Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-01T14:45:20.383Z Has data issue: false hasContentIssue false

7 - A quest for alkaloids: the curious relationship between tiger moths and plants containing pyrrolizidine alkaloids

Published online by Cambridge University Press:  07 August 2009

William E. Conner
Affiliation:
Department of Biology, Wake Forest University Winston-Salem, USA
Susan J. Weller
Affiliation:
J. F. Bell Museum of Natural History, University of Minnesota St Paul, USA
Ring T. Cardé
Affiliation:
University of California, Riverside
Jocelyn G. Millar
Affiliation:
University of California, Riverside
Get access

Summary

Introduction

A curious relationship exists between a group of plants, the pyrrolizidine alkaloids they contain, and tiger moths of the family Arctiidae. Tiger moths possess an impressive array of chemicals, either produced de novo or sequestered from plants, that protect them to a greater or lesser degree from predators and parasites. These chemicals include cyossin (Teas et al., 1966), biogenic amines (Bisset et al., 1959, 1960; Rothschild and Aplin, 1971), pyrazines (Rothschild et al., 1984), polyphenolics (Hesbacher et al., 1995), iridoid glycosides (Bowers and Stamp, 1997), and cardenolides (Rothschild et al., 1970, 1973; Wink and von Nickisch-Rosenegk, 1997); however, no group of compounds, it seems, has influenced the natural history and behavior of tiger moths as the pyrrolizidine alkaloids (PAs) have done (Weller et al., 2000a). Several excellent reviews have been written about these compounds from the perspective of their chemistry, the plants that produce them (Bull et al.; 1968; Mattocks, 1986; Hartmann and Witte, 1995), and the insects that utilize them (Schneider, 1986; Boppré, 1990; Hartmann and Ober, 2000), but none has focussed exclusively, on their intimate relationships with tiger moths.

The members of the family Arctiidae, which numbers over 11 000 species, are often brilliantly colored (Watson and Goodger, 1986; Holloway, 1988; Weller et al., 2000a). In addition to standard aposematic red, yellow, or black patterns, adults and larvae may have iridescent blue and green, or even pearly white, coloration. White can be considered aposematic when individuals rest conspicuously on green vegetation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharya, L. and Fenton, M. B. (1992). Echolocation behavior of vespertillionid bats (Lasiurus cinereus and Lasiurus borealis) attacking aerial targets including arctiid moths. Canadian Journal of Zoology 70: 1292–1298CrossRefGoogle Scholar
Adams, J. K. (1987). The Defenses of Adult Tiger Moths (Lepidoptera: Arctiidae): Phylogenetic and Ecological Factors Influencing the Array of Defenses in Individual Species. Ph. D. Thesis. University of Kansas, Lawrencexs
Andersson, M. (1994). Monographs in Behavior and Ecology: Sexual Selection. Princeton, NJ: Princeton University Press
Aplin, R. T. and Rothschild, M. (1972). Poisonous alkaloids in the body tissues of the garden tiger moth (Arctia caja L.) and the cinnabar moth (Tyria (= Callimorpha) jacobaeae L.) (Lepidoptera). In Toxins of Animal and Plant Origin, eds. A. de Vries and K. Kochva. pp. 579–595. London: Gordon and Breach
Aplin, R. T., Benn, M. H. and Rothschild, M. (1968). Poisonous alkaloids in the body tissues of the cinnabar moth (Callimorpha jacobaeae L.). Nature 219: 747–748CrossRefGoogle Scholar
Beebe, W. (1955). Two little-known selective insect attractants. Zoologica (New York Zoological Society) 40: 27–36Google Scholar
Beebe, W. and Kenedy, R. (1957). Habits, palatability, and mimicry in thirteen ctenuchid moth species from Trinidad, B. W. I.. Zoologica (New York Zoological Society) 42: 147–158Google Scholar
Bell, T. W. and Meinwald, J. (1986). Pheromones of two arctiid moths (Creatonotos transiens and C. gangis): chiral components from both sexes and achiral female components. Journal of Chemical Ecology 12: 385–409CrossRefGoogle Scholar
Bell, T. W., Boppré, M., Schneider, D. and Meinwald, J. (1984). Stereochemical course of pheromone biosynthesis in the arctiid moth, Creatonotos transiens. Experientia 40: 713–714CrossRefGoogle ScholarPubMed
Benn, M., DeGrave, J., Gnanasunderam, C. and Hutchins, R. (1979). Host-plant pyrrolizidine alkaloids in Nyctemera annulata Boisduval: their persistence through the life cycle and transfer to a parasite. Experientia 35: 731–732CrossRefGoogle Scholar
