Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-01T18:14:30.327Z Has data issue: false hasContentIssue false

47 - The golden age of mathematical logic

from 11 - Philosophy and the exact sciences

Published online by Cambridge University Press:  28 March 2008

John Dawson
Affiliation:
Penn State University
Thomas Baldwin
Affiliation:
University of York
Get access

Summary

OVERVIEW

Modern symbolic logic, including axiomatic set theory, developed out of the works of Boole, Peirce, Cantor, and Frege in the nineteenth century. The contours of the subject as it is known today, however, were largely established in the decade between 1928 and 1938. During those years the scope of the discipline was expanded, both through clarification of the distinction between syntax and semantics and through recognition of different logical systems, in contrast to the conception of logic as a universal system within which all reasoning must be carried out. At the same time the primary focus of logical investigation was narrowed to the study of first-order logic (then called the ‘restricted functional calculus’), in which quantification is allowed only over the elements of an underlying structure, not over subsets thereof. The former development made possible the formulation and resolution of metasystematic questions, such as the consistency or completeness of axiomatic theories, while the latte, by isolating a more tractable logical framework, facilitated the derivation of theorems. Both developments led to the study of model-theoretic issues, such as the compactness of logical systems and the existence of non-isomorphic models of arithmetic and set theory.

In addition, questions concerning definability and decidability by axiomatic or algorithmic means were given precise mathematical formulations through the definition of the class of recursive functions and the enunciation of Church’s Thesis (that the recursive functions are exactly those intuitively characterised as being effectively computable). Formal proofs of indefinability and undecidability theorems thereby became possible, with profound implications for Hilbert’s proof theory and for the subsequent development of computer science.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, W. (1928). ‘Zum Hilbertschen Aufbau der reellen Zahlen’, Mathematische Annalen 99 Trans. Bauer-Mengelberg, S., ‘On Hilbert’s Construction of the Real Numbers’, in Heijenoort, 1967, 493–507.CrossRefGoogle Scholar
Ackermann, W. (1954). Solvable Cases of the Decision Problem, Amsterdam: North-Holland.Google Scholar
Anderson, C. A. (1998). ‘Alonzo Church' contributions to philosophy and intensional logic’, The Bulletin of Symbolic Logic 4CrossRefGoogle Scholar
Barendregt, H. (1997). ‘The Impact of the Lambda Calculus in Logic and Computer Science’, The Bulletin of Symbolic Logic 3CrossRefGoogle Scholar
Bernays, P. (1926). ‘Axiomatische Untersuchung des Aussagen-Kalküls der Principia Mathematica’ (‘Axiomatic Investigation of the Propositional Calculus of Principia Mathematica’), Mathematische Zeitschrift 25CrossRefGoogle Scholar
Bernays, P. (1967). ‘Hilbert, David’ (1862–43) in Edwards, P., (ed.) Encyclopedia of Philosophy, vol. III. New York: Macmillan and Free Press.Google Scholar
Browder, F. E. ed. (1976). Mathematical Developments Arising from Hilbert Problems. Proceedings of Symposia in Pure Mathematics, XXVIII. Providence: American Mathematical Society.Google Scholar
Church, A. (1935). ‘An Unsolvable Problem of Elementary Number Theory’, Bulletin of the American Mathematical Society 41Google Scholar
Church, A. (1936a). ‘An Unsolvable Problem of Elementary Number Theory’, American Journal of Mathematics 58 Repr. in Davis, 1965.CrossRefGoogle Scholar
Church, A. (1936b). ‘A Note on the Entscheidungsproblem’, The Journal of Symbolic Logic 1 and Repr. in Davis, 1965.Google Scholar
