Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-04T04:24:00.305Z Has data issue: false hasContentIssue false

6 - Social Learning and Innovation

Published online by Cambridge University Press:  22 June 2017

Carel ten Cate
Affiliation:
Universiteit Leiden
Susan D. Healy
Affiliation:
University of St Andrews, Scotland
Get access
Type
Chapter
Information
Avian Cognition , pp. 93 - 118
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelkrim, J., Hunt, G. R., Gray, R. D. and Gemmell, N. J. (2012). Population genetic structure and colonisation history of the tool-using New Caledonian Crow. PLoS ONE 7(5), e36608. DOI:10.1371/journal.pone.0036608Google Scholar
Allen, J., Weinrich, M., Hoppitt, W. and Rendell, L. (2013). Network-based diffusion analysis reveals cultural transmission of lobtail feeding in humpback whales. Science, 340, 485488.CrossRefGoogle ScholarPubMed
Aplin, L. M., Farine, D. R., Morand-Ferron, J., et al. (2015). Experimentally induced innovations lead to persistent culture via conformity in wild birds. Nature, 518(7540), 538541.CrossRefGoogle ScholarPubMed
Aplin, L. M., Farine, D. R., Morand-Ferron, J. and Sheldon, B. C. (2012). Social networks predict patch discovery in a wild population of songbirds. Proceedings of the Royal Society B, 279, 41994205.CrossRefGoogle Scholar
Aplin, L. M., Sheldon, B. C. and Morand-Ferron, J. (2013). Milk bottles revisited: social learning and individual variation in the blue tit, Cyanistes caeruleus. Animal Behaviour, 85(6), 12251232.Google Scholar
Akins, C. K. and Zentall, T. R. (1996). Imitative learning in male Japanese quail (Coturnix japonica) using the two-action method. Journal of Comparative Psychology, 110, 316320.CrossRefGoogle ScholarPubMed
Auersperg, A. M. I., von Bayern, A. M. I., Weber, S., et al. (2014). Social transmission of tool use and tool manufacture in Goffin cockatoos (Cacatua goffini). Proceedings of the Royal Society B, 281(1793), 20140972.CrossRefGoogle ScholarPubMed
Baker, M. C. and Cunningham, M. A. (1985). The biology of bird-song dialects. Behavioral and Brain Sciences, 8, 85100.Google Scholar
Bird, C. D. and Emery, N. J. (2009a). Insightful problem solving and creative tool modification by captive nontool-using rooks. Proceedings of the National Academy of Sciences USA, 106(25), 1037010375.CrossRefGoogle ScholarPubMed
Bird, C. D. and Emery, N. J. (2009b). Rooks use stones to raise the water level to reach a floating worm. Currrent Biology, 19, 14101414.Google Scholar
Bluff, L. A., Troscianko, J., Weir, A. A., Kacelnik, A. and Rutz, C. (2010). Tool use by wild New Caledonian crows Corvus moneduloides at natural foraging sites. Proceedings of the Royal Society B, 277(1686), 13771385.Google Scholar
Brodin, A. and Urhan, A. U. (2014). Interspecific observational memory in a non-caching Parus species, the great tit Parus major. Behavioral Ecology and Sociobiology, 68(4), 649656.Google Scholar
Bouchard, J., Goodyer, W. and Lefebvre, L. (2007). Social learning and innovation are positively correlated in pigeons (Columba livia). Animal Cognition, 10(2), 259266.Google Scholar
Boogert, N. J., Reader, S. M., Hoppitt, W. and Laland, K. N. (2008). The origin and spread of innovations in starlings. Animal Behaviour, 75(4), 15091518.Google Scholar
Boogert, N. J., Nightingale, G. F., Hoppitt, W. and Laland, K. N. (2014). Perching but not foraging networks predict the spread of novel foraging skills in starlings. Behavioural Processes, 109, 135144.Google Scholar