Bentley, M. D., Leonard, D. E., Stoddard, W. F. and Zalkow, L. H. (1984). Pyrrolizidine alkaloids as larval feeding deterrents for spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Annals of the Entomological Society of America 77: 393–397CrossRefGoogle Scholar
Bernays, E. A., Chapman, R. F. and Hartmann, T. (2002). A highly sensitive taste receptor cell for pyrrolizidine alkaloids in the lateral galeal sensillum of a polyphagous caterpillar, Estigmene acrea. Journal of Comparative Physiology A 188: 715–723Google Scholar
Birch, M. C. (1969). Scent Organs in Male Lepidoptera. D.Phil. Thesis. Oxford University, Oxford
Birch, M. C. (1979). Eversible structures. In Moths and Butterflies of Great Britain and Ireland, vol. 9, eds. J. Heath and A. M. Emmet, pp. 9–18. London: Curwen
Birch, M. C., Poppy, G. M. and Baker, T. C. (1990). Scents and eversible scent structures of male moths. Annual Review of Entomology 35: 25–58CrossRefGoogle Scholar
Bisset, G. W., Grazer, J. F. D., Rothschild, M. and Schachter, M. (1959). A choline ester and other substances in the garden tiger moth, Arctia caja (L.). Journal of Physiology 146: 38–39Google Scholar
Bisset, G. W., Grazer, J. F. D., Rothschild, M. and Schachter, M. (1960). A pharmacologically active choline ester and other substances in the garden tiger moth, Arctia caja (L.). Proceedings of the Royal Society of London B 152: 225–262CrossRefGoogle Scholar
Blest, A. D. (1964). Protective display and sound production in some new world arctiid and ctenuchid moths. Zoologica 49: 161–181Google Scholar
Boada, R. (1997). Courtship and Defense of the Scarlet-bodied Wasp Moth Cosmosoma myrodora Dyar (Lepidoptera: Arctiidae) with Notes on Related Euchromiines. M.Sc. Thesis. Wake Forest University, Winston-Salem
Bogner, F. and Boppré, M. (1989). Single cell recordings reveal hydroxydanaidal as the volatile compound attracting insect to pyrrolizidine alkaloids. Entomologia Experimentalis et Applicata 50: 171–184CrossRefGoogle Scholar
Bogner, F. and Eisner, T. (1991). Chemical basis of egg cannibalism in a caterpillar (Utetheisa ornatrix). Journal of Chemical Ecology 17: 2063–2075CrossRefGoogle Scholar
Boppré, M. (1979). Chemical communication, plant relationships, and mimicry in the evolution of danaid butterflies. Entomologia Experimentalis et Applicata 24: 264–277CrossRefGoogle Scholar
Boppré, M. (1981). Adult Lepidoptera “feeding” at withered Heliotropium plants (Boraginaceae) in East Africa. Ecological Entomology 6: 449–452CrossRefGoogle Scholar
Boppré, M. (1984a). Redefining “pharmacophagy.”Journal of Chemical Ecology 10: 1151–1154CrossRefGoogle Scholar
Boppré, M. (1984b). Chemically mediated interactions between butterflies. In The Biology of Butterflies, Symposium of the Royal Entomological Society of London, No. 11, eds. R. I. Vane-Wright and P. R. Ackery, pp. 259–275. London: Academic Press
Boppré, M. (1986). Insects pharmacophageously utilizing defensive plant chemicals (pyrrolizidine alkaloids). Naturwissenschaften 73: 17–26CrossRefGoogle Scholar
Boppré, M. (1990). Lepidoptera and pyrrolizidine alkaloids: exemplification of complexity in chemical ecology. Journal of Chemical Ecology 16: 165–185CrossRefGoogle ScholarPubMed
Boppré, M. (1995). Pharmakophagie: Drogen, Sex und Schmetterlinge. Biologie in unserer Zeit 25: 8–17CrossRefGoogle Scholar
Boppré, M. and Schneider, D. (1985). Pyrrolizidine alkaloids quantitatively regulate both scent organ morphogenesis and pheromone biosynthesis in male Creatonotos moths (Lepidoptera: Arctiidae). Journal of Comparative Physiology A 157: 569–577CrossRefGoogle Scholar
Boppré, M. and Schneider, D. (1989). The biology of Creatonotos (Lepidoptera: Arctiidae) with special reference to the androconial system. Zoological Journal of the Linnaean Society 96: 339–356CrossRefGoogle Scholar
Bowers, D. (1992). The evolution of unpalatability and the cost of chemical defense in insects. In Insect Chemical Ecology: An Evolutionary Approach, eds. B. D. Roitberg and M. B. Isman, pp. 216–244. London: Chapman & Hall
Bowers, D.(1993). Aposematic caterpillars: life styles of the warningly colored and unpalatable. In Caterpillars: Ecological and Evolutionary Constraints on Foraging, eds. N. E. Stamp and T. M. Casey, pp. 331–371. New York: Chapman & Hall
Bowers, M. D. and Stamp, N. E. (1997). Fate of host-plant iridoid glycosides in lepidopteran larvae of nymphalidae and arctiidae. Journal of Chemical Ecology 23: 2955–2965CrossRefGoogle Scholar
