Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-25T07:49:38.806Z Has data issue: false hasContentIssue false

10 - Avian Numerical Cognition: A Review and Brief Comparisons to Non-Avian Species

Published online by Cambridge University Press:  22 June 2017

Carel ten Cate
Affiliation:
Universiteit Leiden
Susan D. Healy
Affiliation:
University of St Andrews, Scotland
Get access
Type
Chapter
Information
Avian Cognition , pp. 184 - 207
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrillo, C., Dadda, M., Serena, G. and Bisazza, A. (2008). Do fish count? Spontaneous discrimination of quantity in female mosquitofish. Animal Cognition, 11, 495503.CrossRefGoogle ScholarPubMed
Bialystok, E. and Codd, J. (2000). Representing quantity beyond whole numbers: Some, none and part. Canadian Journal of Experimental Psychology, 54, 117128.CrossRefGoogle ScholarPubMed
Biro, D. and Matsuzawa, T. (2001). Use of numerical symbols by the chimpanzee (Pan troglodytes): Cardinals, ordinals, and the introduction of zero. Animal Cognition, 4, 193199.CrossRefGoogle ScholarPubMed
Bogale, B. A., Kamata, N., Mioko, K. and Sugita, S. (2011). Quantity discrimination in jungle crows, Corvus macrorhynchos. Animal Behaviour, 2, 635641.CrossRefGoogle Scholar
Bowmaker, J. K., Heath, L. A., Das, D. and Hunt, D. M. (1994). Spectral sensitivity and opsin structure of avian rod and cone visual pigments. Investigative Ophthalmology & Visual Science, 35, 1708.Google Scholar
Bowmaker, J. K., Heath, L. A., Wilkie, S. E., Das, D. and Hunt, D. M. (1996). Middlewave cone and rod visual pigments in birds: spectral sensitivity and opsin structure. Investigative Ophthalmology & Visual Science, 37, S804.Google Scholar
Boysen, S. T. (1993). Counting in chimpanzees: Nonhuman principles and emergent properties of number. In The Development of Numerical Competence: Animal and Human Models, eds. Boysen, S. T. and Capaldi, E. J.. Hillsdale, NJ: Erlbaum, pp. 3959.Google Scholar
Boysen, S. T. and Berntson, G. G. (1989). Numerical competence in a chimpanzee (Pan troglodytes). Journal of Comparative Psychology, 103, 2331.CrossRefGoogle Scholar
Boysen, S. T., Berntson, G. G., Shreyer, T. A. and Quigley, K. S. (1993). Processing of ordinality and transitivity by chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 107, 208215.CrossRefGoogle ScholarPubMed
Boysen, S. T. and Hallberg, K. I. (2000). Primate numerical competence: contributions toward understanding nonhuman cognition. Cognitive Science, 24, 423443.CrossRefGoogle Scholar
Brannon, E. M. and Terrace, H. S. (1998). Ordering of the numerosities 1 to 9 by monkeys. Science, 282, 746749.CrossRefGoogle ScholarPubMed
Braun, H. (1952). Uber das Unterscheidungsvermögen unbenannter Anzahlen bei Papageien. Zeitschrift für Tierpsychologie, 9, 4091.CrossRefGoogle Scholar
Bruce, B. and Threfall, J. (2004). One, two, three and counting. Educational Studies in Mathematics, 55, 326.CrossRefGoogle Scholar
Butler, A. B. (2008). Evolution of brains, cognition, and consciousness. Brain Research Bulletin, 75, 442449.CrossRefGoogle Scholar
Carey, S. (1982). Semantic development: The state of the art. In Language Acquisition: The State of the Art, eds. Gleitman, R. and Wanner, E. Cambridge, UK: Cambridge University Press, pp. 347389.Google Scholar
Carey, S. (2009). The Origin of Concepts. New York: Oxford University Press.CrossRefGoogle Scholar
Chick, C. F. (2014). Basic mechanisms of numerical processing: Cross-modal number comparisons and symbolic versus nonsymbolic numerosity in the intraparietal sulcus. The Journal of Neuroscience, 34, 15671569.CrossRefGoogle ScholarPubMed
Clark, E. (1993). The Lexicon in Acquisition. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Davis, H. (1984). Discrimination of the number three by a raccoon (Procyon lotor). Animal Learning & Behavior, 4, 121124.Google Scholar
Davis, H. and Albert, M. (1986). Numerical discrimination by rats using sequential auditory stimuli. Animal Learning & Behavior, 14, 5759.CrossRefGoogle Scholar
Dehaene, S., (1997). The Number Sense. Oxford: Oxford University Press.Google Scholar
Dehaene, S. (2009). Origins of mathematical intuitions: The case of arithmetic. Annals of the New York Academy of Sciences, 1156, 232259.CrossRefGoogle ScholarPubMed