Brass, M. and Heyes, C. (2005). Imitation: is cognitive neuroscience solving the correspondence problem? Trends in Cognitive Sciences, 9(10), 489495.Google Scholar
Bugnyar, T. and Huber, L. (1997). Push or pull: an experimental study on imitation in marmosets. Animal Behaviour, 54(4), 817831.CrossRefGoogle ScholarPubMed
Buxton, E. J. M. (1948). Tits and peanuts. British Birds, 41, 229232.Google Scholar
Byers, B. E., Belinsky, K. L. and Bentley, R. A. (2010). Independent cultural evolution of two song traditions in the Chestnut-Sided Warbler. The American Naturalist, 176(4), 476489.Google Scholar
Cauchard, L., Boogert, N. J., Lefebvre, L., Dubois, F. and Doligez, B. (2013). Problem-solving performance is correlated with reproductive success in a wild bird population. Animal Behaviour, 85(1), 1926.Google Scholar
Cherry, L. M., Case, S. M., Kunkel, J. G., Wyles, J. S. and Wilson, A. C. (1982). Body shape metrics and organismal evolution. Evolution, 36, 914933.Google Scholar
Claidière, N., Messer, E. J., Hoppitt, W. and Whiten, A. (2013). Diffusion dynamics of socially learned foraging techniques in squirrel monkeys. Current Biology, 23(13), 12511255.Google Scholar
Claidière, N. and Whiten, A. (2012). Integrating the study of conformity and culture in humans and nonhuman animals. Psychological Bulletin, 138(1), 126145.CrossRefGoogle Scholar
Cole, E. F., Cram, D. L. and Quinn, J. L. (2011). Individual variation in spontaneous problem-solving performance among wild great tits. Animal Behaviour, 81(2), 491498.Google Scholar
Cole, E. F., Morand-Ferron, J., Hinks, A. E. and Quinn, J. L. (2012). Cognitive ability influences reproductive life history variation in the wild. Current Biology, 22(19), 18081812.Google Scholar
Coussi-Korbel, S. and Fragaszy, D. M. (1995). On the relation between social dynamics and social learning. Animal Behaviour, 50(6), 14411453.Google Scholar
Croft, D. P., James, R. and Krause, J. (2008). Exploring animal social networks. Princeton: Princeton University Press.CrossRefGoogle Scholar
Curio, E., Ernst, U. and Vieth, W. (1978). Cultural transmission of enemy recognition: one function of mobbing. Science, 202(4370), 899901.Google Scholar
Dawson, B. V. and Foss, B. M. (1965). Observational learning in budgerigars. Animal Behaviour, 13(4), 470474.Google Scholar
Danchin, É., Giraldeau, L. A., Valone, T. J. and Wagner, R. H. (2004). Public information: from nosy neighbors to cultural evolution. Science, 305(5683), 487491.Google Scholar
Dolman, C. S., Templeton, J. and Lefebvre, L. (1996). Mode of foraging competition is related to tutor preference in Zenaida aurita. Journal of Comparative Psychology, 110(1), 4554.Google Scholar
Ducatez, S., Audet, J. N. and Lefebvre, L. (2013). Independent appearance of an innovative feeding behaviour in Antillean bullfinches. Animal Cognition, 16(3), 525529.Google Scholar
Ducatez, S., Audet, J. N. and Lefebvre, L. (2015). Problem-solving and learning in Carib grackles: individuals show a consistent speed–accuracy trade-off. Animal Cognition, 18(2), 485496.Google Scholar
Epstein, R. (1984). Spontaneous and deferred imitation in the pigeon. Behavioural Processes, 9(4), 347354.Google Scholar
Exnerová, A., Svádová, K. H., Fučíková, E., Drent, P. and Štys, P. (2010). Personality matters: individual variation in reactions of naive bird predators to aposematic prey. Proceedings of the Royal Society B, 277(1682), 723728.Google Scholar
Farine, D. R., Aplin, L. M., Sheldon, B. C. and Hoppitt, W. (2015). Interspecific social networks promote information transmission in wild songbirds. Proceedings of the Royal Society B, 282, 20142804.Google Scholar
