Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2012
  • Online publication date: December 2012

19 - From measures to celestial coordinates

from Part IV - From detected photons to the celestial sphere



The goal of this book is to present an introduction to the techniques of astrometry and to highlight several applications of those techniques to the solution of current problems of astrophysical interest. In some cases we require the absolute positions of objects to establish reference frames and systems, while in others we need the change in position with time to obtain the distances and tangential velocities of the objects. The astrometric procedures necessary to solve those problems have been laid out in considerable detail by Konig (1933, 1962), Smart (1931), and others, so we will summarize the methods used to transform raw coordinate measurements of celestial objects on photographic plates and CCDs to their corresponding coordinates on the celestial sphere. We recommend that the reader consult the above references where clarification is needed. Once we have the desired celestial coordinates and their changes with time that yield parallaxes and proper motions, we can then create catalogs of those quantities and apply them to the solution of problems in galactic structure, the masses of stars, membership in star clusters, dynamical studies of objects in the Solar System, and extrasolar planets, and to help to set limits to some cosmological models.

Telescope and detector alignment

We normally assume that our telescope and detector have been carefully aligned so that the image quality will be optimum over the field of view (FOV). However, even if the apparent image quality is good over the FOV, it may be that residual misalignments remain that complicate the transformation from detector to sky. Quite often, high-order polynomials are used to absorb the effects of those misalignments. Unfortunately, that procedure obscures the interpretation of the transformation terms and can lead to spurious and/or lower-accuracy results.

Related content

Powered by UNSILO
Anderson, J. and King, I. R. (1999). Astrometric and photometric corrections for the 34th-row error in HST's WFPC2 Camera. PASP, 111, 1095.
Anderson, J. and King, I. R. (2000). Toward high-precision astrometry with WFPC2. I. Deriving an accurate point-spread function. PASP, 112, 1360.
Arend, S. (1951). Theorie de l'equatorial visuel et de l'equatorial photographique. Reglage pratique de l'equatorial visuel et de l'astrographe. Brussels: Observatoire Royal de Belgique.
Bertin, E. and Arnouts, S. (1996). SExtractor: software for source extraction. A&AS, 117, 393.
de Vegt, C., Hindsley, R., Zacharias, N., and Winter, L. (2001). A catalog of faint reference stars in 398 fields of extragalactic radio reference frame sources (ERLcat). AJ, 121, 2815.
de Vegt, C., Laux, U., and Zacharias, N. (2003). A dedicated 1-meter telescope for high precision astrometric sky mapping of faint stars. In Small Telescopes in the New Millennium II. The Telescopes We Use, ed. T., Oswalt, Dordrecht: Kluwer, p. 255.
Eichhorn, H. K. (1960). Über die Reduktion von photographischen Sternpositionen und Eigenbewegungen. AN, 285, 233.
Girard, T. M., Dinescu, D. I., van Altena, W. F., Platais, I., Monet, D. G., and López, C. E. (2004). The Southern Proper Motion Program. III. A near-complete catalog to V = 17.5. AJ, 127, 3060.
Girard, T. M., van Altena, W. F., Zacharias, N., et al. (2011). The Southern Proper Motion Program. IV. The SPM4 Catalog. AJ, 142, 15.
Googe, W.D., Eichhorn, H., and Lukac, C. F. (1970). The overlap algorithm for the reduction of photographic star catalogues. MNRAS, 150, 35.
Guo, X., Girard, T., van Altena, W. F., and López, C. E. (1993). Space velocity of the globular cluster NGC 288 and astrometry with the CTIO 4 meter telescope. AJ, 105, 2182.
Gunn, , et al. (1998). The Sloan Digital Sky Survey Photometric Camera. AJ, 116, 3040.
Hanson, R. B., Klemola, A. R., Jones, B. F., and Monet, D. G. (2004). Lick Northern Proper Motion Program. III. Lick NPM2 Catalog. AJ, 128, 1430.
Jefferys, W. H., Fitzpatrick, M. J., and McArthur, B. E. (1988). GaussFit – a system for least squares and robust estimation. Celestial Mechan., 41, 39.
Jefferys, W., Whipple, A.,Wang, Q., et al. (1994). Optical field-angle distortion calibration of FGS3. In Calibrating Hubble Space Telescope, ed. J. C., Blades and S. J., Osmer., Baltimore, MD: Space Telescope Science Institute, p. 353.
Konig, A. (1933). Reduktion photographischer Himmelsaufnahmen. In Handbuch der Astrophysik. Berlin: Springer Verlag, vol. 1, ch. 6.
Konig, A. (1962). Astrometry with astrographs. In Astronomical Techniques, ed. W. A., Hiltner. Chicago, IL: University of Chicago Press, ch. 20, p. 461.
Lee, J.-F. and van Altena, W. F. (1983). Theoretical studies of the effects of grain noise on photographic stellar astrometry and photometry. AJ, 88, 1683.
Lindegren, L. (2010). High-accuracy positioning: astrometry. In Observing Photons in Space. ed. M. C. E., Huber, A., Pauluhn, J. L., Culhane, et al. Bern: International Space Science Institute, ISSI Scientific Reports Series, p. 279.
Meeks, M. L., Ball, J. A., and Hull, A. B. (1968). The pointing calibration of the Haystack antenna. IEEE Trans. Antennas Propag., AP-16, 746.
Platais, I., Kozhurina-Platais, V., Girard, T. M., et al. (2002). WIYN Open Cluster Study. VIII. The geometry and stability of the NOAO CCD Mosaic Imager. AJ, 124, 601.
Platais, I., Wyse, R. F. G., and Zacharias, N. (2006). Deep astrometric standards and Galactic structure. PASP, 118, 107.
Schlesinger, F. and Barney, I. (1925). Trans. Astron. Obs. Yale Univ., 4, 5.
Schroeder, D. (2000). Astronomical Optics, 2nd edn. San Diego, CA: Academic Press.
Smart, W. M. (1931). Spherical Astronomy. Cambridge: Cambridge University Press.
Stetson, P. (1987). DAOPHOT – a computer program for crowded-field stellar photometry. PASP, 99, 191.
Stock, J. (1981). Block adjustment in photographic astrometry. Revista Mexicana de Astronomia y Astrofisica, 6, 115.
Taff, L. G. (1988). The plate-overlap technique – a reformulation. AJ, 96, 409.
Taff, L. G. (1989). Schmidt plate astrometry – subplate overlap. AJ, 98, 1912.
Taff, L. G., Lattanzi, M. G., and Bucciarelli, B. (1990). Two successful techniques for Schmidt plate astrometry. ApJ, 358, 359.
van Altena, W. F. and Monnier, R. C. (1968). Astrometric accuracy and the flatness of glass filters. AJ, 73, 649.
Wallace, P. T. (1979). Telescope Pointing Investigations at the Anglo-Australian Observatory. Epping: Anglo-Austrian Society.
Wallace, P. T. and Tritton, K. P. (1979). Alignment, pointing accuracy and field rotation of the UK 1.2 m Schmidt telescope. MNRAS, 189, 115.
Zacharias, N. (1992). Global block adjustment simulations using the CPC 2 data structure. A&A, 264, 296.
Zacharias, N., de Vegt, C., and Murray, C. A. (1997). CPC2 plate reductions with HIPPARCOS stars: first results. In Proceedings of the ESA Symposium “Hipparcos – Venice '97.” ESA SP-402, 85.
Zacharias, N., Urban, S. E., Zacharias, M. I., et al. (2000). The first US Naval Observatory CCD astrograph catalog. AJ, 120, 2131.