Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-17T08:26:42.925Z Has data issue: false hasContentIssue false

12 - Neuropeptides II: function

Published online by Cambridge University Press:  05 June 2015

Michael Wilkinson
Affiliation:
Dalhousie University, Nova Scotia
Richard E. Brown
Affiliation:
Dalhousie University, Nova Scotia
Get access

Summary

As noted in Chapter 11, the human genome contains about 90 genes that encode neuropeptide precursors (pre-propeptides). The biologically active neuropeptide products of the prepropeptides number at least 100, and there are likely to be many more waiting to be discovered. Neuropeptides are synthesized in a wide variety of neurons in many brain regions and more often than not are co-localized and co-released with classical neurotransmitters. Should neuropeptides therefore be categorized as neurotransmitters? An alternative description is that of neuromodulator, since in many instances they modify the neural effects of classical neurotransmitters. A good example of this is shown in Figure 11.2, where co-release of a neuropeptide totally modifies the influence of the co-localized neurotransmitter on a postsynaptic neuron. This chapter will illustrate the neurotransmitter and neuromodulator actions of neuropeptides on the neuroendocrine system, the autonomic nervous system (ANS) and the central nervous system. First, however, we will explore whether neuropeptides are best described as neurotransmitters or neuromodulators, or both.

Neurotransmitter and neuromodulator actions of neuropeptides: a dichotomy or a continuum?

An initial useful exercise is to establish criteria by which a neuromodulator could be defined. Recall that in Chapter 5 several criteria were established to ascertain whether a neurochemical might be considered to be a neurotransmitter (Table 5.1). In brief, these are: (1) synthesized in neurons; (2) present in the presynaptic nerve terminals, usually contained in vesicles, and released into the synapse in amounts sufficient to stimulate the postsynaptic cell; (3) whether endogenously released or applied exogenously, a neurotransmitter should have the same effect on the postsynaptic cell (i.e. it activates the same ion channels or second messenger pathways); (4) receptors specific to the neurotransmitter should be present postsynaptically; (5) receptor antagonists should prevent #3; and (6) a specific deactivating mechanism should exist in the synapse.

Strictly speaking, all of these criteria apply equally well to neuropeptides, with some qualifications. For example, classical neurotransmitters are made by enzymatic transformation (criterion #1) of a single amino acid transported into the neuron from the circulation, whereas neuropeptides are produced via changes in gene expression.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alba-Betancourt, C., Aramburo, C., Avila-Mendoza, J., Ahumada-Solorzano, S. M., Carranza, M., Rodriguez-Mendez, A. J.et al. (2011). “Expression, cellular distribution, and heterogeneity of growth hormone in the chicken cerebellum during development,” Gen Comp Endocrinol 170, 528–540.CrossRefGoogle ScholarPubMed
Albertson, A. J., Navratil, A., Mignot, M., Dufourny, L., Cherrington, B. and Skinner, D. C. (2008). “Immunoreactive GnRH type I receptors in the mouse and sheep brain,” J Chem Neuroanat 35, 326–333.CrossRefGoogle ScholarPubMed
Alon, T., Zhou, L., Perez, C. A., Garfield, A. S., Friedman, J. M. and Heisler, L. K. (2009). “Transgenic mice expressing green fluorescent protein under the control of the corticotropin-releasing hormone promoter,” Endocr 150, 5626–5632.CrossRefGoogle ScholarPubMed
Bakowska, J. C. and Morrell, J. I. (2003). “The distribution of mRNA for the short form of the prolactin receptor in the forebrain of the female rat,” Brain Res Mol Brain Res 116, 50–58.CrossRefGoogle ScholarPubMed
Baldo, B. A. and Kelley, A. E. (2001). “Amylin infusion into rat nucleus accumbens potently depresses motor activity and ingestive behavior,” Am J Physiol Regul Integr Comp Physiol 281, R1232–R1242.CrossRefGoogle ScholarPubMed
Banks, W. A. (2004). “The source of cerebral insulin,” Eur J Pharmacol 490, 5–12.CrossRefGoogle ScholarPubMed
Banks, W. A. (2008). “The blood-brain barrier: connecting the gut and the brain,” Regul Pept 149, 11–14.CrossRefGoogle Scholar
Barron, A. M., Verdile, G. and Martins, R. N. (2006). “The role of gonadotropins in Alzheimer's disease: potential neurodegenerative mechanisms,” Endocrine 29, 257–269.CrossRefGoogle ScholarPubMed
Batterham, R. L., Cohen, M. A., Ellis, S. M., Le Roux, C. W., Withers, D. J., Frost, G. S.et al. (2003a). “Inhibition of food intake in obese subjects by peptide YY3–36,” N Engl J Med 349, 941–948.CrossRefGoogle ScholarPubMed
Batterham, R. L., Le Roux, C. W., Cohen, M. A., Park, A. J., Ellis, S. M., Patterson, M.et al. (2003b). “Pancreatic polypeptide reduces appetite and food intake in humans,” J Clin Endocrinol Metab 88, 3989–3992.CrossRefGoogle ScholarPubMed
Baudet, M. L., Rattray, D., Martin, B. T. and Harvey, S. (2009). “Growth hormone promotes axon growth in the developing nervous system,” Endocr 150, 2758–2766.CrossRefGoogle ScholarPubMed
Berne, R. M. and Levy, M. N. (2000). Principles of Physiology, rd edn. (St. Louis, MO: Mosby).Google Scholar
Bertolini, A., Tacchi, R. and Vergoni, A. V. (2009). “Brain effects of melanocortins,” Pharmacol Res 59, 13–47.CrossRefGoogle ScholarPubMed
Bicknell, A. B. (2008). “The tissue-specific processing of pro-opiomelanocortin,” J Neuroendocrinol 20, 692–699.CrossRefGoogle ScholarPubMed
Binder, E. B. and Nemeroff, C. B. (2010). “The CRF system, stress, depression and anxiety-insights from human genetic studies,” Mol Psychiatry 15, 574–588.CrossRefGoogle ScholarPubMed
Blackmer, T., Larsen, E. C., Bartleson, C., Kowalchyk, J. A., Yoon, E. J., Preininger, A. M.et al. (2005). “G protein betagamma directly regulates SNARE protein fusion machinery for secretory granule exocytosis,” Nat Neurosci 8, 421–425.CrossRefGoogle ScholarPubMed
Bockmann, J., Winter, C., Wittkowski, W., Kreutz, M. R. and Bockers, T. M. (1997). “Cloning and expression of a brain-derived TSH receptor,” Biochem Biophys Res Commun 238, 173–178.CrossRefGoogle ScholarPubMed
Bodnar, R. J. (2010). “Endogenous opiates and behavior: 2009,” Peptides 31, 2325–2359.CrossRefGoogle ScholarPubMed
Boehm, U., Zou, Z. and Buck, L. B. (2005). “Feedback loops link odor and pheromone signaling with reproduction,” Cell 123, 683–695.CrossRefGoogle ScholarPubMed
Bole-Feysot, C., Goffin, V., Edery, M., Binart, N. and Kelly, P. A. (1998). “Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice,” Endocr Rev 19, 225–268.CrossRefGoogle ScholarPubMed
Born, J., Lange, T., Kern, W., McGregor, G. P., Bickel, U. and Fehm, H. L. (2002). “Sniffing neuropeptides: a transnasal approach to the human brain,” Nat Neurosci 5, 514–516.CrossRefGoogle ScholarPubMed
Boron, W. F. and Boulpaep, E. L. (2005). Medical Physiology, updated edn. (Philadelphia, PA: Elsevier Saunders).Google Scholar
Bowen, R. L., Smith, M. A., Harris, P. L., Kubat, Z., Martins, R. N., Castellani, R. J.et al. (2002). “Elevated luteinizing hormone expression colocalizes with neurons vulnerable to Alzheimer's disease pathology,” J Neurosci Res 70, 514–518.CrossRefGoogle ScholarPubMed
Bridges, R., Rigero, B., Byrnes, E., Yang, L. and Walker, A. (2001). “Central infusions of the recombinant human prolactin receptor antagonist, S179D-PRL, delay the onset of maternal behavior in steroid-primed, nulliparous female rats,” Endocr 142, 730–739.CrossRefGoogle ScholarPubMed