Emery, N. J. and Clayton, N. S. (2004). The mentality of crows: convergent evolution of intelligence in corvids and apes. Science, 306, 19031907.CrossRefGoogle ScholarPubMed
Emmerton, J. and Renner, J. C. (2006). Scalar effects in the visual discrimination of numerosity by pigeons. Learning & Behavior, 34, 176192.CrossRefGoogle ScholarPubMed
Fischel, W. (1926). Haben Vögel ein “Zahlen” Gedächtnis? Zeitschrift Vergleichenden Physiologie, 4, 345369.CrossRefGoogle Scholar
Fuson, K. C. (1988). Children's Counting and Concepts of Number. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Gallistel, C. R. and Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 4374.CrossRefGoogle ScholarPubMed
Gallistel, C. R. and Gelman, R. (2005). Mathematical cognition. In The Cambridge Handbook of Thinking and Reasoning, eds. Holyoak, Jr. K. S and Morrison, Jr. R. G Cambridge, UK: Cambridge University Press, pp. 559588.Google Scholar
Garland, A., Low, J. and Burns, K. C. (2012). Large quantity discrimination by North Island robins (Petroica longipes). Animal Cognition, 15, 11291140.CrossRefGoogle ScholarPubMed
Geschwind, N. (1979). Specializations of the human brain. Scientific American, 241, 180199.CrossRefGoogle ScholarPubMed
Greeno, J. G., Riley, M. S. and Gelman, R. (1984). Conceptual competence and children's counting. Cognitive Psychology, 16, 94143.CrossRefGoogle Scholar
Hedges, S. B., Parker, P. H., Sibley, C. G. and Kumar, S. (1996). Continental breakup and the ordinal diversification of birds and mammals. Nature, 381, 226229.CrossRefGoogle ScholarPubMed
Hicks, L. H. (1956). An analysis of number-concept formation in the rhesus monkey. Journal of Comparative Physiology and Psychology, 49, 212218.CrossRefGoogle ScholarPubMed
Honig, W. K. and Matheson, W. R. (1995). Discrimination of relative numerosity and stimulus mixture by pigeons with comparable tasks. Journal of Experimental Psychology: Animal Behavior Processes, 21, 348363.Google ScholarPubMed
Honig, W. K. and Stewart, K. E. (1989). Discrimination of relative numerosity by pigeons. Animal Learning & Behavior, 17, 134146.CrossRefGoogle Scholar
Hunt, S., Low, J. and Burns, K. C. (2008) Adaptive numerical competency in a food-hoarding songbird. Proceeding of the Royal Society London B, 275, 23732379.Google Scholar
Hyde, D. C. (2011). Two systems of non-symbolic numerical cognition. Frontiers in Human Neuroscience, 5. DOI: 10.3389/fnhum.2011.00150CrossRefGoogle ScholarPubMed
Iwaniak, A. N., Dean, K. M. and Nelson, J. E. (2005). Interspecific allometry of the brain and brain regions in parrots (Psittaciformes): Comparisons with other birds and primates. Brain, Behavior, and Evolution, 65, 4059.CrossRefGoogle Scholar
Jarvis, E. D., Güntürkün, O., Bruce, L., et al. (2005). Avian brains and a new understanding of vertebrate brain evolution. Nature Reviews Neuroscience, 6, 151159.CrossRefGoogle Scholar
Koehler, O. (1943). ‘Zähl’-Versuche an einem Kolkraben und Vergleichsversuche an Menschen. Zeitschrift für Tierpsychologie, 5, 575712.CrossRefGoogle Scholar
Koehler, O. (1950). The ability of birds to ‘count’. Bulletin of the Animal Behaviour Society, 9, 4145.Google Scholar
Lögler, P. (1959). Versuche zur Frage des “Zähl” Vermögens an einem Graupapagei und Vergleichsversuche an Menschen. Zeitschrift für Tierpsychologie, 16, 179217.CrossRefGoogle Scholar
Mandler, G. and Shebo, B. J. (1982). Subitizing: An analysis of its component processes. Journal of Experimental. Psychology: General, 111, 122.CrossRefGoogle ScholarPubMed
Matsuzawa, T. (1985). Use of numbers by a chimpanzee. Nature, 315, 5759.CrossRefGoogle ScholarPubMed
Matsuzawa, T., Itakura, S. and Tomonaga, M. (1991). Use of numbers by a chimpanzee: A further study. In Primatology Today, eds. Ehara, A., Kimura, T, Takenaka, O. and Iwamoto, M.. Amsterdam: Elsevier, pp. 317320.Google Scholar
Merritt, D. J. and Brannon, E. M. (2013). Nothing to it: Precursors to a zero concept in preschoolers. Behavioural Processes, 93, 9197.CrossRefGoogle ScholarPubMed
Mix, K., Huttenlocher, J. and Levine, S. C. (2002). Quantitative Development in Infancy and Early Childhood. New York: Oxford University Press.CrossRefGoogle Scholar