Fawcett, T. W., Skinner, A. M. and Goldsmith, A. R. (2002). A test of imitative learning in starlings using a two-action method with an enhanced ghost control. Animal Behaviour, 64(4), 547556.Google Scholar
Fayet, A. L., Tobias, J. A., Hintzen, R. E. and Seddon, N. (2014). Immigration and dispersal are key determinants of cultural diversity in a songbird population. Behavioral Ecology, 25(4), 744753.Google Scholar
Fisher, J. and Hinde, R. A. (1949). The opening of milk bottles by birds. British Birds, 42(11), 347357.Google Scholar
Flack, A., Pettit, B., Freeman, R., Guilford, T. and Biro, D. (2012). What are leaders made of? The role of individual experience in determining leader–follower relations in homing pigeons. Animal Behaviour, 83(3), 703709.Google Scholar
Fragaszy, D. M. and Perry, S. (2003). The biology of animal traditions. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Franz, M. and Nunn, C. L. (2009). Network-based diffusion analysis: a new method for detecting social learning. Proceedings of the Royal Society B, 276(1663), 18291836.Google Scholar
Fryday, S. L. and Greig-Smith, P. W. (1994). The effects of social learning on the food choice of the house sparrow (Passer domesticus). Behaviour, 128(3), 281300.Google Scholar
Gajdon, G. K., Amann, L. and Huber, L. (2011). Keas rely on social information in a tool use task but abandon it in favour of overt exploration. Interaction Studies, 12(2), 304323.Google Scholar
Gajdon, G. K., Fijn, N. and Huber, L. (2004). Testing social learning in a wild mountain parrot, the kea (Nestor notabilis). Animal Learning & Behavior, 32(1), 6271.Google Scholar
Galef, B. G. (1991). Tradition in animals: field observations and laboratory analyses. In Interpretation and Explanation in the Study of Animal Behavior, eds. Bekoff, M. and Jamieson, D. Boulder CO: Westview Press, pp. 7495.Google Scholar
Galef, B. G., Manzig, L. A. and Field, R. M. (1986). Imitation learning in budgerigars: Dawson and Foss (1965) revisited. Behavioural Processes, 13(1), 191202.Google Scholar
Garamszegi, L. Z., Erritzøe, J. and Møller, A. P. (2007). Feeding innovations and parasitism in birds. Biological Journal of the Linnean Society, 90(3), 441455.Google Scholar
Gibbs, M. E. and Hertz, L. (2005). Importance of glutamate-generating metabolic pathways for memory consolidation in chicks. Journal of Neuroscience Research, 81(2), 293300.Google Scholar
Giraldeau, L. A. and Lefebvre, L. (1986). Exchangeable producer and scrounger roles in a captive flock of feral pigeons: a case for the skill pool effect. Animal Behaviour, 34(3), 797803.Google Scholar
Griffin, A. S. and Guez, D. (2014). Innovation and problem solving: a review of common mechanisms. Behavioural Processes, 109, 121134.Google Scholar
Griffin, A. S., Diquelou, M. and Perea, M. (2014). Innovative problem solving in birds: a key role of motor diversity. Animal Behaviour, 92, 221227.Google Scholar
Guillette, L. M., Reddon, A. R., Hoeschele, M. and Sturdy, C. B. (2011). Sometimes slower is better: slow-exploring birds are more sensitive to changes in a vocal discrimination task. Proceedings of the Royal Society B, 278, 767773.Google Scholar
Hellman, R. (1983). Observational learning in blue tits. Naturwissenschaften, 70, 260261.Google Scholar
Heyes, C. M. (1993). Imitation, culture and cognition. Animal Behaviour, 46, 9991010.Google Scholar
Heyes, C. M. (2012). What's social about social learning? Journal of Comparative Psychology, 126, 193202.CrossRefGoogle ScholarPubMed