Brown, C. H., Russell, J. A. and Leng, G. (2000). “Opioid modulation of magnocellular neurosecretory cell activity,” Neurosci Res 36, 97–120.CrossRefGoogle ScholarPubMed
Brown, R. E., Imran, S. A., Ur, E. and Wilkinson, M. (2008). “Kiss-1 mRNA in adipose tissue is regulated by sex hormones and food intake,” Mol Cell Endocrinol 281, 64–72.CrossRefGoogle ScholarPubMed
Brown, R. S., Kokay, I. C., Herbison, A. E. and Grattan, D. R. (2010). “Distribution of prolactin-responsive neurons in the mouse forebrain,” J Comp Neurol 518, 92–102.CrossRefGoogle ScholarPubMed
Brunton, P. J. and Russell, J. A. (2008). “The expectant brain: adapting for motherhood,” Nat Rev Neurosci 9, 11–25.CrossRefGoogle ScholarPubMed
Buijs, R. M., Swaab, D. F., Dogterom, J. and van Leeuwen, F. W. (1978). “Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat,” Cell Tissue Res 186, 423–433.CrossRefGoogle ScholarPubMed
Caron, E., Sachot, C., Prevot, V. and Bouret, S. G. (2010). “Distribution of leptin-sensitive cells in the postnatal and adult mouse brain,” J Comp Neurol 518, 459–476.CrossRefGoogle ScholarPubMed
Carter, C. S. and Porges, S. W. (2013). “The biochemistry of love: an oxytocin hypothesis,” EMBO Reports 14, 12–16.CrossRefGoogle ScholarPubMed
Castro, J. R., Costoya, J. A., Gallego, R., Prieto, A., Arce, V. M. and Senaris, R. (2000). “Expression of growth hormone receptor in the human brain,” Neurosci Lett 281, 147–150.CrossRefGoogle ScholarPubMed
Chan, Y. M., Broder-Fingert, S. and Seminara, S. B. (2009). “Reproductive functions of kisspeptin and Gpr54 across the life cycle of mice and men,” Peptides 30, 42–48.CrossRefGoogle ScholarPubMed
Chandarana, K. and Batterham, R. (2008). “Peptide YY,” Curr Opin Endocrinol Diabetes Obes 15, 65–72.CrossRefGoogle ScholarPubMed
Chaudhri, O. B., Salem, V., Murphy, K. G. and Bloom, S. R. (2008). “Gastrointestinal satiety signals,” Annu Rev Physiol 70, 239–255.CrossRefGoogle ScholarPubMed
Chaudhury, D., Loh, D. H., Dragich, J. M., Hagopian, A. and Colwell, C. S. (2008). “Select cognitive deficits in vasoactive intestinal peptide deficient mice,” BMC Neurosci 9, 63.CrossRefGoogle ScholarPubMed
Chen, Y., Brunson, K. L., Muller, M. B., Cariaga, W. and Baram, T. Z. (2000). “Immunocytochemical distribution of corticotropin-releasing hormone receptor type-1 (CRF(1))-like immunoreactivity in the mouse brain: light microscopy analysis using an antibody directed against the C-terminus,” J Comp Neurol 420, 305–323.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Cheng, C. Y., Chu, J. Y. and Chow, B. K. (2011). “Central and peripheral administration of secretin inhibits food intake in mice through the activation of the melanocortin system,” Neuropsychopharmacology 36, 459–471.CrossRefGoogle ScholarPubMed
Chicurel, M. (2000). “Whatever happened to leptin?”Nature 404, 538–540.CrossRefGoogle Scholar
Chou, S. H., Chamberland, J. P., Liu, X., Matarese, G., Gao, C., Stefanakis, R.et al. (2011). “Leptin is an effective treatment for hypothalamic amenorrhea,” Proc Natl Acad Sci USA 108, 6585–6590.CrossRefGoogle ScholarPubMed
Chu, C., Gao, G. and Huang, W. (2008). “A study on co-localization of FSH and its receptor in rat hippocampus,” J Mol Histol 39, 49–55.CrossRefGoogle ScholarPubMed
Clarkson, J., d'Anglemont de Tassigny, X., Colledge, W. H., Caraty, A. and Herbison, A. E. (2009). “Distribution of kisspeptin neurones in the adult female mouse brain,” J Neuroendocrinol 21, 673–682.CrossRefGoogle ScholarPubMed
Clarkson, J. and Herbison, A. E. (2006). “Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons,” Endocr 147, 5817–5825.CrossRefGoogle ScholarPubMed
Clementi, G., Busa, L., de Bernardis, E., Prato, A. and Drago, F. (1999). “Effects of centrally injected amylin on sexual behavior of male rats,” Peptides 20, 379–382.CrossRefGoogle ScholarPubMed
Coccaro, E. F., Kavoussi, R. J., Hauger, R. L., Cooper, T. B. and Ferris, C. F. (1998). “Cerebrospinal fluid vasopressin levels: correlates with aggression and serotonin function in personality-disordered subjects,” Arch Gen Psychiatry 55, 708–714.CrossRefGoogle ScholarPubMed
Corbett, A. D., Henderson, G., McKnight, A. T. and Paterson, S. J. (2006). “75 years of opioid research: the exciting but vain quest for the Holy Grail,”Br J Pharmacol 147(Suppl. 1), S153–S162.Google Scholar
Cravo, R. M., Margatho, L. O., Osborne-Lawrence, S., Donato, J. Jr., Atkin, S., Bookout, A. L.et al. (2011). “Characterization of Kiss1 neurons using transgenic mouse models,” Neurosci 173, 37–56.CrossRefGoogle ScholarPubMed
Creyghton, W. M., van Dam, P. S. and Koppeschaar, H. P. (2004). “The role of the somatotropic system in cognition and other cerebral functions,” Semin Vasc Med 4, 167–172.CrossRefGoogle ScholarPubMed
Crisanti, P., Omri, B., Hughes, E., Meduri, G., Hery, C., Clauser, E.et al. (2001). “The expression of thyrotropin receptor in the brain,” Endocr 142, 812–822.CrossRefGoogle Scholar
Curtis, A. E., Cooke, J. H., Baxter, J. E., Parkinson, J. R., Bataveljic, A., Ghatei, M. A.et al. (2010). “A kisspeptin-10 analog with greater in vivo bioactivity than kisspeptin-10,” Am J Physiol Endocrinol Metab 298, E296–E303.CrossRefGoogle ScholarPubMed
Dardeno, T. A., Chou, S. H., Moon, H. S., Chamberland, J. P., Fiorenza, C. G. and Mantzoros, C. S. (2010). “Leptin in human physiology and therapeutics,” Front Neuroendocr 31, 377–393.CrossRefGoogle ScholarPubMed
Davis, J. F., Choi, D. L. and Benoit, S. C. (2010). “Insulin, leptin and reward,” Trends Endocrinol Metab 21, 68–74.CrossRefGoogle ScholarPubMed
de la Monte, S. M., Longato, L., Tong, M. and Wands, J. R. (2009). “Insulin resistance and neurodegeneration: roles of obesity, type 2 diabetes mellitus and non-alcoholic steatohepatitis,” Curr Opin Investig Drugs 10, 1049–1060.Google ScholarPubMed
de la Monte, S. M. and Wands, J. R. (2005). “Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer's disease,” J Alzheimers Dis 7, 45–61.CrossRefGoogle ScholarPubMed
de Vries, G. J. (2008). “Sex differences in vasopressin and oxytocin innervation of the brain,” Prog Brain Res 170, 17–27.Google Scholar
De Wied, D. and Jolles, J. (1982). “Neuropeptides derived from pro-opiocortin: behavioral, physiological, and neurochemical effects,” Physiol Rev 62, 976–1059.CrossRefGoogle ScholarPubMed
DeBoer, M. D. (2011). “Ghrelin and cachexia: will treatment with GHSR-1a agonists make a difference for patients suffering from chronic wasting syndromes?”Mol Cell Endocrinol 340, 97–105.CrossRefGoogle Scholar
Deng, P. Y., Xiao, Z., Jha, A., Ramonet, D., Matsui, T., Leitges, M.et al. (2010). “Cholecystokinin facilitates glutamate release by increasing the number of readily releasable vesicles and releasing probability,” J Neurosci 30, 5136–5148.CrossRefGoogle ScholarPubMed
Devidze, N., Zhang, Q., Zhou, J., Lee, A. W., Pataky, S., Kow, L. M.et al. (2008). “Presynaptic actions of opioid receptor agonists in ventromedial hypothalamic neurons in estrogen- and oil-treated female mice,” Neurosci 152, 942–949.CrossRefGoogle ScholarPubMed
DeVito, W. J. (1989). “Thyroid hormone regulation of hypothalamic immunoreactive thyrotropin,” Endocr 125, 1219–1223.CrossRefGoogle ScholarPubMed
DeVito, W. J., Avakian, C., Stone, S. and Ace, C. I. (1992). “Estradiol increases prolactin synthesis and prolactin messenger ribonucleic acid in selected brain regions in the hypophysectomized female rat,” Endocr 131, 2154–2160.CrossRefGoogle ScholarPubMed
Dickson, L. and Finlayson, K. (2009). “VPAC and PAC receptors: from ligands to function,” Pharmacol Ther 121, 294–316.CrossRefGoogle Scholar
