Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-18T23:47:17.787Z Has data issue: false hasContentIssue false

8 - Structure of the pheromone communication channel in moths

Published online by Cambridge University Press:  07 August 2009

Ring T. Cardé
Affiliation:
Department of Entomology, University of California, Riverside, USA
Kenneth F. Haynes
Affiliation:
Department of Entomology, University of Kentucky, Lexington, USA
Ring T. Cardé
Affiliation:
University of California, Riverside
Jocelyn G. Millar
Affiliation:
University of California, Riverside
Get access

Summary

Introduction

Moths are among the most speciose of insect groups, comprising perhaps 140 000 species, despite their remarkably undiversified and almost exclusively phytophagous larval lifestyle. Among the factors that are likely to have promoted such speciose success is their ability to persist at relatively low densities, facilitated by a pheromone communication system that allows males to locate conspecific females over distances of tens and in some species perhaps thousands of meters. The pheromone communication system also serves a primary basis of premating (prezygotic) reproductive isolation among species. Chemical communication channels that are distinctive at the species level permit the co-existence of many species in the same habitat or region. Although there is no firm evidence yet that the process of speciation itself has been fostered by splitting of the pheromone channel in sympatry, there are saltational mechanisms that could account for a rapid shift in the compounds produced by the emitter and a parallel tracking shift in the responder. There also are a few cases which suggest that either reinforcement or communication interference has caused divergence of chemical channels. Nonetheless, how changes in these communication systems evolve remains largely speculative. We also have no explanation for why in some species the female's production of a pheromone blend is variable and in others highly canalized.

Long-distance mate location that is mediated by pheromones is true “communication” as defined by Burghardt (1970), in that there are selective constraints on both the females' production of the signal and the males' response – in other words, selection favors some individuals over others in finding a mate.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldrich, J. R. (1995). Chemical communication in the true bugs and parasitoid exploitation. In Chemical Ecology of Insects 2, eds. R. T. Cardé and W. J. Bell, pp. 318–363. New York: Chapman & HallCrossRef
Aldrich, J. R., Lusby, W. R., Marron, B. E., Nicolaou, K. C., Hoffmann, M. P. and Wilson, L. T. (1989). Pheromone blends of green stink bugs and possible parasitoid selection. Naturwissenschaften 76: 173–175CrossRefGoogle Scholar
Arakaki, N., Wakamura, S. and Yasuda, T. (1996). Phoretic egg parasitoid, Telenomus euproctidis (Hymenoptera: Scelionidae), uses sex pheromone of tussock moth Euproctis taiwana (Lepidoptera: Lymantriidae) as a kairomone. Journal of Chemical Ecology 22: 1079–1085CrossRefGoogle Scholar
Arn, H, Tòth, M. and Priesner, E. (1992). List of Sex Pheromones of Lepidoptera and Related Attractants, 2nd edn. Montfavet, France: International Organization of Biological Control
Arn, H, Tòth, M. and Priesner, E. (2003). The Pherolist.http://www.nysaes.cornell.edu/pheronet
Atkinson, P. R. (1981). Mating behaviour and activity patterns of Eldana saccharina Walker (Lepidoptera: Pyralidae). Journal of the Entomological Society of Southern Africa 44: 265–280Google Scholar
Atkinson, P. R. (1982). Structure of the putative pheromone glands of Eldana saccharina Walker (Lepidoptera: Pyralidae). Journal of the Entomological Society of Southern Africa 45: 93–104Google Scholar
Bäckman, A.-C., Anderson, P., Bengtsson, M., Löfqvist, J., Unelius, C. R. and Witzgall, P. (2000). Antennal response of codling moth males, Cydia pomonella L. (Lepidoptera: Tortricidae), to the geometrical isomers of codlemone and codlemone acetate. Journal of Comparative Physiology A 186: 513–519Google Scholar
Baker, J. L., Hill, A. S. and Roelofs, W. L. (1978). Seasonal variations in the pheromone trap catches of male omnivorous leafroller moths, Platynota stultana. Environmental Entomology 7: 399–401CrossRefGoogle Scholar
Baker, T. C. (1983). Variations in male oriental fruit moth courtship patterns due to male competition. Experientia 39: 112–114CrossRefGoogle Scholar
Baker, T. C. (2002). Mechanism for saltational shifts in pheromone communication system. Proceedings of the National Academy of Sciences, USA 99: 13368–13370CrossRefGoogle Scholar
Baker, T. C. and Cardé, R. T. (1979). Courtship behavior of the oriental fruit moth (Grapholitha molesta): experimental analysis and consideration of the role of sexual selection in the evolution of courtship pheromones in the Lepidoptera. Annals of the Entomological Society of America 72: 173–188CrossRefGoogle Scholar
