Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-17T18:14:07.014Z Has data issue: false hasContentIssue false

13 - Cytokines and the interaction between the neuroendocrine and immune systems

Published online by Cambridge University Press:  05 June 2015

Michael Wilkinson
Affiliation:
Dalhousie University, Nova Scotia
Richard E. Brown
Affiliation:
Dalhousie University, Nova Scotia
Get access

Summary

Cytokines were introduced in Chapter 1 (section 1.4.9) as signaling molecules secreted by cells of the immune system. They are important components of the interconnected neural, endocrine and immune systems (see Figure 1.2). For example, various types of stress, including academic examinations, influence the immune system via an activation of the hypothalamic-pituitary-adrenal axis and the secretion of glucocorticoids (see Figures 6.1 and 6.4). Likewise, an immune response that stimulates white blood cells to produce cytokines, for example following an infection, has effects on the hypothalamic control of various hormones such as ACTH, GH and PRL. Since most immune cells have receptors for these hormones, the immune system is affected directly by pituitary hormones as well as by adrenal output of glucocorticoids or catecholamines (Figure 1.2). The immune system, therefore, via secretion of cytokines, participates in a classic neuroendocrine feedback system. There are also profound sex differences in immune responses and some of this variation is due to the effects of sex steroids, such as testosterone and estradiol. For example, 80 percent of patients with autoimmune diseases (e.g. rheumatoid arthritis; multiple sclerosis) are women; 60 percent of adult asthma cases are women; and men are at least 1.6-fold more likely than women to die from malignant cancers (Klein 2012).

This chapter begins with an overview of those cells of the immune system that secrete cytokines, and then discusses the immune functions of the thymus gland and its hormones. The roles of cytokines in the immune response to antigens (i.e. substances that cause an immune response) and in the development of blood cells are then summarized and the neuromodulatory effects of cytokines on the brain and neuroendocrine system are examined. This is followed by a discussion of the neural and endocrine regulation of the immune system and the hypothalamic integration of neural, endocrine and immune systems.

The cells of the immune system

The immune system consists of many different cell types, including several that secrete cytokines; i.e. monocytes, macrophages, T lymphocytes (T cells), B lymphocytes (B cells) and natural killer (NK) cells (see Figure 13.1).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarden, L. A. (1979). “Revised nomenclature for antigen-nonspecific T cell proliferation and helper factors,” J Immunol 123, 2928–2929.Google Scholar
Abbas, A. K. and Lichtman, A. H. (2010). Basic Immunology, rd edn. (Philadelphia, PA: Saunders).Google Scholar
Aggarwal, B. B., Gupta, S. C. and Kim, J. H. (2012). “Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey,” Blood 119, 651–665.CrossRefGoogle ScholarPubMed
Ahern, G. P. (2011). “5-HT and the immune system,” Curr Opin Pharmacol 11, 29–33.CrossRefGoogle ScholarPubMed
Anisman, H., Gibb, J. and Hayley, S. (2008). “Influence of continuous infusion of interleukin-1beta on depression-related processes in mice: corticosterone, circulating cytokines, brain monoamines, and cytokine mRNA expression,” Psychopharmacology (Berl) 199, 231–244.CrossRefGoogle ScholarPubMed
Ansar Ahmed, S., Penhale, W. J. and Talal, N. (1985). “Sex hormones, immune responses, and autoimmune diseases. Mechanisms of sex hormone action,” Am J Pathol 121, 531–551.Google ScholarPubMed
Anthony, D. C., Couch, Y., Losey, P. and Evans, M. C. (2012). “The systemic response to brain injury and disease,” Brain Behav Immun 26, 534–540.CrossRefGoogle ScholarPubMed
Armani, C., Catalani, E., Balbarini, A., Bagnoli, P. and Cervia, D. (2007). “Expression, pharmacology, and functional role of somatostatin receptor subtypes 1 and 2 in human macrophages,” J Leukoc Biol 81, 845–855.CrossRefGoogle ScholarPubMed
Asanuma, Y., Goldstein, A. L. and White, A. (1970). “Reduction in the incidence of wasting disease in neonatally thymectomized CBA-W mice by the injection of thymosin,” Endocr 86, 600–610.CrossRefGoogle ScholarPubMed
Assis, M. A., Collino, C., Figuerola Mde, L., Sotomayor, C. and Cancela, L. M. (2006). “Amphetamine triggers an increase in met-enkephalin simultaneously in brain areas and immune cells,” J Neuroimmunol 178, 62–75.CrossRefGoogle ScholarPubMed
Banks, W. A., Farr, S. A. and Morley, J. E. (2002). “Entry of blood-borne cytokines into the central nervous system: effects on cognitive processes,” Neuroimmunomodulation 10, 319–327.CrossRefGoogle ScholarPubMed
Barber, A. E., Coyle, S. M., Marano, M. A., Fischer, E., Calvano, S. E., Fong, Y.et al. (1993). “Glucocorticoid therapy alters hormonal and cytokine responses to endotoxin in man,” J Immunol 150, 1999–2006.Google ScholarPubMed
Barnéoud, P., Neveu, P. J., Vitiello, S., Mormede, P. and Le Moal, M. (1988). “Brain neocortex immunomodulation in rats,” Brain Res 474, 394–398.CrossRefGoogle ScholarPubMed
Barrell, G. K. (2007). “Immunological influences on reproductive neuroendocrinology,” Soc Reprod FertilSuppl. 64, 109–122.Google ScholarPubMed
