Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-17T18:14:47.423Z Has data issue: false hasContentIssue false

9 - Steroid and thyroid hormone receptors

Published online by Cambridge University Press:  05 June 2015

Michael Wilkinson
Affiliation:
Dalhousie University, Nova Scotia
Richard E. Brown
Affiliation:
Dalhousie University, Nova Scotia
Get access

Summary

In previous chapters, we focused on the neuroendocrine system in terms of a variety of hypothalamic neurotransmitter and hormonal messengers. In Chapter 1, these messengers were seen to act via endocrine, paracrine, autocrine, intracrine and neuroendocrine mechanisms. So far, however, we have not discussed in detail how target cells detect and respond to such messages. Chapter 5 introduced this story by illustrating how neurotransmitters, neurohormones and peptide hormones affect their target cells through receptors localized to the cell membrane. Examples of these receptors are illustrated in Figures 5.2 (ion channel; GABA receptor) and 5.13 (G-protein-coupled receptor) and this type of receptor will be covered in more detail in Chapter 10. The location of receptors on the outside of cells, that is, in the cell membrane, is important for at least two reasons: (1) because peptide hormones are large, water soluble (hydrophilic) molecules which cannot easily pass through the cell membrane; and (2) because cells such as neurons must respond very quickly (seconds) to neurotransmitters like GABA or glutamate that do not have to enter the cell. In marked contrast, steroid hormones (testosterone, estradiol, progesterone, glucocorticoids and mineralocorticoids; Figure 7.3), and thyroid hormones, are small lipophilic (fat soluble) molecules that can readily diffuse through the cell membranes into any cell in the body. As we shall see in this chapter, target cells for steroid and thyroid hormones have receptors that are located inside the cell. These cells therefore respond relatively slowly (minutes to hours) to hormonal stimulation (see Figure 9.1). In brief, the steroid hormone is transported in the blood and released from a binding globulin before freely moving through the cell membrane. Unoccupied steroid hormone receptors (R) are coupled to a molecular chaperone (HSP90; heat shock protein 90) that stabilizes R in the correct shape. When the hormone binds to the receptor-HSP complex, the HSP dissociates and the remaining steroid hormone-receptor complex dimerizes before it enters the cell nucleus. The steroid-R dimer complex then binds to responsive genes via specific hormone response elements (HRE).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alkemade, A., Vuijst, C. L., Unmehopa, U. A., Bakker, O., Vennstrom, B., Wiersinga, W. M.et al. (2005). “Thyroid hormone receptor expression in the human hypothalamus and anterior pituitary,” J Clin Endocrinol Metab 90, 904–912.CrossRefGoogle ScholarPubMed
Amtul, Z., Wang, L., Westaway, D. and Rozmahel, R. F. (2010). “Neuroprotective mechanism conferred by 17beta-estradiol on the biochemical basis of Alzheimer's disease,” Neurosci 169, 781–786.CrossRefGoogle ScholarPubMed
Andersson, A.-M., Frederiksen, H., Grigor, K. M., Toppari, J. and Skakkebaek, N. E. (2014). “Special issue on the impact of endocrine disrupters on reproductive health,” Reprod 147, E1.CrossRefGoogle ScholarPubMed
Arbogast, L. A. (2008). “Estrogen genomic and membrane actions at an intersection,” Trends Endocrinol Metab 19, 1–2.CrossRefGoogle ScholarPubMed
Asarian, L. and Geary, N. (2006). “Modulation of appetite by gonadal steroid hormones,” Phil Trans R Soc B 361, 1251–1263.CrossRefGoogle ScholarPubMed