Church, A. (1936c). ‘A Bibliography of Symbolic Logic’, The Journal of Symbolic Logic 1 Additions and corrections 3CrossRefGoogle Scholar
Church, A. (1941). The Calculi of Lambda Conversion. Princeton, NJ: Princeton University Press.Google Scholar
Davis, M. ed. (1965). The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems, and Computable Functions, Hewlett, NY: Raven Press.Google Scholar
Dawson, J. W. Jr. (1993). ‘The Compactness of First-order Logic: From Gödel to Lindström’, History and Philosophy of Logic 14CrossRefGoogle Scholar
Dawson, J. W. Jr. (1997). Logical Dilemmas: The Life and Work of Kurt Gödel. Wellesley, MA: A. K. Peters, Ltd.Google Scholar
Dedekind, R. (1888). Was sind und was sollen die Zahlen?, Braunschweig: Vieweg. Trans. 1996 Ewald, W. in Ewald, W. (ed.) From Kant to Hilbert: A Source Book in the Foundation of Mathematics, vol. II, Oxford: Clarendon Press.Google Scholar
Dreben, B. and Goldfarb, W. D. (1979). The Decision Problem: Solvable Classes of Quantificational Formulas, Reading, MA: Addison-Wesley.Google Scholar
Enderton, H. B. (1998). ‘Alonzo Church and the Reviews’, The Bulletin of Symbolic Logic 4CrossRefGoogle Scholar
Gandy, R. (1988). ‘The Confluence of Ideas’ in Herken, R. (ed.), The Universal Turing Machine, Oxford: Oxford University Press.Google Scholar
Gentzen, G. (1936). ‘Die Widerspruchsfreiheit der reinen Zahlentheorie’, Mathematische Annalen 112 Trans. 1969 Szabo, M. E., ‘The Consistency of Pure Number Theory’ in Gentzen, G. (ed. Szabo, M. E.), The Collected Papers of Gerhard Gentzen, Amsterdam: North-Holland.CrossRefGoogle Scholar
Gödel, K. (1929). Über die Vollständigkeit des Logikkalküls, doctoral dissertation, University of Vienna. Repr. in Gödel, 1986. Trans. Bauer-Mengelberg, S. and Heijenoort, J., On the Completeness of the Calculus of Logic in Gödel, 1986.Google Scholar
Gödel, K. (1930). ‘Die Vollständigkeit der Axiome des logischen Funktionenkalküls’, Monatshefte für Mathematik und Physik 37 Repr. in Gödel, 1986. Trans. Mengelberg, S. Bauer, ‘The Completeness of the Axioms of the Functional Calculus of Logic’, in Gödel, 1986.Google Scholar
Gödel, K. (1931). ‘Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I’, Monatshefte für Mathematik und Physik 38. Repr. in Gödel, 1986. Trans. Heijenoort, J., ‘On Formally Undecidable Propositions of Principia Mathematica and Related Systems, I’ in Gödel, 1986.Google Scholar
Gödel, K. (1934). ‘On Undecidable Propositions of Formal Mathematical Systems’, mimeographed notes by Kleene, S. C. and Rosser, J. B.. Repr. in Gödel, 1986.Google Scholar
Gödel, K. (1938). ‘Vortrag bei Zilsel’, shorthand lecture draft. Transcribed Dawson, C., in Gödel, 1995. Trans. Parsons, C., ‘Lecture at Zilsel’s’ in Gödel, 1995.Google Scholar
Gödel, K. (1940). The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis with the Axioms of Set Theory, Princeton, NJ: Princeton University Press. Reprinted in Gödel, 1990.Google Scholar
Gödel, K. (1941). ‘In What Sense is Intuitionistic Logic Constructive?’, manuscript lecture notes, first published in Gödel, 1995.Google Scholar
Gödel, K. (1949). ‘An Example of a New Type of Cosmological Solutions of Einstein’s Field Equations of Gravitation’, Reviews of Modern Physics 21CrossRefGoogle Scholar
Gödel, K. (1986). Collected Works, vol. I: Publications 1929–1936, New York and Oxford: Oxford University Press.Google Scholar
Gödel, K. (1990). Collected Works, vol. II: Publications 1938–1974, ed. Feferman, S. et al., New York and Oxford: Oxford University Press.Google Scholar
Gödel, K. (1995). Collected Works, vol. III: Unpublished Essays and Lectures, ed. Feferman, S. et al., New York and Oxford: Oxford University Press.Google Scholar
Goldfarb, W. D. (1979). ‘Logic in the Twenties: The Nature of the Quantifier’, The Journal of Symbolic Logic 44CrossRefGoogle Scholar