Bauer, M. E., Jeckel, C. M. and Luz, C. (2009). “The role of stress factors during aging of the immune system,” Ann NY Acad Sci 1153, 139–152.CrossRefGoogle ScholarPubMed
Bechtold, D. A., Gibbs, J. E. and Loudon, A. S. (2010). “Circadian dysfunction in disease,” Trends Pharmacol Sci 31, 191–198.CrossRefGoogle Scholar
Besedovsky, H. O. and del Rey, A. (1996). “Immune-neuro-endocrine interactions: facts and hypotheses,” Endocr Rev 17, 64–102.CrossRefGoogle ScholarPubMed
Blalock, J. E. (1989). “A molecular basis for bidirectional communication between the immune and neuroendocrine systems,” Physiol Rev 69, 1–32.CrossRefGoogle ScholarPubMed
Boron, W. F. and Boulpaep, E. L. (2005). Medical Physiology, updated edn. (Philadelphia, PA: Elsevier Saunders).Google Scholar
Borovikova, L. V., Ivanova, S., Zhang, M., Yang, H., Botchkina, G. I., Watkins, L. R.et al. (2000). “Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin,” Nature 405, 458–462.CrossRefGoogle ScholarPubMed
Brambilla, D., Franciosi, S., Opp, M. R. and Imeri, L. (2007). “Interleukin-1 inhibits firing of serotonergic neurons in the dorsal raphe nucleus and enhances GABAergic inhibitory post-synaptic potentials,” Eur J Neurosci 26, 1862–1869.CrossRefGoogle ScholarPubMed
Brooks, K. J., Bunce, K. T., Haase, M. V., White, A., Changani, K. K., Bate, S. T.et al. (2005). “MRI quantification in vivo of corticosteroid induced thymus involution in mice: correlation with ex vivo measurements,” Steroids 70, 267–272.CrossRefGoogle ScholarPubMed
Bruccoleri, A., Brown, H. and Harry, G. J. (1998). “Cellular localization and temporal elevation of tumor necrosis factor-alpha, interleukin-1 alpha, and transforming growth factor-beta 1 mRNA in hippocampal injury response induced by trimethyltin,” J Neurochem 71, 1577–1587.Google ScholarPubMed
Buckley, A. R. (2001). “Prolactin, a lymphocyte growth and survival factor,” Lupus 10, 684–690.CrossRefGoogle ScholarPubMed
Buttarelli, F. R., Fanciulli, A., Pellicano, C. and Pontieri, F. E. (2011). “The dopaminergic system in peripheral blood lymphocytes: from physiology to pharmacology and potential applications to neuropsychiatric disorders,” Curr Neuropharmacol 9, 278–288.Google ScholarPubMed
Calder, A. E., Hince, M. N., Dudakov, J. A., Chidgey, A. P. and Boyd, R. L. (2011). “Thymic involution: where endocrinology meets immunology,” Neuroimmunomodulation 18, 281–289.CrossRefGoogle ScholarPubMed
Cano, P., Cardinali, D. P., Jimenez, V., Alvarez, M. P., Cutrera, R. A. and Esquifino, A. I. (2005). “Effect of interferon-gamma treatment on 24-hour variations in plasma ACTH, growth hormone, prolactin, luteinizing hormone and follicle-stimulating hormone of male rats,” Neuroimmunomodulation 12, 146–151.CrossRefGoogle ScholarPubMed
Chighizola, C. and Meroni, P. L. (2012). “The role of environmental estrogens and autoimmunity,” Autoimmun Rev 11, A493–A501.CrossRefGoogle ScholarPubMed
Clayton, E. M., Todd, M., Dowd, J. B. and Aiello, A. E. (2011). “The impact of bisphenol A and triclosan on immune parameters in the U. S. population, NHANES 2003–2006,” Environ Health Perspect 119, 390–396.Google ScholarPubMed
Cohen, N., Moynihan, J. A. and Ader, R. (1994). “Pavlovian conditioning of the immune system,” Int Arch Allergy Immunol 105, 101–106.CrossRefGoogle ScholarPubMed
Cohen, S., Janicki-Deverts, D. and Miller, G. E. (2007). “Psychological stress and disease,” JAMA 298, 1685–1687.CrossRefGoogle ScholarPubMed
Croft, M., Duan, W., Choi, H., Eun, S. Y., Madireddi, S. and Mehta, A. (2012). “TNF superfamily in inflammatory disease: translating basic insights,” Trends Immunol 33, 144–152.CrossRefGoogle ScholarPubMed
Cross, R. J., Markesbery, W. R., Brooks, W. H. and Roszman, T. L. (1984). “Hypothalamic-immune interactions: neuromodulation of natural killer activity by lesioning of the anterior hypothalamus,” Immunology 51, 399–405.Google ScholarPubMed
Csaba, G., Tekes, K. and Pallinger, E. (2009). “Influence of perinatal stress on the hormone content in immune cells of adult rats: dominance of ACTH,” Horm Metab Res 41, 617–620.CrossRefGoogle ScholarPubMed
D'Arcangelo, G., Tancredi, V., Onofri, F., D'Antuono, M., Giovedi, S. and Benfenati, F. (2000). “Interleukin-6 inhibits neurotransmitter release and the spread of excitation in the rat cerebral cortex,” Eur J Neurosci 12, 1241–1252.CrossRefGoogle ScholarPubMed
Dantzer, R., O'Connor, J. C., Freund, G. G., Johnson, R. W. and Kelley, K. W. (2008). “From inflammation to sickness and depression: when the immune system subjugates the brain,” Nat Rev Neurosci 9, 46–56.CrossRefGoogle Scholar
Daruna, J. H. and Morgan, J. E. (1990). “Psychosocial effects on immune function: neuroendocrine pathways,” Psychosomatics 31, 4–12.CrossRefGoogle ScholarPubMed
De Mello-Coelho, V., Savino, W., Postel-Vinay, M. C. and Dardenne, M. (1998). “Role of prolactin and growth hormone on thymus physiology,” Dev Immunol 6, 317–323.CrossRefGoogle ScholarPubMed
De Vito, P., Incerpi, S., Pedersen, J. Z., Luly, P., Davis, F. B. and Davis, P. J. (2011). “Thyroid hormones as modulators of immune activities at the cellular level,” Thyroid 21, 879–890.CrossRefGoogle ScholarPubMed
de Weerd, N. A. and Nguyen, T. (2012). “The interferons and their receptors – distribution and regulation,” Immunol Cell Biol 90, 483–491.CrossRefGoogle ScholarPubMed