Baker, T. C., Nishida, R. and Roelofs, W. L. (1981). Close-range attraction of female oriental fruit moths to herbal scent of male hairpencils. Science 214: 1359–1361CrossRefGoogle ScholarPubMed
Bengtsson, B. O. and Löfstedt, C. (1990). No evidence for selection in a pheromonally polymorphic population. American Naturalist 138: 722–726CrossRefGoogle Scholar
Bennett, A. L., Atkinson, P. R. and Croix, N. J. S. (1991). On communication in the African sugarcane borer, Eldana saccharina Walker (Lepidoptera: Pyralidae). Journal of the Entomological Society of Southern Africa 54: 243–259Google Scholar
Birch, M. C. (1972). Male abdominal brush-organs in British noctuid moths and their value as a taxonomic character. Part II. The Entomologist 105: 233–244Google Scholar
Birch, M. C. (1974). Aphrodisiac pheromones in insects. In Pheromones, ed. M. C. Birch, pp. 115–134. Amsterdam: North-Holland
Birch, M. C., Poppy, G. M. and Baker, T. C. (1990). Scents and eversible scent structures of male moths. Annual Review of Entomology 35: 25–58CrossRefGoogle Scholar
Bjostad, L. B., Linn, C. E., Du, J.-W. and Roelofs, W. L. (1984). Identification of new sex pheromone components in Trichoplusia ni, predicted from biosynthetic precursors. Journal of Chemical Ecology 10: 1309–1323CrossRefGoogle Scholar
Bonduriansky, R. (2001). The evolution of male mate choice in insects: a synthesis of ideas and evidence. Biological Reviews 76: 305–339CrossRefGoogle ScholarPubMed
Brown, W. L. Jr and Wilson, E. O. (1957). Character displacement. Systematic Zoology 5: 49–64CrossRefGoogle Scholar
Burger, B. V., Nell, A. E., Smit, D.et al. (1993). Constituents of wing gland and abdominal hair pencil secretions of male African sugarcane borer, Eldana saccharina Walker (Lepidoptera: Pyralidae). Journal of Chemical Ecology 19: 2255–2277CrossRefGoogle Scholar
Burghardt, G. M. (1970). Defining communication. In Advances in Chemoreception, vol. 1, eds. J. W. Johnson and A. Turk. pp. 5–18. New York: Appleton, Century-CroftsCrossRef
Butlin, R. K. (1987). Speciation by reinforcement. Trends in Ecology and Evolution 2: 8–13CrossRefGoogle ScholarPubMed
Butlin, R. K. and Trickett, A. J. (1996). Can population genetics simulations help to interpret pheromone evolution? In Insect Pheromone Research: New Directions, eds. R. T. Cardé and A. K. Minks, pp. 548–562. New York: Chapman & Hall
Byers, J. A. and Struble, D. L. (1990). Identification of sex pheromones of two sibling species in dingy cutworm complex, Feltia jaculifera (Gn.) (Lepidoptera: Noctuidae). Journal of Chemical Ecology 16: 2981–2992CrossRefGoogle Scholar
Cardé, R. T. (1987). The role of pheromones in reproductive isolation and speciation of insects. In Evolutionary Genetics of Invertebrate Behavior, ed. M. D. Huettel. pp. 303–317. New York: Plenum
Cardé, R. T. and Baker, T. C. (1984). Sexual communication with pheromones. In Chemical Ecology of Insects, eds. W. J. Bell and R. T. Cardé, pp. 355–384. London: Chapman & HallCrossRef
Cardé, R. T. and Charlton, R. E. (1984). Olfactory sexual communication in Lepidoptera: strategy, sensitivity and selectivity. In Insect Communication, ed. T. Lewis, pp. 241–265. London: Academic Press
Cardé, R. T. and Hagaman, T. E. (1984). Mate location strategies of gypsy moths in dense populations. Journal of Chemical Ecology 10: 25–31CrossRefGoogle ScholarPubMed
Cardé, R. T. and Minks, A. K. (1995). Control of moth pests by mating disruption: successes and constraints. Annual Review of Entomology 40: 559–585CrossRefGoogle Scholar
Cardé, R. T., Baker, T. C. and Roelofs, W. L. (1976). Sex attractant responses of male oriental fruit moths to a range of component ratios: pheromone polymorphism?Experientia 32: 1406–1407CrossRefGoogle ScholarPubMed
Cardé, R. T., Cardé, A. M., Hill, A. S. and Roelofs, W. L. (1977). Sex pheromone specificity as a reproductive isolating mechanism among the sibling species Archips argyrospilus and A. mortuanus and other sympatric tortricine moths (Lepidoptera: Tortricidae). Journal of Chemical Ecology 3: 71–84CrossRefGoogle Scholar
Cardé, R. T., Charlton, R. E., Wallner, W. E. and Baranchikov, Y. N. (1996). Pheromone-mediated diel activity rhythms of male Asian gypsy moth (Lepidoptera: Lymantriidae) in relation to female eclosion and temperature. Annals of the Entomological Society of America 89: 745–753CrossRefGoogle Scholar
Carlsson, M. A., Galizia, C. G. and Hansson, B. S. (2002). Spatial representation of odours in the antennal lobe of the moth Spodoptera littoralis (Lepidoptera: Noctuidae). Chemical Senses 27: 231–244CrossRefGoogle Scholar
Charlton, R. E. and Cardé, R. T. (1990). Behavioral interactions in the courtship of the gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae). Annals of the Entomological Society of America 83: 89–96CrossRefGoogle Scholar
Charlton, R. E., Cardé, R. T. and Wallner, W. E. (1999). Synchronous crepuscular flight of female Asian gypsy moths: relationships of light intensity and ambient and body temperatures. Journal of Insect Behavior 12: 517–531CrossRefGoogle Scholar