Dickson, S. L., Egecioglu, E., Landgren, S., Skibicka, K. P., Engel, J. A. and Jerlhag, E. (2011). “The role of the central ghrelin system in reward from food and chemical drugs,” Mol Cell Endocrinol 340, 80–87.CrossRefGoogle ScholarPubMed
Dobolyi, A. (2009). “Central amylin expression and its induction in rat dams,” J Neurochem 111, 1490–1500.CrossRefGoogle ScholarPubMed
Dolan, S., Evans, N. P., Richter, T. A. and Nolan, A. M. (2003). “Expression of gonadotropin-releasing hormone and gonadotropin-releasing hormone receptor in sheep spinal cord,” Neurosci Lett 346, 120–122.CrossRefGoogle ScholarPubMed
Donahue, C. P., Jensen, R. V., Ochiishi, T., Eisenstein, I., Zhao, M., Shors, T.et al. (2002). “Transcriptional profiling reveals regulated genes in the hippocampus during memory formation,” Hippocampus 12, 821–833.CrossRefGoogle ScholarPubMed
Donahue, C. P., Kosik, K. S. and Shors, T. J. (2006). “Growth hormone is produced within the hippocampus where it responds to age, sex, and stress,” Proc Natl Acad Sci USA 103, 6031–6036.CrossRefGoogle Scholar
Donner, N., Bredewold, R., Maloumby, R. and Neumann, I. D. (2007). “Chronic intracerebral prolactin attenuates neuronal stress circuitries in virgin rats,” Eur J Neurosci 25, 1804–1814.CrossRefGoogle Scholar
Douglas, A. J. and Russell, J. A. (2001). “Endogenous opioid regulation of oxytocin and ACTH secretion during pregnancy and parturition,” Prog Brain Res 133, 67–82.Google ScholarPubMed
Dournaud, P., Slama, A., Beaudet, J. M. and Epelbaum, J. (2011). “Somatostatin receptors” in Quirion, R., Björklund, A. and Hökfelt, T. (eds.), Handbook of Chemical Neuroanatomy (Boston, MA: Elsevier), vol. 16, pp. 1–43.Google Scholar
Druce, M. R., Neary, N. M., Small, C. J., Milton, J., Monteiro, M., Patterson, M.et al.(2006). “Subcutaneous administration of ghrelin stimulates energy intake in healthy lean human volunteers,” Int J Obes (Lond) 30, 293–296.CrossRefGoogle ScholarPubMed
Druce, M. R., Wren, A. M., Park, A. J., Milton, J. E., Patterson, M., Frost, G.et al.(2005). “Ghrelin increases food intake in obese as well as lean subjects,” Int J Obes (Lond) 29, 1130–1136.CrossRefGoogle ScholarPubMed
Dudas, B. and Merchenthaler, I. (2004). “Close anatomical associations between beta-endorphin and luteinizing hormone-releasing hormone neuronal systems in the human diencephalon,” Neurosci 124, 221–229.CrossRefGoogle ScholarPubMed
Dumont, Y., Martel, J. C., Fournier, A., St-Pierre, S. and Quirion, R. (1992). “Neuropeptide Y and neuropeptide Y receptor subtypes in brain and peripheral tissues,” Prog Neurobiol 38, 125–167.CrossRefGoogle ScholarPubMed
Emanuele, N. V., Jurgens, J. K., Halloran, M. M., Tentler, J. J., Lawrence, A. M. and Kelley, M. R. (1992). “The rat prolactin gene is expressed in brain tissue: detection of normal and alternatively spliced prolactin messenger RNA,” Mol Endocrinol 6, 35–42.Google ScholarPubMed
Epelbaum, J., Guillou, J. L., Gastambide, F., Hoyer, D., Duron, E. and Viollet, C. (2009). “Somatostatin, Alzheimer's disease and cognition: an old story coming of age?”Prog Neurobiol 89, 153–161.CrossRefGoogle Scholar
Farooqi, I. S., Bullmore, E., Keogh, J., Gillard, J., O'Rahilly, S. and Fletcher, P. C. (2007). “Leptin regulates striatal regions and human eating behavior,” Science 317, 1355.CrossRefGoogle ScholarPubMed
Feifel, D. and Vaccarino, F. J. (1994). “Growth hormone-regulatory peptides (GHRH and somatostatin) and feeding: a model for the integration of central and peripheral function,” Neurosci Biobehav Rev 18, 421–433.CrossRefGoogle ScholarPubMed
Ferrini, F., Salio, C., Lossi, L. and Merighi, A. (2009). “Ghrelin in central neurons,” Curr Neuropharmacol 7, 37–49.CrossRefGoogle ScholarPubMed
Fetissov, S. O., Hallman, J., Nilsson, I., Lefvert, A. K., Oreland, L. and Hokfelt, T. (2006). “Aggressive behavior linked to corticotropin-reactive autoantibodies,” Biol Psychiatry 60, 799–802.CrossRefGoogle ScholarPubMed
Field, B. C., Chaudhri, O. B. and Bloom, S. R. (2009). “Obesity treatment: novel peripheral targets,” Br J Clin Pharmacol 68, 830–843.CrossRefGoogle ScholarPubMed
Field, B. C., Chaudhri, O. B. and Bloom, S. R. (2010a). “Bowels control brain: gut hormones and obesity,” Nat Rev Endocrinol 6, 444–453.CrossRefGoogle ScholarPubMed
Field, B. C., Wren, A. M., Peters, V., Baynes, K. C., Martin, N. M., Patterson, M.et al. (2010b). “PYY3–36 and oxyntomodulin can be additive in their effect on food intake in overweight and obese humans,” Diabetes 59, 1635–1639.CrossRefGoogle ScholarPubMed
Fliers, E., Wiersinga, W. M. and Swaab, D. F. (1998). “Physiological and pathophysiological aspects of thyrotropin-releasing hormone gene expression in the human hypothalamus,” Thyroid 8, 921–928.CrossRefGoogle ScholarPubMed
Frohmader, K. S., Pitchers, K. K., Balfour, M. E. and Coolen, L. M. (2010). “Mixing pleasures: review of the effects of drugs on sex behavior in humans and animal models,” Horm Behav 58, 149–162.CrossRefGoogle ScholarPubMed
Fu, L. Y. and van den Pol, A. N. (2010). “Kisspeptin directly excites anorexigenic proopiomelanocortin neurons but inhibits orexigenic neuropeptide Y cells by an indirect synaptic mechanism,” J Neurosci 30, 10205–10219.CrossRefGoogle ScholarPubMed
Furness, J. B., Hunne, B., Matsuda, N., Yin, L., Russo, D., Kato, I.et al. (2011). “Investigation of the presence of ghrelin in the central nervous system of the rat and mouse,” Neurosci 193, 1–9.CrossRefGoogle Scholar
Fuxe, K., Dahlstrom, A. B., Jonsson, G., Marcellino, D., Guescini, M., Dame, M.et al. (2010). “The discovery of central monoamine neurons gave volume transmission to the wired brain,” Prog Neurobiol 90, 82–100.CrossRefGoogle ScholarPubMed
Gahete, M. D., Rubio, A., Duran-Prado, M., Avila, J., Luque, R. M. and Castano, J. P. (2010). “Expression of somatostatin, cortistatin, and their receptors, as well as DA receptors, but not of neprilysin, are reduced in the temporal lobe of Alzheimer's disease patients,” J Alzheimers Dis 20, 465–475.CrossRefGoogle Scholar
Galbally, M., Lewis, A. J., Ijzendoorn, M. and Permezel, M. (2011). “The role of oxytocin in mother-infant relations: a systematic review of human studies,” Harv Rev Psychiatry 19, 1–14.CrossRefGoogle ScholarPubMed
Gardiner, J. V., Jayasena, C. N. and Bloom, S. R. (2008). “Gut hormones: a weight off your mind,” J Neuroendocrinol 20, 834–841.CrossRefGoogle ScholarPubMed
Gary, K. A., Sevarino, K. A., Yarbrough, G. G., Prange, A. J. Jr. and Winokur, A. (2003). “The thyrotropin-releasing hormone (TRH) hypothesis of homeostatic regulation: implications for TRH-based therapeutics,” J Pharmacol Exp Ther 305, 410–416.CrossRefGoogle ScholarPubMed
Gerozissis, K. (2004). “Brain insulin and feeding: a bi-directional communication,” Eur J Pharmacol 490, 59–70.CrossRefGoogle ScholarPubMed
Gianetti, E. and Seminara, S. (2008). “Kisspeptin and KISS1R: a critical pathway in the reproductive system,” Reprod 136, 295–301.CrossRefGoogle ScholarPubMed
Gianoulakis, C. (2009). “Endogenous opioids and addiction to alcohol and other drugs of abuse,” Curr Top Med Chem 9, 999–1015.CrossRefGoogle ScholarPubMed
Gozes, I. (2010). “VIP-PACAP 2010: my own perspective on modulation of cognitive and emotional behavior,” J Mol Neurosci 42, 261–263.CrossRefGoogle ScholarPubMed
Gozes, I., Bardea, A., Reshef, A., Zamostiano, R., Zhukovsky, S., Rubinraut, S.et al. (1996). “Neuroprotective strategy for Alzheimer disease: intranasal administration of a fatty neuropeptide,” Proc Natl Acad Sci USA 93, 427–432.CrossRefGoogle ScholarPubMed