Auger, A. P., Moffatt, C. A. and Blaustein, J. D. (1997). “Progesterone-independent activation of rat brain progestin receptors by reproductive stimuli,” Endocr 138, 511–514.CrossRefGoogle ScholarPubMed
Baulieu, E. E., Robel, P. and Schumacher, M. (2001). “Neurosteroids: beginning of the story,” Int Rev Neurobiol 46, 1–32.Google ScholarPubMed
Beatty, W. W. (1979). “Gonadal hormones and sex differences in nonreproductive behaviors in rodents: organizational activational influences,” Horm Behav 12, 112–163.CrossRefGoogle ScholarPubMed
Behl, C. (2002). “Oestrogen as a neuroprotective hormone,” Nat Rev Neurosci 3, 433–442.CrossRefGoogle ScholarPubMed
Belelli, D., Herd, M. B., Mitchell, E. A., Peden, D. R., Vardy, A. W., Gentet, L.et al. (2006). “Neuroactive steroids and inhibitory neurotransmission: mechanisms of action and physiological relevance,” Neurosci 138, 821–829.CrossRefGoogle ScholarPubMed
Blaustein, J. D. (2008a). “Progesterone and progestin receptors in the brain: the neglected ones,” Endocr 149, 2737–2738.CrossRefGoogle ScholarPubMed
Blaustein, J. D. (2008b). “Neuroendocrine regulation of feminine sexual behavior: lessons from rodent models and thoughts about humans,” Ann Rev Psychol 59, 93–118.CrossRefGoogle ScholarPubMed
Boon, W. C., Chow, J. D. and Simpson, E. R. (2010). “The multiple roles of estrogens and the enzyme aromatase,” Prog Brain Res 181, 209–232.Google ScholarPubMed
Boron, W. F. and Boulpaep, E. L. (2005). Medical Physiology, updated edn. (Philadelphia, PA: Elsevier Saunders).Google Scholar
Bos, P. A., Panksepp, J., Bluthe, R. M. and van Honk, J. (2012). “Acute effects of steroid hormones and neuropeptides on human social-emotional behavior: a review of single administration studies,” Front Neuroendocr 33, 17–35.CrossRefGoogle ScholarPubMed
Brinkman, A. O. (2009). “Androgen physiology: receptor and metabolic disorders” in Endocrinology of Male Reproduction (South Dartmouth: Endotext.org).Google Scholar
Brinton, R. D., Thompson, R. F., Foy, M. R., Baudry, M., Wang, J., Finch, C. E.et al. (2008). “Progesterone receptors: form and function in brain,” Front Neuroendocr 29, 313–339.CrossRefGoogle ScholarPubMed
Cahill, L. (2014). “Fundamental sex differences in human brain architecture,” Proc Natl Acad Sci USA 111, 577–578.CrossRefGoogle ScholarPubMed
Camacho-Arroyo, I., Guerra-Araiza, C. and Cerbon, M. A. (1998). “Progesterone receptor isoforms are differentially regulated by sex steroids in the rat forebrain,” Neuroreport 9, 3993–3996.CrossRefGoogle ScholarPubMed
Clegg, D. J. (2012). “Minireview: the year in review of estrogen regulation of metabolism,” Mol Endocr 26, 1957–1960.CrossRefGoogle ScholarPubMed
Conway-Campbell, B. L., Sarabdjitsingh, R. A., McKenna, M. A., Pooley, J. R., Kershaw, Y. M., Meijer, O. C.et al. (2010). “Glucocorticoid ultradian rhythmicity directs cyclical gene pulsing of the clock gene period 1 in rat hippocampus,” J Neuroendocrinol 22, 1093–1100.CrossRefGoogle ScholarPubMed
Couse, J. F. and Korach, K. S. (2001). “Contrasting phenotypes in reproductive tissues of female estrogen receptor null mice,” Ann NY Acad Sci 948, 1–8.Google ScholarPubMed
Dayan, C. M. and Panicker, V. (2009). “Novel insights into thyroid hormones from the study of common genetic variation,” Nat Rev Endocr 5, 211–218.Google Scholar
de Kloet, E. R. (2008). “About stress hormones and resilience to psychopathology,” J Neuroendocrinol 20, 885–892.CrossRefGoogle ScholarPubMed