Henkin, L. (1949). ‘The Completeness of the First-order Functional Calculus’, The Journal of Symbolic Logic 14CrossRefGoogle Scholar
Herken, R., (ed.) (1988). The Universal Turing Machine, Oxford: Oxford University Press.Google Scholar
Hilbert, D. and Ackermann, W. (1928). Grundzüge der theoretischen Logik (Fundamentals of Theoretical Logic), Berlin: Springer Verlag.Google Scholar
Hilbert, D. and Bernays, P. (1934). Grundlagen der Mathematik (Foundations of Mathematics), Berlin: Springer Verlag.Google Scholar
Hilbert, D. and Bernays, P. (1939). Grundlagen der Mathematik, vol. II, Berlin: Springer Verlag.Google Scholar
Hilbert, D. (1899). Grundlagen der Geometrie, Leipzig: Teubner. Trans. 1971 Unger, L. and Bernays, P., Foundations of Geometry, La Salle, IL: Open Court.Google Scholar
Hilbert, D. (1900). ‘Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-Kongress zu Paris 1900’, Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Trans. 1902 Newson, M. W., ‘Mathematical Problems. Lecture Delivered Before the International Congress of Mathematicians at Paris in 1900’, Bulletin of the American Mathematical Society 8 Repr. 1976 in Browder, F. (ed.), Mathematical Developments Arising from Hilbert Problems (Proceedings of Symposia in Pure Mathematics 28: 1), Providence: American Mathematical Society.Google Scholar
Hilbert, D. (1926). ‘Über das Unendliche’, Mathematische Annalen 95 Trans. Mengelberg, S. Bauer, ‘On the Infinite’ in Heijenoort, 1967.CrossRefGoogle Scholar
Hilbert, D. (1935). Gesammelte Abhandlungen, 3 vols., Berlin: Springer Verlag.Google Scholar
Hilbert, D. (1968). Grundlagen der Geometrie, 10th edn, Leipzig: Teubner.CrossRefGoogle Scholar
Hodges, A. (1983). Alan Turing: The Enigma. New York: Simon and Schuster.Google Scholar
Kleene, S. C. (1935). ‘λ Theory of Positive Integers in Formal Logic’, American Journal of Mathematics 57Google Scholar
Kleene, S. C. (1936a. ‘λ-definability and Recursiveness’, Duke Mathematical Journal 2CrossRefGoogle Scholar
Kleene, S. C. (1981). ‘Origins of Recursive Function Theory’, Annals of the History of Computing 3Google Scholar
Kleene, S.C. (1936b). ‘General Recursive Functions of Natural Numbers’, Mathematische Annalen 112CrossRefGoogle Scholar
Lindenbaum, A. and Tarski, A. (1926). ‘Communication sur les recherches de la théorie desensembles’ (‘Report on Research in the Theory of Sets’), Comptes Rendus des séances de la Société des Sciences et des Lettres de Varsovie, Classe III, Sciences mathématiques et physiques 19Google Scholar
Löwenheim, L. (1915). ‘Über Möglichkeiten im Relativkalkül’, Mathematische Annalen 76 Trans. Bauer-Mengelberg, S., ‘On Possibilities in the Calculus of Relatives’ in Heijenoort, 1967.CrossRefGoogle Scholar
Moore, G. H. (1982). Zermelo' Axiom of Choice, Its Origins, Development, and Influence. New York: Springer Verlag.CrossRefGoogle Scholar
Post, E. L. (1921). ‘Introduction to a General Theory of Elementary Propositions’, American Journal of Mathematics 43 Repr. in Heijenoort, 1967.CrossRefGoogle Scholar
Reid, C. (1970). Hilbert, New York: Springer Verlag.CrossRefGoogle Scholar
Richard, J. (1905). ‘Les principes de Mathématiques et la problème des ensembles’, Revue générale des sciences pures et appliquées 16. Trans. 1967 Heijenoost, J., ‘The Principles of Mathematics and the Problem of Sets’ in Heijenoort, (ed.) 1967.Google Scholar
Rosser, J. B. (1936). ‘Extensions of Some Theorems of Gödel and Church’, The Journal of Symbolic Logic 1 Repr. in Davis, 1965.CrossRefGoogle Scholar
Russell, B. A. W. and Whitehead, A. (1910–13). Principia Mathematica, Cambridge: Cambridge University Press.Google Scholar
Russell, B. A. W. (1903). The Principles of Mathematics, London: George Allen and Unwin.Google Scholar
Shanker, S. G. (ed.) (1988). Gödel’s Theorem in Focus, London: Croom Helm.Google Scholar
Sieg, W. (1988). ‘Hilbert’s program sixty years later’, The Bulletin of Symbolic Logic 2Google Scholar
