Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-27T07:32:18.707Z Has data issue: false hasContentIssue false

12 - Dynamics, predictability, and high-impact weather associated with the extratropical transition of tropical cyclones

from Part III - Tropical cyclones

Published online by Cambridge University Press:  05 March 2016

Jianping Li
Affiliation:
Beijing Normal University
Richard Swinbank
Affiliation:
Met Office, Exeter
Richard Grotjahn
Affiliation:
University of California, Davis
Hans Volkert
Affiliation:
Deutsche Zentrum für Luft- und Raumfahrt eV (DLR)
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altenhoff, A. M., Martius, O., Croci-Maspoli, M., Schwierz, C., and Davies, H. C. (2008). Linkage of atmospheric blocks and synoptic-scale Rossby waves: a climatological analysis. Tellus, 60, 10531063.CrossRefGoogle Scholar
Archambault, H. M., Bosart, L. F., Keyser, D., and Cordeira, J. M. (2013). A climatological analysis of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 141, 23252346.CrossRefGoogle Scholar
Archambault, H. M., Keyser, D., Bosart, L. F., Davis, C. A., and Cordeira, J. M. (2015). A composite persepctive of the extratropical flow response to recurving western North Pacific tropical cyclones. Mon. Wea. Rev., 143, 11221141. Doi: http://dx.doi.org/10.1175/MWR-D-14-00270.1CrossRefGoogle Scholar
Agusti-Panareda, A., Thorncroft, C. D., Craig, G. C., and Gray, S. L. (2004). The extratropical transition of hurricane Irene (1999): A potential vorticity perspective. Quart. J. Roy. Meteor. Soc., 130, 10471074.CrossRefGoogle Scholar
Agusti-Panareda, A., Gray, S. L., Craig, G. C., and Thorncroft, C. (2005). The extratropical transition of Tropical Cyclone Lili (1996) and its crucial contribution to a moderate extratropical development. Mon. Wea. Rev., 133, 15621573.CrossRefGoogle Scholar
Anwender, D., Harr, P. A., and Jones, S. C. (2008). Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Case studies. Mon. Wea. Rev., 136, 32053225.CrossRefGoogle Scholar
Anwender, D., Jones, S. C., Leutbecher, M., and Harr, P. A. (2010). Sensitivity experiments for ensemble forecasts of the extratropical transition of Typhoon Tokage (2004). Quart. J. Roy. Meteor. Soc., 136, 183200.CrossRefGoogle Scholar
Bosart, L. F. and Lackmann, G. M. (1995). Postlandfall tropical cyclone reintensification in a weakly baroclinic environment: A case study of Hurricane David (September 1979). Mon. Wea. Rev., 123, 32053225.2.0.CO;2>CrossRefGoogle Scholar
Brand, S. and Guard, C. P. (1979). An observational study of extratropical storms that evolved from tropical cyclones in the western North Pacific. J. Meteor. Soc. Japan, 57, 479482.CrossRefGoogle Scholar
Browning, K. A., Vaughan, G., and Panagi, P. (1998). Analysis of an ex-tropical cyclone after reintensifying as a warm-core extratropical cyclone. Quart. J. Roy. Meteor. Soc., 124, 23292356.Google Scholar
Carlson, T. N. (1980). Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108, 14981509.2.0.CO;2>CrossRefGoogle Scholar
Chaboureau, J.-P., Pantillon, F., Lambert, D., Richard, R., and Claud, C. (2012). Tropical transition of a Mediterranean storm by jet crossing. Quart. J. Roy. Meteor. Soc., 138, 596611, doi: 10.1002/qj.960CrossRefGoogle Scholar
Chou, K.-H., Wu, C.-C, Lin, P.-H., et al. (2011). The impact of dropwindsonde observations on typhoon track forecasts in DOTSTAR and T-PARC. Mon. Wea. Rev., 139, 17281743.CrossRefGoogle Scholar
Davis, C. A., Jones, S. C., and Riemer, M. (2008). Hurricane vortex dynamics during Atlantic extratropical transition. J. Atmos. Sci., 65, 714736.CrossRefGoogle Scholar
Evans, J. L. and Hart, R. E. (2003). Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones. Mon. Wea. Rev., 131, 909925.2.0.CO;2>CrossRefGoogle Scholar