Heyes, C. M. and Dawson, G. R. (1990). A demonstration of observational learning in rats using a bidirectional control. The Quarterly Journal of Experimental Psychology, 42(1), 5971.Google Scholar
Heyes, C. M. and Galef, B. G. (1998) The Napoli social learning conference. Introduction. International Journal of Comparative Psychology, 11, 7392Google Scholar
Heyes, C. and Saggerson, A. (2002). Testing for imitative and nonimitative social learning in the budgerigar using a two-object/two-action test. Animal Behaviour, 64(6), 851859.Google Scholar
Hinde, R. A. and Fisher, J. (1951). Further observations on the opening of milk bottles by birds. British Birds, 44(12), 393396.Google Scholar
Hinde, R. A. and Fisher, J. (1972). Some comments on the republication of two papers on the opening of milk bottles by birds. In Function and Evolution of Behavior, eds. Klopfer, P. H and Hailman, J. P. Reading, MA: Addison-Wesley, pp. 377378Google Scholar
Hobaiter, C., Poisot, T., Zuberbühler, K., Hoppitt, W. and Gruber, T. (2014). Social network analysis shows direct evidence for social transmission of tool use in wild chimpanzees. PLoS Biology, 12(9), e1001960.Google Scholar
Holzhaider, J. C., Hunt, G. R. and Gray, R. D. (2010). Social learning in New Caledonian crows. Learning and Behavior, 38(3), 206219.Google Scholar
Horn, G. (2004). Pathways of the past: the imprint of memory. Nature Reviews Neuroscience, 5(2), 108120.CrossRefGoogle ScholarPubMed
Hoppitt, W., Boogert, N. J. and Laland, K. N. (2010). Detecting social transmission in networks. Journal of Theoretical Biology, 263(4), 544555.Google Scholar
Huber, L., Rechberger, S. and Taborsky, M. (2001). Social learning affects object exploration and manipulation in keas, Nestor notabilis. Animal Behaviour, 62, 945954.Google Scholar
Hudson, S. J., Sobo, A. O., Russel, K. and Lightfoot, N. F. (1990). Jackdaws as potential source of milk-borne Campylobacter jejuni infection. The Lancet, 335 (8698), 1160.Google Scholar
Hunt, G. R. and Gray, R. D. (2003). Diversification and cumulative evolution in New Caledonian crow tool manufacture. Proceedings of the Royal Society B, 270(1517), 867874.Google Scholar
Hunt, G. R. and Gray, R. D. (2007). Parallel tool industries in New Caledonian crows. Biology Letters, 3(2), 173175.Google Scholar
Iwaniuk, A. N. and Nelson, J. E. (2002). Can endocranial volume be used as an estimate of brain size in birds? Canadian Journal of Zoology, 80(1), 1623.Google Scholar
Kacelnik, A. (2009). Tools for thought or thoughts for tools? Proceedings of the National Academy of Sciences USA, 106(25), 1007110072.Google Scholar
Kavaliers, M., Choleris, E. and Colwell, D. D. (2001). Learning from others to cope with biting flies: social learning of fear-induced conditioned analgesia and active avoidance. Behavioral Neuroscience, 115(3), 661674.Google Scholar
Klein, E. D. and Zentall, T. R. (2003). Imitation and affordance learning by pigeons (Columba livia). Journal of Comparative Psychology, 117(4), 414419.Google Scholar
Kozlovsky, D. Y., Branch, C. L. and Pravosudov, V. V. (2015). Problem-solving ability and response to novelty in mountain chickadees (Poecile gambeli) from different elevations. Behavioral Ecology and Sociobiology, 69(4), 635643.Google Scholar
Krause, J., Krause, S., Arlinghaus, R., et al. (2013). Reality mining of animal social systems. Trends in Ecology & Evolution, 28(9), 541551.Google Scholar