Collins, M. M. and Tuskes, P. M. (1979). Reproductive isolation in sympatric species of dayflying moths (Hemileuca: Saturniidae). Evolution 33: 728–733Google Scholar
Collins, R. D. and Cardé, R. T. (1985). Variation in and heritability of aspects of pheromone production in the pink bollworm moth, Pectinophora gossypiella (Lepidoptera: Gelechiidae). Annals of the Entomological Society of America 78: 229–234CrossRefGoogle Scholar
Collins, R. D. and Cardé, R. T. (1989). Selection for altered pheromone-component ratios in the pink bollworm moth, Pectinophora gossypiella (Lepidoptera: Gelechiidae). Journal of Insect Behavior 2: 609–621CrossRefGoogle Scholar
Collins, R. D., Rosenblum, S. L. and Cardé, R. T. (1990). Selection for increased pheromone titre in the pink bollworm moth, Pectinophora gossypiella (Lepidoptera: Gelechiidae). Physiological Entomology 15: 141–147CrossRefGoogle Scholar
Conner, W. E., Eisner, T., Vander Meer, R. K., Guerrero, A. and Meinwald, J. (1981). Precopulatory sexual interaction in an arctiid moth (Utetheisa ornatrix): role of a pheromone derived from dietary alkaloids. Behavioral Ecology and Sociobiology 9: 227–235CrossRefGoogle Scholar
Darwin, C. (1871). The Descent of Man, and Selection in Relation to Sex. London: J. Murray
De Jong, M. C. M. (1988). Evolutionary Approaches to Insect Communication Systems. Bark Beetle Host Colonization and Mate Finding in small ermine moths. Ph. D. Thesis, Leiden University
Jong, M. C. M. and Sabelis, M. W. (1991). Limits to runaway sexual selection: the wallflower paradox. Journal of Evolutionary Biology 4: 637–655CrossRefGoogle Scholar
Delisle, J. and Hardy, M. (1997). Male larval nutrition influences the reproductive success of both sexes of the spruce budworm, Christoneura fumiferana (Lepidoptera: Tortricidae). Functional Ecology 11: 451–463CrossRefGoogle Scholar
Doane, C. C. (1968). Aspects of mating behavior of the gypsy moth. Annals of the Entomological Society of America 68: 768–773CrossRefGoogle Scholar
Drummond, B. A., III (1984). Multiple mating and sperm competition in the Lepidoptera. In Sperm Competition and the Evolution of Animal Mating Systems, ed. R. L. Smith, pp. 291–370. San Diego, CA: Academic PressCrossRef
Dussourd, D. E., Ubik, K., Harvis, C., Resch, J., Meinwald, J. and Eisner, T. (1988). Biparental defensive endowment of eggs with acquired plant alkaloid in the moth Utetheisa ornatrix. Proceedings of the National Academy of Sciences, USA 85: 5992–5996CrossRefGoogle ScholarPubMed
Dussourd, D. E., Harvis, C. A., Meinwald, J. and Eisner, T. (1991). Pheromonal advertisement of a nuptial gift by a male moth (Utetheisa ornatrix). Proceedings of the National Academy of Sciences, USA 88: 9224–9227CrossRefGoogle Scholar
Eberhard, W. G. (1977). Aggressive chemical mimicry by a bolas spider. Science 198: 1173–1175CrossRefGoogle ScholarPubMed
Eberhard, W. G. (1980). The natural history and behavior of the bolas spider Mastophora dizzydeani sp. N. (Araneidae). Psyche 87: 143–169CrossRefGoogle Scholar
Elkinton, J. S. and Cardé, R. T. (1983). Appetitive flight behavior of male gypsy moths (Lepidoptera: Lymantriidae). Environmental Entomology 12: 1702–1707CrossRefGoogle Scholar
Elkinton, J. S., Schal, C., Ono, T. and Cardé, R. T. (1987). Pheromone puff trajectory and upwind flight of male gypsy moths in a forest. Physiological Entomology 12: 399–406CrossRefGoogle Scholar
Emelianov, I., Mallet, J. and Baltensweiler, W. (1995). Genetic differentiation in Zeiraphera diniana (Lepidoptera: Tortricidae, the larch budmoth): polymorphism, host races, or sibling species. Heredity 75: 416–424CrossRefGoogle Scholar
Evenden, M. L. and Haynes, K. F. (2001). Potential for the evolution of resistance to pheromone-based mating disruption tested using two pheromone strains of the cabbage looper, Trichoplusia ni. Entomologia Experimentalis et Applicata 100: 131–134CrossRefGoogle Scholar
Evenden, M. L., Spohn, B. G., Moore, A. J., Preziosi, R. F. and Haynes, K. F. (2002). Inheritance and evolution of male response to sex pheromone in Trichoplusia ni (Lepidoptera: Noctuidae). Chemoecology 12: 53–59CrossRefGoogle Scholar
Falconer, D. S. (1981). Introduction to Quantitative Genetics, 2nd edn. Harlow, UK: Longmans
Fisher, R. A. (1958). The Genetical Theory of Natural Selection, 2nd edn. New York: Dover
Flint, H. S. and Merkle, J. R. (1984). The pink bollworm (Lepidoptera: Gelechiidae): alteration of male response to gossyplure by release of its component Z,Z-isomer. Journal of Economic Entomology 77: 1099–1104CrossRefGoogle Scholar
Flint, H. S., Smith, R. L., Forey, D. E. and Horn, B. R. (1977). Pink bollworm: response of males to (Z,Z-) and (Z,E-) isomers of gossyplure. Journal of Economic Entomology 70: 274–257Google Scholar
Foster, S. P., Clearwater, J. R., Muggleston, S. J., Dugdale, J. S. and Roelofs, W. L. (1986). Probable sibling species complexes within two described New Zealand leafroller moths. Naturwissenschaften 73: 156–158CrossRefGoogle Scholar