Brown, K. S. Jr (1984). Adult-obtained pyrrolizidine alkaloids defend ithomiine butterflies against a spider predator. Nature 309: 707–709CrossRefGoogle Scholar
Bruce, D. (1888). Description of mature larva of Gnophaela vermiculata G&R. Entomologia Americana 4: 24Google Scholar
Bull, L. B., Culvenor, C. C. J. and Dick, A. T. (1968). The Pyrrolizidine Alkaloids. Amsterdam: North-Holland Biomedical Press
Cardoso, M. Z. O. (1997). Testing chemical defense based on pyrrolizidine alkaloids. Animal Behaviour 54: 985–991CrossRefGoogle Scholar
Cock, M. J. W. (1982). The history of, and prospects for, the biological control of Chromolaena odorata (Compositae) by Pareuchaetes pseudoinsulata Rego Barros and allies (Lepidoptera: Arctiidae). Bulletin of Entomological Research 72: 193–205CrossRefGoogle Scholar
Cockerell, T. D. A. (1889). The larva of Gnophaela vermiculata G&R. Entomologia Americana 5: 57–58Google Scholar
Conner, W. E. (1987). Ultrasound: its role in the courtship of the arctiid moth, Cycnia tenera. Experientia 43: 1029–1031CrossRefGoogle Scholar
Conner, W. E., Eisner, T., Meer, Vander R. K., Guerrero, A. and Meinwald, J. (1981). Precopulatory sexual interactions in an arctiid moth (Utetheisa ornatrix): role of pheromone derived from alkaloids. Behavioral Ecology and Sociobiology 9: 227–235CrossRefGoogle Scholar
Conner, W. E.Roach, B., Benedict, E., Meinwald, J. and Eisner, T. (1990). Courtship pheromone production and body size as correlates of larval diet in males of the arctiid moth, Utetheisa ornatrix. Journal of Chemical Ecology 16: 543–551CrossRefGoogle ScholarPubMed
Conner, W. E., Boada, R., Schroeder, F. and Eisner, T. (2000). Chemical defense: bestowal of a nuptial alkaloidal garment by a male moth on its mate. Proceedings of the National Academy of Sciences, USA 97: 14406–14411CrossRefGoogle ScholarPubMed
Covell, C. V. (1984). A Field Guide to the Moths of Eastern North America. Boston: Houghton Mifflin
Culvenor, C. C. J. and Edgar, J. A. (1972). Dihydropyrrolizidine secretions associated with coremata of Utetheisa moths (family Arctiidae). Experientia 28: 627–628CrossRefGoogle Scholar
Cuperus, P. L. (1985). Inventory of pores in antennal sensilla of Yponomeuta spp. (Lepidoptera: Yponomeutidae) and Adoxophyes orana F.v. R. (Lepidoptera: Tortricidae). International Journal of Insect Morphology Embryology 14: 347–359CrossRefGoogle Scholar
Davenport, J. W. and Conner, W. E. (2003). Dietary alkaloids and the development of androconial organs in Estigmene acrea. Journal of Insect Science 3: 3CrossRefGoogle ScholarPubMed
Davidson, R. B., Baker, C., McElveen, M. and Conner, W. E. (1997). Hydroxydanaidal and the courtship of Haploa (Arctiidae). Journal of the Lepidopterists' Society 51: 288–294Google Scholar
Boer, N. J. (1999). Pyrrolizidine alkaloid distribution in Senecio jacobaea rosettes minimizes losses to generalist feeding. Entomologia Experimentalis et Applicata 91: 169–173CrossRefGoogle Scholar
Dethier, V. G. (1939). Prothoracic glands of adult lepidoptera. Journal of the New York Entomological Society 47: 131–144Google Scholar
Dreyer, D. L., Jones, K. C. and Molyneux, R. L. (1985). Feeding deterrency of some pyrrolizidine, indolizidine, and quinolizidine alkaloids towards pea aphid (Acryrthosiphon pisum) and evidence of phloem transport of indolizidine alkaloid swainsonine. Journal of Chemical Ecology 11: 1045–1051CrossRefGoogle ScholarPubMed
Dunning, D. C. (1968). Warning sounds of moths. Zeitschrift für Tierpsychologie 25: 129–138Google ScholarPubMed
Dunning, D. C. and Krüger, M. (1995). Aposematic sounds in African moths. Biotropica 27: 227–231CrossRefGoogle Scholar
Dunning, D. C. and Roeder, K. D. (1965). Moth sounds and the insect catching behavior of bats. Science 147: 173–174CrossRefGoogle ScholarPubMed
Dunning, D. C., Acharya, L., Merriman, C. B. and Ferro, L. D. (1992). Interactions between bats and arctiid moths. Canadian Journal of Zoology 70: 2218–2223CrossRefGoogle Scholar
Dussourd, D. E. (1986). Adaptations of Insect Herbivores to Plant Defenses. Ph. D. Thesis. Cornell University, Ithaca
Dussourd, D. E., Ubik, K., Harvis, C., Resch, J., Meinwald, J. and Eisner, T. (1988). Biparental defensive endowment of eggs with acquired plant alkaloid in the moth Utetheisa ornatrix. Proceedings of the National Academy of Sciences, USA 85: 5992–5996CrossRefGoogle ScholarPubMed
