Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-08T03:04:46.151Z Has data issue: false hasContentIssue false

4 - Characterization methodologies

Published online by Cambridge University Press:  05 November 2012

Donald A. Tomalia
Affiliation:
NanoSynthons, LLC
Jørn B. Christensen
Affiliation:
University of Copenhagen
Ulrik Boas
Affiliation:
Technical University of Denmark, Lyngby
Get access

Summary

The challenges of defining structures in a new, unprecedented polymer architecture

Characterization methodologies are a critical component for all the natural sciences. Appropriate protocols are required that both identify as well as define new entities within specific systems under investigation. Staudinger originally introduced the concept of polymers as covalent macromolecules [1, 2]. Shortly after his concept gained acceptance the important and seminal question arose: How does one characterize these new polymer entities? Traditional polymers at their inception were viewed as completely new classes of chemical structure and material. Unlike simple, monodisperse structures normally associated with traditional low molecular weight organic and inorganic compounds, these polymers were accessible only as polydisperse mixtures of macromolecular structures. Many traditional analytical/characterization methods developed for small molecules were of very limited use for these new materials. Polymers do not have boiling points. In many cases they were amorphous, not crystalline and were produced with variable compositions that were often dependent on the way they were synthesized. As a consequence, traditional characterization and elemental analyses were often meaningless. Methods developed for characterization of polymers not only reflected the fact that polymers are polydisperse mixtures of covalent compounds, but also that they are large molecules of unprecedented nanoscale dimensions.

In this context, both dendrimers and dendrons may be thought of as well-defined macromolecular compounds that exhibit features reminiscent of both small molecule and macromolecular regimes. More specifically, they are well-defined, quantized molecules in the classical sense of organic chemistry, yet they are also large polymeric, molecules of nanoscale dimensions. As a consequence, both small molecule and large molecule techniques are generally used in a convergent and collective fashion in order to characterize and define all dendrimers and dendrons. In the early, emerging days of the dendritic polymer field, substantial rejection was encountered concerning the very existence of these dendrimer and dendron structures.