Gratacos, M., Costas, J., de Cid, R., Bayes, M., Gonzalez, J. R., Baca-Garcia, E., de Diego, Y.et al. (2009). “Identification of new putative susceptibility genes for several psychiatric disorders by association analysis of regulatory and non-synonymous SNPs of 306 genes involved in neurotransmission and neurodevelopment,” Am J Med Genet B Neuropsychiatr Genet 150B, 808–816.Google Scholar
Grattan, D. R. and Kokay, I. C. (2008). “Prolactin: a pleiotropic neuroendocrine hormone,” J Neuroendocrinol 20, 752–763.CrossRefGoogle ScholarPubMed
Grommen, S. V., Taniuchi, S., Janssen, T., Schoofs, L., Takahashi, S., Takeuchi, S.et al. (2006). “Molecular cloning, tissue distribution, and ontogenic thyroidal expression of the chicken thyrotropin receptor,” Endocr 147, 3943–3951.CrossRefGoogle ScholarPubMed
Hameed, S., Jayasena, C. N. and Dhillo, W. S. (2011). “Kisspeptin and fertility,” J Endocrinol 208, 97–105.CrossRefGoogle ScholarPubMed
Han, S. K., Gottsch, M. L., Lee, K. J., Popa, S. M., Smith, J. T., Jakawich, S. K.et al. (2005). “Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty,” J Neurosci 25, 11349–11356.CrossRefGoogle ScholarPubMed
Hanlon, K. E., Herman, D. S., Agnes, R. S., Largent-Milnes, T. M., Kumarasinghe, I. R., Ma, S. W.et al. (2011). “Novel peptide ligands with dual acting pharmacophores designed for the pathophysiology of neuropathic pain,” Brain Res 1395, 1–11.CrossRefGoogle ScholarPubMed
Harihar, S., Pounds, K. M., Iwakuma, T., Seidah, N. G. and Welch, D. R. (2014). “Furin is the major proprotein convertase required for KISS-1-to-Kisspeptin processing,” PLoS One 9, e84958.CrossRefGoogle ScholarPubMed
Harvey, S. (2010). “Extrapituitary growth hormone,” Endocrine 38, 335–359.CrossRefGoogle ScholarPubMed
Hayes, M. R., Kanoski, S. E., Alhadeff, A. L. and Grill, H. J. (2011). “Comparative effects of the long-acting GLP-1 receptor ligands, liraglutide and exendin-4, on food intake and body weight suppression in rats,” Obesity (Silver Spring) 19, 1342–1349.CrossRefGoogle ScholarPubMed
Helboe, L. and Moller, M. (2000). “Localization of somatostatin receptors at the light and electron microscopial level by using antibodies raised against fusion proteins,” Prog Histochem Cytochem 35, 3–64.CrossRefGoogle ScholarPubMed
Helena, C. V., McKee, D. T., Bertram, R., Walker, A. M. and Freeman, M. E. (2009). “The rhythmic secretion of mating-induced prolactin secretion is controlled by prolactin acting centrally,” Endocr 150, 3245–3251.CrossRefGoogle ScholarPubMed
Henry, B. A. and Clarke, I. J. (2008). “Adipose tissue hormones and the regulation of food intake,” J Neuroendocrinol 20, 842–849.CrossRefGoogle ScholarPubMed
Herbison, A. E., de Tassigny, X., Doran, J. and Colledge, W. H. (2010). “Distribution and postnatal development of GPR54 gene expression in mouse brain and gonadotropin-releasing hormone neurons,” Endocr 151, 312–321.CrossRefGoogle ScholarPubMed
Herbison, A. E., Pape, J. R., Simonian, S. X., Skynner, M. J. and Sim, J. A. (2001). “Molecular and cellular properties of GnRH neurons revealed through transgenics in the mouse,” Mol Cell Endocrinol 185, 185–194.CrossRefGoogle ScholarPubMed
Heuer, H., Schafer, M. K., O'Donnell, D., Walker, P. and Bauer, K. (2000). “Expression of thyrotropin-releasing hormone receptor 2 (TRH-R2) in the central nervous system of rats,” J Comp Neurol 428, 319–336.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Hojvat, S., Baker, G., Kirsteins, L. and Lawrence, A. M. (1982). “Growth hormone (GH) immunoreactivity in the rodent and primate CNS: distribution, characterization and presence posthypophysectomy,” Brain Res 239, 543–557.CrossRefGoogle ScholarPubMed
Hojvat, S., Emanuele, N., Baker, G., Kirsteins, L. and Lawrence, A. M. (1985). “Brain thyroid-stimulating hormone: effects of endocrine manipulations,” Brain Res 360, 257–263.CrossRefGoogle ScholarPubMed
Hokfelt, T., Broberger, C., Xu, Z. Q., Sergeyev, V., Ubink, R. and Diez, M. (2000). “Neuropeptides – an overview,” Neuropharmacol 39, 1337–1356.CrossRefGoogle ScholarPubMed
Hotta, M., Ohwada, R., Akamizu, T., Shibasaki, T., Takano, K. and Kangawa, K. (2009). “Ghrelin increases hunger and food intake in patients with restricting-type anorexia nervosa: a pilot study,” Endocr J 56, 1119–1128.CrossRefGoogle ScholarPubMed
Hou, Z., Miao, Y., Gao, L., Pan, H. and Zhu, S. (2006). “Ghrelin-containing neuron in cerebral cortex and hypothalamus linked with the DVC of brainstem in rat,” Regul Pept 134, 126–131.CrossRefGoogle ScholarPubMed
Hrabovszky, E., Ciofi, P., Vida, B., Horvath, M. C., Keller, E., Caraty, A.et al. (2010). “The kisspeptin system of the human hypothalamus: sexual dimorphism and relationship with gonadotropin-releasing hormone and neurokinin B neurons,” Eur J Neurosci 31, 1984–1998.CrossRefGoogle ScholarPubMed
Huang, X., Yang, J., Chang, J. K. and Dun, N. J. (2010). “Amylin suppresses acetic acid-induced visceral pain and spinal c-fos expression in the mouse,” Neurosci 165, 1429–1438.CrossRefGoogle ScholarPubMed
Inui, A. (2003). “Neuropeptide gene polymorphisms and human behavioural disorders,” Nat Rev Drug Discov 2, 986–998.CrossRefGoogle ScholarPubMed
Iversen, L. L. (1996). “How does morphine work?”Nature 383, 759–760.CrossRefGoogle Scholar
Iversen, L. L., Iversen, S. D., Bloom, D. E. and Roth, R. H. (2009). Introduction to Neuropsychopharmacology (New York: Oxford University Press).CrossRefGoogle Scholar
Joo, K. M., Chung, Y. H., Kim, M. K., Nam, R. H., Lee, B. L., Lee, K. H.et al. (2004). “Distribution of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide receptors (VPAC1, VPAC2, and PAC1 receptor) in the rat brain,” J Comp Neurol 476, 388–413.CrossRefGoogle ScholarPubMed
Katoh, A., Fujihara, H., Ohbuchi, T., Onaka, T., Hashimoto, T., Kawata, M.et al. (2011). “Highly visible expression of an oxytocin-monomeric red fluorescent protein 1 fusion gene in the hypothalamus and posterior pituitary of transgenic rats,” Endocr 152, 2768–2774.CrossRefGoogle ScholarPubMed
Kiaris, H., Chatzistamou, I., Papavassiliou, A. G. and Schally, A. V. (2011). “Growth hormone-releasing hormone: not only a neurohormone,” Trends Endocrinol Metab 22, 311–317.CrossRefGoogle Scholar
Knoblach, S. M. and Kubek, M. J. (1997). “Changes in thyrotropin-releasing hormone levels in hippocampal subregions induced by a model of human temporal lobe epilepsy: effect of partial and complete kindling,” Neurosci 76, 97–104.Google ScholarPubMed
Kokay, I. C., Petersen, S. L. and Grattan, D. R. (2011). “Identification of prolactin-sensitive GABA and kisspeptin neurons in regions of the rat hypothalamus involved in the control of fertility,” Endocr 152, 526–535.CrossRefGoogle Scholar
Kuehn, B. M. (2011). “Scientists probe oxytocin therapy for social deficits in autism, schizophrenia,” JAMA 305, 659–661.Google ScholarPubMed
Labudova, O., Cairns, N., Koeck, T., Kitzmueller, E., Rink, H. and Lubec, G. (1999). “Thyroid stimulating hormone-receptor overexpression in brain of patients with Down syndrome and Alzheimer's disease,” Life Sci 64, 1037–1044.CrossRefGoogle ScholarPubMed
Landgraf, R. and Neumann, I. D. (2004). “Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication,” Front Neuroendocr 25, 150–176.CrossRefGoogle ScholarPubMed
Lapatto, R., Pallais, J. C., Zhang, D., Chan, Y. M., Mahan, A., Cerrato, F.et al. (2007). “Kiss1-/- mice exhibit more variable hypogonadism than Gpr54-/- mice,” Endocr 148, 4927–4936.CrossRefGoogle ScholarPubMed
Lathe, R. (2001). “Hormones and the hippocampus,” J Endocrinol 169, 205–231.CrossRefGoogle ScholarPubMed