Dussourd, D. E., Harvis, C. A. and Eisner, T. (1989). Paternal allocation of sequestered plant pyrrolizidine alkaloid to eggs in the danaine butterfly, Danaus gilippus. Experientia 45: 896–898CrossRefGoogle ScholarPubMed
Dussourd, D. E., Harvis, C. A., Meinwald, J. and Eisner, T. (1991). Pheromonal advertisement of a nuptial gift by a male moth (Utetheisa ornatrix). Proceedings of the National Academy of Sciences, USA 88: 9224–9227CrossRefGoogle Scholar
Eberhard, W. G. (1996). Female Control: Sexual Selection by Cryptic Female Choice. Princeton, NJ: Princeton University Press
Edgar, J. A., Culvenor, C. C. J. and Pliske, T. E. (1974). Coevolution of danaid butterflies and their host plants. Nature 250: 646–648CrossRefGoogle ScholarPubMed
Edgar, J. A., Culvenor, C. C. J. and Pliske, T. E. (1976). Isolation of a lactone, structurally related to the esterifying acids of pyrrolizidine alkaloids, from the costal fringes of male Ithomiinae. Journal of Chemical Ecology 2: 263–270CrossRefGoogle Scholar
Egalhaaf, A., Coelln, K., Schmitz, B., Buck, M., Wink, M. and Schneider, D. (1990). Organ specific storage of dietary pyrrolizidine alkaloids in the arctiid moth Creatonotus transiens. Zeitschrift für Naturforschung 45c: 172–177Google Scholar
Ehmke, A., Witte, L., Biller, A. and Hartmann, T. (1990). Sequestration, N-oxidation, and transformation of plant pyrrolizidine alkaloids by the arctiid moth Tyria jacobaeae L.Zeitschrift für Naturforschung 45c: 1185–1192Google Scholar
Eisner, T. (1980). Chemistry, defense, and survival: case studies and selected topics. In Insect Biology in the Future, ed. M. Locke and D. S. Smith, pp. 847–878. New York: Academic PressCrossRef
Eisner, T. and Eisner, M. (1991). Unpalatability of the pyrrolizidine alkaloid-containing moth Utetheisa ornatrix, and its larva, to wolf spiders. Psyche 98: 111–118CrossRefGoogle Scholar
Eisner, T. and Meinwald, J. (1987). Alkaloid-derived pheromones and sexual selection in Lepidoptera. In Pheromone Biochemistry, eds. G. D. Prestwich and G. J. Blomquist, pp. 251–269. Orlando, FL: Academic PressCrossRef
Eisner, T. and Meinwald, J. (1995a). The chemistry of phyletic dominance. Proceedings of the National Academy of Sciences, USA 92: 14–18Google Scholar
Eisner, T. and Meinwald, J. (1995b). The chemistry of sexual selection. Proceedings of the National Academy of Sciences, USA 92: 50–55CrossRefGoogle Scholar
Eisner, T., Eisner, M., Rossini, C.et al. (2000). Chemical defense against predation in an insect egg. Proceedings of the National Academy of Sciences, USA 97: 1634–1639CrossRefGoogle Scholar
Eisner, T., Rossini, C., Gonzales, A., Iyengar, V. K., Siegler, M. V. S. and Smedley, S. R. (2002). Parental investment in egg defense. In Chemoecology of Insect Eggs and Egg Deposition, eds. M. Hilker and T. Meiners, pp. 91–116. Berlin: Blackwell
Fullard, J. H. and Heller, B. (1990). Functional organization of the arctiid moth tymbal (Insecta, Lepidoptera). Journal of Morphology 204: 57–65CrossRefGoogle Scholar
Fullard, J. H., Fenton, M. B. and Simmons, J. A. (1979). Jamming bat echolocation: the clicks of arctiid moths. Canadian Journal of Zoology 57: 647–649CrossRefGoogle Scholar
Fullard, J. H., Simmons, J. A. and Saillant, P. A. (1994). Jamming bat echolocation: the dogbane tiger moth Cycnia tenera times its clicks to the terminal attack calls of the big brown bat Eptesicus fuscus. Journal of Experimental Biology 194: 285–298Google ScholarPubMed
Glendinning, J. I., Brower, L. P. and Montgomery, C. A. (1990). Responses of three mouse species to deterrent chemicals in the monarch butterfly. I. Taste and toxicity tests using artificial diets laced with digitoxin or monocrotaline. Chemoecology 1: 114–123CrossRefGoogle Scholar
González, A., Rossini, C., Eisner, M. and Eisner, T. (1999). Sexually transmitted chemical defense in a moth (Utetheisa ornatrix). Proceedings of the National Academy of Sciences, USA 96: 5570–5574CrossRefGoogle Scholar
Goss, G. J. (1979). The interaction between moths and plants containing pyrrolizidine alkaloids. Environmental Entomology 8: 487–493CrossRefGoogle Scholar
Grant, A. J., O'Connell, R. J. and Eisner, T. (1989). Pheromone-mediated sexual selection in the moth Utetheisa ornatrix: olfactory receptor neurons responsive to a male-produced pheromone. Journal of Insect Behavior 2: 371–385CrossRefGoogle Scholar