Foster, S. P., Clearwater, J. R., and Muggleston, S. J. (1989). Intraspecific variation of two components in sex pheromone gland of Planotortrix excessana sibling species. Journal of Chemical Ecology 15: 457–465CrossRefGoogle Scholar
Foster, S. P., Muggleston, S. J., Löfstedt, C. and Hansson, B. (1996). A genetic study on pheromonal communication in two Ctenopseustis moths. In Insect Pheromone Research: New Directions, eds. R. T. Cardé and A. K. Minks, pp. 514–524. New York: Chapman & Hall
Gemeno, C., Yeargan, K. V. and Haynes, K. F. (2000a). Aggressive chemical mimicry by the bolas spider Mastophora hutchinsoni: identification and quantification of a major prey's sex pheromone components in the spider's volatile emissions. Journal of Chemical Ecology 26: 1235–1243CrossRefGoogle Scholar
Gemeno, C., Lutfallah, A. F. and Haynes, K. F. (2000b). Pheromone blend variation and cross-attraction among populations of the black cutworm moth (Lepidoptera: Noctuidae). Annals of the Entomological Society of America 93: 1322–1328CrossRefGoogle Scholar
Gemeno, C., Moore, A. J., Preziosi, R. F. and Haynes, K. F. (2001). Quantitative genetics of signal evolution: a comparison of the pheromonal signal in two populations of the cabbage looper, Trichoplusia ni. Behavior Genetics 31: 157–165CrossRefGoogle ScholarPubMed
González, A., Rossini, C., Eisner, M. and Eisner, T. (1999). Sexually transmitted chemical defense in a moth (Utetheisa ornatrix). Proceedings of the National Academy of Sciences, USA 96: 5570–5574CrossRefGoogle Scholar
Gothilf, S. and Shorey, H. H. (1976). Sex pheromones of Lepidoptera: examination of the role of male scent brushes in courtship behavior in Trichoplusia ni. Environmental Entomology 5: 115–119CrossRefGoogle Scholar
Grant, G. G. (1971). Scent apparatus of the male cabbage looper, Trichoplusia ni. Annals of the Entomological Society of America 64: 347–352CrossRefGoogle Scholar
Greenfield, M. D. (1981). Moth sex pheromones: an evolutionary perspective. Florida Entomologist 64: 4–17CrossRefGoogle Scholar
Greenfield, M. D. (2002). Signalers and Receivers. Mechanisms and Evolution of Arthropod Communication. Oxford: Oxford University Press
Gries, G., Schaeffer, P. W., Gries, R., Liška, J. and Gotoh, T. (2001). Reproductive character displacement in Lymantria monacha from Northern Japan?Journal of Chemical Ecology 27: 1163–1176CrossRefGoogle ScholarPubMed
Guerin, P. M., Baltensweiler, W., Arn, H. and Buser, H.-R. (1984). Host race pheromone polymorphism in the larch budmoth. Experientia 40: 892–894CrossRefGoogle Scholar
Hansson, B. S. and Christensen, T. A. (1999). Functional characteristics of the antennal lobe. In Insect Olfaction, ed. B. S. Hansson, pp. 125–161. Berlin: Springer-VerlagCrossRef
Hansson, B. S., Tòth, M., Löfstedt, C., Szöcs, G., Subchev, M. and Löfqvist, J. (1990). Pheromone variation among eastern European and western Asian populations of the turnip moth Agrotis segetum. Journal of Chemical Ecology 16: 1611–1622CrossRefGoogle Scholar
Haynes, K. F. (1990). Identification of sex pheromone of bristly cutworm, Lacinipolia renigera (Stephens). Journal of Chemical Ecology 16: 2615–2621CrossRefGoogle Scholar
Haynes, K. F. (1996). Genetics of pheromone communication in the cabbage looper moth, Trichoplusia ni. In Insect Pheromone Research: New Directions, eds. R. T. Cardé and A. K. Minks, pp. 525–534. New York: Chapman & Hall
Haynes, K. F. and Baker, T. C. (1988). Potential for evolution of resistance to pheromones: worldwide and local variation in chemical communication system of the pink bollworm moth, Pectinophora gossypiella. Journal of Chemical Ecology 14: 1547–1560CrossRefGoogle ScholarPubMed
Haynes, K. F. and Hunt, R. E. (1990). A mutation in pheromonal communication system of cabbage looper moth, Trichoplusia ni. Journal of Chemical Ecology 16: 1249–1257CrossRefGoogle ScholarPubMed
Haynes, K.F and Yeargan, K. V. (1999). Exploitation of intraspecific communication systems: illicit signalers and receivers. Annals of the Entomological Society of America 92: 960–970CrossRefGoogle Scholar
Haynes, K. F., Yeargan, K. V. and Gemeno, C. (2001). Detection of prey by a spider that aggressively mimics pheromone blends. Journal of Insect Behavior 14: 535–544CrossRefGoogle Scholar
Howard, D. J. (1993). Reinforcement: origin, dynamics, and fate of an evolutionary hypothesis. In Hybrid Zones and the Evolutionary Process, ed. R. G. Harrison, pp. 46–69. New York: Oxford University Press
Hill, A. S. and Roelofs, W. L. (1981). Sex pheromone of the saltmarsh caterpillar moth, Estigmene acrea. Journal of Chemical Ecology 7: 655–668CrossRefGoogle ScholarPubMed
Hill, A., Cardé, R., Comeau, A., Bode, W. and Roelofs, W. (1974). Sex pheromones of the tufted apple bud moth (Platynota ideausalis). Environmental Entomology 3: 249–252CrossRefGoogle Scholar
Hill, A. S., Cardé, R.T, Bode, W. M. and Roelofs, W. L. (1977). Sex pheromone components of the variegated leafroller moth, Platynota flavedana. Journal of Chemical Ecology 3: 369–376CrossRefGoogle Scholar