de Kloet, E. R., Joels, M. and Holsboer, F. (2005). “Stress and the brain: from adaptation to disease,” Nat Rev Neurosci 6, 463–475.CrossRefGoogle ScholarPubMed
de Kloet, E. R., Karst, H. and Joels, M. (2008). “Corticosteroid hormones in the central stress response: quick-and-slow,” Front Neuroendocr 29, 268–272.CrossRefGoogle ScholarPubMed
Dudas, B. and Merchenthaler, I. (2006). “Three-dimensional representation of the neurotransmitter systems of the human hypothalamus: inputs of the gonadotrophin hormone-releasing hormone neuronal system,” J Neuroendocrinol 18, 79–95.CrossRefGoogle ScholarPubMed
Dufourny, L., Caraty, A., Clarke, I. J., Robinson, J. E. and Skinner, D. C. (2005). “Progesterone-receptive dopaminergic and neuropeptide Y neurons project from the arcuate nucleus to gonadotropin-releasing hormone-rich regions of the ovine preoptic area,” Neuroendocrinology 82, 21–31.CrossRefGoogle ScholarPubMed
Dunphy, M. P. and Lewis, J. S. (2009). “Radiopharmaceuticals in preclinical and clinical development for monitoring of therapy with PET,” J Nucl Med 50(Suppl. 1), 106S–121S.CrossRefGoogle ScholarPubMed
Ferris, C. F. and Stolberg, T. (2010). “Imaging the immediate non-genomic effects of stress hormone on brain activity,” Psychoneuroendocr 35, 5–14.CrossRefGoogle ScholarPubMed
Fowler, C. D., Liu, Y. and Wang, Z. (2008). “Estrogen and adult neurogenesis in the amygdala and hypothalamus,” Brain Res Rev 57, 342–351.CrossRefGoogle ScholarPubMed
Garcia-Segura, L. M. (2008). “Aromatase in the brain: not just for reproduction anymore,” J Neuroendocrinol 20, 705–712.CrossRefGoogle ScholarPubMed
Gluckman, P. D., Hanson, M. A., Cooper, C. and Thornburg, K. L. (2008). “Effect of in utero and early-life conditions on adult health and disease,” N Engl J Med 359, 61–73.CrossRefGoogle ScholarPubMed
Gonzalez, M., Cabrera-Socorro, A., Perez-Garcia, C. G., Fraser, J. D., Lopez, F. J., Alonso, R.et al. (2007). “Distribution patterns of estrogen receptor alpha and beta in the human cortex and hippocampus during development and adulthood,” J Comp Neurol 503, 790–802.CrossRefGoogle ScholarPubMed
Gore, A. C. and Patisaul, H. B. (2010). “Neuroendocrine disruption: historical roots, current progress, questions for the future,” Front Neuroendocr 31, 395–399.CrossRefGoogle ScholarPubMed
Grant, L. D. and Stumpf, W. E. (1975). Anatomical Neuroendocrinology (Basel: Karger).Google Scholar
Groeneweg, F. L., Karst, H., de Kloet, E. R. and Joels, M. (2011). “Rapid non-genomic effects of corticosteroids and their role in the central stress response,” J Endocrinol 209, 1–15.CrossRefGoogle ScholarPubMed
Gruber, C. J., Tschugguel, W., Schneeberger, C. and Huber, J. C. (2002). “Production and actions of estrogens,” N Engl J Med 346, 340–352.CrossRefGoogle ScholarPubMed
Grüters, A. and Krude, H. (2012). “Detection and treatment of congenital hypothyroidism,” Nat Rev Endocrinol 8, 104–113.CrossRefGoogle Scholar
Harvey, C. B. and Williams, G. R. (2002). “Mechanism of thyroid hormone action,” Thyroid 12, 441–446.CrossRefGoogle ScholarPubMed
Hughes, Z. A., Liu, F., Marquis, K., Muniz, L., Pangalos, M. N., Ring, R. H.et al. (2009). “Estrogen receptor neurobiology and its potential for translation into broad-spectrum therapeutics for CNS disorders,” Curr Mol Pharmacol 2, 215–236.CrossRefGoogle ScholarPubMed
Hull, E. M. and Dominguez, J. M. (2007). “Sexual behavior in male rodents,” Horm Behav 52, 45–55.CrossRefGoogle ScholarPubMed
Ikeda, Y., Nagai, A., Ikeda, M. A. and Hayashi, S. (2003). “Sexually dimorphic and estrogen-dependent expression of estrogen receptor beta in the ventromedial hypothalamus during rat postnatal development,” Endocr 144, 5098–5104.CrossRefGoogle ScholarPubMed
