Scholar
Kepert, J. D. (2013). How does the boundary layer contribute to eyewall replacement cycles in axisymmetric tropical cyclones? J. Atmos. Sci., 70, 28082830.CrossRefGoogle Scholar
Kepert, J. D. and Nolan, D. S. (2014). Analysis of a simulated tropical cyclone eyewall replacement cycle. 31st Conference on Hurricanes and Tropical Meteorology. Amer. Meteor. Soc., San Diego, CA. 11C.3.Google Scholar
Kossin, J. P. and Sitkowski, M. (2009). An objective model for identifying secondary eyewall formation in hurricanes. Mon. Weather Rev., 137, 876892.CrossRefGoogle Scholar
Kuo, H.-C., Lin, L.-Y., Chang, C.-P., and Williams, R. T. (2004). The formation of concentric vorticity structures in typhoons. J. Atmos. Sci., 61, 27222734.CrossRefGoogle Scholar
Kuo, H.-C., Schubert, W. H., Tsai, C.-L., and Kuo, Y.-F. (2008). Vortex interaction and barotropic aspects of concentric eyewall formation. Weather Rev., 137, 51825198.Google Scholar
Kuo, H.-C., Chang, C.-P., Yang, Y.-T. and Jiang, H.-J. (2009). Western North Pacific typhoons with concentric Eyewalls. Mon. Weather Rev., 137, 3758-3770.CrossRefGoogle Scholar
Judt, F. and Chen, S. S. (2010). Convectively generated potential vorticity in rainbands and formation of the secondary eyewall in Hurricane Katrina of 2005. J. Atmos. Sci., 67, 35813599.CrossRefGoogle Scholar
MacDonald, N. J. (1968). The evidence for the existence of Rossby type waves in the hurricane vortex. Tellus, 20, 138150.CrossRefGoogle Scholar
Martinez, Y., Brunet, G., and Yau, M. K. (2010). On the dynamics of two-dimensional hurricane-like concentric rings vortex formation. J. Atmos. Sci., 67, 32533268.CrossRefGoogle Scholar
Martinez, Y., Brunet, G., Yau, M. K., and Wang, X. (2011). On the dynamics of concentric eyewall genesis: Space-time empirical normal modes diagnosis. J. Atmos. Sci., 68, 457476.CrossRefGoogle Scholar
McWilliams, J. C. (1990). The vortices of two-dimensional turbulence. J. Fluid. Mech., 219, 361385.CrossRefGoogle Scholar
Melander, M. V., McWilliams, J. C., and Zabusky, N. J. (1987). Axisymmetrization and vorticity-gradient intensification of an isolated two-dimensional vortex through filamentation. J. Fluid Mech., 178, 137159.CrossRefGoogle Scholar
Menelaou, K., Yau, M. K., and Martinez, Y. (2012). On the dynamics of the secondary eyewall genesis in Hurricane Wilma (2005). Geophys. Res. Lett., 39, L04801, doi:10.1029/2011GL050699.CrossRefGoogle Scholar
Menelaou, K., Yau, M. K., and Martinez, Y. (2013). Impacts of asymmetric dynamical processes on the structure and intensity change of two-dimensional hurricane-like annular vortices. J. Atmos. Sci., 70, 559582.CrossRefGoogle Scholar
Montgomery, M. T. and Kallenbach, R. J. (1997). A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes, Q. J. R. Meteorol. Soc., 123, 435465.CrossRefGoogle Scholar
Moon, Y., Nolan, D. S., and Iskandarani, M. (2010). On the use of two-dimensional incompressible flow to study secondary eyewall formation in tropical cyclones. J. Atmos. Sci., 67, 37653773.CrossRefGoogle Scholar
Nong, S. and Emanuel, K. A. (2003). A numerical study of the genesis of concentric eyewalls in hurricane. Quart. J. Roy. Meteor. Soc., 129, 33233338.CrossRefGoogle Scholar
Qiu, X., Tan, Z.-M., and Xiao, Q. (2010). The roles of vortex Rossby waves in Hurricane secondary eyewall formation. Mon. Wea. Rev., 138, 20922019.CrossRefGoogle Scholar
Qiu, X. and Tan, Z.-M. (2013). The roles of asymmetric inflow forcing induced by outer rainbands in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 70, 953974.CrossRefGoogle Scholar
Rozoff, C. M., Schubert, W. H., McNoldy, B. D., and Kossin, J. P. (2006). Rapid filamentation zones in intense tropical cyclones. J. Atmos. Sci., 63, 325340.CrossRefGoogle Scholar