Hunt, R. E., Zhao, B.-G. and Haynes, K. F. (1990). Genetic aspects of interpopulational differences in pheromone blend of cabbage looper moth, Trichoplusia ni. Journal of Chemical Ecology 16: 2935–2946CrossRefGoogle ScholarPubMed
Iyengar, V. K., Reeve, H. K. and Eisner, T. (2002). Paternal inheritance of a female moth's mating preference. Nature 419: 830–832CrossRefGoogle ScholarPubMed
Jurenka, R. A., Haynes, K. F., Adlof, R. O., Bengtsson, M. and Roelofs, W. L. (1994). Sex pheromone component ratio in the cabbage looper moth altered by a mutation affecting the fatty acid chain-shortening reactions in the pheromone biosynthetic pathway. Insect Biochemistry and Molecular Biology 24: 373–381CrossRefGoogle Scholar
King, G. G. S., Gries, R., Gries, G. and Slessor, K. N. (1995). Optical isomers of 3,13-dimethylheptadecane: sex pheromone components of the western false hemlock looper, Nepytia freemani (Lepidoptera: Geometridae). Journal of Chemical Ecology 21: 2027–2045CrossRefGoogle Scholar
Klun, J. A. and Huettell, M. D. (1988). Genetic regulation of sex pheromone production and response: interaction of sympatric pheromonal types of the European corn borer, Ostrinia nubilalis (Lepidoptera: Pyralidae). Journal of Chemical Ecology 14: 2047–2061CrossRefGoogle Scholar
Klun, J. A. and Maini, S. (1979). Genetic basis of an insect chemical communication system: the European corn borer. Environmental Entomology 8: 423–426CrossRefGoogle Scholar
Krasnoff, S. B. (1996). Evolution of male lepidopteran pheromones: a phylogenetic perspective. In Insect Pheromone Research: New Directions, eds. R. T. Cardé and A. K. Minks, pp. 490–504. New York: Chapman & Hall
Krasnoff, S. B. and Roelofs, W. L. (1989). Quantitative and qualitative effects of larval diet on male scent secretions of Estigmene acrea, Phragmatobia fuliginosa, and Pyrrharctia isabella (Lepidoptera: Arctiidae). Journal of Chemical Ecology 15: 1077–1093CrossRefGoogle Scholar
Kuenen, L. P. S. and Cardé, R. T. (1993) Effects of moth size on velocity and steering during upwind flight toward a sex pheromone source by Lymantria dispar (Lepidoptera: Lymantriidae). Journal of Insect Behavior 6: 177–193CrossRefGoogle Scholar
LaForest, S., Wu, W. and Löfstedt, C. (1997). A genetic analysis of population differences in pheromone production and response between two populations of the turnip moth, Agrotis segetum. Journal of Chemical Ecology 23: 1487–1503CrossRefGoogle Scholar
Landolt, P. J. and Heath, R. R. (1990). Sexual role reversal in mate-finding strategies of the cabbage looper moth. Science 249: 1026–1028CrossRefGoogle ScholarPubMed
Lewontin, R. C. (1979). Sociobiology as an adaptationist program. Behavioral Science 24: 5–14CrossRefGoogle ScholarPubMed
Lewis, W. J., Nordlund, D. A., Gueldner, R. C., Teal, P. E. A. and Tumlinson, J. H. (1982). Kairomones and their use for management of entomaphagous insects. XIII. Kairomonal activity for Trichogramma spp. of abdominal tips, excretion, and a synthetic sex pheromone blend of Heliothis zea (Boddie) moths. Journal of Chemical Ecology 8: 1323–1331CrossRefGoogle Scholar
Li, W., Farrell, J. A. and Cardé, R. T. (2001). Tracking of fluid-advected odor plumes: strategies inspired by insect orientation to pheromone. Adaptive Behavior 9: 143–167CrossRefGoogle Scholar
Linn, C. E. Jr and Roelofs, W. L. (1985). Response specificity of male pink bollworm moths to different blends and dosages of sex pheromone. Journal of Chemical Ecology 11: 1583–1590CrossRefGoogle ScholarPubMed
Linn, C. E., Jr and Roelofs, W. L. (1995). Pheromone communication in moths and its role in the speciation process. In Speciation and the Recognition Concept, eds. D. M. Lambert and H. G. Spencer, pp. 263–300. Baltimore: Johns Hopkins University Press
Linn, C. E., Bjostad, L. B., Du, J. W. and Roelofs, W. L. (1984). Redundancy in a chemical signal: behavioral responses of male Trichoplusia ni to a 6-component sex pheromone blend. Journal of Chemical Ecology 10: 1635–1658CrossRefGoogle Scholar
Linn, C. E., Campbell, M. G., and Roelofs, W. L. (1988). Temperature modulation of behavioural thresholds controlling male moth sex pheromone response specificity. Physiological Entomology 13: 59–67CrossRefGoogle Scholar
Liu, Y.-B. and Haynes, K. F. (1994). Evolution of behavioral responses to sex pheromone in mutant laboratory colonies of Trichoplusia ni. Journal of Chemical Ecology 20: 231–238CrossRefGoogle Scholar
Löfstedt, C. (1993). Moth pheromone genetics and evolution. Philosophical Transactions of the Royal Society London, Series B 340: 167–177CrossRefGoogle Scholar
Löfstedt, C. and Kozlov, M. (1996). A phylogenetic analysis of pheromone communication in primitive moths. In Insect Pheromone Research: New Directions, eds. R. T. Cardé and A. K. Minks, pp. 473–489. New York: Chapman & Hall