DeRijk, R., Michelson, D., Karp, B., Petrides, J., Galliven, E., Deuster, P.et al. (1997). “Exercise and circadian rhythm-induced variations in plasma cortisol differentially regulate interleukin-1 beta (IL-1 beta), IL-6, and tumor necrosis factor-alpha (TNF alpha) production in humans: high sensitivity of TNF alpha and resistance of IL-6,” J Clin Endocrinol Metab 82, 2182–2191.Google ScholarPubMed
Dimitrijevic, M. and Stanojevic, S. (2013). “The intriguing mission of neuropeptide Y in the immune system,”Amino Acids 45, 41–53.CrossRefGoogle Scholar
Dinarello, C. A. (1999). “Cytokines as endogenous pyrogens,” J Infect Dis 179(Suppl. 2), S294–S304.CrossRefGoogle ScholarPubMed
Dinarello, C. A. (2011). “Interleukin-1 in the pathogenesis and treatment of inflammatory diseases,” Blood 117, 3720–3732.CrossRefGoogle ScholarPubMed
Douglas, S. D., Lai, J. P., Tuluc, F., Schwartz, L. and Kilpatrick, L. E. (2008). “Neurokinin-1 receptor expression and function in human macrophages and brain: perspective on the role in HIV neuropathogenesis,” Ann NY Acad Sci 1144, 90–96.CrossRefGoogle ScholarPubMed
Dunn, A. J. (2006). “Effects of cytokines and infections on brain neurochemistry,” Clin Neurosci Res 6, 52–68.CrossRefGoogle ScholarPubMed
Duquesnoy, R. J. and Pedersen, G. M. (1981). “Immunologic and hematologic deficiencies of the hypopituitary dwarf mouse” in Gershwin, M. E. and Merchant, B. (eds.), Immunologic Defects in Laboratory Animals (New York: Plenum Press), pp. 309–324.Google Scholar
Flierl, M. A., Rittirsch, D., Huber-Lang, M. S., Sarma, J. V. and Ward, P. A. (2008). “Molecular events in the cardiomyopathy of sepsisMol Med 14, 327–336.Google ScholarPubMed
Fragala, M. S., Kraemer, W. J., Denegar, C. R., Maresh, C. M., Mastro, A. M. and Volek, J. S. (2011). “Neuroendocrine-immune interactions and responses to exercise,” Sports Med 41, 621–639.CrossRefGoogle Scholar
Franchimont, D. (2004). “Overview of the actions of glucocorticoids on the immune response: a good model to characterize new pathways of immunosuppression for new treatment strategies,” Ann NY Acad Sci 1024, 124–137.CrossRefGoogle ScholarPubMed
French, R. A., Broussard, S. R., Meier, W. A., Minshall, C., Arkins, S., Zachary, J. F.et al. (2002). “Age-associated loss of bone marrow hematopoietic cells is reversed by GH and accompanies thymic reconstitution,” Endocr 143, 690–699.CrossRefGoogle ScholarPubMed
Fry, C., Gunter, D. R., McMahon, C. D., Steele, B. and Sartin, J. L. (1998). “Cytokine-mediated growth hormone release from cultured ovine pituitary cells,” Neuroendocrinology 68, 192–200.CrossRefGoogle ScholarPubMed
Ganea, D. (1996). “Regulatory effects of vasoactive intestinal peptide on cytokine production in central and peripheral lymphoid organs,” Adv Neuroimmunol 6, 61–74.CrossRefGoogle ScholarPubMed
Ganea, D., Gonzalez-Rey, E. and Delgado, M. (2006). “A novel mechanism for immunosuppression: from neuropeptides to regulatory T cells,” J Neuroimmune Pharmacol 1, 400–409.CrossRefGoogle ScholarPubMed
Gerlo, S., Verdood, P., Hooghe-Peters, E. L. and Kooijman, R. (2005). “Modulation of prolactin expression in human T lymphocytes by cytokines,” J Neuroimmunol 162, 190–193.CrossRefGoogle Scholar
Glaser, R. and Kiecolt-Glaser, J. K. (2005). “Stress-induced immune dysfunction: implications for health,” Nat Rev Immunol 5, 243–251.CrossRefGoogle Scholar
Goetzl, E. J., Chan, R. C. and Yadav, M. (2008). “Diverse mechanisms and consequences of immunoadoption of neuromediator systems,” Ann NY Acad Sci 1144, 56–60.CrossRefGoogle ScholarPubMed
Goldbach-Mansky, R. (2012). “Immunology in clinic review series; focus on autoinflammatory diseases: update on monogenic autoinflammatory diseases: the role of interleukin (IL)-1 and an emerging role for cytokines beyond IL-1,” Clin Exp Immunol 167, 391–404.CrossRefGoogle ScholarPubMed
Goldstein, A. L. and Badamchian, M. (2004). “Thymosins: chemistry and biological properties in health and disease,” Expert Opin Biol Ther 4, 559–573.CrossRefGoogle ScholarPubMed
Gong, F. Y., Deng, J. Y. and Shi, Y. F. (2005). “Stimulatory effect of interleukin-1beta on growth hormone gene expression and growth hormone release from rat GH3 cells,” Neuroendocrinology 81, 217–228.CrossRefGoogle ScholarPubMed
Gonsalkorale, W. M., Dascombe, M. J. and Hutchinson, I. V. (1995). “Adrenocorticotropic hormone as a potential enhancer of T-lymphocyte function in the rat mixed lymphocyte reaction,” Int J Immunopharmacol 17, 197–206.CrossRefGoogle ScholarPubMed
Goya, R. G., Brown, O. A. and Bolognani, F. (1999). “The thymus-pituitary axis and its changes during aging,” Neuroimmunomodulation 6, 137–142.CrossRefGoogle ScholarPubMed
Greenstein, B. D., Fitzpatrick, F. T., Adcock, I. M., Kendall, M. D. and Wheeler, M. J. (1986). “Reappearance of the thymus in old rats after orchidectomy: inhibition of regeneration by testosterone,” J Endocrinol 110, 417–422.CrossRefGoogle ScholarPubMed
Guijarro, A., Laviano, A. and Meguid, M. M. (2006). “Hypothalamic integration of immune function and metabolism,” Prog Brain Res 153, 367–405.Google ScholarPubMed
Hale, L. P. (2004). “Histologic and molecular assessment of human thymus,” Ann Diagn Pathol 8, 50–60.CrossRefGoogle ScholarPubMed
Hall, N. R., McGillis, J. P., Spangelo, B. L. and Goldstein, A. L. (1985). “Evidence that thymosins and other biologic response modifiers can function as neuroactive immunotransmitters,” J Immunol 135, 806s–811s.Google ScholarPubMed
Hanisch, U. K. and Quirion, R. (1995). “Interleukin-2 as a neuroregulatory cytokine,” Brain Res Rev 21, 246–284.CrossRefGoogle ScholarPubMed