Gwynne, D. (1993). Food quality controls sexual selection in Mormon crickets by altering male mating investment. Ecology 74: 1406–1413CrossRefGoogle Scholar
Hägele, B. F. and Rowell-Rahier, M. (2000). Choice, performance, and heritability of performance of specialist and generalist insect herbivores towards cacalol and seneciphylline, two allelochemics of Adenostyles alpina (Asteraceae). Journal of Evolutionary Biology 13: 131–142CrossRefGoogle Scholar
Hampson, G. F. (1898). Catalogue of the Lepidoptera Phalaenae, vol. 1. London: British Museum (Natural History)
Hare, J. F. and Eisner, T. (1993). Pyrrolizidine alkaloid deters ant predators of Utetheisa ornatrix eggs: effects of alkaloid concentration, oxidation state, and prior exposure of ants to alkaloid-laden prey. Oecologia 96: 9–18CrossRefGoogle ScholarPubMed
Hartmann, T. and Ober, D. (2000). Biosynthesis and metabolism of pyrrolizidine alkaloids in plants and specialized insect herbivores. Topics in Current Chemistry 209: 207–243CrossRefGoogle Scholar
Hartmann, T. and Witte, L. (1995). Chemistry, biology, and chemoecology of the pyrrolizidine alkaloids. In Alkaloids: Chemical and Biological Perspectives, vol. 9, ed. S. W. Pelletier, pp. 155–233. Oxford: Pergamon PressCrossRef
Häuser, C. L. and Boppré, M. (1997). A revision of the Afrotropical taxa of the genus Amerila Walker (Lepidoptera, Arctiidae). Systematic Entomology 22: 1–44CrossRefGoogle Scholar
Hesbacher, S., Giez, I., Embacher, G.et al. (1995). Sequestration of lichen compounds by lichen feeding members of the Arctiidae (Lepidoptera). Journal of Chemical Ecology 21: 2079–2089CrossRefGoogle Scholar
Holloway, J. D. (1988). The Moths of Borneo, Part 6: Arctiidae, Syntominae, Euchromiinae, Arctiinae, Aganainae (to Noctuidae). Malaysia: Southdene Sdn. Bhd
Iyengar, V. K. and Eisner, T. (1999a). Heritability of body mass, a sexually selected trait, in an arctiid moth (Utetheisa ornatrix). Proceedings of the National Academy of Sciences, USA 96: 9169–9171CrossRefGoogle Scholar
Iyengar, V. K. and Eisner, T. (1999b). Female choice increases offspring fitness in an arctiid moth (Utetheisa ornatrix). Proceedings of the National Academy of Sciences, USA 96: 15013–15016CrossRefGoogle Scholar
Iyengar, V. K., Rossini, C., Hoebeke, E. R., Conner, W. E. and Eisner, T. (1999). First records of the parasitoid Archytas aterrimus (Diptera: Tachinidae) for Utetheisa ornatrix (Lepidoptera: Arctiidae). Entomological News 110: 144–146Google Scholar
Iyengar, V. K., Rossini, C. and Eisner, T. (2001). Precopulatory assessment of male quality in an arctiid moth (Utetheisa ornatrix): hyroxydanaidal is the only criterion of choice. Behavioral Ecology and Sociobiology 49: 283–288CrossRefGoogle Scholar
Jacobson, N. (1994). Cladistic Studies of the Arctiidae (Lepidoptera) and the Genus Agylla (Arctiidae: Lithosiinae) Using Characters of Adults and Larvae. Ph. D. Thesis, Cornell University, Ithaca
Jacobson, N. and Weller, S. J. (2001). A Cladistic Study of the Tiger Moth Family Arctiidae (Noctuoidea) Based on Larval and Adult Morphology. Lanham, MD: Thomas Say Publications, Entomological Society of America
Jones, F. M. (1932). Insect coloration and the relative acceptability of insects to birds. Transactions of the Royal Entomological Society of London 80: 345–385CrossRefGoogle Scholar
Jones, F. M. (1934). Further experiments on coloration and relative acceptability of insects to birds. Transactions of the Royal Entomological Society of London 82: 443–453CrossRefGoogle Scholar
Krasnoff, S. B. and Dussourd, D. E. (1989). Dihydropyrrolizidine attractants for arctiid moths that visit plants containing pyrrolizidine alkaloids. Journal of Chemical Ecology 15: 47–60CrossRefGoogle ScholarPubMed
Krasnoff, S. B. and Roelofs, W. L. (1989). Quantitative and qualitative effects of larval diet on male scent secretions of Estigmene acrea, Phragmatobia fuliginosa, and Pyrrharctia isabella (Lepidoptera: Arctiidae). Journal of Chemical Ecology 15: 1077–1093CrossRefGoogle Scholar
Krasnoff, S. B. and Roelofs, W. L. (1990). Evolutionary trends in the male pheromone systems of arctiid moths: evidence from studies of courtship in Phragmatobia fuliginosa and Pyrrharctia isabella (Lepidoptera: Arctiidae). Zoological Journal of the Linnaean Society 99: 319–338CrossRefGoogle Scholar
Krasnoff, S. B. and Yager, D. D. (1988). Acoustic response to a pheromonal cue in the arctiid moth Pyrrharctia isabella. Physiological Entomology 13: 433–440CrossRefGoogle Scholar