Krebs, J. R., MacRoberts, M. H. and Cullen, J. M. (1972). Flocking and feeding in the great tit Parus major: an experimental study. Ibis, 114(4), 507530.Google Scholar
Lachlan, R. F. and Servedio, M. R. (2004). Song learning accelerates allopatric speciation. Evolution, 58(9), 20492063.Google Scholar
Laland, K. N. (2004). Social learning strategies. Animal Learning & Behavior, 32(1), 414.Google Scholar
Langen, T. A. (1996). Social learning of a novel foraging skill by White-throated Magpie jays (Calocitta formosa, Corvidae): a field experiment. Ethology, 102(1), 157166.Google Scholar
Lefebvre, L. (1986). Cultural diffusion of a novel food-finding behaviour in urban pigeons: An experimental field test. Ethology, 71(4), 295304.Google Scholar
Lefebvre, L. (1995). The opening of milk bottles by birds: evidence for accelerating learning rates, but against the wave-of-advance model of cultural transmission. Behavioural Processes, 34(1), 4353.Google Scholar
Lefebvre, L. and Bouchard, J. (2003). Social learning about food in birds. In The Biology of Traditions, eds. Perry, S and Fragaszy, D. M. Cambridge: Cambridge University Press, pp. 94126.Google Scholar
Lefebvre, L. and Giraldeau, L. A. (1994). Cultural transmission in pigeons is affected by the number of tutors and bystanders present. Animal Behaviour, 47(2), 331337.Google Scholar
Lefebvre, L. and Giraldeau, L. A. (1996). Is social learning an adaptive specialization? In Social learning in animals: the roots of culture, eds. Galef, B. G Jr. and Heyes, C. M. New York: Academic Press, pp. 107128.Google Scholar
Lefebvre, L., Nicolakakis, N. and Boire, D. (2002). Tools and brains in birds. Behaviour, 139, 939973.Google Scholar
Lefebvre, L., Palameta, B. and Hatch, K. K. (1996). Is group-living associated with social learning? A comparative test of a gregarious and a territorial columbid. Behaviour, 133(3), 241261.Google Scholar
Lefebvre, L., Reader, S. M. and Sol, D. (2004). Brains, innovations and evolution in birds and primates. Brain, Behavior and Evolution, 63(4), 233246.Google Scholar
Lefebvre, L., Whittle, P., Lascaris, E. and Finkelstein, A. (1997). Feeding innovations and forebrain size in birds. Animal Behaviour, 53(3), 549560.CrossRefGoogle Scholar
Logan, C. J., Breen, A. J., Taylor, A. H., Gray, R. D. and Hoppitt, W. J. (2016). How New Caledonian crows solve novel foraging problems and what it means for cumulative culture. Learning & Behavior, 44, 1828. DOI:10.3758/s13420–015–0194-xGoogle Scholar
Lusseau, D. and Newman, M. E. (2004). Identifying the role that animals play in their social networks. Proceedings of the Royal Society B, 271 (6), S477S481.Google Scholar
Marzluff, J. M., Walls, J., Cornell, H. N., Withey, J. C. and Craig, D. P. (2010). Lasting recognition of threatening people by wild American crows. Animal Behaviour, 79(3), 699707.Google Scholar
McCabe, C. M., Reader, S. M. and Nunn, C. L. (2015). Infectious disease, behavioural flexibility and the evolution of culture in primates. Proceedings of the Royal Society B, 282(1799), 20140862.Google Scholar
Midford, P. E., Hailman, J. P. and Woolfenden, G. E. (2000). Social learning of a novel foraging patch in families of free-living Florida scrub-jays. Animal Behaviour, 59(6), 11991207.Google Scholar
Morand-Ferron, J., Cole, E. F., Rawles, J. E. and Quinn, J. L. (2011). Who are the innovators? A field experiment with two passerine species. Behavioral Ecology, 22(6), 12411248.Google Scholar
Mottley, K. and Heyes, C. (2003). Budgerigars (Melopsittacus undulatus) copy virtual demonstrators in a two-action test. Journal of Comparative Psychology, 117(4), 363370.Google Scholar