Hansenne, I. (2005). “Thymic transcription of neurohypophysial and insulin-related genes: impact upon T-cell differentiation and self-tolerance,” J Neuroendocrinol 17, 321–327.CrossRefGoogle ScholarPubMed
Hansenne, I., Rasier, G., Pequeux, C., Brilot, F., Renard, C., Breton, C.et al. (2005). “Ontogenesis and functional aspects of oxytocin and vasopressin gene expression in the thymus network,” J Neuroimmunol 158, 67–75.CrossRefGoogle ScholarPubMed
Harel, G., Shamoun, D. S., Kane, J. P., Magner, J. A. and Szabo, M. (1995). “Prolonged effects of tumor necrosis factor-alpha on anterior pituitary hormone release,” Peptides 16, 641–645.CrossRefGoogle ScholarPubMed
Hattori, N. (2009). “Expression, regulation and biological actions of growth hormone (GH) and ghrelin in the immune system,” Growth Horm IGF Res 19, 187–197.CrossRefGoogle ScholarPubMed
Hattori, N., Saito, T., Yagyu, T., Jiang, B. H., Kitagawa, K. and Inagaki, C. (2001). “GH, GH receptor, GH secretagogue receptor, and ghrelin expression in human T cells, B cells, and neutrophils,” J Clin Endocrinol Metab 86, 4284–4291.CrossRefGoogle Scholar
Healy, D. L., Hodgen, G. D., Schulte, H. M., Chrousos, G. P., Loriaux, D. L., Hall, N. R.et al. (1983). “The thymus-adrenal connection: thymosin has corticotropin-releasing activity in primates,” Science 222, 1353–1355.CrossRefGoogle ScholarPubMed
Herold, M. J., McPherson, K. G. and Reichardt, H. M. (2006). “Glucocorticoids in T cell apoptosis and function,” Cell Mol Life Sci 63, 60–72.CrossRefGoogle Scholar
Hino, M., Ogata, T., Morino, T., Horiuchi, H. and Yamamoto, H. (2009). “Intrathecal transplantation of autologous macrophages genetically modified to secrete proenkephalin ameliorated hyperalgesia and allodynia following peripheral nerve injury in rats,” Neurosci Res 64, 56–62.CrossRefGoogle ScholarPubMed
Hotakainen, P. K., Serlachius, E. M., Lintula, S. I., Alfthan, H. V., Schroder, J. P. and Stenman, U. E. (2000). “Expression of luteinising hormone and chorionic gonadotropin beta-subunit messenger-RNA and protein in human peripheral blood leukocytes,” Mol Cell Endocrinol 162, 79–85.CrossRefGoogle ScholarPubMed
Jankord, R., Turk, J. R., Schadt, J. C., Casati, J., Ganjam, V. K., Price, E. M.et al. (2007). “Sex difference in link between interleukin-6 and stress,” Endocr 148, 3758–3764.CrossRefGoogle Scholar
Jefferies, W. M. (1991). “Cortisol and immunity,” Med Hypotheses 34, 198–208.CrossRefGoogle ScholarPubMed
Jefferies, W. M. (1994). “Mild adrenocortical deficiency, chronic allergies, autoimmune disorders and the chronic fatigue syndrome: a continuation of the cortisone story,” Med Hypotheses 42, 183–189.CrossRefGoogle ScholarPubMed
Johnson, E. W., Hughes, T. K. Jr. and Smith, E. M. (2001). “ACTH receptor distribution and modulation among murine mononuclear leukocyte populations,” J Biol Regul Homeost Agents 15, 156–162.Google ScholarPubMed
Johnson, E. W., Hughes, T. K. Jr. and Smith, E. M. (2005). “ACTH enhancement of T-lymphocyte cytotoxic responses,” Cell Mol Neurobiol 25, 743–757.CrossRefGoogle ScholarPubMed
Juttler, E., Tarabin, V. and Schwaninger, M. (2002). “Interleukin-6 (IL-6): a possible neuromodulator induced by neuronal activity,” Neuroscientist 8, 268–275.CrossRefGoogle ScholarPubMed
Kao, C. H., Huang, W. T., Lin, M. T. and Wu, W. S. (2011). “Central interleukin-10 attenuated lipopolysaccharide-induced changes in core temperature and hypothalamic glutamate, hydroxyl radicals and prostaglandin-E(2),” Eur J Pharmacol 654, 187–193.CrossRefGoogle Scholar
Karanth, S. and McCann, S. M. (1991). “Anterior pituitary hormone control by interleukin 2,” Proc Natl Acad Sci USA 88, 2961–2965.CrossRefGoogle ScholarPubMed
Kawashima, K. and Fujii, T. (2004). “Expression of non-neuronal acetylcholine in lymphocytes and its contribution to the regulation of immune function,” Front Biosci 9, 2063–2085.CrossRefGoogle ScholarPubMed
Kelley, K. W., Brief, S., Westly, H. J., Novakofski, , , J., Bechtel, P. J., Simon, J.et al. (1987). “Hormonal regulation of the age-associated decline in immune function,” Ann NY Acad Sci 496, 91–97.CrossRefGoogle ScholarPubMed
Kindt, T. J., Goldsby, R. A. and Osborne, B. A. (2006). Kuby Immunology (New York: Freeman).Google Scholar
Klehmet, J., Harms, H., Richter, M., Prass, K., Volk, H. D., Dirnagl, U.et al. (2009). “Stroke-induced immunodepression and post-stroke infections: lessons from the preventive antibacterial therapy in stroke trial,” Neurosci 158, 1184–1193.CrossRefGoogle ScholarPubMed
Klein, J. R. (2003). “Physiological relevance of thyroid stimulating hormone and thyroid stimulating hormone receptor in tissues other than the thyroid,” Autoimmunity 36, 417–421.CrossRefGoogle Scholar
Klein, S. L. (2012). “Immune cells have sex and so should journal articles,” Endocr 153, 2544–2550.CrossRefGoogle ScholarPubMed
Kordon, C. and Bihoreau, C. (1989). “Integrated communication between the nervous, endocrine and immune systems,” Horm Res 31, 100–104.CrossRefGoogle ScholarPubMed
Kovats, S., Carreras, E. and Agrawal, H. (2010). “Sex steroid receptors in immune cells” in Klein, S. L. and Roberts, C. W. (eds.), Sex Hormones and Immunity to Infection (Berlin Heidelberg: Springer-Verlag), pp. 53–91.Google Scholar
Krueger, J. M. (2008). “The role of cytokines in sleep regulation,” Curr Pharm Des 14, 3408–3416.CrossRefGoogle ScholarPubMed