Ingalhalikar, M., Smith, A., Parker, D., Satterthwaite, T. D., Elliot, M. A., Ruperal, K.et al. (2014). “Sex differences in the structural connectome of the human brain,” Proc Natl Acad Sci USA 111, 823–828.CrossRefGoogle ScholarPubMed
Janicki, S. C. and Schupf, N. (2010). “Hormonal influences on cognition and risk for Alzheimer's disease,” Curr Neurol Neurosci Rep 10, 359–366.CrossRefGoogle ScholarPubMed
Joffe, H., Petrillo, L. F., Koukopoulos, A., Viguera, A. C., Hirschberg, A., Nonacs, R.et al. (2011). “Increased estradiol and improved sleep, but not hot flashes, predict enhanced mood during the menopausal transition,”J Clin Endocr Metab 96, E1044–E1054.CrossRefGoogle Scholar
Karakaya, S., Kipp, M. and Beyer, C. (2007). “Oestrogen regulates the expression and function of dopamine transporters in astrocytes of the nigrostriatal system,” J Neuroendocrinol 19, 682–690.CrossRefGoogle ScholarPubMed
Katzenellenbogen, B. S. and Korach, K. S. (1997). “A new actor in the estrogen receptor drama – enter ER-beta,” Endocr 138, 861–862.CrossRefGoogle ScholarPubMed
Kelly, M. J., Moss, R. L. and Dudley, C. A. (1977). “The effects of microelectrophoretically applied estrogen, cortisol and acetylcholine on medial preoptic-septal unit activity throughout the estrous cycle of the female rat,” Exp Brain Res 30, 53–64.CrossRefGoogle ScholarPubMed
Kruijver, F. P., Balesar, R., Espila, A. M., Unmehopa, U. A. and Swaab, D. F. (2003). “Estrogen-receptor-beta distribution in the human hypothalamus: similarities and differences with ER alpha distribution,” J Comp Neurol 466, 251–277.CrossRefGoogle ScholarPubMed
Kudwa, A. E., Gustafsson, J. A. and Rissman, E. F. (2004). “Estrogen receptor beta modulates estradiol induction of progestin receptor immunoreactivity in male, but not in female, mouse medial preoptic area,” Endocr 145, 4500–4506.CrossRefGoogle Scholar
Lechan, R. M., Qi, Y., Jackson, I. M. and Mahdavi, V. (1994). “Identification of thyroid hormone receptor isoforms in thyrotropin-releasing hormone neurons of the hypothalamic paraventricular nucleus,” Endocr 135, 92–100.CrossRefGoogle ScholarPubMed
LeVay, S. (1991). “A difference in hypothalamic structure between heterosexual and homosexual men,” Science 253, 1034–1037.CrossRefGoogle ScholarPubMed
Levin, E. R. (2009). “Plasma membrane estrogen receptors,” Trends Endocrinol Metab 20, 477–482.CrossRefGoogle ScholarPubMed
Li, M. and Boyages, S. C. (1996). “Detection of extended distribution of beta2-thyroid hormone receptor messenger ribonucleic acid (RNA) in adult rat brain using complementary RNA in situ hybridization histochemistry,” Endocr 137, 1272–1275.CrossRefGoogle ScholarPubMed
Lightman, S. L. (2008). “The neuroendocrinology of stress: a never-ending story,” J Neuroendocrinol 20, 880–884.CrossRefGoogle ScholarPubMed
Liu, A., Margaill, I., Zhang, S., Labombarda, F., Coqueran, B., Delespierre, B.et al. (2012). “Progesterone receptors: a key for neuroprotection in experimental stroke,” Endocr 153, 3747–3757.CrossRefGoogle ScholarPubMed
Lu, J., Goula, D., Sousa, N. and Almeida, O. F. (2003). “Ionotropic and metabotropic glutamate receptor mediation of glucocorticoid-induced apoptosis in hippocampal cells and the neuroprotective role of synaptic N-methyl-D-aspartate receptors,” Neurosci 121, 123–131.CrossRefGoogle ScholarPubMed
Luine, V. N. and Frankfurt, M. (2012). “Estrogens facilitate memory processes through membrane mediated mechanisms and alterations in spine density,” Front Neuroendocr 33, 388–402.CrossRefGoogle Scholar