Olthof, A., Iden, C. M. and Roberts, W. A. (1997). Judgements of ordinality and summation of number symbols by squirrel monkeys (Saimiri sciureus). Journal of Experimental Psychology: Animal Behavior Processes, 23, 325339.Google ScholarPubMed
Olthof, A. and Roberts, W. A. (2000). Summation of symbols by pigeons (Columba livia): The importance of number and mass of reward items. Journal of Comparative Psychology, 114, 158166.CrossRefGoogle ScholarPubMed
Pastore, N. (1961). Number sense and ‘counting’ ability in the canary. Zeitschrift für Tierpsychologie, 18, 561573.CrossRefGoogle Scholar
Patterson, D. K. and Pepperberg, I. M. (1998). A comparative study of human and Grey parrot phonation: Acoustic and articulatory correlates of stop consonants. Journal of the Acoustical Society of America, 103, 21972213.CrossRefGoogle Scholar
Pepperberg, I. M. (1981). Functional vocalizations by an African Grey parrot (Psittacus erithacus). Zeitschrift für Tierpsychologie, 55, 139160.CrossRefGoogle Scholar
Pepperberg, I. M. (1983). Cognition in the African Grey parrot: Preliminary evidence for auditory/vocal comprehension of the class concept. Animal Learning & Behavior, 11, 179185.CrossRefGoogle Scholar
Pepperberg, I. M. (1987a). Acquisition of the same/different concept by an African Grey parrot (Psittacus erithacus): Learning with respect to categories of color, shape, and material. Animal Learning & Behavior, 15, 423432.CrossRefGoogle Scholar
Pepperberg, I. M. (1987b). Evidence for conceptual quantitative abilities in the African Grey parrot: labeling of cardinal sets. Ethology, 75, 3761.CrossRefGoogle Scholar
Pepperberg, I. M. (1988a). Acquisition of the concept of absence by an African Grey parrot: Learning with respect to questions of same/different. Journal of the Experimental Analysis of Behavior, 50, 553564.CrossRefGoogle Scholar
Pepperberg, I. M. (1988b). An interactive modeling technique for acquisition of communication skills: Separation of “labeling” and “requesting” in a psittacine subject. Applied Psycholinguistics, 9, 5976.CrossRefGoogle Scholar
Pepperberg, I. M. (1992). Proficient performance of a conjunctive, recursive task by an African Grey parrot (Psittacus erithacus). Journal of Comparative Psychology, 106, 295305.CrossRefGoogle Scholar
Pepperberg, I. M. (1994). Evidence for numerical competence in an African Grey parrot (Psittacus erithacus). Journal of Comparative Psychology, 108, 3644.CrossRefGoogle Scholar
Pepperberg, I. M. (1999). The Alex Studies. Cambridge, MA: Harvard University Press.Google Scholar
Pepperberg, I. M. (2006a). Addition by a Grey parrot (Psittacus erithacus), including absence of quantity. Journal of Comparative Psychology, 120, 111.CrossRefGoogle Scholar
Pepperberg, I. M. (2006b). Grey parrot numerical competence: A review. Animal Cognition, 9, 377391.CrossRefGoogle ScholarPubMed
Pepperberg, I. M. (2006c). Ordinality and inferential abilities of a Grey parrot (Psittacus erithacus). Journal of Comparative Psychology, 120, 205216.CrossRefGoogle ScholarPubMed
Pepperberg, I. M. (2012). Further evidence for addition and numerical competence by a Grey parrot (Psittacus erithacus). Animal Cognition, 15, 711717.CrossRefGoogle ScholarPubMed
Pepperberg, I. M. and Brezinsky, M. V. (1991). Acquisition of a relative class concept by an African Grey parrot (Psittacus erithacus): Discriminations based on relative size. Journal of Comparative Psychology, 105, 286294.CrossRefGoogle ScholarPubMed
Pepperberg, I. M. and Carey, S. (2012). Grey parrot number acquisition: the inference of cardinal value from ordinal position on the numeral list. Cognition, 125, 219232.CrossRefGoogle ScholarPubMed
Pepperberg, I. M. and Gordon, J. D. (2005). Number comprehension by a Grey parrot (Psittacus erithacus), including a zero-like concept. Journal of Comparative Psychology, 119, 197209.CrossRefGoogle ScholarPubMed
Premack, D. (1983). The codes of man and beast. Behavioral & Brain Sciences, 6, 125176.CrossRefGoogle Scholar
Rugani, R., Cavazzana, A., Vallortigara, G. and Regolin, L. (2013a). One, two, three, four, or is there something more? Numerical discrimination in day-old domestic chicks. Animal Cognition, 16, 557564.CrossRefGoogle ScholarPubMed