Löfstedt, C., Lanne, B. S., Löfquist, J. and Bergström, G. (1985). Individual variation in the pheromone of the turnip moth Agrotis segetum. Journal of Chemical Ecology 11: 1181–1196CrossRefGoogle ScholarPubMed
Löfstedt, C., Herrebout, W. M. and Du, J.-W. (1986). Evolution of the ermine moth pheromone tetradecyl acetate. Nature 323: 621–623CrossRefGoogle Scholar
Löfstedt, C., Vickers, N. J., Roelofs, W. L. and Baker, T. C. (1989a). Diet related courtship success in the oriental fruit moth, Grapholita molesta (Tortricidae). Oikos 55: 402–408CrossRefGoogle Scholar
Löfstedt, C., Hansson, B. S., Roelofs, W. L. and Bengtsson, B. O. (1989b). No linkage between genes controlling female pheromone production and male pheromone response in the European corn borer, Ostrinia nubilalis Hübner (Lepidoptera: Pyralidae). Genetics 123: 553–556Google Scholar
Löfstedt, C., Hannson, B. S., Dijkerman, H. J. and Herrebout, W. M. (1990). Behavioural and electrophysiological activity of unsaturated analogues of the pheromone tetradecyl acetate in the small ermine moth Yponomeuta rorellus. Physiological Entomology 15: 47–54CrossRefGoogle Scholar
Löfstedt, C., Herrebout, W. M. and Menken, S. B. J. (1991). Sex pheromones and their potential role in the evolution of reproductive isolation in small ermine moths (Yponomeutidae). Chemoecology 2: 20–28CrossRefGoogle Scholar
Löfstedt, C., Hansson, B. S., Petersson, E., Valeur, P. and Richards, A. (1994). Pheromonal secretions from gland on the 5th abdominal sternite of hydrodpsychid and rhyacophilid caddisflies (Trichoptera). Journal of Chemical Ecology 20: 153–170CrossRefGoogle Scholar
Lundberg, S. and Löfstedt, C. (1987). Intra-specific competition in the sex communication channel: a selective force in the evolution of moth pheromones. Journal of Theoretical Biology 125: 15–24CrossRefGoogle Scholar
Maynard Smith, J. (1978). The Evolution of Sex. Cambridge: Cambridge University Press
McElfresh, J. S. and Millar, J. G. (1999a). Sex pheromone of Nuttall's sheep moth, Hemileuca nuttalli, from the eastern Sierra Mountains of California. Journal of Chemical Ecology 25: 711–726CrossRefGoogle Scholar
McElfresh, J. S. and Millar, J. G. (1999b). Geographic variation in sex pheromone blend of Hemileuca electra from southern California. Journal of Chemical Ecology 25: 2505–2525CrossRefGoogle Scholar
McElfresh, J. S. and Millar, J. G. (2001). Geographic variation in the pheromone system of the saturniid moth Hemileuca eglanterina. Ecology 82: 3505–3518Google Scholar
McNeil, J. N. (1991). Behavioral ecology of pheromone-mediated communication in moths and its importance in the use of pheromone traps. Annual Review of Entomology 36: 407–430CrossRefGoogle Scholar
Millar, J. G. (2000). Polyene hydrocarbons and epoxides: a second major class of lepidopteran sex attractant pheromones. Annual Review of Entomology 45: 575–604CrossRefGoogle ScholarPubMed
Millar, J. G., Rice, R. E., Steffan, S. A., Daane, K. M., Cullen, E. and Zalom, F. G. (2001). Attraction of female digger wasps, Astata occidentalis Cresson (Hymenoptera: Sphecidae) to the sex pheromone of the stink bug Thyanta pallidovirens (Hemiptera: Pentatomidae). Pan-Pacific Entomologist 77:244–248Google Scholar
Mochizuki, F., Fukumoto, T., Noguchi, H., Sugie, H., Morimoto, T. and Ohtani, K. (2002). Resistance to a mating disruptant composed of (Z)-11-tetradecenyl acetate in the smaller tea tortrix, Adoxophyes honmai (Yasuda) (Lepidoptera: Tortricidae). Applied Entomology and Zoology 37: 299–304CrossRefGoogle Scholar
Monti, L., Génermont, J., Malosse, C. and Lalanne-Cassou, B. (1997). A genetic analysis of some components of reproductive isolation between two closely related species, Spodoptera latifascia (Walker) and S. descoinsi (Lalanne-Cassou and Silvain) (Lepidoptera: Noctuidae). Journal of Evolutionary Biology 10: 121–134CrossRefGoogle Scholar
Murlis, J., Elkinton, J. S. and Cardé, R. T. (1992). Odor plumes and how insects use them. Annual Review of Entomology 37: 505–532CrossRefGoogle Scholar
Newcomb, R. D. and Gleeson, D. M. (1998). Pheromone evolution within the genera Ctenopseustis and Planotortrix (Lepidoptera: Tortricidae) inferred from a phylogeny based on cytochrome oxidase I gene variation. Biochemical Systematics and Ecology 26: 473–484CrossRefGoogle Scholar
Nishida, R., Baker, T. C. and Roelofs, W. L. (1982). Hairpencil pheromone components of male oriental fruit moths, Grapholitha molesta. Journal of Chemical Ecology 8: 947–959CrossRefGoogle ScholarPubMed
Noldus, L. P. J. J. (1988). Response of the egg parasitoid Trichogramma pretiosum to the sex pheromone of its host Heliothis zea. Entomologia Experimentalis et Applicata 48: 293–300CrossRefGoogle Scholar
Noldus, L. P. J. J., Lenteren, J. C. and Lewis, W. J. (1991). How Trichogramma parasitoids use moth sex pheromones as kairomones: orientation behaviour in a wind tunnel. Physiological Entomology 16: 313–327CrossRefGoogle Scholar
Ono, T. (1993). Effect of rearing temperature on pheromone component ratio in potato tuberworm moth, Phthorimaea operculella, (Lepidoptera: Gelechiidae). Journal of Chemical Ecology 19: 71–81CrossRefGoogle Scholar
