Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T07:49:05.405Z Has data issue: false hasContentIssue false

46 - First-order logic and its rivals

from 11 - Philosophy and the exact sciences

Published online by Cambridge University Press:  28 March 2008

Michael Scanlan
Affiliation:
Oregon State University
Thomas Baldwin
Affiliation:
University of York
Get access

Summary

INTRODUCTION

The first-order logic that is commonly taught and used today did not exist at the beginning of the twentieth century. A series of investigations in ‘foundations of mathematics’ by a variety of researchers led to its treatment as the core element of. These investigations searched for a detailed account of how our finite reasoning capacity could lead to knowledge of the infinite quantities involved in mathematics. This issue took on an acute form in the late 1800s when Georg Cantor (1845–1918) showed that mathematics could not be understood without accepting the existence of infinite sets of entities, in particular the complete set of counting (or natural) numbers. He also showed that the existence of such a denumerably infinite set entails the existence of ever larger infinite sets, each having a larger infinite ‘cardinal number’. The methods developed in the studies of mathematical logic were taken over to formulate alternatives to first-order logic. The most important of these were modal logic and intuitionistic logic. This chapter tells the story of these changes.

FIRST-ORDER LOGIC

A first-order logic is a set of logical axioms and formal inference rules for a first-order language. Such a language will contain one-place predicate symbols and multiple-place relation symbols. The language may also have symbols for individual objects and functions. For logical symbols, it typically has the sentential connectives ˜, &, →, ∨, ↔, and the two quantifiers, ∀, ∃. The language is ‘first-order’ because quantifiers apply only to variables which range over the individual objects of the domain. Second-order or higher-order languages have variables that range over sets of objects or of n-tuples drawn from the domain.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barcan, R. (1946a). ‘A Functional Calculus of First-order Based on Strict Implication’, The Journal of Symbolic Logic 11Google Scholar
Barcan, R. (1946b). ‘The Deduction Theorem in a Functional Calculus of First Order Based on Strict Implication’, The Journal of Symbolic Logic 11Google Scholar
Barcan, R. (1947). ‘The Identity of Individuals in a Strict Functional Calculus of Second Order’, The Journal of Symbolic Logic 12CrossRefGoogle Scholar
Brouwer, L. E. J. (1948). ‘Consciousness, Philosophy and Mathematics’, Proceedings of the 10th International Congress of Philosophy, Amsterdam, 1948. Repr. 1975 in Brouwer, L. E. J., Collected Works, ed. Heyting, A., vol. I, Amsterdam: North-Holland.Google Scholar
Gödel, K. (1929). ‘Über die Vollstandigkeit des Logikkalküls’, doctoral dissertation, University of Vienna. Trans. 1986 Bauer-Mengelberg, S. and Heijenoort, J., ‘On the completeness of the Calculus of Logic’ in Gödel, K., Collected Works, ed. Feferman, S. et al., vol. I, New York: Oxford University Press.Google Scholar
Gödel, K. (1932). ‘Zum intuitionistischen Aussagenkalkül’, Anzeigen der Akademie der Wissenschaften in Wien 69 Trans. 1986 Dawson, J., ‘On the Intuitionistic Propositional Calculus’ in Gödel, K., Collected Works, ed. Feferman, S. et al., vol. I, New York: Oxford University Press.Google Scholar
Gödel, K. (1933). ‘Eine Interpretation des intuitionistischen Aussagenkalküls’, Ergebnisse eines mathematischen Kolloquiums, 4 Trans. 1986 Dawson, J., ‘An Interpretation of the Intuitionistic Propositional Calculus’, in Gödel, K., Collected Works, ed. Feferman, S. et al., vol. I, New York: Oxford University Press.Google Scholar
Heyting, A. (1930a). ‘Die formalen Regeln der intuitionistischen Logik’, Sitzungsberichte der preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse, 16.Google Scholar