Rugani, R., Regolin, L. and Vallortigara, G. (2010). Imprinted numbers: newborn chicks’ sensitivity to number vs. continuous extent of objects they have been reared with. Developmental Science, 13, 790797.CrossRefGoogle Scholar
Rugani, R., Vallortigara, G. and Regolin, L. (2013b). Numerical abstraction in young domestic chicks (Gallus gallus). PloS One, 8(6), e65262. DOI:10.1371/journal.pone.0065262CrossRefGoogle ScholarPubMed
Rumbaugh, D. M., Savage-Rumbaugh, E. S. and Hegel, M. (1987). Summation in a chimpanzee (Pan troglodytes). Journal of Experimental Psychology: Animal Behavior Processes, 13, 107115.Google Scholar
Scharf, D., Hayne, H. and Colombo, M. (2011). Pigeons on par with primates in numerical competence. Science, 334, 1664.CrossRefGoogle Scholar
Seibt, U. (1982). Zahlbegriff und Zählverhalten bei Tieren: Neue Versuche und Deutungen. Zeitschrift für Tierpsychologie, 60, 325341.CrossRefGoogle Scholar
Siegel, L. S. (1982). The development of quantity concepts: perceptual and linguistic factors. In Children's Logical and Mathematical Cognition, ed. Brainerd, C. J.. Berlin, Heidelberg, New York: Springer-Verlag, pp. 123155.CrossRefGoogle Scholar
Smirnova, A. A. (2011). On the capacity of birds for symbolization. Biology Bulletin, 38, 878884.CrossRefGoogle Scholar
Smirnova, A. A. (2013). Symbolic representation of the numerosities 1–8 by hooded crows (Corvus cornix L.). Paper presented at the International Ethological Congress, Newcastle, UK, August.Google Scholar
Smirnova, A. A., Lazareva, O. F. and Zorina, Z. A. (2000). Use of number by crows: investigation by matching and oddity learning. Journal of the Experimental Analysis of Behavior, 73, 163176.CrossRefGoogle ScholarPubMed
Teubal, E. and Guberman, A. (2002). The development of children's counting ability. Megamot, 42, 83102.Google Scholar
Thompson, N. S. (1968). Counting and communication in crows. Communications in Behavioral Biology, Part A, 2, 223225.Google Scholar
Thompson, N. S. (1969). Individual identification and temporal patterning in the cawing of common crows. Communications in Behavioral Biology, Part A, 3, 2933.Google Scholar
Trick, L. and Pylyshyn, Z. (1989). Subitizing and the FNST spatial index model. University of Ontario, Ontario, Canada, COGMEM #44.Google Scholar
Trick, L. and Pylyshyn, Z. (1994). Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision. Psychological Review, 101, 80102.CrossRefGoogle ScholarPubMed
Ujfalussy, D., Miklosi, A., Bugnyar, T. and Kotrschal, K. (2014). Role of mental representations in quantity judgements by jackdaws (Corvus monedula). Journal of Comparative Psychology, 128, 1120.CrossRefGoogle ScholarPubMed
Uller, C., Jaeger, R., Guidry, G. and Martin, C. (2003). Salamanders (Plethodon cinereus) go for more: rudiments of number in an amphibian. Animal Cognition, 6, 105112.CrossRefGoogle Scholar
von Glasersfeld, E. (1982). Subitizing: the role of figural patterns in the development of numerical concepts. Archives de Psychologie, 50, 191218.Google Scholar
Watanabe, S. and Huber, L. (2006). Animal logics: decision in the absence of human language. Animal Cognition, 9, 235245.CrossRefGoogle ScholarPubMed
Wellman, H. M. and Miller, K. F. (1986). Thinking about nothing: Development of concepts of zero. British Journal of Developmental Psychology, 4, 3142.CrossRefGoogle Scholar
Wheeler, M. and Feghali, I. (1983). Much ado about nothing: preservice elementary school teachers’ concept of zero. Journal for Research in Mathematics Education, 14, 147155.CrossRefGoogle Scholar
Wynn, K. (1990). Children's understanding of counting. Cognition, 36, 155193.CrossRefGoogle ScholarPubMed
Wynn, K. (1992). Children's acquisition of the number words and the counting system. Cognitive Psychology, 24, 220251.CrossRefGoogle Scholar
Xia, L, Emmerton, J., Siemann, M. and Delius, J. D. (2001). Pigeons (Columba livia) learn to link numerosities with symbols. Journal of Comparative Psychology, 115, 8391.CrossRefGoogle ScholarPubMed
Zorina, Z. A. and Smirnova, A. A. (1996). Quantitative evaluations in gray crows: Generalization of the relative attribute “larger set”. Neuroscience and Behavioral Physiology, 26(4), 357364.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×