Ono, T. and Orita, S. (1986). Field trapping of the potato tuber moth, Phthorimaea operculella (Lepidoptera: Gelechiidae), with the sex pheromone. Applied Entomology and Zoology 21: 632–634CrossRefGoogle Scholar
Paterson, H. E. H. (1985). The recognition concept of species. In Museum Monograph 4: Species and Speciation, ed. E. S. Virba, pp. 21–29. Pretoria: Transvaal Museum
Phelan, P. L. (1992). Evolution of sex pheromones and the role of asymmetric tracking. In Insect Chemical Ecology. An Evolutionary Approach, eds. B. D. Roitberg and M. B. Isman, pp. 265–314. New York: Chapman & Hall
Phelan, P. L. (1996). Genetics and phylogenetics in the evolution of sex pheromones. In Insect Pheromone Research: New Directions, eds. R. T. Cardé and A. K. Minks, pp. 563–579. New York: Chapman & Hall
Phelan, P. L. (1997). Evolution of mate-signaling in moths: phylogenetic consideration and predictions from the asymmetric tracking hypothesis. In Evolution of Insect Mating Systems in Insects and Arachnids, eds. J. C. Choe and B. J. Crespi, pp. 240–256. Cambridge: Cambridge University PressCrossRef
Phelan, P. L. and Baker, T. C. (1986). Male-size-related courtship success and intersexual selection in the tobacco moth, Ephestia elutella. Experientia 42: 1291–1293CrossRefGoogle Scholar
Phelan, P. L. and Baker, T. C. (1987). Evolution of male pheromones in moths: reproductive isolation through sexual selection. Science 235: 205–207CrossRefGoogle ScholarPubMed
Phelan, P. L. and Baker, T. C. (1990). Comparative study of courtship in 12 phycitine moths (Lepidoptera: Pyralidae). Journal of Insect Behavior 3: 303–326CrossRefGoogle Scholar
Priesner, E. and Baltensweiler, W. (1987). Studien zum Pheromon-Polymorphismus von Zeiraphera diniana Gn. (Lep., Tortricidae). 1. Pheromon-Reacktionstypen mannlicher falter in europaischen Wildpopulationen, 1978–85. Journal of Applied Entomology 104: 234–256CrossRefGoogle Scholar
Resh, V. H. and Wood, J. R. (1985). The site of pheromone production in three species of Trichoptera. Aquatic Insects 7: 65–71CrossRefGoogle Scholar
Rhainds, M., Gries, G., Li, J. X.et al. (1994). Chiral esters: sex pheromone of the bagworm, Oiketicus kirbyi (Lepidoptera: Psychidae). Journal of Chemical Ecology 20: 3083–3096CrossRefGoogle Scholar
Roelofs, W. L. and Brown, R. L. (1982). Pheromones and the evolutionary relationships of Tortricidae. Annual Review of Ecology and Systematics 13: 395–422CrossRefGoogle Scholar
Roelofs, W. L., Glover, T., Tang, X. H.et al. (1987). Sex pheromone production and perception in European corn borer moths is determined by both autosomal and sex-linked genes. Proceedings of the National Academy of Sciences, USA 84: 7585–7589CrossRefGoogle ScholarPubMed
Roelofs, W. L., Liu, W., Hao, G., Jiao, H., Rooney, A. P. and Linn, C. E. Jr (2002). Evolution of moth sex pheromones via ancestral genes. Proceedings of the National Academy of Sciences, USA 99: 13621–13626CrossRefGoogle ScholarPubMed
Sasaerila, Y., Greis, G., Greis, R. and Boo, T. C. (2000). Specificity of communication channels in four limacodid moths: Darna bradleyi, Darna trima, Setothosea asigna, and Setore nitens (Lepidoptera: Limacodidae). Chemoecology 10: 193–199CrossRefGoogle Scholar
Schal, C., Charlton, R. E. and Cardé, R. T. (1987). Temporal patterns of sex pheromone titers and release rates in Holomelina lamae (Lepidoptera: Arctiidae). Journal of Chemical Ecology 13: 1115–1129CrossRefGoogle Scholar
Schal, C., Sevala, V. and Cardé, R. T. (1998). Novel and highly specific transport of a volatile sex pheromone by hemolymph lipophorin in moths. Naturwissenschaften 85: 339–342CrossRefGoogle Scholar
Sharov, A. A., Liebhold, A. M. and Ravlin, F. W. (1995). Prediction of gypsy moth (Lepidoptera: Lymantriidae) mating success from pheromone trap counts. Environmental Entomology 24: 1239–1244CrossRefGoogle Scholar
Spangler, H. G. (1987). Acoustically mediated pheromone release in Galleria mellonella (Lepidoptera: Pyralidae). Journal of Insect Physiology 33: 465–468CrossRefGoogle Scholar
Spangler, H. G., Greenfield, M. D. and Takessian, A. (1984). Ultrasonic mate calling in the lesser wax moth. Physiological Entomology 9: 87–95CrossRefGoogle Scholar
Sperling, F., Byers, R. and Hickey, D. (1996). Mitochondrial DNA sequence variation among pheromotypes of the dingy cutworm, Feltia jaculifera (Gn.) Lepidotera: Noctuidae). Canadian Journal of Zoology 74: 2109–2117CrossRefGoogle Scholar
Stowe, M. K., Tumlinson, J. H. and Heath, R. R. (1987). Chemical mimicry: bolas spiders emit components of moth prey species sex pheromones. Science 236: 964–967CrossRefGoogle ScholarPubMed
Tamaki, Y., Noguchi, H., Sugie, H., Sato, R. and Kariya, A. (1979). Minor components of the female sex-attractant pheromone of the smaller tea tortrix (Lepidoptera: Tortricidae): isolation and identification. Applied Entomology and Zoology 14: 101–113CrossRefGoogle Scholar