Mangelsdorf, D. J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K.et al. (1995). “The nuclear receptor superfamily: the second decade,” Cell 83, 835–839.CrossRefGoogle ScholarPubMed
Mani, S. (2008). “Progestin receptor subtypes in the brain: the known and the unknown,” Endocr 149, 2750–2756.CrossRefGoogle ScholarPubMed
Matthews, S. G. (2001). “Antenatal glucocorticoids and the developing brain: mechanisms of action,” Semin Neonatol 6, 309–317.CrossRefGoogle ScholarPubMed
Mauvais-Jarvis, F. (2011). “Estrogen and androgen receptors: regulators of fuel homeostasis and emerging targets for diabetes and obesity,” Trends Endocrinol Metab 22, 24–33.CrossRefGoogle ScholarPubMed
McAbee, M. D. and DonCarlos, L. L. (1998). “Ontogeny of region-specific sex differences in androgen receptor messenger ribonucleic acid expression in the rat forebrain,” Endocr 139, 1738–1745.CrossRefGoogle ScholarPubMed
McCarthy, M. M. (2007). “GABA receptors make teens resistant to input,” Nat Neurosci 10, 397–399.CrossRefGoogle Scholar
McCarthy, M. M. (2010). “How it's made: organisational effects of hormones on the developing brain,” J Neuroendocrinol 22, 736–742.CrossRefGoogle ScholarPubMed
McCarthy, M. M., Wright, C. L. and Schwarz, J. M. (2009). “New tricks by an old dogma: mechanisms of the Organizational/Activational Hypothesis of steroid-mediated sexual differentiation of brain and behavior,” Horm Behav 55, 655–665.CrossRefGoogle ScholarPubMed
McEwen, B. S. (1981). “Neural gonadal steroid action,” Science 211, 1303–1311.CrossRefGoogle Scholar
McEwen, B. S. and Gianaros, P. J. (2011). “Stress- and allostasis-induced brain plasticity,” Annu Rev Med 62, 431–445.CrossRefGoogle ScholarPubMed
McEwen, B. S., Davis, B. G., Parsons, B. and Pfaff, D. W. (1979). “The brain as a target for steroid hormone action,” Ann Rev Neurosci 2, 65–112.CrossRefGoogle ScholarPubMed
McEwen, B. S., de Kloet, E. R. and Rostene, W. (1986). “Adrenal steroid receptors and actions in the nervous system,” Physiol Rev 66, 1121–1188.CrossRefGoogle Scholar
Meis, P. J. and Connors, N. (2004). “Progesterone treatment to prevent preterm birth,” Clin Obstet Gynecol 47, 784–795; discussion 881–782.CrossRefGoogle ScholarPubMed
Melcangi, R. C., Garcia-Segura, L. M. and Mensah-Nyagan, A. G. (2008). “Neuroactive steroids: state of the art and new perspectives,” Cell Mol Life Sci 65, 777–797.CrossRefGoogle ScholarPubMed
Melcangi, R. C. and Panzica, G. C. (2014). “Allopregnanolone: state of the art,” Prog Neurobiol 113, 1–5.CrossRefGoogle ScholarPubMed
Mendelsohn, M. E. and Karas, R. H. (1999). “The protective effects of estrogen on the cardiovascular system,” N Engl J Med 340, 1801–1811.CrossRefGoogle ScholarPubMed
Messent, P. R. (1976). “Female hormones and behavior” in Lloyd, B. and Archer, J. (eds.), Exploring Sex Differences (New York: Academic Press), pp. 185–212.Google Scholar
Micevych, P. and Sinchak, K. (2008). “Estradiol regulation of progesterone synthesis in the brain,” Mol Cell Endocrinol 290, 44–50.CrossRefGoogle Scholar
Micevych, P. E. and Kelly, M. J. (2012). “Membrane estrogen receptor regulation of hypothalamic function,” Neuroendocr 96, 103–110.CrossRefGoogle ScholarPubMed
Morimoto, M., Morita, N., Ozawa, H., Yokoyama, K. and Kawata, M. (1996). “Distribution of glucocorticoid receptor immunoreactivity and mRNA in the rat brain: an immunohistochemical and in situ hybridization study,” Neurosci Res 26, 235–269.CrossRefGoogle ScholarPubMed
Morris, J. A., Jordan, C. L. and Breedlove, S. M. (2004). “Sexual differentiation of the vertebrate nervous system,” Nat Neurosci 7, 1034–1039.CrossRefGoogle ScholarPubMed