Krasnoff, S. B., Bjostad, L. B. and Roelofs, W. L. (1987). Quantitative and qualitative variation in male pheromones of Phragmatobia fuliginosa and Pyrrarctia isabella (Lepidoptera, Arctiidae). Journal of Chemical Ecology 13: 807–822CrossRefGoogle Scholar
LaMunyon, C. W. (1997). Increased fecundity, as a function of mutiple mating, in an arctiid moth, Utetheisa ornatrix. Ecological Entomology 22: 69–73CrossRefGoogle Scholar
LaMunyon, C. W. and Eisner, T. (1993). Postcopulatory sexual selection in an arctiid moth (Utetheisa ornatrix). Proceedings of the National Academy of Sciences, USA 90: 4689–4692CrossRefGoogle Scholar
LaMunyon, C. W. and Eisner, T. (1994). Spermatophore size as determinant of paternity in an arctiid moth (Utetheisa ornatrix). Proceedings of the National Academy of Sciences, USA 91: 7081–7084CrossRefGoogle Scholar
L'Empereur, K. M., Li, Y. and Stermitz, F. R. (1989). Pyrrolizidine alkaloids from Hackelia californica and Gnophaela latipennis, an H. californica-hosted arctiid moth. Journal of Natural Products 52: 360–366CrossRefGoogle Scholar
Mattocks, A. R. (1986). Chemistry and Toxicology of Pyrrolizidine Alkaloids. London: Academic Press
Meyer, W. (1984). Sex pheromone chemistry and biology of some arctiid moths (Lepidoptera: Arctiidae): enantiomeric differences in pheromone perception. M. Sc. Thesis. Cornell University, Ithaca
Miller, J. S. and Feeney, P. P. (1989). Interspecific differences among swallowtail larvae (Lepidoptera: Papilionidae) in susceptibility to aristolochic acids and berberine. Ecological Entomology 14: 287–296CrossRefGoogle Scholar
Miller, L. (1991). Arctiid moth clicks can degrade the accuracy of range difference discrimination in echolocating big brown bats, Eptesicus fuscus. Journal of Comparative Physiology A 168: 571–579CrossRefGoogle ScholarPubMed
Nishida, R., Schulz, S., Kim, C. S.et al. (1996). Male sex pheromone of a giant danaine butterfly, Idea leuconoe. Journal of Chemical Ecology 22: 949–972CrossRefGoogle ScholarPubMed
Pagden, H. T. (1957). The presence of coremata in Creatonotus gangis (L.) (Lepidoptera: Arctiidae). Proceedings of the Royal Entomological Society of London A 32: 90–94CrossRefGoogle Scholar
Phelan, P. L. (1992). Evolution of sex pheromones and the role of asymmetric tracking. In Insect Chemical Ecology: An Evolutionary Approach, eds. B. D. Roitberg and M. B. Isman, pp. 265–314. New York: Chapman & Hall
Phelan, P. L. and , Baker T. C. (1987). Evolution of male pheromones in moths: reproductive isolation through sexual selection?Science 235: 205–207CrossRefGoogle ScholarPubMed
Pinhey, E. C. G. (1975). Moths of Southern Africa. Capetown: Tafeble
Pliske, T. E. (1975a). Attraction of Lepidoptera to plants containing pyrrolizidine alkaloids. Environmental Entomology 4: 455–473CrossRefGoogle Scholar
Pliske, T. E. (1975b). Pollination of pyrrolizidine alkaloid-containing plants by male Lepidoptera. Environmental Entomology 4: 474–479CrossRefGoogle Scholar
Pliske, T. E. and Eisner, T. (1969). Sex pheromones of the queen butterfly: biology. Science 164: 1170–1172CrossRefGoogle Scholar
Ritchey, G. E. and McKee, R. (1941). Crotalaria for Forage, Bulletin 361. Gainesville, FL: University of Florida Agricultural Experimental Station
Roeder, K. D. (1974). Acoustic responses and possible bat-evasion tactics of certain moths. In Proceedings of the Annual Meeting of the Canadian Society of Zoologists, University of New Brunswick, Fredericton, June 1974, pp. 74–78
Roque-Albelo, L. (2000). The tiger moths (Arctiidae) of the Galápagos Islands, their biogeography and life history. In Proceedings of the Annual Meeting of the Lepidopterists' Society, Wake Forest University, Winston-Salem, July 2000
Roque-Albelo, L., Schroeder, F. C., Conner, W. E.et al. (2002). Chemical defense and aposematism: the case for Utetheisa galapagensis. Chemoecology 12: 153–157CrossRefGoogle Scholar
Rossini, C., Hoebeke, E. R., Iyengar, V. K., Conner, W. E., Eisner, M. and Eisner, T. (2000). Alkaloid content of the pupal parasitoids of an alkaloid sequestering arctiid moth (Utetheisa ornatrix). Entomological News 111: 287–290Google Scholar
Rothschild, M. (1961). Defensive odours and Mullerian mimicry among insects. Transactions of the Royal Entomological Society of London 113: 101–113CrossRefGoogle Scholar