Kruger, T. E. (1996). “Immunomodulation of peripheral lymphocytes by hormones of the hypothalamus-pituitary-thyroid axis,” Adv Neuroimmunol 6, 387–395.CrossRefGoogle ScholarPubMed
Kurotani, R., Yasuda, M., Oyama, K., Egashira, N., Sugaya, M., Teramoto, A.et al. (2001). “Expression of interleukin-6, interleukin-6 receptor (gp80), and the receptor's signal-transducing subunit (gp130) in human normal pituitary glands and pituitary adenomas,” Mod Pathol 14, 791–797.CrossRefGoogle ScholarPubMed
Kvetnoy, I. M., Polyakova, V. O., Trofimov, A. V., Yuzhakov, V. V., Yarilin, A. A., Kurilets, E. S.et al. (2003). “Hormonal function and proliferative activity of thymic cells in humans: immunocytochemical correlations,” Neuro Endocrinol Lett 24, 263–268.Google ScholarPubMed
Lacosta, S., Merali, Z. and Anisman, H. (2000). “Central monoamine activity following acute and repeated systemic interleukin-2 administration,” Neuroimmunomodulation 8, 83–90.CrossRefGoogle ScholarPubMed
Lane, T. and Lachmann, H. J. (2011). “The emerging role of interleukin-1beta in autoinflammatory diseases,” Curr Allergy Asthma Rep 11, 361–368.CrossRefGoogle ScholarPubMed
Larsen, C. M., Faulenbach, M., Vaag, A., Volund, A., Ehses, J. A., Seifert, B.et al. (2007). “Interleukin-1-receptor antagonist in type 2 diabetes mellitus,” N Engl J Med 356, 1517–1526.CrossRefGoogle ScholarPubMed
Lee, S., Kim, J., Jang, B., Hur, S., Jung, U., Kil, K.et al. (2010). “Fluctuation of peripheral blood T, B, and NK cells during a menstrual cycle of normal healthy women,” J Immunol 185, 756–762.CrossRefGoogle Scholar
Legorreta-Haquet, M. V., Chavez-Rueda, K., Montoya-Diaz, E., Arriaga-Pizano, L., Silva-Garcia, R., Chavez-Sanchez, L.et al. (2012). “Prolactin down-regulates CD4+CD25hiCD127low/– regulatory T cell function in humans,” J Mol Endocrinol 48, 77–85.CrossRefGoogle ScholarPubMed
Leposavic, G., Pilipovic, I., Radojevic, K., Pesic, V., Perisic, M. and Kosec, D. (2008). “Catecholamines as immunomodulators: a role for adrenoceptor-mediated mechanisms in fine tuning of T-cell development,” Auton Neurosci 144, 1–12.CrossRefGoogle ScholarPubMed
Levin, S. G. and Godukhin, O. V. (2011). “Anti-inflammatory cytokines, TGF-beta1 and IL-10, exert anti-hypoxic action and abolish posthypoxic hyperexcitability in hippocampal slice neurons: comparative aspects,” Exp Neurol 232, 329–332.CrossRefGoogle ScholarPubMed
Lightman, S. L. and Conway-Campbell, B. L. (2010). “The crucial role of pulsatile activity of the HPA axis for continuous dynamic equilibration,” Nat Rev Neurosci 11, 710–718.CrossRefGoogle ScholarPubMed
Logan, R. W. and Sarkar, D. K. (2012). “Circadian nature of immune function,” Mol Cell Endocrinol 349, 82–90.CrossRefGoogle ScholarPubMed
Lyons, P. D. and Blalock, J. E. (1997). “Pro-opiomelanocortin gene expression and protein processing in rat mononuclear leukocytes,” J Neuroimmunol 78, 47–56.CrossRefGoogle ScholarPubMed
Maccio, A., Madeddu, C., Chessa, P., Panzone, F., Lissoni, P. and Mantovani, G. (2010). “Oxytocin both increases proliferative response of peripheral blood lymphomonocytes to phytohemagglutinin and reverses immunosuppressive estrogen activity,” In Vivo 24, 157–163.Google ScholarPubMed
Machelska, H. (2011). “Control of neuropathic pain by immune cells and opioids,” CNS Neurol Disord Drug Targets 10, 559–570.CrossRefGoogle ScholarPubMed
Maini, R. N. and Taylor, P. C. (2000). “Anti-cytokine therapy for rheumatoid arthritis,” Annu Rev Med 51, 207–229.CrossRefGoogle ScholarPubMed
Marino, F. and Cosentino, M. (2013). “Adrenergic modulation of immune cells: an update,” Amino Acids 45, 55–71.CrossRefGoogle ScholarPubMed
McCann, S. M., Kimura, M., Karanth, S., Yu, W. H., Mastronardi, C. A. and Rettori, V. (2000). “The mechanism of action of cytokines to control the release of hypothalamic and pituitary hormones in infection,” Ann NY Acad Sci 917, 4–18.Google Scholar
McNamee, E. N., Masterson, J. C., Jedlicka, P., McManus, M., Grenz, A., Collins, C. B.et al. (2011). “Interleukin 37 expression protects mice from colitis,” Proc Natl Acad Sci USA 108, 16711–16716.CrossRefGoogle ScholarPubMed
Meazza, C., Pagani, S., Travaglino, P. and Bozzola, M. (2004). “Effect of growth hormone (GH) on the immune system,” Pediatr Endocrinol Rev 1(Suppl. 3), 490–495.Google ScholarPubMed
Melgert, B. N., Oriss, T. B., Qi, Z., Dixon-McCarthy, B., Geerlings, M., Hylkema, M. N.et al. (2010). “Macrophages: regulators of sex differences in asthma?”Am J Respir Cell Mol Biol 42, 595–603.CrossRefGoogle Scholar
Mitchison, N. A. (2004). “T-cell-B-cell cooperation,” Nat Rev Immunol 4, 308–312.CrossRefGoogle ScholarPubMed
Monaco-Shawver, L., Schwartz, L., Tuluc, F., Guo, C. J., Lai, J. P., Gunnam, S. M. (2011). “Substance P inhibits natural killer cell cytotoxicity through the neurokinin-1 receptor,” J Leukoc Biol 89, 113–125.CrossRefGoogle ScholarPubMed
Mosenden, R. and Tasken, K. (2011). “Cyclic AMP-mediated immune regulation – overview of mechanisms of action in T cells,” Cell Signal 23, 1009–1016.CrossRefGoogle Scholar
Mousa, S. A., Straub, R. H., Schafer, M. and Stein, C. (2007). “Beta-endorphin, Met-enkephalin and corresponding opioid receptors within synovium of patients with joint trauma, osteoarthritis and rheumatoid arthritis,” Ann Rheum Dis 66, 871–879.CrossRefGoogle ScholarPubMed