Mueller, T., O'Hara, R. B., Converse, S. J., Urbanek, R. P. and Fagan, W. F. (2013). Social learning of migratory performance. Science, 341(6149), 9991002.Google Scholar
Mui, R., Haselgrove, M., Pearce, J. and Heyes, C.M. (2008). Automatic imitation in budgerigars. Proceedings of the Royal Society B, 275(1651), 25472553.Google Scholar
Németh, Z. and Moore, F. R. (2014). Information acquisition during migration: A social perspective. The Auk, 131(2), 186194.Google Scholar
Nicolakakis, N., Sol, D. and Lefebvre, L. (2003). Behavioural flexibility predicts species richness in birds, but not extinction risk. Animal Behaviour, 65(3), 445452.Google Scholar
Nightingale, G., Boogert, N. J., Laland, K. N. and Hoppitt, W. (2014). Quantifying diffusion in social networks: a Bayesian Approach. In Animal Social Networks, eds. Krause, J., James, R, Franks, D and Croft, D.. Oxford: Oxford University Press, pp. 3852.Google Scholar
Nightingale, G. F., Laland, K. N., Hoppitt, W. and Nightingale, P. (2015). Bayesian spatial NBDA for diffusion data with home-base coordinates. PloS One, 10(7), e0130326.Google Scholar
Norton-Griffiths, M. (1968). The feeding behavour of the oystercatcher Haematopus ostralegus. D. Phil. thesis, University of Oxford.Google Scholar
Nunn, C. L., Thrall, P. H., Bartz, K., Dasgupta, T. and Boesch, C. (2009). Do transmission mechanisms or social systems drive cultural dynamics in socially structured populations? Animal Behaviour, 77(6), 15151524.Google Scholar
Overington, S. E., Cauchard, L., Côté, K. A. and Lefebvre, L. (2011). Innovative foraging behaviour in birds: what characterizes an innovator? Behavioural Processes, 87(3), 274285.Google Scholar
Overington, S. E., Morand-Ferron, J., Boogert, N. J. and Lefebvre, L. (2009). Technical innovations drive the relationship between innovativeness and residual brain size in birds. Animal Behaviour, 78(4), 10011010.Google Scholar
Palacín, C., Alonso, J. C., Alonso, J. A., Magaña, M. and Martín, C. A. (2011). Cultural transmission and flexibility of partial migration patterns in a long-lived bird, the great bustard Otis tarda. Journal of Avian Biology, 42(4), 301308.CrossRefGoogle Scholar
Pravosudov, V. V., Roth, T. C., II, Forister, M. L., et al. (2013). Differntial hippocampal gene expression is associated with climate-related natural variation in memory and the hippocampus in food-caching chickadees. Molecular Ecology, 22, 397408.CrossRefGoogle Scholar
Reader, S. M. (2004). Distinguishing social and asocial learning using diffusion dynamics. Animal Learning & Behavior, 32(1), 90104.Google Scholar
Reader, S. M., Hager, Y. and Laland, K. N. (2011). The evolution of primate general and cultural intelligence. Philosophical Transactions of the Royal Society B, 366(1567), 10171027.CrossRefGoogle ScholarPubMed
Reader, S. M. and Laland, K. N. (2001). Primate innovation: sex, age and social rank differences. International Journal of Primatology, 22(5), 787805.Google Scholar
Reader, S. M. and Laland, K. N. (2002). Social intelligence, innovation and enhanced brain size in primates. Proceedings of the National Academy of Sciences USA, 99(7), 44364441.Google Scholar
Reader, S. M. and Lefebvre, L. (2001). Social learning and sociality. Behavioral and Brain Sciences, 24, 353354.Google Scholar
Reader, S. M., Nover, D. and Lefebvre, L. (2002). Locale-specific sugar packet opening by Lesser Antillean Bullfinches in Barbados. Journal of Field Ornithology, 73(1), 8285.Google Scholar