Rothschild, M. (1963). Is the buff ermine (Spilosoma lutea (Huf.)) a mimic of the white ermine (Spilosoma lubricipeda (L.))?Proceedings of the Royal Entomological Society of London 38: 159–164CrossRefGoogle Scholar
Rothschild, M. (1972a). Colour and poisons in insect protection. New Scientist, 11 May, 318–320Google Scholar
Rothschild, M. (1972b). Secondary plant substances and warning colouration in insects. In Insect/Plant Relationships: Symposium of the Royal Entomological Society of London 6, ed. H. F. van Emden, pp. 59–83. Oxford: Blackwell Scientific
Rothschild, M. (1972c). Some observations on the relationship between plants, toxic insects and birds. In Phytochemical Ecology: Proceedings of the Phytochemical Society 8, ed. J. B. Harborne, pp. 1–12. New York: Academic Press
Rothschild, M. (1985). British aposematic Lepidoptera. In The Moths and Butterflies of Great Britain and Ireland, Part 2, eds. J. Heath and A. M. Emmet, pp. 9–62. Colchester: Harley Books
Rothschild, M. and Aplin, R. T. (1971). Toxins in tiger moths (Arctiidae: Lepidoptera). Pesticide Chemistry 3: 177–182Google Scholar
Rothschild, M., Reichstein, T., Euw, J., Aplin, R. and Harman, R. R. M. (1970). Toxic Lepidoptera. Toxicon 8: 293–299CrossRefGoogle ScholarPubMed
Rothschild, M., Euw, J. and Reichstein, T. (1973). Cardiac glycosides (heart poisons) in the polka-dot moth Syntomeida epilais Walk. (Ctenuchidae: Lep.) with some observations on the toxic qualities of Amata (= Syntomis) phegea (L.). Proceedings of the Royal Society of London, Series B 183: 227–247CrossRefGoogle Scholar
Rothschild, M., Aplin, R. T., Cockrum, P. A., Edgar, J. A., Fairweather, P. and Lees, R. (1979). Pyrrolizidine alkaloids in arctiid moths (Lep.) with a discussion on host plant relationships and the role of these secondary plant substances in the Arctiidae. Biological Journal of the Linnaean Society 12: 305–326CrossRefGoogle Scholar
Rothschild, M., Moore, B. P. and Vance Brown, W. (1984). Pyrazines as warning odour components in the Monarch butterfly, Danaus plexippus, and in moths of the genera Zygaena and Amata (Lepidoptera). Biological Journal of the Linnaean Society 23: 375–380CrossRefGoogle Scholar
Sargent, T. D. (1995). On the relative acceptabilities of local butterflies and moths to local birds. Journal of the Lepidopterists' Society 49: 148–162Google Scholar
Schmeller, T., El-Shazley, A. and Wink, M. (1997). Allochemical activities of pyrrolizidne alkaloids: interactions with neuroreceptors and acetylcholine related enzymes. Journal of Chemical Ecology 23: 399–416CrossRefGoogle Scholar
Schmitz, B., Buck, M., Egelhaaf, A. and Schneider, D. (1989). Ecdysone and a dietary alkaloid interact in the development of the pheromone gland of a male moth (Creatonotos, Lepidoptera: Arctiidae). Roux's Archives of Developmental Biology 198: 1–7CrossRefGoogle Scholar
Schneider, D. (1986). The strange fate of pyrrolizidine alkaloids. In Perspectives in Chemoreception and Bihavior, eds. R. F. Chapman, E. A. Bernays and J. G. Stoffolano, pp. 123–142. New York: Springer-Verlag
Schneider, D., Boppré, M., Zweig, J.et al. (1982). Scent organ development in Creatonotos moths: regulation by pyrrolizidine alkaloids. Science 215: 1264–1265CrossRefGoogle ScholarPubMed
Schneider, D., Schultz, S., Kittmann, R. and Kanagaratnam, P. (1992). Pheromones and glandular structures of both sexes of the weed defoliator moth Pareuchaetes pseudoinsulata Rego Barros (Lep., Arctiidae). Journal of Applied Entomology 113: 280–294CrossRefGoogle Scholar
Schneider, D., Schulz, S., Priesner, E., Ziesmann, J. and Franke, W. (1998). Autodetection and chemistry of female and male pheromone in both sexes of the tiger moth Panaxia quadripunctaria. Journal of Comparative Physiology A 182: 153–161CrossRefGoogle Scholar
Schultz, S., Franke, W., Boppré, M., Eisner, T. and Meinwald, J. (1993). Insect pheromone biosynthesis: stereochemical pathway of hydroxydanaidal production from alkaloid precursors in Creatonotos transiens (Lepidoptera, Arctiidae). Proceedings of the National Academy of Sciences, USA 90: 6834–6838CrossRefGoogle Scholar
Simmons, R. B. (2001). Phylogenetic studies of mimetic tiger moths based on morphological and molecular data (Lepidoptera: Arctiidae: Euchromiini). Ph. D. Thesis. University of Minnesota, Minneapolis