Thompson, D. R., Angerilli, N. P. D., Vincent, C. and Gaunce, A. P. (1991). Evidence for regional differences in the response of the obliquebanded leafroller (Lepidoptera: Tortricidae) to sex pheromone blends. Environmental Entomology 20: 935–938CrossRefGoogle Scholar
Thornhill, R. (1979). Male and female sexual selection and the evolution of mating strategies in insects. In Sexual Selection and Reproductive Competition in Insects, eds. M. S. Blum and N. A. Blum, pp. 81–121. New York: Academic PressCrossRef
Thornhill, R. and Alcock, J. (1983). The Evolution of Insect Mating Systems. Cambridge, MA: Harvard University Press
Todd, J. L., Haynes, K. F. and Baker, T. C. (1992). Antennal neurones specific for redundant pheromone components in normal and mutant Trichoplusia ni males. Physiological Entomology 17: 183–192CrossRefGoogle Scholar
Todd, J. L., Anton, S., Hansson, B. S. and Baker, T. C. (1995). Functional organization of the macroglomerular complex related to behaviourally expressed olfactory redundancy in male cabbage looper moths. Physiological Entomology 20: 349–361CrossRefGoogle Scholar
Tòth, M., Löfstedt, C., Blair, B. W.et al. (1992). Attraction of male turnip moths Agrotis segetum (Lepidoptera: Noctuidae) to sex pheromone components and their mixtures at 11 sites in Europe, Asia, and Africa. Journal of Chemical Ecology 18: 1337–1347CrossRefGoogle Scholar
Trivers, R. L. (1972). Parental investment and sexual selection. In Sexual Selection and the Descent of Man, 1871–1971, ed. B. Campbell, pp. 136–179. Chicago, IL: Aldine
Tuskes, P. M., Tuttle, J. P. and Collins, M. M. (1996). The Wild Silk Moths of North America. Ithaca, NY: Cornell University Press
Vickers, N. J., Christensen, T. A., Mustaparta, H. and Baker, T. C. (1991). Chemical communication in heliothine moths. III. Flight behavior of male Heliocoverpa zea and Heliothis virescens in response to varying ratios of intra- and interspecific sex pheromone components. Journal of Comparative Physiology A 169: 275–280Google Scholar
Vickers, N. J., Christensen, T. J. and Hildebrand, J. G. (1998). Combinatorial odor discrimination in the brain: attractive and antagonistic odor blends are represented in distinct combinations of uniquely identifiable glomeruli. Journal of Comparative Neurology 400: 35–563.0.CO;2-U>CrossRefGoogle Scholar
Wagner, D. L. and Rosovsky, J. (1991). Mating systems in primitive Lepidoptera, with emphasis on the reproductive behaviour of Korscheltellus gracilis (Hepialidae). Zoological Journal of the Linnaean Society 102: 227–303CrossRefGoogle Scholar
Wagner, W. E. Jr (1998). Measuring female mating preferences. Animal Behaviour 55: 1029–1042CrossRefGoogle ScholarPubMed
Williams, G. C. (1992). Natural Selection. Princeton, NJ: Princeton University Press
Willis, M. A. and Birch, M. C. (1982). Male lek formation and female calling in a population of the arctiid moth Estigmene acrea. Science 218: 168–170CrossRefGoogle Scholar
Wood, D. L. (1982). The role of pheromones, kairomones, and allomones in the host selection and colonization behavior of bark beetles. Annual Review of Entomology 27: 411–446CrossRefGoogle Scholar
Wu, W.-Q., Hansson, B. S. and Löfstedt, C. (1995). Electrophysiological and behavioural evidence for a fourth sex pheromone component in the turnip moth, Agrotis segetum. Physiological Entomology 20: 81–92CrossRefGoogle Scholar
Wu, W., Cottrell, C. B., Hansson, B. S. and Löfstedt, C. (1999). Comparative study of pheromone production and response in Swedish and Zimbabwean populations of turnip moth, Agrotis segetum. Journal of Chemical Ecology 25: 177–196CrossRefGoogle Scholar
Yeargan, K. V. (1988). Ecology of a bolas spider, Mastophora hutchinsoni: phenology, hunting tactics, and evidence of aggressive chemical mimicry. Oecologia (Berlin) 74: 524–530CrossRefGoogle ScholarPubMed
Yeargan, K. V. (1994). Biology of bolas spiders. Annual Review of Entomology 39: 81–99CrossRefGoogle Scholar
Zagatti, P. (1981). Comportement sexuel de la pyrale de la canne à sucre Eldana saccharina (Wlk.) lié à deux phéromones émises par le male. Behaviour 78: 81–98CrossRefGoogle Scholar
Zhao, C., Löfstedt, C. and Xuying, W. (1990). Sex pheromone biosynthesis in the Asian corn borer Ostrinia furnacalis (II): Biosynthesis of (E)- and (Z)-12-tetradecenyl acetate involves delta-14 desaturation. Archives of Insect Biochemistry and Physiology 15: 57–65CrossRefGoogle Scholar
Zhu, J. W., Zhao, C. H., Lu, F., Bengtsson, M. and Löfstedt, C. (1996a). Reductase specificity and the ratio regulation of E/Z isomers in pheromone biosynthesis of the European corn borer, Ostrinia nubilalis (Lepidoptera: Pyralidae). Insect Biochemistry and Molecular Biology 26: 171–176CrossRefGoogle Scholar
Zhu, J., Löfstedt, C. and Bengtsson, B. O. (1996b). Genetic variation in the strongly canalized sex pheromone communication system of the European corn borer, Ostrinia nubilalis Hübner (Lepidoptera; Pyralidae). Genetics 144: 757–766Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×