Lee, H. J., Macbeth, A. H., Pagani, J. H. and Young, W. S., rd. (2009). “Oxytocin: the great facilitator of life,” Prog Neurobiol 88, 127–151.Google ScholarPubMed
Le Greves, P., Huang, W., Zhou, Q., Thornwall, M. and Nyberg, F. (1998). “Acute effects of morphine on the expression of mRNAs for NMDA receptor subunits in the rat hippocampus, hypothalamus and spinal cord,” Eur J Pharmacol 341, 161–164.CrossRefGoogle ScholarPubMed
le Roux, C. W., Batterham, R. L., Aylwin, S. J., Patterson, M., Borg, C. M., Wynne, K. J.et al. (2006). “Attenuated peptide YY release in obese subjects is associated with reduced satiety,” Endocr 147, 3–8.CrossRefGoogle ScholarPubMed
Lei, Z. M., Rao, C. V., Kornyei, J. L., Licht, P. and Hiatt, E. S. (1993). “Novel expression of human chorionic gonadotropin/luteinizing hormone receptor gene in brain,” Endocr 132, 2262–2270.CrossRefGoogle ScholarPubMed
Liao, F., Taishi, P., Churchill, L., Urza, M. J. and Krueger, J. M. (2010). “Localized suppression of cortical growth hormone-releasing hormone receptors state-specifically attenuates electroencephalographic delta waves,” J Neurosci 30, 4151–4159.CrossRefGoogle ScholarPubMed
Licinio, J., Caglayan, S., Ozata, M., Yildiz, B. O., de Miranda, P. B., O'Kirwan, F., et al. (2004). “Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults,” Proc Natl Acad Sci USA 101, 4531–4536.CrossRefGoogle ScholarPubMed
Lin, S., Shi, Y. C., Yulyaningsih, E., Aljanova, A., Zhang, L., Macia, L., et al. (2009). “Critical role of arcuate Y4 receptors and the melanocortin system in pancreatic polypeptide-induced reduction in food intake in mice,” PLoS One 4, e8488.CrossRefGoogle ScholarPubMed
Lincoln, D. W. and Wakerley, J. B. (1974). “Electrophysiological evidence for the activation of supraoptic neurones during the release of oxytocin,” J Physiol 242, 533–554.CrossRefGoogle ScholarPubMed
Llewellyn-Smith, I. J., Reimann, F., Gribble, F. M. and Trapp, S. (2011). “Preproglucagon neurons project widely to autonomic control areas in the mouse brain,” Neurosci 180, 111–121.CrossRefGoogle ScholarPubMed
Lo, C. M., Samuelson, L. C., Chambers, J. B., King, A., Heiman, J., Jandacek, R. J.et al. (2008). “Characterization of mice lacking the gene for cholecystokinin,” Am J Physiol Regul Integr Comp Physiol 294, R803–R810.CrossRefGoogle ScholarPubMed
Lobie, P. E., Garcia-Aragon, J., Lincoln, D. T., Barnard, R., Wilcox, J. N. and Waters, M. J. (1993). “Localization and ontogeny of growth hormone receptor gene expression in the central nervous system,” Brain Res Dev Brain Res 74, 225–233.CrossRefGoogle ScholarPubMed
Loh, D. H., Abad, C., Colwell, C. S. and Waschek, J. A. (2008). “Vasoactive intestinal peptide is critical for circadian regulation of glucocorticoids,” Neuroendocrinology 88, 246–255.CrossRefGoogle ScholarPubMed
London, E. D., Berman, S. M., Chakrapani, S., Delibasi, T., Monterosso, J., Erol, H. K.et al. (2011). “Short-term plasticity of gray matter associated with leptin deficiency and replacement,” J Clin Endocr Metab 96, E1212–E1220.CrossRefGoogle ScholarPubMed
Ludwig, M. and Leng, G. (2006). “Dendritic peptide release and peptide-dependent behaviours,” Nat Rev Neurosci 7, 126–136.CrossRefGoogle ScholarPubMed
Lyons, D. J., Horjales-Araujo, E. and Broberger, C. (2010). “Synchronized network oscillations in rat tuberoinfundibular DA neurons: switch to tonic discharge by thyrotropin-releasing hormone,” Neuron 65, 217–229.CrossRefGoogle Scholar
Maffucci, J. A. and Gore, A. C. (2009). “Chapter 2: hypothalamic neural systems controlling the female reproductive life cycle gonadotropin-releasing hormone, glutamate, and GABA,” Int Rev Cell Mol Biol 274, 69–127.Google ScholarPubMed
Manaker, S., Winokur, A., Rostene, W. H. and Rainbow, T. C. (1985). “Autoradiographic localization of thyrotropin-releasing hormone receptors in the rat central nervous system,” J Neurosci 5, 167–174.CrossRefGoogle ScholarPubMed
Mann, P. E. and Bridges, R. S. (2002). “Prolactin receptor gene expression in the forebrain of pregnant and lactating rats,” Brain Res Mol Brain Res 105, 136–145.CrossRefGoogle ScholarPubMed
Marks, J. L., Porte, D. Jr., Stahl, W. L. and Baskin, D. G. (1990). “Localization of insulin receptor mRNA in rat brain by in situ hybridization,” Endocr 127, 3234–3236.CrossRefGoogle ScholarPubMed
Marrazzi, M. A., Kinzie, J. and Luby, E. D. (1995). “A detailed longitudinal analysis on the use of naltrexone in the treatment of bulimia,” Int Clin Psychopharmacol 10, 173–176.Google ScholarPubMed
Matsubara, S., Sato, M., Mizobuchi, M., Niimi, M. and Takahara, J. (1995). “Differential gene expression of growth hormone (GH)-releasing hormone (GRH) and GRH receptor in various rat tissues,” Endocr 136, 4147–4150.CrossRefGoogle ScholarPubMed
Matthes, H. W., Maldonado, R., Simonin, F., Valverde, O., Slowe, S., Kitchen, I.et al. (1996). “Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene,” Nature 383, 819–823.CrossRefGoogle ScholarPubMed
McCall, C. and Singer, T. (2012). “The animal and human neuroendocrinology of social cognition, motivation and behavior,” Nat Neurosci 15, 681–688.CrossRefGoogle ScholarPubMed
McCann, S. M. (1991). “Neuroregulatory peptides” in Motta, M. (ed.), Brain Endocrinology, nd edn. (New York: Raven Press), pp. 1–30.Google Scholar
McClean, P. L., Parthsarathy, V., Faivre, E. and Holscher, C. (2011). “The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer's disease,” J Neurosci 31, 6587–6594.CrossRefGoogle Scholar
Meethal, S. V., Smith, M. A., Bowen, R. L. and Atwood, C. S. (2005). “The gonadotropin connection in Alzheimer's disease,” Endocrine 26, 317–326.CrossRefGoogle ScholarPubMed
Mengod, G., Rigo, M., Savasta, M., Probst, A. and Palacios, J. M. (1992). “Regional distribution of neuropeptide somatostatin gene expression in the human brain,” Synapse 12, 62–74.CrossRefGoogle ScholarPubMed
Merighi, A. (2002). “Costorage and coexistence of neuropeptides in the mammalian CNS,” Prog Neurobiol 66, 161–190.CrossRefGoogle ScholarPubMed
Messager, S., Chatzidaki, E. E., Ma, D., Hendrick, A. G., Zahn, D., Dixon, J.et al. (2005). “Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54,” Proc Natl Acad Sci USA 102, 1761–1766.CrossRefGoogle ScholarPubMed
Meston, C. M. and Frohlich, P. F. (2000). “The neurobiology of sexual function,” Arch Gen Psychiatry 57, 1012–1030.CrossRefGoogle ScholarPubMed
Millar, R. P., Roseweir, A. K., Tello, J. A., Anderson, R. A., George, J. T., Morgan, K.et al. (2010). “Kisspeptin antagonists: unraveling the role of kisspeptin in reproductive physiology,” Brain Res 1364, 81–89.CrossRefGoogle ScholarPubMed
Miller, G. (2012). “The promise and perils of oxytocin,” Science 339, 267–269.Google Scholar
Moran, T. H. and Dailey, M. J. (2009). “Minireview: gut peptides: targets for antiobesity drug development?”Endocr 150, 2526–2530.CrossRefGoogle Scholar
Morton, G. J., Cummings, D. E., Baskin, D. G., Barsh, G. S. and Schwartz, M. W. (2006). “Central nervous system control of food intake and body weight,” Nature 443, 289–295.CrossRefGoogle ScholarPubMed
Mountjoy, K. G. (2010). “Distribution and function of melanocortin receptors within the brain,” Adv Exp Med Biol 681, 29–48.Google Scholar
Müller, E. E. and Nistico, G. (1989). Brain Messengers and the Pituitary (San Diego, CA: Academic Press).Google Scholar
Munzberg, H. and Myers, M. G. Jr. (2005). “Molecular and anatomical determinants of central leptin resistance,” Nat Neurosci 8, 566–570.CrossRefGoogle ScholarPubMed
Murphy, A. E. and Harvey, S. (2002). “Extrapituitary TSH in early chick embryos: pit-1 dependence?”J Mol Neurosci 18, 77–87.CrossRefGoogle Scholar