Nadal, A. (2012). “Fat from plastics? Linking bisphenol A exposure and obesity,” Nat Rev Endocrinol 9, 9–10.Google ScholarPubMed
Nader, N., Chrousos, G. P. and Kino, T. (2010). “Interactions of the circadian CLOCK system and the HPA axis,” Trends Endocrinol Metab 21, 277–286.CrossRefGoogle ScholarPubMed
Noel, S. D., Keen, K. L., Baumann, D. I., Filardo, E. J. and Terasawa, E. (2009). “Involvement of G protein-coupled receptor 30 (GPR30) in rapid action of estrogen in primate LHRH neurons,” Mol Endocrinol 23, 349–359.CrossRefGoogle ScholarPubMed
Numan, M. (2007). “Motivational systems and the neural circuitry of maternal behavior in the rat,” Dev Psychobiol 49, 12–21.CrossRefGoogle ScholarPubMed
Orikasa, C., Kondo, Y., Hayashi, S., McEwen, B. S. and Sakuma, Y. (2002). “Sexually dimorphic expression of estrogen receptor β in the anteroventral periventricular nucleus of the rat preoptic area: implication in luteinizing hormone surge,” Proc Natl Acad Sci USA 99, 3306–3311.CrossRefGoogle ScholarPubMed
Ozawa, H., Ito, T., Ochiai, I. and Kawata, M. (1999). “Cellular localization and distribution of glucocorticoid receptor immunoreactivity and the expression of glucocorticoid receptor messenger RNA in rat pituitary gland. A combined double immunohistochemistry study and in situ hybridization histochemical analysis,” Cell Tissue Res 295, 207–214.CrossRefGoogle ScholarPubMed
Patisaul, H. B., Whitten, P. L. and Young, L. J. (1999). “Regulation of estrogen receptor beta mRNA in the brain: opposite effects of 17β-estradiol and the phytoestrogen, coumestrol,” Brain Res Mol Brain Res 67, 165–171.CrossRefGoogle ScholarPubMed
Pettersson, K., Grandien, K., Kuiper, G. G. and Gustafsson, J. A. (1997). “Mouse estrogen receptor beta forms estrogen response element-binding heterodimers with estrogen receptor alpha,” Mol Endocrinol 11, 1486–1496.Google ScholarPubMed
Pfaff, D. W. (1989). “Features of a hormone-driven defined neural circuit for a mammalian behavior,” Ann NY Acad Sci 563, 131–147.CrossRefGoogle ScholarPubMed
Pfaff, D. W. (1997). “Hormones, genes, and behavior,” Proc Natl Acad Sci USA 94, 14213–14216.CrossRefGoogle ScholarPubMed
Pfaff, D. W. and Levine, J. E. (2008). “Reconciling molecular neuroendocrine signals and the scientists who study them,” Front Neuroendocr 29, 167–168.CrossRefGoogle Scholar
Pfaff, D. W., Kow, L. M., Loose, M. D. and Flanagan-Cato, L. M. (2008). “Reverse engineering the lordosis behavior circuit,” Horm Behav 54, 347–354.CrossRefGoogle ScholarPubMed
Pfaff, D. W., Waters, E., Khan, Q., Zhang, X. and Numan, M. (2011). “Minireview: estrogen receptor-initiated mechanisms causal to mammalian reproductive behaviors,” Endocr 152, 1209–1217.CrossRefGoogle ScholarPubMed
Pike, C. J., Carroll, J. C., Rosario, E. R. and Barron, A. M. (2009). “Protective actions of sex steroid hormones in Alzheimer's disease,” Front Neuroendocr 30, 239–258.CrossRefGoogle ScholarPubMed
Plant, T. M. (2008). “Hypothalamic control of the pituitary-gonadal axis in higher primates: key advances over the last two decades,” J Neuroendocrinol 20, 719–726.CrossRefGoogle ScholarPubMed
Prossnitz, E. R. and Barton, M. (2011). “The G-protein-coupled estrogen receptor GPER in health and disease,” Nat Rev Endocrinol 7, 715–726.CrossRefGoogle ScholarPubMed
Puymirat, J., Miehe, M., Marchand, R., Sarlieve, L. and Dussault, J. H. (1991). “Immunocytochemical localization of thyroid hormone receptors in the adult rat brain,” Thyroid 1, 173–184.CrossRefGoogle ScholarPubMed