Simmons, R. B. and Weller, S. J. (2002). What kind of signals do mimetic tiger moths send? A phylogenetic test of wasp mimicry systems (Lepidoptera: Arctiidae: Euchromiini). Proceedings of the Royal Society of London, Series B 269: 983–990CrossRefGoogle Scholar
Singer, M. S. (2000). Ecological maintenance of food-mixing in the woolly bear caterpillar Grammia geneura (Strecker)(Lepidoptera: Arctiidae). Ph. D. Thesis. University of Arizona, Tucson
Stoneman, M. G. and Fenton, M. B. (1988). Disrupting foraging bats: the clicks of arctiid moth. In NATO ASI Series A, Life Sciences, vol. 156, Animal Sonar: Processes and Performance, eds. P. E. Nachtigall and P. W. B. Moore, pp. 635–638. Brussels: NATOCrossRef
Stretch, R. H. (1882). Larva of Gnophaela hopfferi. Papilio 2: 82–83Google Scholar
Teas, H. J., Dyson, J. G. and Whisenant, B. R. (1966). Cycasin metabolism in Seirarctia echo Abbot and Smith (Lepidoptera: Arctiidae). Journal of the Georgia Entomological Society 1: 21–22Google Scholar
Tietz, H. M. (1972). An Index to the Life Histories, Early Stages and Hosts of the Macrolepidoptera of the Continental United States and Canada, vols. I and II. Sarasota, FL: Allyn Museum of Entomology
Tougaard, J., Casseday, J. H. and Covey, E. (1998). Arctiid moths and bat echolocation: broad band clicks interfere with neural responses to auditory stimuli in the nuclei of the lateral lemniscus of the big brown bat. Journal of Comparative Physiology A 182: 203–215CrossRefGoogle ScholarPubMed
Witte, J. R., Brown, L., Trigo, K. S. Jr, Hartmann, T. and Barata, L. E. S. (1993). Pyrrolizidine alkaloids in the arctiid moth, Hyalurga syma. Journal of Chemical Ecology 19: 669–679Google Scholar
Trigo, J. R., Brown, K. S. Jr, Witte, L., Hartmann, T., Ernst, L. and Barata, L. E. S. (1996). Pyrrolizidine alkaloids: differential acquisition and use patterns in Apocynaceae and Solanaceae feeding ithomiine butterflies (Lepidoptera: Nymphalidae). Biological Journal of the Linnaean Society 58: 99–123CrossRefGoogle Scholar
Vasoconcellos-Neto, J. and Lewinsohn, T. M. (1984). Discrimination and release of unpalatable butterflies by Nephila clavipes, a neotropical orb-weaving spider. Ecological Entomology 9: 337–344CrossRefGoogle Scholar
Nickisch-Rosenegk, E. and Wink, M. (1993). Sequestration of pyrrolizidine alkaloids in several arctiid moths (Lepidoptera: Arctiidae). Journal of Chemical Ecology 19: 1889–1903CrossRefGoogle Scholar
Watson, A. and Goodger, D. T. (1986). Catalogue of the neotropical tiger-moths. Occasional Papers on Systematic Entomology No. 1. London: British Museum of Natural History
Weller, S. J., Jacobsen, N. L. and Conner, W. E. (2000a). The evolution of chemical defences and mating systems in tiger moths (Lepidoptera: Arctiidae). Biological Journal of the Linnaean Society 68: 557–578CrossRefGoogle Scholar
Weller, S. J., Simmons, R. B., Boada, R. and Conner, W. E. (2000b). Abdominal modifications occurring in wasp mimics of the Ctenuchine–Euchromiine clade (Lepidoptera: Arctiidae). Annals of the Entomological Society of America 93: 920–928CrossRefGoogle Scholar
Willis, M. A. and Birch, M. C. (1982). Male lek formation and female calling in a population of the arctiid moth, Estigmene acrea. Science 218: 168–170CrossRefGoogle Scholar
Wink, M. L. D. and Schneider, D. (1988). Carrier-mediated uptake of pyrrolizidine alkaloids in larvae of the aposematic and alkaloid-exploiting moth Creatonotus. Naturwissenschaften 75: 524–525CrossRefGoogle Scholar
Wink, M. and Nickisch-Rosenegk, E. (1997). Sequence data of mitochondrial 16S rDNA of arctiidae and nymphalidae: evidence for a convergent evolution of pyrrolizidine alkaloid and cardiac glycoside sequestration. Journal of Chemical Ecology 23: 1549–1568CrossRefGoogle Scholar
Wink, M. L., Schneider, D. and Witte, L. (1988). Biosynthesis of pyrrolizidine alkaloid-derived pheromones in the arctiid moth, Creatonotos transiens: stereochemical conversion of heliotrine. Zeitschrift für Naturforschung 43c: 737–741Google Scholar
Wunderer, H., Hansen, K., Bell, T. W., Schneider, D. and Meinwald, J. (1986). Sex pheromones of two Asian moths (Creatonotus transiens, C. gangis; Lepidoptera, Arctiidae): behavior, morphology, chemistry and electrophysiology. Experimental Biology 46: 11–27Google Scholar
Yosef, R., Carrel, J. E. and Eisner, T. (1996). Contrasting reactions of loggerhead shrikes to two types of chemically defended insect prey. Journal of Chemical Ecology 22: 173–181CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×