Type
Chapter
Information
Dendrimers, Dendrons, and Dendritic Polymers
Discovery, Applications, and the Future
, pp. 162 - 186
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Morawetz, H.Polymers. The Origin and Growth of a ScienceNew YorkJ. Wiley 1985Google Scholar
Staudinger, H.From Organic Chemistry to MacromoleculesNew YorkWiley-Interscience 1970Google Scholar
Christensen, J. B.Nielsen, M. F.van Haare, J.Eur. J. Org. Chem 2001 21233.0.CO;2-Z>CrossRef
Tabakovic, I.Miller, L. L.Duan, R. G.Tully, D. C.Tomalia, D. A.Chem. Mater 9 1997 736CrossRef
Venturi, M.Serroni, S.Juris, A.Campagna, S.Balzani, V.Top. Current Chem 197 1998 193CrossRef
Imaoka, T.Tanaka, R.Arimoto, S.J. Am. Chem. Soc 127 2005 13896CrossRef
Ye, H. C.Scott, R. W. J.Crooks, R. M.Langmuir 20 2004 2915CrossRefPubMed
Gebbink, R.Bosman, A. W.Feiters, M. C.Meijer, E. W.Nolte, R. J. M.Chem. Eur. J 5 1999 653.0.CO;2-L>CrossRef
Krot, K. A.de Namor, A. F. D.Aguilar-Cornejo, A.Nolan, K. B.Inorg. Chim. Acta 358 2005 3497CrossRef
Yamamoto, K.Higuchi, M.Shiki, S.Tsuruta, M.Chiba, H.Nature 415 2002 509CrossRef
Duijvenbode, R. C.Borkovec, M.Koper, G. J. M.Polymer 39 1998 2657CrossRef
Cakara, D.Kleimann, J.Borkovec, M.Macromolecules 36 2003 4201CrossRef
Niu, Y.Sun, L.Crooks, R. M.Macromolecules 36 2003 5725CrossRef
Chu, C.-C.Imae, T.Macromolecules 42 2009 2295CrossRef
Heinze, J.Angew. Chem. Int. Edit. Engl 23 1984 831CrossRef
Ryan, M. D.Bowden, E. F.Chambers, J. Q.Anal. Chem. 66 1994 R360CrossRef
Hammerich, O.Hansen, T.Thorvildsen, A.Christensen, J. B.ChemPhysChem 10 2009 1805CrossRef
Hammerich, O.Lund, H.Organic ElectrochemistryNew York, NYMarcel Dekker, Inc. 2001
Chai, M. H.Niu, Y. H.Youngs, W. J.Rinaldi, P. L.Macromolecules 33 2000 5395CrossRef
Chai, M.H.Niu, Y. H.Youngs, W. J.Rinaldi, P. L.J. Am. Chem. Soc 123 2001 4670CrossRef
Moreno, K. X.Simanek, E. E.Macromolecules 41 2008 4108CrossRef
Caminade, A. -M.Laurent, R.Turrin, C.-O.Comp. Rend. Chim 13 2010 1006CrossRef
Friebolin, H.Basic One- and Two-Dimensional NMR-SpectroscopyWeinheimWiley-VCH 2005Google Scholar
Swartz, M.J. Liq. Chromat. & Related Techn 33 2010 1130CrossRef
Cason, C. A.Oehrle, S. A.Fabre, T. A.J. Nanomat., 2008 456082
Sharma, A.Desai, A.Ali, R.Tomalia, D. A.J. Chromatogr. A. 1081 2005 238CrossRef
Lalwani, S.Chouai, A.Perez, L. M.Macromolecules 42 2009 6723CrossRef
Sedlakova, P.Svobodova, J.Miksik, I.Tomas, H.J. Chromatogr B. 841 2006 135CrossRef
Satoh, N.Nakashima, T.Yamamoto, K.J. Am. Chem. Soc 127 2005 13030CrossRef
Shi, X. Y.Patri, A. K.Lesniak, W.Electrophoresis 26 2005 2960CrossRefPubMed
Shi X, X.Banyai, I.Rodriguez, K.Electrophoresis 27 2006 1758CrossRef
Shi, X. Y.Majoros, I. J.Patri, A. K.Analyst 131 2006 374CrossRef
Shi, X. Y.Lesniak, W.Islam, M. T.Coll. Surf. 272 2006 139CrossRef
Desai, A.Shi, X. Y.Baker, J. R.Electrophoresis 29 2008 510CrossRef
Knoll, W.Han, M. Y.Li, X. H.J. Nonlinear Opt. Phys. Mat 13 2004 229CrossRef
Weener, J. W.van Dongen, J. L. J.Meijer, E. W.J. Am. Chem. Soc 121 1999 10346CrossRef
Baytekin, B. B.Werner, N.Luppertz, F.Int. J. Mass Spect 249 2006 138CrossRef
Giordanengo, R.Mazarin, M.Wu, J.Peng, L.Charles, L.Int. J. Mass Spect 266 2007 62CrossRef
Tintaru, A.Monnier, V.Bouillon, C.Rapid Commun. Mass Spectrom 24 2010 2207CrossRef
Baytekin, B.Baytekin, H. T.Hahn, U.Chemistry Eur. J. 15 2009 7139CrossRef
Jackson, C. L.Chanzy, H. D.Booy, F. P.Macromolecules 31 1998 6259CrossRef
Li, J.Tomalia, D. A.Dendrimers and Other Dendritic PolymersChichesterJohn Wiley & Sons, Ltd. 2001Google Scholar
Betley, T. A.Hessler, J. A.Mecke, A.Langmuir 18 2002 3127CrossRef
DeLong, R.Stephenson, K.Loftus, T.J. Pharm. Sci 86 1997 762CrossRef
Kraft, A.Ann. Rec., 1997 1463
Kraft, A.Chem. Commun 1996 77CrossRef