Rahman, F. and Christian, H. C. (2007). “Non-classical actions of testosterone: an update,” Trends Endocrinol Metab 18, 371–378.CrossRefGoogle ScholarPubMed
Rainbow, T. C., McGinnis, M. Y., Davis, P. G. and McEwen, B. S. (1982). “Application of anisomycin to the lateral ventromedial nucleus of the hypothalamus inhibits the activation of sexual behavior by estradiol and progesterone,” Brain Res 233, 417–423.CrossRefGoogle ScholarPubMed
Reynolds, R. M. (2010). “Corticosteroid-mediated programming and the pathogenesis of obesity and diabetes,” J Steroid Biochem Mol Biol 122, 3–9.CrossRefGoogle ScholarPubMed
Roselli, C. E., Liu, M. and Hurn, P. D. (2009). “Brain aromatization: classic roles and new perspectives,” Semin Reprod Med 27, 207–217.CrossRefGoogle ScholarPubMed
Rubinow, D. R. and Schmidt, P. J. (2006). “Gonadal steroid regulation of mood: the lessons of premenstrual syndrome,” Front Neuroendocr 27, 210–216.CrossRefGoogle ScholarPubMed
Rune, G. M. and Frotscher, M. (2005). “Neurosteroid synthesis in the hippocampus: role in synaptic plasticity,” Neurosci 136, 833–842.CrossRefGoogle ScholarPubMed
Sanchez, M. M., Young, L. J., Plotsky, P. M. and Insel, T. R. (2000). “Distribution of corticosteroid receptors in the rhesus brain: relative absence of glucocorticoid receptors in the hippocampal formation,” J Neurosci 20, 4657–4668.CrossRefGoogle ScholarPubMed
Schaafsma, S. M. and Pfaff, D. W. (2014). “Etiologies underlying sex differences in autism spectrum disorders,”Front Neuroendocr 35, 255–271.CrossRefGoogle Scholar
Scott, C. J., Tilbrook, A. J., Simmons, D. M., Rawson, J. A., Chu, S., Fuller, P. J.et al. (2000). “The distribution of cells containing estrogen receptor-alpha (ERalpha) and ERbeta messenger ribonucleic acid in the preoptic area and hypothalamus of the sheep: comparison of males and females,” Endocr 141, 2951–2962.CrossRefGoogle ScholarPubMed
Seckl, J. R., Dickson, K. L., Yates, C. and Fink, G. (1991). “Distribution of glucocorticoid and mineralocorticoid receptor messenger RNA expression in human postmortem hippocampus,” Brain Res 561, 332–337.CrossRefGoogle ScholarPubMed
Shughrue, P. J., Lane, M. V. and Merchenthaler, I. (1997). “Comparative distribution of estrogen receptor-alpha and -beta mRNA in the rat central nervous system,” J Comp Neurol 388, 507–525.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Simerly, R. B. (2002). “Wired for reproduction: organization and development of sexually dimorphic circuits in the mammalian forebrain,” Annu Rev Neurosci 25, 507–536.CrossRefGoogle ScholarPubMed
Simerly, R. B., Carr, A. M., Zee, M. C. and Lorang, D. (1996). “Ovarian steroid regulation of estrogen and progesterone receptor messenger ribonucleic acid in the anteroventral periventricular nucleus of the rat,” J Neuroendocrinol 8, 45–56.CrossRefGoogle ScholarPubMed
Simerly, R. B., Chang, C., Muramatsu, M. and Swanson, L. W. (1990). “Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study,” J Comp Neurol 294, 76–95.CrossRefGoogle Scholar
Simpkins, J. W., Singh, M., Brock, C. and Etgen, A. M. (2012). “Neuroprotection and estrogen receptors,” Neuroendocr 96, 119–130.CrossRefGoogle ScholarPubMed
Sousa, N., Cerqueira, J. J. and Almeida, O. F. (2008). “Corticosteroid receptors and neuroplasticity,” Brain Res Rev 57, 561–570.CrossRefGoogle ScholarPubMed
Spary, E. J., Maqbool, A. and Batten, T. F. (2009). “Oestrogen receptors in the central nervous system and evidence for their role in the control of cardiovascular function,” J Chem Neuroanat 38, 185–196.CrossRefGoogle ScholarPubMed