Rozoff, C. M., Nolan, D. S., Kossin, J. P., Zhang, F., and Fang, J. (2012). The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 69, 26212643.CrossRefGoogle Scholar
Schubert, W. H. and Hack, J. J. (1982). Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697.2.0.CO;2>CrossRefGoogle Scholar
Shapiro, L. J. and Willoughby, H. E. (1982). The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394.2.0.CO;2>CrossRefGoogle Scholar
Sikowstki, M., Kossin, J. P., and Rozoff, C. M. (2011). Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 38293847.CrossRefGoogle Scholar
Skamarock, W. C., Klemp, J. B., Dudhia, J., et al. (2005). A description of the Advanced Research WRF Version 2. NCAR Tech. NoteNCAR/TN-4681ST, 88 pp.Google Scholar
Smith, R. K., Montgomery, M. T., and Nguyen, S. V. (2009). Tropical cyclone spin-up revisited. Q. J. R. Meteorol. Soc. 135, 13211335.CrossRefGoogle Scholar
Sun, Y. Q., Jiang, Y., Tan, B., and Zhang, F. (2013). The governing dynamics of the secondary eyewall formation of Typhoon Sinlaku (2008). J. Atmos. Sci., 70, 38183837.CrossRefGoogle Scholar
Terwey, W. D. and Montgomery, M. T. (2008). Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J. Geophys. Res., 113, D12112.CrossRefGoogle Scholar
Wang, Y. (2002a). Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. J. Atmos. Sci., 59, 12131238.2.0.CO;2>CrossRefGoogle Scholar
Wang, Y. (2002b). Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. J. Atmos. Sci., 59, 12391262.2.0.CO;2>CrossRefGoogle Scholar
Wang, Y. (2009). How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273.CrossRefGoogle Scholar
Wang, X., Ma, Y., and Davidson, N. E. (2013). Secondary eyewall formation and eyewall replacement cycles in a simulated hurricane: effect of the net radial force in the hurricane boundary layer. J. Atmos. Sci., 70, 13171341.CrossRefGoogle Scholar
Willoughby, H. E., Clos, J. A., and Shoreibah, M. G. (1982). Concentric eyewalls, secondary wind maxima, and the evolution of the hurricane vortex, J. Atmos. Sci., 39, 395411.2.0.CO;2>CrossRefGoogle Scholar
Willoughby, H. E., Jin, H.-L., Lord, S. J., and Piotrowicz, J. M. (1984). Hurricane structure and evolution as simulated by an axisymmetric, nonhydrostatic numerical model, J. Atmos. Sci., 41, 11691186.2.0.CO;2>CrossRefGoogle Scholar
Willoughby, H. E. and Black, P. G. (1996). Hurricane Andrew in Florida: Dynamics of a disaster, Bull. Am. Meteorol. Soc., 77, 543549.2.0.CO;2>CrossRefGoogle Scholar
Wu, C.-C., Cheng, H.-J., Wang, Y., and Chou, K.-H. (2009). A numerical investigation of the eyewall evolution in a landfalling typhoon. Mon. Wea. Rev., 137, 2140.CrossRefGoogle Scholar
Wu, C.-C., Lien, G.-Y., Chen, J.-H., and Zhang, F. (2010). Assimilation of tropical cyclone track and structure based on the Ensemble Kalman Filter (EnKF). J. Atmos. Sci., 67, 38063822.CrossRefGoogle Scholar
Wu, C.-C., Huang, Y.-H., and Lien, G.-Y. (2012). Concentric eyewall formation in Typhoon Sinlaku (2008). Part I: Assimilation of T-PARC data based on the ensemble Kalman filter (EnKF). Mon. Wea. Rev., 140, 506527.CrossRefGoogle Scholar
Wu, C.-C., Kuan, S.-P., Cheng, Y.-M., and Huang, Y.-H. (2014). Unbalanced dynamics of secondary eyewall formation in tropical cyclones- Part II: Analyses from higher-resolution simulations. 31st Conference on Hurricanes and Tropical Meteorology. Amer. Meteor. Sco., San Diego, CA. 11C.2.Google Scholar
Yano, J.-I. and Emanuel, K. A. (1991). An improved model of the equatorial troposphere and its coupling with the stratosphere, J. Atmos. Sci., 48, 377389.2.0.CO;2>CrossRefGoogle Scholar
Zhou, X. and Wang, B. (2011). Mechanism of concentric eyewall replacement cycles and associated intensity change. J. Atmos. Sci., 68, 972988.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×