Muglia, L. J., Jenkins, N. A., Gilbert, D. J., Copeland, N. G. and Majzoub, J. A. (1994). “Expression of the mouse corticotropin-releasing hormone gene in vivo and targeted inactivation in embryonic stem cells,” J Clin Invest 93, 2066–2072.CrossRefGoogle ScholarPubMed
Munoz-Cruz, S., Togno-Pierce, C. and Morales-Montor, J. (2011). “Non-reproductive effects of sex steroids: their immunoregulatory role,” Curr Top Med Chem 11, 1714–1727.Google ScholarPubMed
Nagai, Y., Ohsawa, K., Ieki, Y. and Kobayashi, K. (1996). “Effect of interferon-beta on thyroid function in patients of chronic hepatitis C without preexisting autoimmune thyroid disease,” Endocr J 43, 545–549.CrossRefGoogle ScholarPubMed
Nance, D. M. and Sanders, V. M. (2007). “Autonomic innervation and regulation of the immune system (1987–2007),” Brain Behav Immun 21, 736–745.CrossRefGoogle Scholar
Nemet, D., Eliakim, A., Zaldivar, F. and Cooper, D. M. (2006). “Effect of rhIL-6 infusion on GH–IGF-I axis mediators in humans,” Am J Physiol Regul Integr Comp Physiol 291, R1663–R1668.CrossRefGoogle ScholarPubMed
Neveu, P. J. (1988). “Cerebral neocortex modulation of immune functions,” Life Sci 42, 1917–1923.CrossRefGoogle ScholarPubMed
Nizri, E. and Brenner, T. (2013). “Modulation of inflammatory pathways by the immune cholinergic system,” Amino Acids 45, 55–71.CrossRefGoogle ScholarPubMed
Oertelt-Prigione, S. (2012). “Immunology and the menstrual cycle,” Autoimmun Rev 11, A486–A492.CrossRefGoogle ScholarPubMed
Olsen, N. J., Watson, M. B., Henderson, G. S. and Kovacs, W. J. (1991). “Androgen deprivation induces phenotypic and functional changes in the thymus of adult male mice,” Endocr 129, 2471–2476.CrossRefGoogle ScholarPubMed
Pacheco, R., Prado, C. E., Barrientos, M. J. and Bernales, S. (2009). “Role of dopamine in the physiology of T-cells and dendritic cells,” J Neuroimmunol 216, 8–19.CrossRefGoogle ScholarPubMed
Padgett, D. A. and Glaser, R. (2003). “How stress influences the immune response,” Trends Immunol 24, 444–448.CrossRefGoogle ScholarPubMed
Pallinger, E. and Csaba, G. (2008). “A hormone map of human immune cells showing the presence of adrenocorticotropic hormone, triiodothyronine and endorphin in immunophenotyped white blood cells,” Immunology 123, 584–589.CrossRefGoogle ScholarPubMed
Pappu, R., Ramirez-Carrozzi, V. and Sambandam, A. (2011). “The interleukin-17 cytokine family: critical players in host defence and inflammatory diseases,” Immunology 134, 8–16.CrossRefGoogle ScholarPubMed
Pesce, M., Speranza, L., Franceschelli, S., Ialenti, V., Patruno, A., Febo, M. A.et al. (2011). “Biological role of interleukin-1beta in defensive-aggressive behaviour,” J Biol Regul Homeost Agents 25, 323–329.Google ScholarPubMed
Petrovsky, N. (2001). “Towards a unified model of neuroendocrine-immune interaction,” Immunol Cell Biol 79, 350–357.CrossRefGoogle ScholarPubMed
Pinter, E., Helyes, Z. and Szolcsanyi, J. (2006). “Inhibitory effect of somatostatin on inflammation and nociception,” Pharmacol Ther 112, 440–456.CrossRefGoogle ScholarPubMed
Plata-Salaman, C. R. (1989). “Immunomodulators and feeding regulation: a humoral link between the immune and nervous systems,” Brain Behav Immun 3, 193–213.CrossRefGoogle ScholarPubMed
Plata-Salaman, C. R. (1991). “Immunoregulators in the nervous system,” Neurosci Biobehav Rev 15, 185–215.CrossRefGoogle Scholar
Plata-Salaman, C. R. (2001). “Cytokines and feeding,” Int J Obes Relat Metab Disord 25(Suppl. 5), S48–S52.CrossRefGoogle ScholarPubMed
Quan, N. and Banks, , , W. A. (2007). “Brain-immune communication pathways,” Brain Behav Immun 21, 727–735.CrossRefGoogle ScholarPubMed
Raiden, S., Polack, E., Nahmod, V., Labeur, M., Holsboer, F. and Arzt, E. (1995). “TRH receptor on immune cells: in vitro and in vivo stimulation of human lymphocyte and rat splenocyte DNA synthesis by TRH,” J Clin Immunol 15, 242–249.CrossRefGoogle ScholarPubMed
Reber, S. O., Obermeier, F., Straub, R. H., Falk, W. and Neumann, I. D. (2006). “Chronic intermittent psychosocial stress (social defeat/overcrowding) in mice increases the severity of an acute DSS-induced colitis and impairs regeneration,” Endocr 147, 4968–4976.CrossRefGoogle ScholarPubMed
Reggiani, P. C., Poch, B., Console, G. M., Rimoldi, O. J., Schwerdt, J. I., Tungler, V.et al. (2011). “Thymulin-based gene therapy and pituitary function in animal models of aging,” Neuroimmunomodulation 18, 350–356.CrossRefGoogle ScholarPubMed
Rettori, V., Fernandez-Solari, J., Mohn, C., Zorrilla Zubilete, M. A., de la Cal, C., Prestifilippo, J. P.et al. (2009). “Nitric oxide at the crossroad of immunoneuroendocrine interactions,” Ann NY Acad Sci 1153, 35–47.CrossRefGoogle ScholarPubMed
Rochman, Y., Spolski, R. and Leonard, W. J. (2009). “New insights into the regulation of T cells by gamma(c) family cytokines,” Nat Rev Immunol 9, 480–490.CrossRefGoogle ScholarPubMed
Rosas-Ballina, M., Olofsson, P. S., Ochani, M., Valdes-Ferrer, S. I., Levine, Y. A., Reardon, C. (2011). “Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit,” Science 334, 98–101.CrossRefGoogle Scholar
Roszman, T. L. and Brooks, W. H. (1985). “Neural modulation of immune function,” J Neuroimmunol 10, 59–69.CrossRefGoogle ScholarPubMed
Rothwell, N. (2003). “Interleukin-1 and neuronal injury: mechanisms, modification, and therapeutic potential,” Brain Behav Immun 17, 152–157.CrossRefGoogle ScholarPubMed
Royer, H. D. and Reinherz, E. L. (1987). “T lymphocytes: ontogeny, function, and relevance to clinical disorders,” N Engl J Med 317, 1136–1142.CrossRefGoogle ScholarPubMed