Sieg, W. (1997). ‘Step by Recursive Step: Church’s Analysis of Effective Calculability’, The Bulletin of Symbolic Logic 3CrossRefGoogle Scholar
Skolem, T. (1920). ‘Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Beweisbarkeit mathematischer Sätze nebst einem Theorem über dichte Mengen’, Skrifter utgit av Videns-kapsselslapet i Kristiania, I. Matematisk-naturvidenskabelig klasse 4 Partial Trans. Bauer-Mengelberg, S., ‘Logico-combinatorial Investigations in the Satisfiability or Provability of Mathematical Propositions: A Simplified Proof of a Theorem by L. Löwenheim and Generalizations of the Theorem’ in Heijenoort, 1967.Google Scholar
Skolem, T. (1923a). ‘Begründung der elementaren Arithmetik durch die rekurrierende Denkweise ohne Anwendung scheinbarer Veränderlichen mit unendlichem Ausdehnungsbereich’, Skrifter utgit av Videnskapsselskapet i Kristiana, I. Matematisk-naturvidenskabelig klasse 6 Trans. Bauer-Mengelberg, S., ‘The Foundations of Elementary Arithmetic Established by Means of the Recursive Mode of Thought, Without the Use of Apparent Variables Ranging over Infinite Domains’ in Heijenoort, van 1967.Google Scholar
Skolem, T. (1923b). ‘Einige Bemerkungen zur axiomatischen Begründung der Mengenlehre’, Matematikerkongressen i Helsingfors 4–7 Juli 1922, Den femte skandinaviska matematikerkongressen, Redogörelse, Helsinki: Akademiska Bokhandlen. Trans. Bauer-Mengelberg, S., ‘Some Remarks on Axiomatized Set Theory’ in Heijenoort, 1967.Google Scholar
Skolem, T. (1933). ‘Über die Unmöglichkeit einer vollständigen Charakterisierung der Zahlenreihe mittels eines endlichen Axiomensystems’, Norsk matematisk forenings skrifter 2 (10). Reprinted in Skolem, 1970.Google Scholar
Skolem, T. (1934). ‘Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen’ (‘On the Noncharacterisability of the Number Sequence by Means of Finitely or Countably Infinitely Many Propositions Containing Only Variables for Numbers’), Fundamenta Mathematicae 23 Reprinted 1970 in Skolem, T., Selected Works in Logic, Oslo: Universitetsforlaget.CrossRefGoogle Scholar
Skolem, T. (1970). Selected Works in Logic, ed. Fenstad, J., Oslo: Universitetsforlaget.Google Scholar
Tarski, A. (1933). Pojecie prawdy w jezykach nauk dedukcyjnych, Prace Towarzystwa Naukowego Warszawskiego, wydial III, no. 34. Trans. 1956 Woodger, J. H. (ed.), ‘The Concept of Truth in Formalized Languages’ in Tarski, A., Logic, Semantics, Metamathematics. Papers from 1923 to 1938, Oxford: Clarendon Press. 2nd edn, 1983 ed. Corcoran, J., Indianapolis, IN: Hackett.Google Scholar
Turing, A.M. (1937). ‘On Computable numbers, with an Application to the Entscheidungsproblem’, Proceedings of the London Mathematical Society 2, 42; correction, 43 Reprinted in Davis, 1965.Google Scholar
Heijenoort, J. (ed.) (1967). From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931, Cambridge, MA: Harvard University Press.Google Scholar
Rootselaar, B. (1981). ‘Zermelo, Ernst Riedrich Ferdinand’, Dictionary of Scientific Biography, vol. XIV. New York: Charles Scribner’s.Google Scholar
Zermelo, E. (1904). ‘Beweis, dass jede Menge wohlgeordnet werden kann (Aus einem an Herrn Hilbert gerichteten Briefe)’, Mathematische Annalen 59 Trans. Mengelberg, S. Bauer, ‘Proof that Every Set Can Be Well-ordered’, in Heijenoort, van 1967.CrossRefGoogle Scholar
Zermelo, E. (1908). ‘Untersuchungen über die Grundlagen der Mengenlehre. IMathematische Annalen 65 Trans. Bauer-Mengelberg, S., ‘Investigations in the Foundations of Set Theory, I’ in Heijenoort, van 1967.CrossRefGoogle Scholar
Zermelo, E. (1930). ‘Über Grenzzahlen und Mengenbereiche: Neue Untersuchungen über die Grundlagen der Mengenlehre’ (‘On Limit Numbers and Set Domains: New Investigations Concerning the Foundations of Set Theory’), Fundamenta Mathematicae 16Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×