Stein, D. G. (2008). “Progesterone exerts neuroprotective effects after brain injury,” Brain Res Rev 57, 386–397.CrossRefGoogle ScholarPubMed
Strauss, J. F. and Barbieri, R. L. (2004). Yen and Jaffe's Reproductive Endocrinology, th edn. (Philadelphia, PA: Elsevier Saunders).Google Scholar
Swaab, D. F., Chung, W. C., Kruijver, F. P., Hofman, M. A. and Hestiantoro, A. (2003). “Sex differences in the hypothalamus in the different stages of human life,” Neurobiol Aging 24(Suppl. 1), S1–S16; discussion S17–S19.CrossRefGoogle ScholarPubMed
Taves, M. D., Gomez-Sanchez, C. E. and Soma, K. K. (2011). “Extra-adrenal glucocorticoids and mineralocorticoids: evidence for local synthesis, regulation and function,” Am J Physiol 301, E11–E24.Google ScholarPubMed
Tegethoff, M., Pryce, C. and Meinlschmidt, G. (2009). “Effects of intrauterine exposure to synthetic glucocorticoids on fetal, newborn, and infant hypothalamic-pituitary-adrenal axis function in humans: a systematic review,” Endocr Rev 30, 753–789.CrossRefGoogle ScholarPubMed
Tetel, M. J. and Pfaff, D. W. (2010). “Contributions of estrogen receptor-alpha and estrogen receptor-β to the regulation of behavior,” Biochim Biophys Acta 1800, 1084–1089.Google ScholarPubMed
Thornton, J., Zehr, J. L. and Loose, M. D. (2009). “Effects of prenatal androgens on rhesus monkeys: a model system to explore the organizational hypothesis in primates,” Horm Behav 55, 633–645.CrossRefGoogle ScholarPubMed
Toran-Allerand, C. D. (1980). “Sex steroids and the development of the newborn mouse hypothalamus and preoptic area in vitro. II. Morphological correlates and hormonal specificity,” Brain Res 189, 413–427.CrossRefGoogle ScholarPubMed
Wagner, C. K. (2008). “Progesterone receptors and neural development: a gap between bench and bedside?”Endocr 149, 2743–2749.CrossRefGoogle Scholar
Weigel, N. S. and Moore, N. L. (2007). www.nursa.org/article.cfm?doi=10.1621/nrs.05005.
Williams, T. J., Mitterling, K. L., Thompson, L. I., Torres-Reveron, A., Waters, E. M., McEwen, B. S.et al. (2011). “Age- and hormone-regulation of opioid peptides and synaptic proteins in the rat dorsal hippocampal formation,” Brain Res 1379, 71–85.CrossRefGoogle ScholarPubMed
Wintermantel, T. M., Campbell, R. E., Porteous, R., Bock, D., Grone, H. J., Todman, M. G.et al. (2006). “Definition of estrogen receptor pathway critical for estrogen positive feedback to gonadotropin-releasing hormone neurons and fertility,” Neuron 52, 271–280.CrossRefGoogle ScholarPubMed
Yang, J. H., Li, L. H., Lee, S., Jo, I. H., Lee, S. Y. and Ryu, P. D. (2007). “Effects of adrenalectomy on the excitability of neurosecretory parvocellular neurones in the hypothalamic paraventricular nucleus,” J Neuroendocrinol 19, 293–301.CrossRefGoogle ScholarPubMed
Yau, J. L. and Seckl, J. R. (2012). “Local amplification of glucocorticoids in the aging brain and impaired spatial memory,” Front Aging Neurosci 4, 24.CrossRefGoogle ScholarPubMed
Yu, S., Patchev, A. V., Wu, Y., Lu, J., Holsboer, F., Zhang, J. Z.et al. (2010). “Depletion of the neural precursor cell pool by glucocorticoids,” Ann Neurol 67, 21–30.CrossRefGoogle ScholarPubMed
Zheng, P. (2009). “Neuroactive steroid regulation of neurotransmitter release in the CNS: action, mechanism and possible significance,” Prog Neurobiol 89, 134–152.CrossRefGoogle ScholarPubMed
Zuloaga, D. G., Yahn, S. L., Pang, Y., Quihuis, A. M., Oyola, M. G., Reyna, A.et al. (2012). “Distribution and estrogen regulation of membrane progesterone receptor-β in the female rat brain,” Endocr 153, 4432–4443.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×