Richards, C., Mottley, K., Pearce, J. and Heyes, C. (2009). Imitative pecking by budgerigars, Melopsittacus undulatus, over a 24 h delay. Animal Behaviour, 77(5), 11111118.Google Scholar
Rizzolatti, G., Fogassi, L. and Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2(9), 661670.Google Scholar
Roberts, M. and Shapiro, M. (2002). NMDA receptor antagonists impair memory for nonspatial, socially transmitted food preference. Behavioral Neuroscience, 116(6), 10591069.Google Scholar
Roth, T. C., LaDage, L. D., Freas, C. A. and Pravosudov, V. V. (2012). Variation in memory and the hippocampus across populations from different climates: a common garden approach. Proceedings of the Royal Society B, 279, 402410.Google Scholar
Roth, T. C., LaDage, L. D. and Pravosudov, V. V. (2010). Learning capabilities enhanced in harsh environments: a common garden approach. Proceedings of the Royal Society B, 277(1697), 31873193.Google Scholar
Rutz, C., Burns, Z. T., James, R., et al. (2012). Automated mapping of social networks in wild birds. Current Biology, 22(17), R669R671.CrossRefGoogle ScholarPubMed
Sasvári, L. (1979). Observational learning in great, blue and marsh tits. Animal Behaviour, 27, 767771.Google Scholar
Sasvári, L. (1985a). Keypeck conditioning with reinforcements in two different locations in thrush, tit and sparrow species. Behavioural Processes, 11(3), 245252.Google Scholar
Sasvári, L. (1985b). Different observational learning capacity in juvenile and adult individuals of congeneric bird species. Zeitschrift für Tierpsychologie, 69(4), 293304.Google Scholar
Sherry, D. F. and Galef, B. G. (1984). Cultural transmission without imitation: milk bottle opening by birds. Animal Behaviour, 32(3), 937938.Google Scholar
Sherry, D. F. and Galef, B. G. (1990). Social learning without imitation: more about milk bottle opening by birds. Animal Behaviour, 40(5), 987989.Google Scholar
Sherry, D. F. and Schacter, D. L. (1987). The evolution of multiple memory systems. Psychological Review, 94(4), 439.CrossRefGoogle Scholar
Shettleworth, S. J. (2009). Animal cognition: Deconstructing avian insight. Current Biology, 19(22), R1039R1040.Google Scholar
Shettleworth, S. J. (2012). Modularity, comparative cognition and human uniqueness. Philosophical Transactions of the Royal Society B, 367(1603), 27942802.CrossRefGoogle ScholarPubMed
Sibley, C. G. and Ahlquist, J. E. (1990). Phylogeny and classification of birds: a study in molecular evolution. New Haven: Yale University Press.Google Scholar
Sih, A. and Del Giudice, M. (2012). Linking behavioural syndromes and cognition: a behavioural ecology perspective. Philosophical Transactions of the Royal Society B, 367(1603), 27622772.Google Scholar
Slagsvold, T. and Wiebe, K. L. (2007). Hatching asynchrony and early nesting mortality: the feeding constraint hypothesis. Animal Behaviour, 73, 691700.Google Scholar
Snijders, L., van Rooij, E. P., Burt, J. M., et al. (2014). Social networking in territorial great tits: slow explorers have the least central social network positions. Animal Behaviour, 98, 95102.Google Scholar
Sol, D., Duncan, R. P., Blackburn, T. M., Cassey, P. and Lefebvre, L. (2005a). Big brains, enhanced cognition and response of birds to novel environments. Proceedings of the National Academy of Sciences USA, 102(15), 54605465.CrossRefGoogle ScholarPubMed
Sol, D., Lefebvre, L. and Rodríguez-Teijeiro, J. D. (2005b). Brain size, innovative propensity and migratory behaviour in temperate Palaearctic birds. Proceedings of the Royal Society B, 272(1571), 14331441.Google Scholar