Russell, S. H., Small, C. J., Stanley, S. A., Franks, S., Ghatei, M. A. and Bloom, S. R. (2001). “The in vitro role of tumour necrosis factor-alpha and interleukin-6 in the hypothalamic-pituitary gonadal axis,” J Neuroendocrinol 13, 296–301.Google ScholarPubMed
Sansone, P. and Bromberg, J. (2012). “Targeting the interleukin-6/Jak/stat pathway in human malignancies,” J Clin Oncol 30, 1005–1014.CrossRefGoogle ScholarPubMed
Sapolsky, R. M., Romero, L. M. and Munck, A. U. (2000). “How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions,” Endocr Rev 21, 55–89.Google ScholarPubMed
Savino, W., Arzt, E. and Dardenne, M. (1999). “Immunoneuroendocrine connectivity: the paradigm of the thymus-hypothalamus/pituitary axis,” Neuroimmunomodulation 6, 126–136.CrossRefGoogle ScholarPubMed
Savino, W. and Dardenne, M. (2010). “Pleiotropic modulation of thymic functions by growth hormone: from physiology to therapy,” Curr Opin Pharmacol 10, 434–442.CrossRefGoogle Scholar
Savino, W., Postel-Vinay, M. C., Smaniotto, S. and Dardenne, M. (2002). “The thymus gland: a target organ for growth hormone,” Scand J Immunol 55, 442–452.CrossRefGoogle ScholarPubMed
Schobitz, B., de Kloet, E. R., Sutanto, W. and Holsboer, F. (1993). “Cellular localization of interleukin 6 mRNA and interleukin 6 receptor mRNA in rat brain,” Eur J Neurosci 5, 1426–1435.CrossRefGoogle ScholarPubMed
Schroder, K., Hertzog, P. J., Ravasi, T. and Hume, D. A. (2004). “Interferon-gamma: an overview of signals, mechanisms and functions,” J Leukoc Biol 75, 163–189.CrossRefGoogle ScholarPubMed
Shelly, S., Boaz, M. and Orbach, H. (2012). “Prolactin and autoimmunity,” Autoimmun Rev 11, A465–A470.CrossRefGoogle ScholarPubMed
Singh, V. K., Warren, R. P., White, E. D. and Leu, S. J. C. (1990). “Corticotropin-releasing factor-induced stimulation of immune functions,” Ann NY Acad Sci 594, 416–419.CrossRefGoogle Scholar
Sitte, N., Busch, M., Mousa, S. A., Labuz, D., Rittner, H., Gore, C.et al. (2007). “Lymphocytes upregulate signal sequence-encoding proopiomelanocortin mRNA and beta-endorphin during painful inflammation in vivo,” J Neuroimmunol 183, 133–145.CrossRefGoogle ScholarPubMed
Skinner, R., Georgiou, R., Thornton, P. and Rothwell, N. (2009). “Psychoneuroimmunology of stroke,” Immunol Allergy Clin North Am 29, 359–379.CrossRefGoogle ScholarPubMed
Smaniotto, S., Martins-Neto, A. A., Dardenne, M. and Savino, W. (2011). “Growth hormone is a modulator of lymphocyte migration,” Neuroimmunomodulation 18, 309–313.CrossRefGoogle ScholarPubMed
Sompayrac, L. (2012). How the Immune System Works, th edn. (Hoboken: Wiley-Blackwell).Google Scholar
Srinivasan, D., Yen, J. H., Joseph, D. J. and Friedman, W. (2004). “Cell type-specific interleukin-1beta signaling in the CNS,” J Neurosci 24, 6482–6488.CrossRefGoogle ScholarPubMed
Steel, J. C., Waldmann, T. A. and Morris, J. C. (2012). “Interleukin-15 biology and its therapeutic implications in cancer,” Trends Pharmacol Sci 33, 35–41.CrossRefGoogle Scholar
Steer, J. H., Ma, D. T., Dusci, L., Garas, G., Pedersen, K. E. and Joyce, D. A. (1998). “Altered leucocyte trafficking and suppressed tumour necrosis factor alpha release from peripheral blood monocytes after intra-articular glucocorticoid treatment,” Ann Rheum Dis 57, 732–737.CrossRefGoogle ScholarPubMed
Stein, C. and Lang, L. J. (2009). “Peripheral mechanisms of opioid analgesia,” Curr Opin Pharmacol 9, 3–8.CrossRefGoogle ScholarPubMed
Steinman, L. (2004). “Elaborate interactions between the immune and nervous systems,” Nat Immunol 5, 575–581.CrossRefGoogle ScholarPubMed
Stevenson, J. R., Westermann, J., Liebmann, P. M., Hortner, M., Rinner, I., Felsner, P.et al. (2001). “Prolonged alpha-adrenergic stimulation causes changes in leukocyte distribution and lymphocyte apoptosis in the rat,” J Neuroimmunol 120, 50–57.CrossRefGoogle ScholarPubMed
Sudom, K., Turrin, N. P., Hayley, S. and Anisman, H. (2004). “Influence of chronic interleukin-2 infusion and stressors on sickness behaviors and neurochemical change in mice,” Neuroimmunomodulation 11, 341–350.CrossRefGoogle ScholarPubMed
Sutherland, J. S., Goldberg, G. L., Hammett, M. V., Uldrich, A. P., Berzins, S. P., Heng, T. S.et al. (2005). “Activation of thymic regeneration in mice and humans following androgen blockade,” J Immunol 175, 2741–2753.CrossRefGoogle ScholarPubMed
Szilvassy, S. J. (2003). “The biology of hematopoietic stem cells,” Arch Med Res 34, 446–460.CrossRefGoogle ScholarPubMed
Tanaka, M. and Miyajima, A. (2003). “Oncostatin M, a multifunctional cytokine,” Rev Physiol Biochem Pharmacol 149, 39–52.Google ScholarPubMed
Taub, D. D., Murphy, W. J. and Longo, D. L. (2010). “Rejuvenation of the aging thymus: growth hormone-mediated and ghrelin-mediated signaling pathways,” Curr Opin Pharmacol 10, 408–424.CrossRefGoogle ScholarPubMed
Then Bergh, F., Kumpfel, T., Yassouridis, A., Lechner, C., Holsboer, F. and Trenkwalder, C. (2007). “Acute and chronic neuroendocrine effects of interferon-beta 1a in multiple sclerosis,” Clin Endocrinol (Oxf) 66, 295–303.CrossRefGoogle ScholarPubMed
Tierney, T., Patel, R., Stead, C. A., Leng, L., Bucala, R. and Buckingham, J. C. (2005). “Macrophage migration inhibitory factor is released from pituitary folliculo-stellate-like cells by endotoxin and dexamethasone and attenuates the steroid-induced inhibition of interleukin 6 release,” Endocr 146, 35–43.CrossRefGoogle ScholarPubMed