Foley, G. R. and Hanstrum, B. N. (1994). The capture of tropical cyclones by cold fronts off the west coast of Australia. Wea. Forecasting, 9, 577592.2.0.CO;2>CrossRefGoogle Scholar
Grams, C. M. and Coauthors (2011). The key role of diabatic processes in modifying the upper-tropospheric wave guide: A North Atlantic case study. Quart. J. Roy. Meteor. Soc., 137, 21742193.CrossRefGoogle Scholar
Grams, C. M., Jones, S. C., Davis, C. A., Harr, P. A., and Weissmann, M. (2013a). The impact of Typhoon Jangmi (2008) on the midlatitude flow. Part I: Upper-level ridge building and modification of the jet. Quart. J. Roy. Meteor. Soc., 139, 21482164, doi: 10.1002/qj.2091.CrossRefGoogle Scholar
Grams, C. M., Jones, S. C., and Davis, C. A. (2013b). The impact of Typhoon Jangmi (2008) on the midlatitude flow. Part II: Downstream evolution. Quart. J. Roy. Meteor. Soc., 139, 21652180, doi: 10.1002/qj.2119.CrossRefGoogle Scholar
Hamill, T. M., Bates, G. T., Whitaker, J. S., et al. (2013). NOAA's Second-generation global medium-range ensemble reforecast dataset. Bull. Amer. Meteor. Soc.,94, 1553-1565.CrossRefGoogle Scholar
Harnisch, F. and Weissmann, M. (2010). Sensitivity of typhoon forecasts to different subsets of targeted dropsonde observations. Mon. Wea. Rev., 138, 26642680.CrossRefGoogle Scholar
Harr, P. A. (2010). The extratropical transition of tropical cyclones: Structural characteristics, downstream impacts, and forecast challenges. Global Perspectives on Tropical Cyclones, World Scientific Series on Asia-Pacific Weather and Climate, Vol. 4, Chan, J. C. L. and Kepert, J. D., Eds. World Scientific Press, pp. 149177.CrossRefGoogle Scholar
Harr, P. A. and Elsberry, R. L. (2000). Extratropical transition of tropical cyclones over the western North Pacific. Part I: Evolution of structural characteristics during the transition process. Mon. Wea. Rev.,128, 26132633.2.0.CO;2>CrossRefGoogle Scholar
Harr, P. A., Elsberry, R. L., and Hogan, T. F. (2000). Extratropical transition of tropical cyclones over the western North Pacific. Part II: The impact of midlatitude circulation characteristics. Mon. Wea. Rev.,128, 26342653.2.0.CO;2>CrossRefGoogle Scholar
Harr, P. A., Anwender, D., and Jones, S. C. (2008). Predictability associated with the downstream impacts of the extratropical transition of tropical cyclones: Methodology and a case study of Typhoon Nabi (2005). Mon. Wea. Rev., 136, 32053225.CrossRefGoogle Scholar
Harr, P. A. and Dea, J. M. (2009). Downstream development associated with the extratropical transition of tropical cyclones over the western North Pacific. Mon. Wea. Rev., 137, 12951319.CrossRefGoogle Scholar
Harr, P. A. and Wu, C.-C. (2011). Tropical cyclone characteristics and monsoon circulations. The Global Monsoon System: Research and Forecast, 2nd Edition, World Scientific Series on Asia-Pacific Weather and Climate, Vol. 5, Chang, C. –P., Ding, Y., Lau, N.-C., Johnson, R. H., Wang, B., and Yasunari, T., Eds., World Scientific Press, 357372, 634–652.CrossRefGoogle Scholar
Hart, R. E., Evans, J. L., and Evans, C. (2006). Synoptic composites of the extratropical transition lifecycle of North Atlantic tropical cyclones: Factors determining post-transition evolution. Mon. Wea. Rev., 134, 553578.CrossRefGoogle Scholar
Jones, S. C. and Coauthors (2003). The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting. 18, 1656.2.0.CO;2>CrossRefGoogle Scholar
Kitabatake, N. (2002). Extratropical transition of Typhoon Vicki (9807): Structural changes and the role of upper-tropospheric disturbances. J. Meteor. Soc. Japan, 80, 229247.CrossRefGoogle Scholar
Klein, P. M., Harr, P. A., and Elsberry, R. L. (2000). Extratropical transition of western North Pacific tropical cyclones: An overview and conceptual model of the transformation stage. Wea. Forecasting, 15, 373395.2.0.CO;2>CrossRefGoogle Scholar