Sol, D. and Price, T. D. (2008). Brain size and the diversification of body size in birds. The American Naturalist, 172(2), 170177.Google Scholar
Taylor, A. H., Elliffe, D., Hunt, G. R. and Gray, R. D. (2010). Complex cognition and behavioural innovation in New Caledonian crows. Proceedings of the Royal Society B, 277, 26372643.Google Scholar
Templeton, J. J., Kamil, A. C. and Balda, R. P. (1999). Sociality and social learning in two species of corvids: the pinyon jay (Gymnorhinus cyanocephalus) and the Clark's nutcracker (Nucifraga columbiana). Journal of Comparative Psychology, 113(4), 450455.Google Scholar
Thompson, C. F., Ray, G. F. and Preston, R. L. 1996. Nectar robbing in Blue Tits Parus caeruleus: failure of a novel feeding trait to spread. Ibis, 138, 552553.Google Scholar
Timmermans, S., Lefebvre, L., Boire, D. and Basu, P. (2000). Relative size of the hyperstriatum ventrale is the best predictor of feeding innovation rate in birds. Brain, Behavior and Evolution, 56(4), 196203.Google Scholar
Titulaer, M., van Oers, K. and Naguib, M. (2012) Personality affects learning performance in difficult tasks in a sex-dependent way. Animal Behaviour, 83, 723730.CrossRefGoogle Scholar
van de Waal, E. and Whiten, A. (2012). Spontaneous emergence, imitation and spread of alternative foraging techniques among groups of vervet monkeys. PLoS One, 7(10): e47008.Google Scholar
Vas, Z., Lefebvre, L., Johnson, K. P., Reiczigel, J. and Rózsa, L. (2011). Clever birds are lousy: co-variation between avian innovation and the taxonomic richness of their amblyceran lice. International Journal for Parasitology, 41(12), 12951300.Google Scholar
Visalberghi, E. and Fragaszy, D. M. (1994). Do monkeys ape? In Language and Intelligence in Monkeys and Apes: Comparative Developmental Perspectives, eds. Taylor Parker, S. and Gibson, K. R.. Cambridge: Cambridge University Press, pp. 247273.Google Scholar
Voelkl, B. and Huber, L. (2007). Imitation as faithful copying of a novel technique in marmoset monkeys. PLoS One, 2(7), e611.CrossRefGoogle ScholarPubMed
Voelkl, B. and Noe, R. (2008). The influence of social structure on the propagation of social information in artificial primate groups: a graph-based simulation approach. Journal of Theoretical Biology, 252(1), 7786.Google Scholar
Wada, K., Sakaguchi, H., Jarvis, E. D. and Hagiwara, M. (2004). Differential expression of glutamate receptors in avian neural pathways for learned vocalization. Journal of Comparative Neurology, 476(1), 4464.Google Scholar
Warner, R. R. (1988). Traditionality of mating-site preferences in a coral reef fish. Nature, 335(6192), 719721.Google Scholar
Webster, S. J. and Lefebvre, L. (2001). Problem solving and neophobia in a columbiform–passeriform assemblage in Barbados. Animal Behaviour, 62(1), 2332.Google Scholar
Wey, T., Blumstein, D. T., Shen, W. and Jordan, F. (2008). Social network analysis of animal behaviour: a promising tool for the study of sociality. Animal Behaviour, 75, 333344.Google Scholar
Wilson, A. C. (1985). The molecular basis of evolution. Scientific American, 253(4), 164173.Google Scholar
Whiten, A. and Ham, R. (1992). On the nature and evolution of imitation in the animal kingdom: reappraisal of a century of research. Advances in the Study of Behavior, 21, 239276.Google Scholar
Wyles, J. S., Kunkel, J. G. and Wilson, A. C. (1983). Birds, behavior, and anatomical evolution. Proceedings of the National Academy of Sciences USA, 80(14), 43944397.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×