Tonegawa, S. (1985). “The molecules of the immune system,” Sci Am 253, 122–131.CrossRefGoogle ScholarPubMed
Torpy, D. J., Tsigos, C., Lotsikas, A. J., Defensor, R., Chrousos, G. P. and Papanicolaou, D. A. (1998). “Acute and delayed effects of a single-dose injection of interleukin-6 on thyroid function in healthy humans,” Metabolism 47, 1289–1293.CrossRefGoogle ScholarPubMed
Tosi, P., Kraft, R., Luzi, P., Cintorino, M., Fankhauser, G., Hess, M. W.et al. (1982). “Involution patterns of the human thymus. I Size of the cortical area as a function of age,” Clin Exp Immunol 47, 497–504.Google ScholarPubMed
Tsigos, C., Papanicolaou, D. A., Defensor, R., Mitsiadis, C. S., Kyrou, I. and Chrousos, G. P. (1997). “Dose effects of recombinant human interleukin-6 on pituitary hormone secretion and energy expenditure,” Neuroendocrinology 66, 54–62.CrossRefGoogle ScholarPubMed
Turnbull, A. V. and Rivier, C. L. (1999). “Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action,” Physiol Rev 79, 1–71.CrossRefGoogle ScholarPubMed
Turovskaya, M. V., Turovsky, E. A., Zinchenko, V. P., Levin, S. G. and Godukhin, O. V. (2012). “Interleukin-10 modulates [Ca(2+)](i) response induced by repeated NMDA receptor activation with brief hypoxia through inhibition of InsP(3)-sensitive internal stores in hippocampal neurons,” Neurosci Lett 516, 151–155.CrossRefGoogle ScholarPubMed
Turrin, N. P. and Plata-Salaman, C. R. (2000). “Cytokine-cytokine interactions and the brain,” Brain Res Bull 51, 3–9.CrossRefGoogle Scholar
Turrini, P. and Aloe, L. (1999). “Evidence that endogenous thymosin alpha-1 is present in the rat central nervous system,” Neurochem Int 35, 463–470.CrossRefGoogle ScholarPubMed
Umeuchi, M., Makino, T., Arisawa, M., Izumi, S., Saito, S. and Nozawa, S. (1994). “The effect of interleukin-2 on the release of gonadotropin and prolactin in vivo and in vitro,” Endocr J 41, 547–551.CrossRefGoogle ScholarPubMed
Vandenberg, L. N., Colborn, T., Hayes, T. B., Heindel, J. J., Jacobs, D. R. Jr., Lee, D. H.et al. (2012). “Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses,” Endocr Rev 33, 378–455.CrossRefGoogle ScholarPubMed
Villa-Verde, D. M., Defresne, M. P., Vannier-dos-Santos, M. A., Dussault, J. H., Boniver, J. and Savino, W. (1992). “Identification of nuclear triiodothyronine receptors in the thymic epithelium,” Endocr 131, 1313–1320.CrossRefGoogle ScholarPubMed
Wahl, A. F. and Wallace, P. M. (2001). “Oncostatin M in the anti-inflammatory response,” Ann Rheum Dis 60(Suppl. 3), iii75–iii80.Google ScholarPubMed
Wake, H., Moorhouse, A. J. and Nabekura, J. (2011). “Functions of microglia in the central nervous system – beyond the immune response,Neuron Glia Biol 7, 47–53.CrossRefGoogle Scholar
Wang, H., Yu, M., Ochani, M., Amella, C. A., Tanovic, M., Susarla, S.et al. (2003). “Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation,” Nature 421, 384–388.Google ScholarPubMed
Wassen, F. W., Moerings, E. P., Van Toor, H., De Vrey, E. A., Hennemann, G. and Everts, M. E. (1996). “Effects of interleukin-1 beta on thyrotropin secretion and thyroid hormone uptake in cultured rat anterior pituitary cells,” Endocr 137, 1591–1598.CrossRefGoogle ScholarPubMed
Watanobe, H. and Hayakawa, Y. (2003). “Hypothalamic interleukin-1 beta and tumor necrosis factor-alpha, but not interleukin-6, mediate the endotoxin-induced suppression of the reproductive axis in rats,” Endocr 144, 4868–4875.CrossRefGoogle Scholar
Webster, A. C., Ruster, L. P., McGee, R., Matheson, S. L., Higgins, G. Y., Willis, N. S.et al. (2010). “Interleukin 2 receptor antagonists for kidney transplant recipients,” Cochrane Database Syst Rev, CD003897.
Webster, J. I., Tonelli, L. and Sternberg, E. M. (2002). “Neuroendocrine regulation of immunity,” Annu Rev Immunol 20, 125–163.CrossRefGoogle Scholar
Weesner, G. D., Becker, B. A. and Matteri, R. L. (1997). “Expression of luteinizing hormone-releasing hormone and its receptor in porcine immune tissues,” Life Sci 61, 1643–1649.CrossRefGoogle ScholarPubMed
Weigent, D. A. and Blalock, J. E. (1987). “Interactions between the neuroendocrine and immune systems: common hormones and receptors,” Immunol Rev 100, 79–108.CrossRefGoogle ScholarPubMed
Welshons, W. V., Nagel, S. C. and vom Saal, F. S. (2006). “Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure,” Endocr 147, S56–S69.CrossRefGoogle ScholarPubMed
Windmill, K. F. and Lee, V. W. (1998). “Effects of castration on the lymphocytes of the thymus, spleen and lymph nodes,” Tissue Cell 30, 104–111.CrossRefGoogle ScholarPubMed
Xia, H. J., Zhang, G. H., Wang, R. R. and Zheng, Y. T. (2009). “The influence of age and sex on the cell counts of peripheral blood leukocyte subpopulations in Chinese rhesus macaques,” Cell Mol Immunol 6, 433–440.CrossRefGoogle ScholarPubMed
Yovel, G., Shakhar, K. and Ben-Eliyahu, S. (2001). “The effects of sex, menstrual cycle, and oral contraceptives on the number and activity of natural killer cells,” Gynecol Oncol 81, 254–262.CrossRefGoogle ScholarPubMed
Yu-Lee, L. Y. (2002). “Prolactin modulation of immune and inflammatory responses,” Recent Prog Horm Res 57, 435–455.CrossRefGoogle ScholarPubMed
Zoller, A. L., Schnell, F. J. and Kersh, G. J. (2007). “Murine pregnancy leads to reduced proliferation of maternal thymocytes and decreased thymic emigration,” Immunology 121, 207–215.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×