Murphy, K. G. and Bloom, S. R. (2006). “Gut hormones and the regulation of energy homeostasis,” Nature 444, 854–859.CrossRefGoogle ScholarPubMed
Naef, L. and Woodside, B. (2007). “Prolactin/leptin interactions in the control of food intake in rats,” Endocr 148, 5977–5983.CrossRefGoogle ScholarPubMed
Nathan, P. J. and Bullmore, E. T. (2009). “From taste hedonics to motivational drive: central mu-opioid receptors and binge-eating behaviour,” Int J Neuropsychopharmacol 12, 995–1008.CrossRefGoogle ScholarPubMed
Navarro, V. M., Castellano, J. M., Fernandez-Fernandez, R., Tovar, S., Roa, J., Mayen, A.et al. (2005). “Characterization of the potent luteinizing hormone-releasing activity of Kiss-1 peptide, the natural ligand of GPR54,” Endocr 146, 156–163.Google ScholarPubMed
Neary, N. M., Small, C. J., Druce, M. R., Park, A. J., Ellis, S. M., Semjonous, N. M.et al. (2005). “Peptide YY3–36 and glucagon-like peptide-17–36 inhibit food intake additively,” Endocr 146, 5120–5127.CrossRefGoogle ScholarPubMed
Neumann, I. D. (2008). “Brain oxytocin: a key regulator of emotional and social behaviours in both females and males,” J Neuroendocrinol 20, 858–865.CrossRefGoogle ScholarPubMed
Neumann, I. D. and Landgraf, R. (2012). “Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors,” Trends Neurosci 35, 649–659.CrossRefGoogle ScholarPubMed
Nishijima, I., Yamagata, T., Spencer, C. M., Weeber, E. J., Alekseyenko, O., Sweatt, J. D.et al. (2006). “Secretin receptor-deficient mice exhibit impaired synaptic plasticity and social behavior,” Hum Mol Genet 15, 3241–3250.CrossRefGoogle ScholarPubMed
Noble, F., Wank, S. A., Crawley, J. N., Bradwejn, J., Seroogy, K. B., Hamon, M.et al. (1999). “International Union of Pharmacology. XXI. Structure, distribution, and functions of cholecystokinin receptors,” Pharmacol Rev 51, 745–781.Google ScholarPubMed
Nussey, S. S. and Whitehead, S. A. (2001). Endocrinology: An Integrated Approach (Oxford: Bios Scientific Publishers), www.ncbi.nlm.nih.gov/books/NBK20.CrossRefGoogle Scholar
O'Dowd, B. F., Lee, D. K., Huang, W., Nguyen, T., Cheng, R., Liu, Y.et al. (2000). “TRH-R2 exhibits similar binding and acute signaling but distinct regulation and anatomic distribution compared with TRH-R1,” Mol Endocrinol 14, 183–193.CrossRefGoogle ScholarPubMed
Oakley, A. E., Clifton, D. K. and Steiner, R. A. (2009). “Kisspeptin signaling in the brain,” Endocr Rev 30, 713–743.CrossRefGoogle Scholar
Ottenweller, J. E. and Hedge, G. A. (1982). “Thyrotropin-like immunoreactivity in the pituitary and three brain regions of the female rat: diurnal variations and the effect of thyroidectomy,” Endocr 111, 515–521.CrossRefGoogle ScholarPubMed
Ottlecz, A. (1987). “Action of gastrointestinal polypeptide hormones on pituitary anterior lobe function,” Front Horm Res 15, 282–298.Google Scholar
Painsipp, E., Herzog, H., Sperk, G. and Holzer, P. (2011). “Sex-dependent control of murine emotional-affective behaviour in health and colitis by peptide YY and neuropeptide Y,” Br J Pharmacol 163, 1302–1314.CrossRefGoogle ScholarPubMed
Pandolfi, M., Pozzi, A. G., Canepa, M., Vissio, P. G., Shimizu, A., Maggese, M. C.et al. (2009). “Presence of beta-follicle-stimulating hormone and beta-luteinizing hormone transcripts in the brain of Cichlasoma dimerus (Perciformes: Cichlidae): effect of brain-derived gonadotropins on pituitary hormone release,” Neuroendocrinology 89, 27–37.CrossRefGoogle ScholarPubMed
Paxinos, G., Chai, S. Y., Christopoulos, G., Huang, X. F., Toga, A. W., Wang, H. Q.et al. (2004). “In vitro autoradiographic localization of calcitonin and amylin binding sites in monkey brain,” J Chem Neuroanat 27, 217–236.CrossRefGoogle ScholarPubMed
Paz-Filho, G., Wong, M. L. and Licinio, J. (2011). “Ten years of leptin replacement therapy,” Obes Rev 12, e315–e323.CrossRefGoogle ScholarPubMed
Pecina, S. and Smith, K. S. (2010). “Hedonic and motivational roles of opioids in food reward: implications for overeating disorders,” Pharmacol Biochem Behav 97, 34–46.CrossRefGoogle ScholarPubMed
Pfaff, D. W., Rapin, I. and Goldman, S. (2011). “Male predominance in autism: neuroendocrine influences on arousal and social anxiety,” Autism Res 4, 163–176.CrossRefGoogle ScholarPubMed
Pfluger, P. T., Castaneda, T. R., Heppner, K. M., Strassburg, S., Kruthaupt, T., Chaudhary, N.et al. (2011). “Ghrelin, peptide YY and their hypothalamic targets differentially regulate spontaneous physical activity,”Physiol Behav 105, 52–61.CrossRefGoogle Scholar
Pineda, R., Garcia-Galiano, D., Roseweir, A., Romero, M., Sanchez-Garrido, M. A., Ruiz-Pino, F.et al. (2010). “Critical roles of kisspeptins in female puberty and preovulatory gonadotropin surges as revealed by a novel antagonist,” Endocr 151, 722–730.CrossRefGoogle ScholarPubMed
Pocai, A. (2012). “Unraveling oxyntomodulin, GLP-1's enigmatic brother,” J Endocrinol 215, 335–346.CrossRefGoogle Scholar
Priestley, J. V., Rethelyi, M. and Lund, P. K. (1991). “Semi-quantitative analysis of somatostatin mRNA distribution in the rat central nervous system using in situ hybridization,” J Chem Neuroanat 4, 131–153.CrossRefGoogle ScholarPubMed
Pritchard, L. E., Oliver, R. L., McLoughlin, J. D., Birtles, S., Lawrence, C. B., Turnbull, A. V.et al. (2003). “Proopiomelanocortin-derived peptides in rat cerebrospinal fluid and hypothalamic extracts: evidence that secretion is regulated with respect to energy balance,” Endocr 144, 760–766.CrossRefGoogle ScholarPubMed
Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A.-S., McNamara, J. O.et al. (2008). Neuroscience, th edn. (Sunderland: Sinauer Associates).Google Scholar
Raffin-Sanson, M. L., de Keyzer, Y. and Bertagna, X. (2003). “Proopiomelanocortin, a polypeptide precursor with multiple functions: from physiology to pathological conditions,” Eur J Endocrinol 149, 79–90.CrossRefGoogle ScholarPubMed
Rao, S. C., Li, X., Rao Ch, V. and Magnuson, D. S. (2003). “Human chorionic gonadotropin/luteinizing hormone receptor expression in the adult rat spinal cord,” Neurosci Lett 336, 135–138.CrossRefGoogle ScholarPubMed
Ravussin, E., Smith, S. R., Mitchell, J. A., Shringarpure, R., Shan, K., Maier, H.et al. (2009). “Enhanced weight loss with pramlintide/metreleptin: an integrated neurohormonal approach to obesity pharmacotherapy,” Obesity (Silver Spring) 17, 1736–1743.CrossRefGoogle ScholarPubMed
Raymond, N. C., Grant, J. E. and Coleman, E. (2010). “Augmentation with naltrexone to treat compulsive sexual behavior: a case series,” Ann Clin Psychiatry 22, 56–62.Google ScholarPubMed
Richard, D., Lin, Q. and Timofeeva, E. (2002). “The corticotropin-releasing factor family of peptides and CRF receptors: their roles in the regulation of energy balance,” Eur J Pharmacol 440, 189–197.CrossRefGoogle ScholarPubMed
Roa, J., Aguilar, E., Dieguez, C., Pinilla, L. and Tena-Sempere, M. (2008). “New frontiers in kisspeptin/GPR54 physiology as fundamental gatekeepers of reproductive function,” Front Neuroendocr 29, 48–69.CrossRefGoogle ScholarPubMed
Rood, B. D. and De Vries, G. J. (2011). “Vasopressin innervation of the mouse (Mus musculus) brain and spinal cord,” J Comp Neurol 519, 2434–2474.CrossRefGoogle ScholarPubMed
Roselli, C. E., Bocklandt, S., Stadelman, H. L., Wadsworth, T., Vilain, E. and Stormshak, F. (2008). “Prolactin expression in the sheep brain,” Neuroendocrinology 87, 206–215.CrossRefGoogle ScholarPubMed
Rotzinger, S., Lovejoy, D. A. and Tan, L. A. (2010). “Behavioral effects of neuropeptides in rodent models of depression and anxiety,” Peptides 31, 736–756.CrossRefGoogle ScholarPubMed