Klein, P. M., Harr, P. A., and Elsberry, R. L. (2002). Extratropical transition of western North Pacific tropical cyclones: Midlatitude and tropical cyclone contributions to reintensification. Mon. Wea. Rev., 132, 22402259.2.0.CO;2>CrossRefGoogle Scholar
Madden, R. A. and Julian, P. R. (1994). Observations of the 40–50 day tropical oscillation – A review. Mon. Wea. Rev., 122, 814837.2.0.CO;2>CrossRefGoogle Scholar
Matano, H. and Sekioka, M. (1971). Some aspects of extratropical transformation of a tropical cyclone. J. Meteor. Soc. Japan, 49, 282295.CrossRefGoogle Scholar
McTaggart-Cowan, R., Gyakum, J. R., and Yau, M. K. (2001). Sensitivity testing of extratropical transitions using potential vorticity inversions to modify initial conditions. Hurricane Earl case study.Mon. Wea. Rev.,129, 16171636.2.0.CO;2>CrossRefGoogle Scholar
Molinari, J. and Vollaro, D. (1989). External influences on hurricane intensity. Part I: Outflow-layer eddy angular momentum fluxes. J. Atmos. Sci., 46, 10931105.2.0.CO;2>CrossRefGoogle Scholar
Molinari, J., Skubis, S., and Vollaro, D. (1995). External influences on hurricane intensity. Part III: Potential vorticity structure. J. Atmos. Sci., 52, 35933606.2.0.CO;2>CrossRefGoogle Scholar
Orlanski, I. and Sheldon, J. P. (1995) Stages in the energetics of baroclinic systems. Tellus, 47, 605628.CrossRefGoogle Scholar
Pantillon, F. J., Chaboureau, J.-P., Lac, C., and Mascart, P. (2013). On the role of a Rossby wave train during the extratropical transition of Hurricane Helene (2006). Quart. J. Roy. Meteor. Soc., 139, 370386.CrossRefGoogle Scholar
Petterssen, S. and Smebye, S. J. (1971). On the development of extratropical storms. Quart. J. Meteor. Soc., 97, 457482.CrossRefGoogle Scholar
Rasmussen, E. M. and Carpenter, T. H. (1982). Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Nino. Mon. Wea. Rev., 110, 354384.2.0.CO;2>CrossRefGoogle Scholar
Riemer, M. and Jones, S. C. (2010). The downstream impact of tropical cyclones on a developing baroclinic wave in idealized scenarios of extratropical transition. Quart. J. Roy. Meteor. Soc., 136, 617637.CrossRefGoogle Scholar
Riemer, M., Jones, S. C., and Davis, C. A. (2008). The impact of extratropical transition on the downstream flow: An idealized modeling study with a straight jet. Quart. J. Roy. Meteor. Soc., 134, 6991.CrossRefGoogle Scholar
Rodwell, M. and Coauthors (2013). Characteristics of occasional poor medium-range weather forecasts for Europe. Bull. Amer. Meteor. Soc., 94, 13931405.CrossRefGoogle Scholar
Saha, S. and Coauthors (2010). The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.CrossRefGoogle Scholar
Sekioka, M. (1956). A hypothesis on complex of tropical and extratropical cyclones for typhoon in middle latitudes. I. Synoptic structure of typhoon Marie over the Japan Sea. J. Meteor. Soc. Japan, 34, 5253.Google Scholar
Sinclair, M. (1993). Synoptic-scale diagnosis of the extratropical transition of a southwest Pacific tropical cyclone. Mon. Wea. Rev., 11, 941960.2.0.CO;2>CrossRefGoogle Scholar
Thorncroft, C. D. and Jones, S. C. (2000). The extratropical transition of Hurricane Felix and Iris in 1995. Mon. Wea. Rev.,128, 947972.2.0.CO;2>CrossRefGoogle Scholar
Wheeler, M. C. and Hendon, H. H. (2004). An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932.2.0.CO;2>CrossRefGoogle Scholar
Wolter, K. and Timlin, M. S. (1993). Monitoring ENSO in COADS with a seasonally adjusted principal component index. Proc. of the 17th Climate Diagnostics Workshop, Norman, OK, NOAA/NMC/CAC, NSSL, Oklahoma Clim. Survey, CIMMS and the School of Meteor., Univ. of Oklahoma, 52–57.Google Scholar
Wolter, K. and Timlin, M. S. (1998). Measuring the strength of ENSO events – how does 1997/98 rank? Weather, 53, 315324.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×