Sun, X. Y.Yang, X. H.Liu, Y. H.Wang, X. L.J. Pol. Sci. A., 42 2004 2356
Jackson, J. L.Chanzy, H. D.Booy, F. P.Macromolecules 31 1998 6259CrossRef
Baars, M. W. P. L.Kleppinger, R.Koch, M. H. J.Yeu, S. -L.Meijer, E. W.Angew. Chem. Int. Ed. Engl 39 2000 12853.0.CO;2-F>CrossRef
Likos, C. N.Ballauff, M.Top. Current Chem 245 2005 239CrossRef
Ballauff, M.Top. Current Chem 212 2001 177CrossRef
Sheiko, S. S.Möller, M.Top. Current Chem 212 2001 137CrossRef
Petkov, V.Bedford, N.Knecht, M. R.J. Phys. Chem. C 112 2008 8907CrossRef
Ottaviani, M. F.Bossmann, S.Turro, N. J.Tomalia, D. A.J. Am. Chem. Soc. 116 1994 661CrossRef
Ottaviani, M. F.Montalti, F.Turro, N. J.Tomalia, D. A.J. Phys. Chem. B 101 1997 158CrossRef
Lei, X.-G.Jockusch, S.Turro, N. J.Tomalia, D. A.Ottaviani, M. F.J. Coll. Interface Sci 322 2008 457CrossRef
Venturi, M.Serroni, S.Juris, A.Campagna, S.Balzani, V.Top. Curr. Chem 197 1998 193CrossRef
Baek, N. S.Kim, Y. H.Kim, H. K.J. Nonlinear Opt. Phys. Mat 15 2006 369CrossRef
Balzani, V.Ceroni, P.Maestri, M.Saudan, C.Vicinelli, V.Top. Curr. Chem 228 2003 159CrossRef
Balzani, V.Vögtle, F.Comp. Rend. Chim 6 2003 867CrossRef
Serroni, S.Campagna, S.Puntoriero, F.Chem. Soc. Rev 30 2001 367CrossRef
Balzani, V.Ceroni, P.Juris, A.Coord. Chem. Rev 219 2001 545CrossRef
Balzani, V.Campagna, S.Denti, G.Acc. Chem. Res 31 1998 26CrossRef
Lee, W. I.Bae, Y.Bard, A. J.J. Am. Chem. Soc 126 2004 8358CrossRef
Cao, L.Yang, W.Wang, C.Fu, S.J. Macromol. Sci. A 44 2007 417.CrossRef
Wang, D.Imae, T.Mik, M.J. Coll. Interface Sci 306 2007 222CrossRef
Jasmine, M. J.Kavitha, M.Prasad, E.J. Lumin 129 2009 506CrossRef
Al-Jamal, K. T.Ruenraroengsak, P.Hartell, N.Florence, A. T.J. Drug Targ 14 2006 405CrossRef
Friberg, S. E.Podzimek, M.Tomalia, D. A.Hedstrand, D. M.Mol. Cryst. Liq. Cryst 164 1988 157
Ponomarenko, S. A.Boiko, N. I.Shibaev, V. P.Macromolecules 33 2000 5549CrossRef
Ponomarenko, S. A.Rebrov, E. A.Bobrovsky, A. Y.Liq. Cryst 21 1996 1CrossRef
Rosen, B. M. W.Wilson, C. J.Wilson, D. A.Chem. Rev 109 2009 6275CrossRef
Tomalia, D. A.Hall, M.Hedstrand, D. M.J. Am. Chem. Soc 109 1987 1601CrossRef
Naylor, A. M.Goddard, W. A.Kiefer, G. E.Tomalia, D. A.J. Am. Chem. Soc 111 1989 2339CrossRef
Tomalia, D. A.Naylor, A. M.Goddard, W. A.Angew. Chem. Int. Ed. Engl 29 1990 138CrossRef
Newkome, G. R.Moorefield, C. N.Baker, G. R.Saunders, M. J.Grossman, S. H.Angew. Chem. Int. Ed. Engl. 30 1991 1178CrossRef
Hawker, C. J.Wooley, K. L.Fréchet, J. M. J.J. Chem. Soc. Perkin Trans 1 1993 1287CrossRef
Jansen, J. F. G. A.de Brabander, E. M. M.Meijer, E. W.Science (Washington, D C) 266 1994 1226CrossRef
Tomalia, D. A.Baker, H.Dewald, J.Polym. J. (Tokyo) 17 1985 117CrossRef
Sayed-Sweet, Y.Hedstrand, D. M.Spindler, R.Tomalia, D. A.J. Mat. Chem 7 1997 1199CrossRef
2003
2006
Zhao, M.Sun, L.Crooks, R. M.J. Am. Chem. Soc 120 1998 4877CrossRef
Balogh, L.Tomalia, D. A.J. Am. Chem. Soc 120 1998 7355CrossRef
Caminati, G.Turro, N. J.Tomalia, D. A.J. Am. Chem. Soc 112 1990 8515CrossRef
Li, Y.Dubin, P. L.Spindle, R.Tomalia, D. A.Macromolecules 28 1995 8426CrossRef
Pittelkow, M.Christensen, J. B.Meijer, E. W.J. Polym. Sci. A 42 2004 3792CrossRef
Broeren, M. A. C.van Dongen, J. L. L.Pittelkow, M.Angew. Chem. Int. Ed. Engl 43 2004 3557CrossRef
Pittelkow, M.Nielsen, C. B.Broeren, M. A. C.Chem. Eur. J 11 2005 5126CrossRef
Charlesby, A.J. Radioanal. Nuclear Chem 101 1986 401CrossRef
Gounarides, J. S.Chen, A.Shapiro, M. J.J. Chromatogr. B 725 1999 79CrossRef
Watkins, D. M.Sayed-Sweet, Y.Klimash, J. W.Turro, N. J.Tomalia, D. A.Langmuir. 13 1997 3136CrossRef
Baars, M. W. P. L.Froehling, P. E.Meijer, E. W.Chem. Commun 1997 1959CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×