Ryback, R. S. (2004). “Naltrexone in the treatment of adolescent sexual offenders,” J Clin Psychiatry 65, 982–986.CrossRefGoogle ScholarPubMed
Ryckmans, T. (2010). “Modulation of the vasopressin system for the treatment of CNS diseases,” Curr Opin Drug Discov Devel 13, 538–547.Google ScholarPubMed
Satoh, T., Feng, P., Kim, U. J. and Wilber, J. F. (1993). “Identification of thyrotropin-releasing hormone receptor messenger RNA in the rat central nervous system and eye,” Brain Res Mol Brain Res 19, 175–178.CrossRefGoogle Scholar
Sauriyal, D. S., Jaggi, A. S. and Singh, N. (2011). “Extending pharmacological spectrum of opioids beyond analgesia: multifunctional aspects in different pathophysiological states,” Neuropeptides 45, 175–188.CrossRefGoogle ScholarPubMed
Sauve, D. and Woodside, B. (2000). “Neuroanatomical specificity of prolactin-induced hyperphagia in virgin female rats,” Brain Res 868, 306–314.CrossRefGoogle ScholarPubMed
Schaad, N. C., Schorderet, M. and Magistretti, P. J. (1989). “Accumulation of cyclic AMP elicited by vasoactive intestinal peptide is potentiated by noradrenaline, histamine, adenosine, baclofen, phorbol esters, and ouabain in mouse cerebral cortical slices: studies on the role of arachidonic acid metabolites and protein kinase C,” J Neurochem 53, 1941–1951.CrossRefGoogle ScholarPubMed
Schang, A. L., Counis, R., Magre, S., Bleux, C., Granger, A., Ngo-Muller, V.et al. (2011). “Reporter transgenic mouse models highlight the dual endocrine and neural facet of GnRH receptor function,” Ann NY Acad Sci 1220, 16–22.CrossRefGoogle ScholarPubMed
Schechter, R. and Abboud, M. (2001). “Neuronal synthesized insulin roles on neural differentiation within fetal rat neuron cell cultures,” Brain Res Dev Brain Res 127, 41–49.CrossRefGoogle ScholarPubMed
Schiml, P. A. and Rissman, E. F. (2000). “Effects of gonadotropin-releasing hormones, corticotropin-releasing hormone, and vasopressin on female sexual behavior,” Horm Behav 37, 212–220.CrossRefGoogle ScholarPubMed
Schindler, M., Humphrey, P. P. and Emson, P. C. (1996). “Somatostatin receptors in the central nervous system,” Prog Neurobiol 50, 9–47.CrossRefGoogle ScholarPubMed
Schorscher-Petcu, A., Dupre, A. and Tribollet, E. (2009). “Distribution of vasopressin and oxytocin binding sites in the brain and upper spinal cord of the common marmoset,” Neurosci Lett 461, 217–222.CrossRefGoogle ScholarPubMed
Schulingkamp, R. J., Pagano, T. C., Hung, D. and Raffa, R. B. (2000). “Insulin receptors and insulin action in the brain: review and clinical implications,” Neurosci Biobehav Rev 24, 855–872.CrossRefGoogle ScholarPubMed
Schulz, C., Paulus, K., Lobmann, R., Dallman, M. and Lehnert, H. (2010). “Endogenous ACTH, not only alpha-melanocyte-stimulating hormone, reduces food intake mediated by hypothalamic mechanisms,” Am J Physiol Endocrinol Metab 298, E237–E244.CrossRefGoogle Scholar
Schwartz, M. W. and Morton, G. J. (2002). “Obesity: keeping hunger at bay,” Nature 418, 595–597.CrossRefGoogle ScholarPubMed
Scott, M. M., Lachey, J. L., Sternson, S. M., Lee, C. E., Elias, C. F., Friedman, J. M.et al. (2009). “Leptin targets in the mouse brain,” J Comp Neurol 514, 518–532.CrossRefGoogle ScholarPubMed
Seminara, S. B. and Crowley, W. F. Jr. (2008). “Kisspeptin and GPR54: discovery of a novel pathway in reproduction,” J Neuroendocrinol 20, 727–731.CrossRefGoogle ScholarPubMed
Shioda, S., Yada, T., Muroya, S., Uramura, S., Nakajo, S., Ohtaki, H.et al. “Functional significance of colocalization of PACAP and catecholamine in nerve terminals,” Ann NY Acad Sci 921, 211–217.
Sibilia, V., Lattuada, N., Rapetti, D., Pagani, F., Vincenza, D., Bulgarelli, I.et al. (2006). “Ghrelin inhibits inflammatory pain in rats: involvement of the opioid system,” Neuropharmacol 51, 497–505.CrossRefGoogle ScholarPubMed
Simpson, K. A. and Bloom, S. R. (2010). “Appetite and hedonism: gut hormones and the brain,” Endocrinol Metab Clin North Am 39, 729–743.CrossRefGoogle Scholar
Skinner, D. C., Albertson, A. J., Navratil, A., Smith, A., Mignot, M., Talbott, H.et al. (2009). “Effects of gonadotrophin-releasing hormone outside the hypothalamic-pituitary-reproductive axis,” J Neuroendocrinol 21, 282–292.CrossRefGoogle ScholarPubMed
Slattery, D. A. and Neumann, I. D. (2008). “No stress please! Mechanisms of stress hyporesponsiveness of the maternal brain,” J Physiol 586, 377–385.CrossRefGoogle ScholarPubMed
Spergel, D. J., Kruth, U., Shimshek, D. R., Sprengel, R. and Seeburg, P. H. (2001). “Using reporter genes to label selected neuronal populations in transgenic mice for gene promoter, anatomical, and physiological studies,” Prog Neurobiol 63, 673–686.CrossRefGoogle ScholarPubMed
Steckler, T. (2010). “Developing small molecule nonpeptidergic drugs for the treatment of anxiety disorders: is the challenge still ahead?”Curr Top Behav Neurosci 2, 415–428.Google Scholar
Steen, E., Terry, B. M., Rivera, E. J., Cannon, J. L., Neely, T. R., Tavares, R.et al. (2005). “Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease – is this type 3 diabetes?”J Alzheimers Dis 7, 63–80.CrossRefGoogle Scholar
Steiger, A., Dresler, M., Schussler, P. and Kluge, M. (2011). “Ghrelin in mental health, sleep, memory,” Mol Cell Endocrinol 340, 88–96.CrossRefGoogle ScholarPubMed
Steinert, R. E., Poller, B., Castelli, M. C., Drewe, J. and Beglinger, C. (2010). “Oral administration of glucagon-like peptide 1 or peptide YY 3–36 affects food intake in healthy male subjects,” Am J Clin Nutr 92, 810–817.CrossRefGoogle ScholarPubMed
Steinert, R. E., Meyer-Gerspach, A. C. and Beglinger, C. (2012). “The role of the stomach in the control of appetite and the secretion of satiation peptides,” Am J Physiol 302, E666–E673.Google ScholarPubMed
Stella, N. and Magistretti, P. J. (1996). “Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) potentiate the glutamate-evoked release of arachidonic acid from mouse cortical neurons. Evidence for a cAMP-independent mechanism,” J Biol Chem 271, 23705–23710.CrossRefGoogle ScholarPubMed
Stockhorst, U., de Fries, D., Steingrueber, H. J. and Scherbaum, W. A. (2004). “Insulin and the CNS: effects on food intake, memory, and endocrine parameters and the role of intranasal insulin administration in humans,” Physiol Behav 83, 47–54.CrossRefGoogle ScholarPubMed
Suter, K. J., Song, W. J., Sampson, T. L., Wuarin, J. P., Saunders, J. T., Dudek, F. E.et al. (2000a). “Genetic targeting of green fluorescent protein to gonadotropin-releasing hormone neurons: characterization of whole-cell electrophysiological properties and morphology,” Endocr 141, 412–419.CrossRefGoogle ScholarPubMed
Suter, K. J., Wuarin, J. P., Smith, B. N., Dudek, F. E. and Moenter, S. M. (2000b). “Whole-cell recordings from preoptic/hypothalamic slices reveal burst firing in gonadotropin-releasing hormone neurons identified with green fluorescent protein in transgenic mice,” Endocr 141, 3731–3736.CrossRefGoogle ScholarPubMed
Suzuki, K., Simpson, K. A., Minnion, J. S., Shillito, J. C. and Bloom, S. R. (2010). “The role of gut hormones and the hypothalamus in appetite regulation,” Endocr J 57, 359–372.CrossRefGoogle ScholarPubMed
Szentirmai, E., Yasuda, T., Taishi, P., Wang, M., Churchill, L., Bohnet, S.et al. (2007). “Growth hormone-releasing hormone: cerebral cortical sleep-related EEG actions and expression,” Am J Physiol Regul Integr Comp Physiol 293, R922–R930.CrossRefGoogle ScholarPubMed