Heyting, A. (1930b). ‘Die formalen regeln der intuitionistischen Mathematik’, Sitzungsberichte der preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse, 16.Google Scholar
Hilbert, D. and Ackermann, W. (1928). Grundzüge der theoretischen Logik, Berlin: Springer. 2nd edn 1938. Trans. 1950 Hammond, L. M. et al., ed. Luce, R. E., Principles of Mathematical Logic, New York: Chelsea.Google Scholar
Kleene, S. (1945). ‘On the Interpretation of Intuitionistic Number Theory’, The Journal of Symbolic Logic, 10CrossRefGoogle Scholar
Kripke, S. (1959). ‘A Completeness Theorem in Modal Logic’, The Journal of Symbolic Logic, 24CrossRefGoogle Scholar
Lewis, C. I. and Langford, C. H. (1932). Symbolic Logic, New York: The Century Co.Google Scholar
Lewis, C. I. (1912). ‘Implication and the Algebra of Logic’, Mind 21Google Scholar
Lewis, C. I. (1918). A Survey of Symbolic Logic, Berkeley: University of California Press.Google Scholar
Lukasiewicz, J. (1930). ‘Philosophische Bemerkungen zu mehrwertigen System des Aussagenkalküls’, Comptes rendus des séances de la Société de Sciences et des Lettres de Varsovie, 23: cl. III. Trans. 1970 Weber, H., ‘Philosophical Remarks on Many-valued Systems of Propositional Logic’ in Lukasiewicz, J., Selected Works, ed. Borkowski, L., Amsterdam: North-Holland.Google Scholar
Lukasiewicz, J. (1953). ‘A System of Modal Logic’, The Journal of Computing Systems 1Google Scholar
Quine, W. V. (1939). ‘Designation and Existence’, The Journal of Philosophy 36CrossRefGoogle Scholar
Quine, W. V. (1947). ‘The Problem of Interpreting Modal Logic’, The Journal of Symbolic Logic 12CrossRefGoogle Scholar
Russell, B. A. W. (1914). Our Knowledge of the External World, Chicago and London: Open Court.Google Scholar
Shapiro, S. (1985). ‘Second-order Languages and Mathematical Practice’, The Journal of Symbolic Logic, 50CrossRefGoogle Scholar
Skolem, T. (1920). ‘Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit und Beweisbarkeit mathematischen Sätze nebst einem Theorem über dichte Mengen’, Skriferutgi av Videnkapsselkapet I Kristiana, I. Matematisk-naturvidenskabelig klasse, no. 4 Partial trans. 1967 Bauer-Mengelberg, S., ‘Logico-combinatorial Investigations in the Satisfiability or Provability of Mathematical Propositions: A Simplified Proof of a Theorem by L. Lowenheim and Generalizations of the Theorem’ in Heijenoort, J. (ed.), From Frege to Gödel: A Sourcebook in Mathematical Logic, Cambridge, MA: Harvard University Press.Google Scholar
Skolem, T. (1923). ‘Einige Bemerkungen zur Axiomatischen Begründen der Mengenlehre’, Matematischerkongressen in Helsingfors 4–7 Juli 1922, Den femte skandinaviska Matematikerkongressen, Redogörelse, Helsinki: Akademiska Bokhandeln. Trans. 1967 Bauer-Mengelberg, S., ‘Some Remarks on Axiomatized Set Theory’ in Heijenoort, J. (ed.), From Frege to Gödel: A Sourcebook in Mathematical Logic, Cambridge, MA: Harvard University Press.Google Scholar
Skolem, T. (1930). ‘Einige Bemerkungen zu der Abhandlung von E. Zermelo: “Über die Definitheit in der Axiomatik”’, Fundamenta Mathematicae 15 Repr. 1970 in Skolem, T. (ed. Fenstad, J. E.), Selected Works in Logic, Oslo: Universitetsforlaget.CrossRefGoogle Scholar
Skolem, T. (1934). ‘Über die Nichtcharakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen’, Fundamenta Mathematicae 23 Repr. 1970 in Skolem, T. (ed. Fenstad, J. E.), Selected Works in Logic, Oslo: Universitetsforlaget.CrossRefGoogle Scholar
Whitehead, A. N. and Russell, B. A. W. (1910–13). Principia Mathematica, vols. I–III, Cambridge: Cambridge University Press. 2nd edn 1925.Google Scholar
Zermelo, E. (1908). ‘Untersuchungen über die Grundlagen der Mengenlehre, I’, Mathematische Annalen 65. Trans. 1967 Bauer-Mengelberg, S., ‘Investigations in the Foundations of Set Theory I’ in Heijenoort, J. (ed.), From Frege to Gödel: A Sourcebook in Mathematical Logic, Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×