Tauchi, M., Zhang, R., D'Alessio, D. A., Stern, J. E. and Herman, J. P. (2008). “Distribution of glucagon-like peptide-1 immunoreactivity in the hypothalamic paraventricular and supraoptic nuclei,” J Chem Neuroanat 36, 144–149.CrossRefGoogle ScholarPubMed
Telegdy, G., Adamik, A., Tanaka, M. and Schally, A. V. (2010). “Effects of the LHRH antagonist Cetrorelix on affective and cognitive functions in rats,” Regul Pept 159, 142–147.CrossRefGoogle ScholarPubMed
Tong, J. and Sandoval, D. A. (2011). “Is the GLP-1 system a viable therapeutic target for weight reduction?”Rev Endocr Metab Disord 12, 187–195.CrossRefGoogle Scholar
Torner, L., Maloumby, R., Nava, G., Aranda, J., Clapp, C. and Neumann, I. D. (2004). “In vivo release and gene upregulation of brain prolactin in response to physiological stimuli,” Eur J Neurosci 19, 1601–1608.CrossRefGoogle ScholarPubMed
Torner, L., Nava, G., Duenas, Z., Corbacho, A., Mejia, S., Lopez, F.et al. (1999). “Changes in the expression of neurohypophyseal prolactins during the estrous cycle and after estrogen treatment,” J Endocrinol 161, 423–432.CrossRefGoogle ScholarPubMed
Torner, L., Toschi, N., Nava, G., Clapp, C. and Neumann, I. D. (2002). “Increased hypothalamic expression of prolactin in lactation: involvement in behavioural and neuroendocrine stress responses,” Eur J Neurosci 15, 1381–1389.CrossRefGoogle ScholarPubMed
Torrealba, F. and Carrasco, M. A. (2004). “A review on electron microscopy and neurotransmitter systems,” Brain Res Rev 47, 5–17.CrossRefGoogle ScholarPubMed
Trapp, S. and Hisadome, K. (2011). “Glucagon-like peptide 1 and the brain: central actions-central sources?”Auton Neurosci 161, 14–19.CrossRefGoogle Scholar
Ueta, Y., Fujihara, H., Dayanithi, G., Kawata, M. and Murphy, D. (2008). “Specific expression of optically active reporter gene in arginine vasopressin-secreting neurosecretory cells in the hypothalamic-neurohypophyseal system,” J Neuroendocrinol 20, 660–664.CrossRefGoogle ScholarPubMed
Vaccarino, F. J., Sovran, P., Baird, J. P. and Ralph, M. R. (1995). “Growth hormone-releasing hormone mediates feeding-specific feedback to the suprachiasmatic circadian clock,” Peptides 16, 595–598.CrossRefGoogle ScholarPubMed
Van Bloemendaal, L., ten Kulve, J. S., la Fleur, S. E., Ijzerman, R. G. and Diamant, M. (2014). “Effects of glucagon-like peptide 1 on appetite and body weight: focus on the CNS,” J Endocrinol 221, T1–T16.CrossRefGoogle ScholarPubMed
Van Pett, K., Viau, V., Bittencourt, J. C., Chan, R. K., Li, H. Y., Arias, C.et al. (2000). “Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse,” J Comp Neurol 428, 191–212.3.0.CO;2-U>CrossRefGoogle Scholar
Viollet, C., Lepousez, G., Loudes, C., Videau, C., Simon, A. and Epelbaum, J. (2008). “Somatostatinergic systems in brain: networks and functions,” Mol Cell Endocrinol 286, 75–87.CrossRefGoogle ScholarPubMed
Volkow, N. D. and Wise, R. A. (2005). “How can drug addiction help us understand obesity?”Nat Neurosci 8, 555–560.CrossRefGoogle Scholar
Vuong, C., Van Uum, S. H., O'Dell, L. E., Lutfy, K. and Friedman, T. C. (2010). “The effects of opioids and opioid analogs on animal and human endocrine systems,” Endocr Rev 31, 98–132.CrossRefGoogle ScholarPubMed
Weigle, D. S., Duell, P. B., Connor, W. E., Steiner, R. A., Soules, M. R. and Kuijper, J. L. (1997). “Effect of fasting, refeeding, and dietary fat restriction on plasma leptin levels,” J Clin Endocrinol Metab 82, 561–565.Google ScholarPubMed
Wen, S., Gotze, I. N., Mai, O., Schauer, C., Leinders-Zufall, T. and Boehm, U. (2011). “Genetic identification of GnRH receptor neurons: a new model for studying neural circuits underlying reproductive physiology in the mouse brain,” Endocr 152, 1515–1526.CrossRefGoogle ScholarPubMed
White, C. M., Ji, S., Cai, H., Maudsley, S. and Martin, B. (2010). “Therapeutic potential of vasoactive intestinal peptide and its receptors in neurological disorders,” CNS Neurol Disord Drug Targets 9, 661–666.CrossRefGoogle ScholarPubMed
Wisse, B. E., Campfield, L. A., Marliss, E. B., Morais, J. A., Tenenbaum, R. and Gougeon, R. (1999). “Effect of prolonged moderate and severe energy restriction and refeeding on plasma leptin concentrations in obese women,” Am J Clin Nutr 70, 321–330.CrossRefGoogle ScholarPubMed
Wu, L. G. and Saggau, P. (1997). “Presynaptic inhibition of elicited neurotransmitter release,” Trends Neurosci 20, 204–212.CrossRefGoogle ScholarPubMed
Wu, M., Dumalska, I., Morozova, E., van den Pol, A. N. and Alreja, M. (2009). “Gonadotropin inhibitory hormone inhibits basal forebrain vGluT2-gonadotropin-releasing hormone neurons via a direct postsynaptic mechanism,” J Physiol 587, 1401–1411.CrossRefGoogle Scholar
Yang, S. Y., Cho, S. C., Yoo, H. J., Cho, I. H., Park, M., Yoe, J.et al. (2010). “Family-based association study of microsatellites in the 5’ flanking region of AVPR1A with autism spectrum disorder in the Korean population,” Psychiatry Res 178, 199–201.CrossRefGoogle ScholarPubMed
Yamasue, H., Yee, J. R., Hurlemann, R., Rilling, J. K., Chen, F. S., Meyer-Lindenberg, A.et al. (2012). “Integrative approaches utilizing oxytocin to enhance prosocial behavior: from animal and human social behavior to autistic social dysfunction,” J Neurosci 32, 14109–14117.CrossRefGoogle ScholarPubMed
Yarbrough, G. G., Kamath, J., Winokur, A. and Prange, A. J. Jr. (2007). “Thyrotropin-releasing hormone (TRH) in the neuroaxis: therapeutic effects reflect physiological functions and molecular actions,” Med Hypotheses 69, 1249–1256.CrossRefGoogle ScholarPubMed
Yi, C. X., Challet, E., Pevet, P., Kalsbeek, A., Escobar, C. and Buijs, R. M. (2008). “A circulating ghrelin mimetic attenuates light-induced phase delay of mice and light-induced Fos expression in the suprachiasmatic nucleus of rats,” Eur J Neurosci 27, 1965–1972.CrossRefGoogle ScholarPubMed
Yirmiya, N., Rosenberg, C., Levi, S., Salomon, S., Shulman, C., Nemanov, L. et al. (2006). “Association between the arginine vasopressin 1a receptor (AVPR1a) gene and autism in a family-based study: mediation by socialization skills,” Mol Psychiatry 11, 488–494.CrossRefGoogle Scholar
Yuan, Y., Lee, L. T., Ng, S. S. and Chow, B. K. (2011). “Extragastrointestinal functions and transcriptional regulation of secretin and secretin receptors,” Ann NY Acad Sci 1220, 23–33.CrossRefGoogle ScholarPubMed
Zaninotto, P., Head, J., Stamatakis, E., Wardle, H. and Mindell, J. (2009). “Trends in obesity among adults in England from 1993 to 2004 by age and social class and projections of prevalence to 2012,” J Epidemiol Community Health 63, 140–146.Google ScholarPubMed
Zeki, S. (2007). “The neurobiology of love,” FEBS Letters 581, 2575–2579.CrossRefGoogle ScholarPubMed
Zhang, C., Roepke, T. A., Kelly, M. J. and Ronnekleiv, O. K. (2008). “Kisspeptin depolarizes gonadotropin-releasing hormone neurons through activation of TRPC-like cationic channels,” J Neurosci 28, 4423–4434.CrossRefGoogle ScholarPubMed
Zhao, W. Q., Chen, H., Quon, M. J. and Alkon, D. L. (2004). “Insulin and the insulin receptor in experimental models of learning and memory,” Eur J Pharmacol 490, 71–81.CrossRefGoogle ScholarPubMed
Ziauddeen, H., Chamberlain, S. R., Nathan, P. J., Koch, A., Maltby, K., Bush, M.et al. (2013). “Effects of mu-opioid receptor antagonist GSK1521498 on hedonic and consummatory eating behavior: a proof of mechanism study in binge-eating obese subjects,” Mol Psych 18, 1287–1293.CrossRefGoogle ScholarPubMed
Zoli, M., Jansson, A., Sykova, E., Agnati, L. F. and Fuxe, K. (1999). “Volume transmission in the CNS and its relevance for neuropsychopharmacology,” Trends Pharmacol Sci 20, 142–150.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×